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Abstract

Two ubiquitous empirical regularities in pay distributions are that the variance of wages increases

with experience and innovations in wage residuals have a large, unpredictable component. The leading

explanations for these patterns are that over time, either firms learn about worker productivity but

productivity remains fixed or workers’productivities themselves evolve heterogeneously. In this paper,

we seek to disentangle these two models and place magnitudes on their relative importance. We derive

a dynamic model of learning and productivity that nests both models and then estimate our model on

a 20-year panel of pay and performance measures from a single, large firm. The advantage of these data

is that they provide us with repeat measures of correlates of productivity that are in part not observed

by the firm when it sets wages. Our estimates show that wages differ significantly from individual

productivity all along the life-cycle and both heterogenous productivity changes and employer learning

are important for understanding the wage dynamics. We then use our estimates to calculate the degree

to which imperfect learning introduces a wedge between the private and social incentives to invest into

human capital. We find that these disincentives exist all over the life-cycle but increase rapidly after

about 15 years of experience. Thus, in contrast to the existing literature on employer learning, we find

that imperfect learning is highly relevant for older workers.
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1 Introduction

Observationally identical workers often earn vastly different wages. Controls for edu-

cation, experience, and demographic characteristics typically remove only 20 to 30%

of the variation in wages. Furthermore, the variance in wage residuals tends to in-

crease with age. Why wages vary so much across observationally similar workers and

why this variation increases with age are central questions of labor economics. One set

of answers to these questions stresses that workers experience unforeseen productivity

shocks and that productivity changes heterogeneously over the life-cycle in ways not

captured by standard controls in Mincer earnings regressions. An alternative set of

answers emphasizes that worker skills are not easily observed by employers; instead

employers need to learn about the skills and abilities of workers. Central to these

explanations is a process by which information about differences between workers is

slowly revealed to the labor market. Wages diverge as potential employers learn to

distinguish individual skills.

Both hypotheses can account for two fundamental empirical regularities regard-

ing wage residuals: the variance of wage residuals increases with experience and

innovations in wage residuals have a large unpredictable component.1 Estimating the

relative contributions of heterogeneous productivity and employer learning to pay

changes over the life cycle is the task of this paper.2 We develop a new methodol-

ogy exploiting information such as that commonly collected in personnel data sets

to identify models that incorporate both explanations. We derive a dynamic model

1These findings are intuitive. In learning models, wages equal expected productivity conditional
on the information available at any age. The variance of conditional expectations increases as the
conditioning set increases, implying the same for the variance of wage residuals. Furthermore, be-
cause past wages are included in the firm’s information set, wage growth will be uncorrelated over
time. Unrestricted productivity models can match the observed patterns in wages by simply assum-
ing a stochastic dynamic process on productivity that mirrors the observed stochastic properties of
the wages.

2The paper assumes that individuals productivity includes a deterministic component that evolves
similarly over the life-cycle for all workers. This component captures the empirical regularities
captured by typical Mincer earnings equations. Our interest lies not in this deterministic component
of wages, but rather in the variation around this deterministic profile.



where firms must learn about the skills of their workers and worker productivity it-

self varies stochastically over time. Firms set wages equal to expected productivity,

hence wages vary over the life-cycle because of both firm updating and productivity

evolution. This nested model provides a well specified alternative against which we

can test the alternative pure models that restrict either firm learning or heterogenous

productivity dynamics to play no role in wage dynamics. We find that both learning

and heterogenous productivity are important for explaining the dynamics in wages

and estimate the parameters of the nested model.3 To illustrate how relevant learning

might be along the life-cycle, we use our estimates to provide empirical evidence on

how disincentives to invest in human capital due to incomplete information change

with age.4

Distinguishing between the alternative hypotheses of heterogeneous productivity

and employer learning is intrinsically diffi cult because it is rarely possible to directly

observe the productivity of individual workers. The growing empirical literature on

employer learning (Farber and Gibbons (1996), Altonji and Pierret (2001), Lange

(2007), Schönberg (2007), Arcidiacono, Bayer, and Hizmo (2010), and others) exploits

a correlate of productivity, measured prior to labor market entry, that is available to

researchers but (they argue) not to firms. In practice, this literature relies almost

exclusively on the AFQT score, a composite score derived from a battery of tests

administered to the respondents of the NLSY79. The fact that wages increasingly

correlate with the AFQT score over the life-cycle is seen as evidence for employer

3Our model is designed to empirically evaluate the relative importance of the employer learning
model and the hypothesis that productivity evolves stochastically. In order to arrive at a tractable,
estimable specifications we need to abstract from an important mechanism that relates individuals
careers to employer learning: task assignment based on information learned by employers over time
(see eg. Gibbons and Waldman (1999, 2006)). In our model, individuals are endowed with a
single skill that evolves over time and that employers learn about. Employers however do not
assign individuals to different tasks based on what they have learned. Such assignment can lead
to interesting feedback mechanisms between learning on the part of employers and how individual
productivity evolves over the life-cycle. This paper however abstracts from these mechanisms in
order to arrive at a simple estimable model. This can only be justified by the fact that we believe
that this empirical model does produce interesting insights into the dynamics of individuals’careers.

4To our knowledge, we are the first to provide evidence on this question.



learning. However, a major drawback of this literature is that the AFQT score was

collected prior to the labor market entry of these workers. Therefore models examined

in this literature cannot allow productivity to vary heterogeneously over the life cycle.

Another drawback is that one needs to assume that employers did not use the AFQT

score when setting wages, even though knowledge of the test score is valuable and

that it may have been possible to collect.5

In this paper, we provide new evidence on whether employer learning or changes

in worker productivity drive individual wage dynamics over the life-cycle. To do this,

we use a 20-year unbalanced panel data set of all managerial employees in one firm,

previously analyzed in Baker, Gibbs and Holmstrom (1994a and 1994b, BGHa and

BGHb hereafter).6 For our purposes, these data have the crucial advantage that they

contain both annual pay of workers as well as performance ratings in the form of sub-

jective managerial assessments. The panel structure allows us to observe performance

ratings that were collected prior to, contemporaneous to, and after the current pe-

riod. The latter provides us with information about worker productivity that the firm

was not able to exploit when setting wages. We can thus dispense with the ad-hoc

assumption on the information available to employers that was previously required in

this literature. Further, these repeat performance ratings obtained at various points

over the life-cycle allow us to estimate dynamic specifications of productivity and

5A related, prior literature analyzes the second moments of wage residuals to understand the roles
information revelation and hetergeneous productivity play in wage dynamics (e.g., Abowd and Card
1989, Hause 1980, MaCurdy 1982 and Baker 1997). The observation that log wage residuals have
a large unpredictable component is seen as evidence against human capital models. By contrast,
observing that wage changes are correlated over time is seen as evidence for systematic differences
in human capital accumulation. A major obstacle in this literature is that it focuses exclusively on
wages and does not use other information on worker productivity. Therefore this literature cannot
determine whether changes in wages are due to changes in productivity itself or the information held
by employers.

6These landmark studies provided early empirical evidence on the internal organization and pay
dynamics of the firm. Their findings have inspired the well known contributions by Gibbons and
Waldman (1999 and 2006) who reconcile most of the BGH findings by combining simple models of
job (and later task) assignment, human-capital acquisition and learning. In addition, Gibbs (1995)
describes the empirical relationship between pay, promotions and performance and DeVaro and
Waldman (2007) use the data to test the Waldman (1984) promotion-as-signal hypothesis.



learning that go beyond those currently estimated in the literature.

We show that the correlations of pay with performance, measured at various lags

and leads, are particularly informative for distinguishing between employer learning

and dynamic productivity models. For example, a pure learning model predicts that

these correlations of pay with past performance measures exceed the correlations of

pay with future performance measures. This is because firms rely on past, but not

future, performance measures to set current pay. Over time, as firms’priors become

more precise and they update less on new signals, this difference in the correlations

of pay with past and future performance measures should decline. In contrast, an

implication of the full information pure productivity model is that wages correlate

similarly with past and future performance evaluations.

In isolation, neither model can fully reproduce the moments of the data. We find

evidence for employer learning in that we observe that wages are more highly cor-

related with past rather than future performance ratings. However, we observe this

pattern even for workers at high experience levels, contradicting the pure learning

model. When estimating the full model, these facts lead us to conclude that the firm

does learn about worker ability and that productivity evolves over time. Somewhat

surprisingly, we find that the initial variance in productivity is quite small and em-

ployers seem to be well informed about the skills of workers at the outset of their

careers.7 Over time, productivity evolves substantially, thanks to both a predictable

and a random walk component. Therefore the firm must continuously learn about

a moving target, even at high experience levels. Thus, the majority of the observed

growth in dispersion in wage residuals reflects increasing heterogeneity in individual

productivity. However, imperfect employer learning means that it requires a number

of years for productivity differences to be priced into wages.

7This finding is however consistent with Arcidiacono et al. who show that firms have more precise
initial expectations about college graduates than high school graduates. Our sample of managers,
reflecting highly skilled workers, should be more similar to the college graduates sample.



These findings have important implications about individuals’incentives to invest

in their human capital. If labor markets find it diffi cult to distinguish productive

and unproductive workers, then workers find it less valuable to invest in their human

capital.8 In prior work (Lange (2007)), one of us argued that productivity of young

workers is rapidly revealed to the labor market implying that individuals will capture

most of the benefits of early investments in human capital. In this paper, we allow

productivity to vary heterogeneously all along the life-cycle and then estimate how fast

employers learn about these changes. The size of the gap between the social returns to

investing in human capital and the private returns depends on how rapidly employers

learn about worker producitivity and how long the horizon facing individuals is. If

learning is relatively rapid, any human capital investment made by younger workers

will be priced into wages after a few years. Younger workers then can enjoy the fruits

of their investments for the remainder of their career. For older workers, the period

of learning when their investment are imperfectly priced into wages looms larger and

they will capture smaller and smaller proportions of the social returns of their human

capital investments.

We find that the fraction of the social returns to human capital investments going

to workers declines steadily over the life-cycle. Workers in their twenties and thir-

ties capture about three quarters of the productivity return. However, after about

15 years of experience, the share of the returns to investment going to individuals

declines rapidly. It declines to about 65% after 20 years of experience, 40% after 30

years, and 25% after 35 years of experience. Therefore the incentives to invest are

much more severely misaligned for workers in middle and old age than for younger

workers. The prior literature on employer learning has focused on the consequence

8A theoretical literature (see Change and Wang 1996, Katz and Ziderman 1990 and Waldman
1990) posits that when firms learn asymmetrically about worker ability, workers could underinvest
in general skills. This point has not been applied to symmetric employer learning models (the case
we consider in this paper), likely because estimating these models has required the assumption that
worker productivity cannot evolve heterogeneously.



of learning for young workers. Given the observed speed of learning (Lange 2007),

this literature suggests that the consequences of incomplete information for human

capital investments for this age group are limited. Our study suggests that incentives

are more severely misaligned for human capital investments of older workers. We

believe this reinterpretation of the traditional employer learning model — that the

consequences of imperfect learning are more severe among older rather than younger

workers —represents a significant contribution to the empirical literature on employer

learning.

The remainder of this paper is structured as follows. Section 2 introduces the

model of learning and productivity, shows how this model nests the pure learning

and pure productivity models, and discusses the identification of these two models.

Section 3 describes the data. Section 4 reports the estimation method and results

and evaluates the fit of the model. In Section 5, we discuss what these estimates

imply for how learning and productivity contribute to wage dynamics over the life-

cycle and we show how imperfect learning affects the incentives to invest into human

capital. Section 6 briefly touches upon alternative models of wage dynamics that

might explain the data. Section 7 concludes the paper. A more general formulation

of the model, a formal identification argument of the two basic constituent models,

and a discussion of attrition are relegated to the appendices.

2 A Model of Learning and Productivity

In this section, we introduce the model that we use to organize the discussion and

empirical evidence.9 We have chosen a parsimonious specification that nests two of

the main models of wage dynamics, the pure employer learning model and the pure

productivity model. Each model represents a distinct view point about how wages
9The models we analyze in this paper are special cases of a more general class of models of

learning and productivity that can be analyzed using the tools developed in this paper. We present
this more general class of models in the appendix.



evolve over the life-cycle. The pure learning model goes back to the specification

analyzed by Farber and Gibbons (1996) (see also Altonji and Pierret (2001) and

Lange (2007)). This model assumes that individual heterogeneity in productivity is

fixed across the life-cycle and that wage dynamics are driven entirely by learning on

the part of employers. The pure productivity model instead assumes that employers

are perfectly informed about worker productivity. Wage dynamics in this model

reflect variation in productivity over the life-cycle. The nested model allows for both:

productivity varies heterogeneously over the life-cycle and employers are assumed to

constantly update their information about individual productivity.

2.1 The Nested Model

A number of assumptions apply not only to the models we analyze in this section, but

also to the more general model developed in appendix I. We assume that labor markets

are spot markets and that information is symmetric across all employers.10 This

implies that workers are paid their expected productivity in each period. Furthermore,

we assume that firms know the structure of the economy and they update their

expectations in a Bayesian manner.

More specific to the models analyzed in this paper are the assumptions on the

productivity process, the information structure, and the measurement of wages and

performance that we will detail now.

Productivity Evolution

A scalar Q̃it summarizes worker productivity. Productivity varies with observed
10A large literature deviates from the assumptions of spot markets and symmetric information.

For example, Gibbons and Katz (1991), Kahn (2009a),Schönberg (2007) and DeVaro and Waldman
(2007) provide evidence, in a variety of settings, that employers learn asymmetrically. Further BGH
(1994b), Beaudry and DiNardo (1991), Kahn (2010), and Oreopoulos et al. (2006) show that pay is in
part dependent on past labor market conditions. We are enormously sympathetic to this literature,
especially since one of us has contributed to it. However, it would be intractible to include features
of these models in our paper. What is important for us is that despite evidence of the existence
of these market imperfections, there is also substantial evidence that market forces constrain firms
in setting pay policies. For example, BGH (1994b) find that the firm analyzed here does not fully
shelter pay from market fluctuations.



characteristics (xi) and experience t. Thus, we let Q̃it = Q (x, t)∗Qi,t. Here Q (x, t) =

E
[
Q̃it|x, t

]
captures systematic variation in productivity over the life-cycle and is

necessary to explain the strong regularities in log wages with experience and school-

ing that characterize all labor market data. Qi,t is the idiosyncratic component of

individual productivity.

The difference equation (1) provides a simple of representation of how the indi-

vidual component of log productivity qit = log(Qit) evolves with experience:11

qit = qit−1 + κi + εrit (1)

We assume κi ∼ N (0, σ2κ) and ε
r
it ∼ N (0, σ2r) and that the ε

r
it are uncorrelated over

time and with κi. We initialize this difference equation in period 0 with a draw of qi0,

drawn from a normal distribution N(0, σ2q). This draw is independent of κi.
12

According to equation (1), log productivity qit evolves with three sources of het-

erogeneity. The heterogeneity in qi0 captures differences in initial ability. The hetero-

geneity in the drift parameter κi models persistent differences in the intensity with

which individuals accumulate human capital over the life-cycle.13 Finally, εrit captures

innovations in individual productivity that are not predictable. The i.i.d. assump-

tion on the εrit implies that the variation in these innovations does not decline with

experience and that individual productivity diverges even for relatively experienced

workers.

There are various possibilities for why worker productivity might evolve randomly

over time. Some workers might experience bad health. Others find some of their

skills to become obsolete due to technological change. Another possibility still is

11By construction qit is mean zero and uncorrelated with the controls x. From now on, we will
suppress the dependence on x. We generally follow the notational convention that upper case and
lower case letters refer to variables measured in levels and logs, respectively.
12We adopt the convention that period 0 is a period prior to the first period the individual spends

in the labor market.
13Persistent differences in intensity would arise, for example, if individuals differ in either their

preferences or ability to invest (Becker (1964), Ben-Porath (1967)).



that individuals are asked to perform different tasks as they acquire more experi-

ence. If productivity on past tasks does not perfectly predict productivity on future

tasks, then worker productivity would indeed be subject to unpredictable variation

as individuals gain experience (Gibbons and Waldman 2006).

Information Structure

The flow of information to employers is modeled using three different signals. Any

information firms have about worker productivity at the beginning of their career is

embodied in an initial signal zi0. As individuals spend time in the labor market, firms

observe two signals in each time period: {pit, zit}Tt=1. The signals zi0 and {zit}Tt=1 are

not observed in the data available to researchers. The only signal that is (partially)

contained in our data is pit.14We assume that all three signals are normally distributed

around qi and therefore have zi0 = qi + εi0, pit = qi + εpit, zit = qi + εzit where

εi0˜N (0, σ20) , ε
p
it ∼ N

(
0, σ2p

)
, and εzit˜N(0, σ2z). The normality assumptions allow us

to analyze the learning process using the tools of Kalman filtering and ensure great

parsimony for the model. Without loss of generality, we impose that cov (εzit, ε
p
it) =

0.15

Based on the spot market assumption made above, wages will equal expected

productivity conditional on all signals firms have observed up to that point.

Measurement Issues

Two measurement issues arise when we try to map the above model onto the

particular data we consider. First, and quite standard, we allow for measurement

error in wages:

Wi,t = W ∗
i,tΩi,t (2)

where Wit is the observed wage, W ∗
it is the wage measured without error and Ωit

14In the data section, we describe more precisely the information we have on pit.
15The information in correlated normal signals is identical to the information contained in orthog-

onalized signals. The correlations between pit and wages implied by a model with correlated signals
and those implied by a model with orthogonal signals are therefore identical.



represents the measurement error. Taking logs we get

wit = w∗it + ωit (3)

We assume that ωit is classical measurement error with ωit˜N (0, σ2ω) .

The second issue arises from the fact that our observed productivity signals, pit,

are subjective managerial performance evaluations (described in more detail below).

As we estimated the model, we found that these performance ratings were very highly

correlated across short time horizons. We believe this pattern arises from temporary

stickiness in performance evaluations and does not reflect true productivity evolution.

Such persistence could occur, for example, if workers are temporarily matched with

the same manager for several periods who may then give similar ratings. Or, managers

may be reluctant to give ratings that deviate too far from past performance, if they

anticipate the unpleasantness of dealing with worker complaints or needing to provide

extra justification. We model this effect by assuming that the εpit evolve according to

equation (4) :

εpit+1 = ρεpit + uit+1 (4)

where the initial noise is εpi1 = 0 and uit˜N (0, σ2u) . The parameter ρ governs the

degree of persistence in manager ratings and will be estimated. Other than this, we

assume that signals reflect new information, i.e., the signal errors (εi0, ε
z
it, uit) are

uncorrelated across time.16

16A different modeling assumption would be to put the auto-regressive component, ρ, directly
into the productivity evolution equation. This would yield some auto-correlation in performance
measures. However, this assumption violates several of the observed patterns in our data, which
we describe below. Specifically, because pit contains noise terms, ε

p
it, the AR-1 process in observed

performance would exhibit less persistence than the AR-1 process in true productivity. In order to
generate the relatively large auto-correlations between pit and pit−1(we show below that these are
on the order of 0.6), we would need the signal noise in εpit to be very small. But, if the εpit were
very precise, then we would necessarily require wages and performance signals to be very highly
correlated, contradicting the findings in the data.



Summary

The model described above is governed by only 8 parameters:
(
σ2q, σ

2
r, σ

2
0, σ

2
u, σ

2
ω, σ

2
κ, ρ, σ

2
z

)
.

Because of this parsimony, it becomes transparent what features of the data drive the

parameter estimates. At the same time the model is suffi ciently complex to nest the

two interpretations of wage dynamics that are the object of our inquiry: employer

learning and productivity dynamics. By imposing the appropriate restrictions on

these parameters, we can estimate either the pure learning or the pure productivity

model. The restriction σ2κ = σ2r = 0 eliminates any heterogenous dynamics in produc-

tivity and delivers the pure learning model. By contrast, the restriction σ20 = σ2z = 0

implies that the firm is perfectly informed at any stage of the life-cycle and thus

delivers the pure productivity model.

2.2 Implications and Identification

We now derive several intuitive implications from the model which illustrate how one

can empirically distinguish between the employer learning and productivity models.

In appendix II, we provide a more formal discussion of how the parameters in the

model can be identified using the second moments of wages and performance ratings.

First, it is worth pointing out that wage data alone does not allow one to reject

models with unrestricted productivity processes under full information. It is alwasy

possible to rationalize wage data within a full information model by assuming that

the productivity process follows the same process governing the wage data. For ex-

ample, observing that log wages follow a random walk has been taken as evidence

of employer learning (Farber and Gibbons 1996). However, this pattern would also

be obtained under a full information model if productivity itself evolves as a random

walk. Therefore, identifying joint models of learning and productivity dynamics using

wage data alone will either require functional form restrictions that one is willing to

impose on the productivity process or it will require an additional source of informa-



tion on productivity. Access to productivity correlates such as performance ratings

helps resolve this identification problem.

Especially helpful is the co-variation in pay with performance across experience.

To illustrate, we consider what the pure learning model17 implies for how pay covaries

with past performance measures as opposed to future performance measures. To

simplify assume, for now, that performance ratings are uncorrelated over time (ρ = 0)

and that wages are measured without error (σ2ω = 0). Then, an individual’s wage will

be given by the following expression:

wit = E
[
qi|I t

]
= χt + (1−Kt−1) ∗ E [qi|zi0] +Kt−1

1

t− 1

t−1∑
j=1

φij (5)

where φit = (1− φ) pit + φzit (6)

Kt =
tσ2q

tσ2q + σ2φ
(7)

This expression contains both a component χt that is common across individuals

and a component that depends on the signals the firm obtains.18 In each period, we

combine the two signals zit and pit into a single scalar φit that represents a suffi cient

statistic for the information obtained in period t. The weight φ depends on how much

variance there is in both signals respectively. 19

From equations (5)-(7), it is easy to derive the covariances between pay and per-

formance measures across time:

cov(wit, piτ ) =

 Kt−1(σ
2
q + 1−φ

t−1 σ
2
p) τ < t

Kt−1σ
2
q τ ≥ t

 (8)

17We thus impose that σ2κ = σ2r = 0.
18The time effects χt capture both the common variation in log productivity over time and also

how the variance of the prediction error varies with experience. A convenient feature of the normal
learning model is that the variance of the prediction error does not depend on the observed signals
and is instead common across all individuals with the same level of experience.
19The exact expressions for φ and σ2φ, the variance of the scalar signal σ

2
φ, are known, but not of

particular interest at this point.



Equation (8) encapsulates three of the features implied by the pure learning model

that are particular noteworthy.

First, for τ > t, the cov(wit, piτ ) increases with experience t because Kt−1, the

weight placed on the stream of performance measures, grows. Intuitively, as the firm

learns, the wage becomes increasingly correlated with underlying productivity and

therefore will also correlate more with any signal of productivity, i.e., future perfor-

mance ratings. Second, cov(wit, piτ ) is larger for performance measures that occurred

before the wage was set (τ < t) , than for performance measures that were not yet

observed when the wage was set (τ ≥ t). This is because current pay incorporates

the realizations of εp from previously observed performance measures, but not from

future performance measures. Therefore, under the learning model, the relationship

between cov(wit, piτ ) and τ will be a step function with a step at τ = t. The size of the

step can be obtained by differencing the two expressions in equation (8) and is equal

to Kt−1
1−φ
t−1 σ

2
p. This yields the third prediction: the size of the step decreases in t.

Intuitively, firms’expectations are based on substantially more productivity ratings

when t is large and they therefore put less weight on any given signal pit when setting

wages.20

Thus, the learning model implies a discontinuity at the present when we com-

pare how pay in any period correlates with past and future performance ratings. For

learning models, the distinction between the past and the future is fundamental, be-

cause it separates observed and unobserved information, generating the discontinuity

in correlations. By contrast, the pure productivity model treats the past and the

future symmetrically, since the firm has full knowledge of productivity when setting

pay. It therefore could not generate the step function described above. This asym-

metry illustrates that having performance and wage data available provides a source

20While correlations of wages with future performance rise as workers gain experience, this does
not happen for correlations with past performance. In a learning model, though wages increasingly
correlate with true productivity, that effect is offset by the fact that firms use any given productivity
measure less for older workers since their expectations have become more precise.



of identification that allows distinguishing learning models from productivity models

and is not functional form dependent.

3 Data

3.1 General description

This paper analyzes data first used by BGHa and BGHb in their canonical studies

of the internal organization of the firm. The data consist of personnel records for all

managerial employees of a medium-sized, US-based firm in the service sector from

1969-1988. We have annual pay and performance measures, as well as some demo-

graphics and a constructed measure of job level (see BGHa for more detail). The

original sample contains 16,133 employees. Of these, we restrict attention to the

9,391 employees with non-missing education who can be observed with a wage or

performance measure between the ages of 25 and 54 and at least one more wage or

performance measure.21

Because we have data on only one firm, we may suffer from several selection

problems. We are concerned that attrition from the sample is non-random, since

nonrandom turnover could bias our results. In appendix III, we estimate a selection

corrected version of our model that corrects for attrition based on observables and

find that our results are unchanged when we estimate this version of the model.

Summary statistics are reported in table 1. The majority of managers are white

males with at least a college degree. Annual salary averages almost $54,000 in cpi-

adjusted 1988 dollars and measures base pay.22

21Age 25 might be considered slightly old to begin the processes of employer learning and post-
school skill accumulation for most education groups. However, our sample consists of workers who
have already been promoted to the level of manager. As we have no way of learning about their
labor market experiences before they enter this sample, we start at the earliest age which still yields
a decent sample size. This is also why we extend the analysis to age 54. From now on, we adopt
the convention that age 25 is the first year of experience.
22We have information on bonus pay for some years (1981-1988) but do not include it in the



The performance ratings range from 1 to 4, with higher rating reflecting better

performance.23 From table 1, we see the average rating is a little over a 3 and the

distribution is top heavy, with more than 75% of workers receiving one of the top two

ratings.24

Table 1: Summary Statistics

Figure 1 plots log pay and performance residuals by age, with solid and dashed

lines, respectively.25 The solid line shows that the earnings are rising with age, but

at a decreasing rate, reflecting typical life-cycle patterns. The dashed line reveals,

somewhat surprisingly, that average performance falls with age. This is unexpected if

we think part of the explanation for the rising age-earnings profile is that workers are

accumulating more skills. Medoff and Abraham (1980, 1981) find similar patterns in

their data: wage-experience profiles often deviate substantially from experience pro-

files observed for subjective performance measures. Gibbons and Waldman (1999)

argue that this finding can be explained if employees of the same experience level are

rated relative to each other. This interpretation can reconcile the patterns from sub-

jective performance measures with the finding that objective productivity measures

typically have similar experience profiles as wages do (Waldman and Avolio 1986). It

also explains why studies (see Jacob and Lefgren 2008 and Bommer et al. 1995) that

have access to both objective and subjective performance measures find that these

analysis to maintain consistency in our data across years. In these years, 22% of workers receive a
bonus and, conditional on receiving a bonus, the amount is on average 12% of base salary. We have
separately estimated the model with the bonus and the salary data using the 1981-1988 period only.
The results are consistent with those presented here but less precise.
23We inverted and recoded the original measures, which ranged from 1 to 5, combining the worst

two ratings since almost nobody receives the worst.
24This distribution of performance ratings is similar to those found in Medoff and Abraham (1980

and 1981) and Murphy (1991) in their studies of performance ratings across various industries and
firms. Gibbs (1995) shows that these performance ratings do contain meaningful information. For
example, high performance ratings are correlated with higher raises and bonuses, and increase the
probability of promotions.
25Both variables are residualized on the following set of variables, all interacted with education

group (high school, some college, exactly college, advanced degree): gender, race and year dummies
and gender- and race-specific time trends.



performance measures are significantly positively correlated.

Figure 1: Log Wages and Performance by Age

In our analysis, we follow the common practice in the literature to treat the

performance measures as relative. That is, we interpret observed performance, p̃it, as

arising from a latent signal on individual productivity, pit, according to the mapping

in equation (9)

p̃it =
K−1∑
k=1

1(pit ≥ ckt) (9)

A worker is assigned the ranking p̃it = k if his or her latent productivity signals

falls between the two thresholds, ck−1t and ckt. We allow these thresholds to differ

across age groups, thus incorporating the assumption that ratings are relative to

individuals of the same age.26 The structure assumed in section 2 yields that the

latent signal, pit, is normally distributed. We can therefore estimate correlations of

pit with other normally distributed variables (such as log wage residuals and lagged

performance) using maximum likelihood methods. Of course, since the observed

performance ratings are categorical, we cannot identify the variance of pit.

3.2 Moments for estimation

Our model outlined above generates implications about the second moments of wages

and performance across different experience levels. Here we present the empirical

analogs which we use to estimate our model. In principle, we could match correla-

tions in wages and performance ratings across all 30 age levels, 25-54. Instead, we

simplify the estimation and exposition by constructing a set of 68 moments, that we

26Age may not capture the exact reference group for a worker. We could easily include demo-
graphics, such as race, gender and education, in forming these groups, though we have not done so
here. However, our results are robust to allowing performance to be relative to other workers in
one’s entry cohort or job level.



think are particularly informative for distinguishing learning and productivity models.

These moments are displayed in figures 2a and 2b with 95% bootstrapped confidence

intervals.2728 The information contained in figures 2a and 2b is also represented with

standard errors in table 2.

Figures 2a and 2b: Moments and 95% CI

Table 2

Panel A in figure 2a shows the variance in log wage residuals for six 5-year ex-

perience groups29 ranging from 1-5 to 26-30 years. The variance in pay around the

age profile is substantial and increases almost linearly with age. It is only after 25

years of experience that the growth in the variance of pay slows.30 Understanding

this variation and its increase over the life-cycle is the primary task of this paper.

Panels B and C in figure 2a show auto-correlations in performance and pay resid-

uals, respectively, for up to 6 lags and for two experience groups: experience 1-15

shown with solid dots and 16-30 with hollow dots. For both pay and performance,

27In constructing these moments, we first residualize all pay and performance measures by the
following variables all interacted with education group: gender, race age and year dummies, gender-
and race-specific time trends as well as gender and race interacted with a quadratic in age. We then
take average correlations and variances across the specified set of experience years weighted by the
number of individuals for which we observe that moment.
28We have investigated to what extend these patterns are similar if we slice the data by education

group and by gender. Regardless how we cut the data, the second moments of wages and the
second moments of performance measures are consistently similar to those reported for the aggregate
sample, with some minor deviations. The correlations between pay and performance measures are
also consistent with those reported here for most subgroups. The one major exception is when we
consider the less educated. Among these, the evidence for an asymmetry due to pay and performance
is less pronounced especially for younger workers. Given the evidence in Arcidiacono et al. (2010)
on differential learning by education, we find this deviation from the observed patterns for less
educated workers of interest and hope it will attract further research. We are happy to provide
Figure 2 seperately by gender and education upon request.
29We measure experience as potential experience: schooling minus age - 6.
30It is worth noting that these variances are quite a bit lower than one would observe in a cross-

section (for example, the variance in log earnings residuals is 0.04 in the first experience bucket).
This is because we are already restricting attention to workers in the same firm and occupation.



the more experienced group exhibits higher auto-correlations which fall the further

away in time the observation was. In panel B, the performance auto-correlations are

more highly correlated at short horizons. As discussed above, we fit this stickiness in

performance ratings by allowing for an autoregressive component in the signal noise.

Panel D in figure 2a shows correlations in pay changes for up to 9 lags and for the

same two experience groups. As has been observed in MaCurdy (1982), Baker (1997)

and many other papers that investigate the 2nd moment properties of log wages, the

autocorrelation in wage growth identifies permanent heterogeneity in productivity

growth (when wit = qit, as in the pure productivity model). In contrast, a pure

learning model could not yield this implication because each wage innovation reflects

new information obtained by the firm in that period.31 Here we clearly have evidence

consistent with productivity evolution since all correlations in pay changes are sizeable

and statistically distinguishable from zero.32

In Panel D, we also see that the wage growth correlations decline sharply over the

first few periods and then stabilize after the 3rd lag and remain fairly constant through

the 9th lag. We believe this decline may be evidence for stickiness in wage growth.

Given our spot market assumption and the current structure of our productivity

process we cannot fit this decline and we will only fit the 4th through 9th lag in our

estimation.33

Lastly, we focus on figure 2b, which gives correlations of current pay with past,

current and future performance measures for up to 6 lags and leads. These corre-

lations are again shown for the two experience groups. We pay particular attention

to these moments throughout the paper because we believe they represent the major

innovation to the previous literature . In section 2, we argued that these correlations

31Farber and Gibbons (1996) propose testing the pure learning model using exactly this absence
of autocorrelation in wage growth.
32BGHb also obtained this result and took it as evidence of hetergeneous growth in productivity.
33We fit up to 9 lags here because we wanted to gain a better sense of the decay process past the

first 3 lags. These long run correlations are of particular interest because they cannot be generated
by any temporary correlations in wage growth.



are informative about employer learning. In particular, the pure learning model yields

three testable implications: correlations of wages with future performance measures

rise with experience; correlations of wages with past performance measures decline

with experience; and the relationship between cov(wit, piτ ) and τ will be a step func-

tion. A corollary of these three implications is that the size of the step should decline

with experience.

Figure 2b provides evidence consistent with two of the predictions. Correlations

for future performance measures are larger for the higher experience group, suggest-

ing firm expectations approach true worker productivity over time. Also,there is an

asymmetry in correlations of wages with past relative to future performance evalua-

tions. As presented in table 3, the differences in the correlation of pay with future and

past performance measures is stastically significant, espescially for older workers. For

young workers and the first three leads and lags, the correlation of pay with lagged

performance are between 0.015-0.04 larger than those with future performance at sim-

ilar lag/lead length. These differences are statistically signficant at the 5% level for

the first two leads and lags and at the 10% for the third. Contrary to the third predic-

tion of the pure learning model, the step size does not appear to fall with experience.

For older workers, the correlations of pay with past performance are on average 0.06

larger than those with future performance. For these older workers, the differences

between correlations at similar leads and lags are significant at all conventional levels

and for all leads and lags.

Table 3

Thus we see reduced form evidence consistent with both heterogenous productivity

growth and employer learning. However, firms continue to exhibit patterns of learning

even for workers at high experience levels, suggesting that the pure learning model

alone will not be able to fit the data.



4 Estimation

In Section 2 we developed a model of learning and productivity that represents a

special case of the more general model described in Appendix I. In Appendix I, we

also show how one can use linear state space methods to derive the moments of these

more general models. Applying these methods to our specific case, we obtain the

implied second moment matrices for wages and performance ratings. These second

moment matrices allow us to estimate the parameters of our model using a method

of moments estimator.

Table 4 displays our parameter estimates for the three models which we obtain via

method of moments with equal weights on all moments. Standard errors, obtained by

bootstrapping with 500 repetitions, are shown in parentheses.34 Figure 3 summarizes

the fit of the model for all 3 models.

Table 4: Parameter Estimates.

Figure 3: Correlations of Pay and Performance

We now discuss the fit of each model. As we have mentioned, we pay particular

attention to how pay and performance are correlated at various lags and leads.

The Pure Learning Model

Panel B of figure 3 and figure 4 summarize the results of the pure learning model,

contrasting the empirical moments with the predictions based on the estimated pa-

rameters for the pure learning model (restricting σ2κ = 0 and σ2r = 0). The predicted

moments are shown using solid lines for younger workers and dashed lines for older

34The exact bootstrapping procedure is as follows. We draw the sample randomly, with replace-
ment and generate the bootstrapped moments. We then estimate the parameters to match these
moments, taking as starting values the true parameters values shown in table 2. We do not search
across starting values to find the global minimum for each of the 500 samples. However, in each
bootstrap, we go through four optimization routines (alternating between Newton-Rapson and the
simplex method), which should ensure we have found the global minimum.



workers.

We find that the learning model does succeed in a number of ways. Using a

small set of parameters, it matches the variance of wages across experience levels.

It also matches the approximate levels of the auto-correlations in wages by experi-

ence, though not the decline across lags. It matches the decay across lags in the

auto-correlations of performance measures, thanks to the parameter ρ, but not the

differences across experience. The model, by construction, predicts that wages follow

a random walk and therefore the learning model is not able to match any of the

long-run positive correlations in pay growth that we observe in the data and report

in panel D of figure 4.

Figure 4: Results for the pure learning model.

However, as is evident in Figure 3, panel B, the pure learning model does not

fit the correlations between pay and performance ratings that we believe to be the

most important new empirical evidence we add to the literature. The data show that

the correlations of pay and performance are generally increasing with experience,

resulting in a sizeable asymmetry between correlations of wages with past and future

performance measures even at high experience levels. In contrast, the fitted learning

model predicts a cross-over pattern. For young workers, firms rely heavily on past

performance measures, since current expectations are imprecise. This should result in

wages that are more highly correlated with past performance for younger, relative to

older, workers. The model predicts the reverse for the correlation of current wage with

future performance. Because firm expectations become more precise, wages of older

workers should approach true worker productivity and become increasingly correlated

with future performance.

This failure reflects general features of pure learning models and, in our view, is

not a result of any particular distributional assumptions. Overall, we therefore find



significant evidence against the pure learning model.

The Pure Productivity model

Figure 3, panel C and figure 5 show the fit of the pure productivity model.

Figure 5: Results for the pure productivity model

Along a number of dimensions, the pure productivity model does better than the

pure learning model. First, because the variance of the heterogeneous growth term

κi reported in Table 4 is non-zero, the pure productivity model generates long run

correlations in wage changes that are positive, though smaller in magnitude than the

observed moments. The pure productivity model also fits both the auto-correlations

in pay and performance, better than the learning model did. Allowing productivity

to vary yields stronger declines in auto-correlations across lags and experience groups

that the learning model could not predict. However, this model does poorly in fitting

the experience profile of variance of log pay. Growth rate heterogeneity implies that

the variance rises in the square of experience, producing the convex pattern fitted by

the model.

Turning to our main set of moments (figure 3 panel C), the evidence regarding

the pure productivity model is mixed. A success for the model is that it manages

to fit the approximate levels of correlations across experience groups. Intuitively,

these correlations increase with experience because, as the variance in productivity

increases with experience, the common component in performance ratings and wages

becomes more important, relative to the noise in the performance ratings.

However, we find that within experience, the pure productivity model predicts that

the correlations of current pay is larger for performance measures that are collected

later in an individuals career. This is because current pay (which equals current

productivity) is correlated with the systematic growth component κi and κi have a

larger on performance further into the future. Therefore the current wage is more



highly correlated with wages that are further in time. This results in the upwards

slope of the lines in Figure 3, Panel C which represent the predicted moments from the

pure productivity model. As is clear from this panel, the empirical moments do not

show this upward slope. Instead, the empirical moments show the asymmetry around

current pay and they show lower correlations of current pay with future rather than

past performance. This asymmetry is clearly not matched by the pure productivity

model.

The Nested Model

Finally, we consider how the parameter estimates and fit of the nested model

compare with those of the pure learning and productivity models. Results from the

nested model are shown in figure 6 and panel D of figure 3.

Figure 6: Results for the combined model

Overall, our estimates emphasize that it is important to account for both learning and

productivity growth in explaining the data. The greatest failure of the nested model

lies in its inability to fit the concavity in the variance of log wages across experience.

It is successful though in fitting the correlations between pay and performance, both

the levels across experience and the asymmetry across lags, though it admittedly has

trouble fitting the decline after about four leads into the future. In addition, because

of imperfect information, productivity innovations are not immediately incorporated

into pay. Therefore, the model is also able to fit higher correlations in pay growth,

resulting from a larger κi.

In fact, the nested model attributes a larger role to persistent differences in pro-

ductivity growth, κi, and less of a role to random innovations in productivity, εri .

An increase in κ of one standard deviation corresponds to 45% extra productivity

growth over our time horizon in the nested model, and 35% in the pure productiv-



ity model. Over the same time period, a standard deviation of the sum of random

walk components is about 12% and 25% for the nested and pure productivity models,

respectively.

Turning to the estimates of learning parameters, we find that the variance in all

of the signals is much greater for the pure learning model than the nested model. The

variance of the initial signal (σ20) and of the dynamic signals (σ2z, σ
2
u) is substantially

larger for the pure learning than for the nested model. The pure learning model

requires more signal noise to match the evidence for learning even at higher experience

levels. This additional noise enables the pure learning model to fit the increase in the

variance of wages even at high experience levels and it allows it to fit approximate

correlations between pay and performance for both young and old workers. The nested

model instead allows for much less signal noise. The variance of log wages continues

to increase because productivity itself evolves and the evidence of learning even for

the old workers results from the fact that firms need to learn about a moving target:

learning about κi is quite small and furthermore there are always new innovations εrit

that the firm needs to learn about.

Statistically, we reject the pure learning and pure productivity models in fa-

vor of the nested model. We reject the restrictions of the pure productivity model

(σ20 = σ2z = 0) against the unrestricted model at a 97.5% significance level (the χ2

statistic with two degrees of freedom is 7.51). The restrictions of the pure learning

model (σ2κ = σ2r = 0) are rejected at any reasonable significance level with a χ2 of 487.

Overall, we thus find support for a model that combines elements of learning with

heterogenous changes in productivity over the life-cycle.



5 Interpretation and Discussion

In this section, we interpret the estimates of the nested model. We begin by discussing

what they imply for the overall variation in productivity and wages over the life-cycle

and in particular what they imply about the size of the expectation error made by

firms over the life-cycle. In particular, we are interested in how far productivity and

wages can deviate from each other because firms are imperfectly informed. We then

turn to the question of how incentives to engage in productivity enhancing activities

are impacted by imperfect labor market learning.

5.1 Productivity and Wage Variance of the Life-Cycle

The estimated parameters of the nested model allow us to derive the variances in

productivity, wages, and in the expectation error over the life-cycle. Figure 7 plots

these variances as a function of experience.

Figure 7: Variances in productivity, wages and expectation error, by experience

The top line shows the variance in log productivity with the variance of log wages

just below. Even at 30 years of experience, the variances of wage and productivity

are quite similar (0.174 and 0.154, respectively). Clearly, the shape and magnitude

of the variance of log wages derive from the shape and variance of productivity. Thus,

to understand why wages diverge between individuals over the life-cycle means first

and foremost understanding why productivity evolves heterogeneously.

The difference between the variance in wages wages and productivity is accounted

for by the variance of the firm’s error in expectations. During the first years in

the labor market, this variance declines as firms learn about initial productivity, qi0,

and the persistent component of productivity growth, κi. Subsequently, the variance

stabilizes at a fairly constant level around 0.022, reflecting that firms must continue



to learn about the constantly accruing random innovations in productivity.

While it might seem that the variance of the expectation error is small and thus

imperfect learning is of small consequence, we would disagree. The implied standard

deviation for the expectation error is about 0.15, which means that the average expec-

tation error of the firm is about 10% of annual productivity for most of the life-cycle.

Firms make sizeable errors when estimating individual productivity and face substan-

tial incentives to learn about how productive their workers are. The observed size of

the expectation error and the fact that these errors persist late into individual careers

make it plausible that worker turnover and human resource policies are substantially

shaped by employer learning.

5.2 Incomplete Learning and the Returns to Investment

The estimated model of productivity and learning allows us to answer a simple, yet

fundamental question: if individual productivity at experience t increases by 1%,

then what fraction of the present discounted value of this increase accrues to the

individual? If this fraction is less than one, then the incentives to privately invest in

human capital fall short of the full social returns. In this case, investments that are

diffi cult to observe on the part of employers - such as health investments or efforts to

keep up with technological change and/or prevent depreciation of existing skills will

be below socially optimal levels.

Following a change in productivity there will first be a period during which this

change is only partially priced into wages. Eventually, after employers learn, wages

will fully reflect individual productivity and only then will individuals fully benefit

from any changes in their skills. However, as workers age, the period over which

individuals’wages fully incorporate the productivity change shortens, resulting in a

smaller fraction of any productivity change accrueing to older individuals. The size of

the share of the return to human capital investments going to workers and how rapidly



it declines depends on how fast firms learn as well as the discount rate individuals

face.

In order to estimate the share of a productivity increase that accrues to individuals,

we use our parameter estimates for the nested model as, a range of discount rates (3 to

10%) and assume individuals work for 40 years. For a one unit permanent increase

in labor productivity, we ask how much the present discounted value of earnings

changes relative to the present discounted value of productivity. Table 5 reports these

estimates for workers experiencing the productivity shock at different points along

the life-cycle. These estimates, while admittedly rough, provide an indication of how

important learning and incomplete information can be for understanding investment

patterns throughout a career.

Table 5: The Wedge Between Social and Private Returns to Productivity Investments.

Regardless of the discount rate considered, we find that the share of a productivity

increase going to workers is greatest if the increase occured prior to entering the labor

market. This is because firms receive fairly precise signals about initial productivity

differences (σ20 is relative small). During the first 15 years of individuals’ careers,

between 60 and 80% of the social returns to productivity changes are captured by

individuals, depending on the discount rate. However, as individuals approach the

half-way mark of their careers their share of the return declines fairly rapidly. If we

consider a discount rate of 5%, then we observe that during the first 10 years about

75% of the returns are captured by individual workers. This percentage declines to

about 65% after 20 years of experience, 40% after 30 years of experience and only

about 25% after 35 years of experience.

These estimates therefore suggest that incomplete learning on the part of employ-



ers can generate gaps between the private and the social returns of human capital

investments that are relatively small for young workers. In that sense, we reach

a similar conclusion to Lange (2007).35 Lange finds that initial expectation errors

about productivity differences existing at the beginning of individual careers decline

by about 50% in the first 3 years and that only 25% remains after 8 years. The

parameter estimates obtained in this paper imply that expectation errors about pro-

ductivity differences existing at the beginning of individual careers decline by about

one third within 3 years and about 70% within 8 years. Thus, our estimates regarding

the speed of learning about initial productivity differences are strikingly consistent

with those of Lange, despite the differences in methodology.36 Similar to Lange, we

therefore conclude that signaling about existing productivity differences is not likely

to be the main motivation for obtaining additional schooling degrees.

However, in contrast to the static model in Lange (2007), our estimates here

suggest that the importance of imperfect information increases with age and that

incentives might be most severely misaligned during old age. Older individuals are

likely to refrain from effi cient human capital incentives, because they can not count

on wages to accurately reflect the productivity returns of their investments. Our

estimates suggest that the focus of models of incomplete information and employer

learning should not be place exclusively on young workers, but rather that employer

learning models also have important implications for behavior of older workers. As

evident from Table 5, incomplete learning generates the largest gaps between the

35Lange (2007) builds on the empirical strategy proposed first by Farber and Gibbons (1996) and
developed by Altonji and Pierret (2001), using data on the AFQT from the NLSY 1979, to estimate
how quickly firms learn about heterogeneity in worker productivity. He argues that this speed
of employer learning is crucial for understanding how relevant signaling motives are in schooling
decisions, because if firms learn rapidly about worker productivity, then workers have little reason
to signal their productivity by taking costly actions such as acquiring schooling.
36Firms learn about 2 productivity states, κi and qit. This imparts some complicated dynamics

into the speed of learning, which does not allow us to summarize the speed of learning in a single
parameter, as in Lange (2007). The dynamics in fact generate overshooting, such that initial pro-
ductivity differences in q0i will have a more than one-for-one impact on log wages for part of the
individuals life-cycle.



private and social returns to investing into human capital late in individuals careers.

6 Alternative Theories linking Pay and Performance

We have concluded above that productivity evolves heterogeneously throughout the

life-cycle and firms continue to learn about this moving target. The main piece of

evidence for this is the fact that past performance correlates more highly with pay

than does future performance, even at high experience levels. Here we discuss briefly

whether varying precision of the measures, direct pay for performance, or tournament

models might generate the same patterns in the data.

It is possible that performance evaluations become more precise as workers age

and the firm learns how to evaluate them. This would explain why firms still update

on worker productivity, for a time, at high experience levels. However, it would not

explain why firms continue to update at all points along the life-cycle —recall, the

difference between the correlation of pay with lags of performance, compared to leads

of performance is always positive and statistically significant for the older group.

Even if the variance in the productivity signal falls with age, firms should eventually

stop updating, and we do not see that.

Alternatively, one might be worried about direct pay for performance. If firms

incentivize individuals by linking their wages to current performance, then we should

observe performance measures to correlate highly with current pay. We clearly do

not observe this pattern in the correlations between pay and performance presented

in Figure 2b. We see instead that all past performance measures have roughly the

same correlation with current pay ( around 0.28 for young workers and almost 0.40

for old workers). This is inconsistent with a direct pay for performance scheme.

If firms directly incorporate past performance into pay, we would see larger cor-

relations for lagged performance and wages, relative to those of future performance.



Further, as workers age and are promoted, the scopes of their jobs might broaden and

firms might want to strengthen the incentive. If this were the case, we should see a

spike at one lag of performance (or possibly the past few performance measures). We

might also see a larger spike for the high experience group. However, we do not see

these patterns.37

However, consider a deferred form of incentive pay where firms operate tourna-

ments to determine promotions and pay raises (a la Lazear and Rosen 1981). Such

tournaments can lead current pay to correlate more highly with past performance

measures (those being used to determine tournament winners) rather than future

performance measures. Such a model can therefore generate asymmetries in the cor-

relations between pay and performance of the type we observe in our data, even if

firms know everything about worker characteristics. To rule out that such deferred

incentive pay generates the observed patterns, we would need more information on

the structure of pay setting and promotions. Lacking such information in this data-

set, we are forced to simply note this identification problem with the hope that in

the future, better and more comprehensive human resource data will permit progress

in distinguishing alternative explanations from the productivity and learning based

model analyzed in this paper

7 Conclusion

In this paper, we provide new evidence on employer learning and productivity evo-

lution by exploiting performance evaluations, along with pay data, from a panel of

workers in a single firm. We derive a nested model and show how we can uncover both

the learning and productivity parameters by matching moments in the data. We find

37It is worth pointing out that had we incorporated bonuses into our pay day, this might be
different. We have not done so because we cannot get consistent bonus measures throughout the
sample. However, it also means that our current measure of pay probably does not include direct
incentives.



that problems of accurately predicting productivity are important for employers and

that average expectation errors are large at all stages of individuals careers. However,

the learning process is not the primary driver of wage dynamics. Instead, our model

suggests that heterogeneous variation in productivity drives most of the observed in-

crease in the variance of wages over the life-cycle. We believe these findings represent

a significant reinterpretation of the employer learning literature.

An important caveat to our conclusion is that we are only able to study one firm

and further, only one occupation (broadly defined). Our finding that firms have quite

precise expectations over worker ability at the beginning of the worker’s career could

be explained by the fact that these workers have already been promoted to manager.

Thus the market probably had opportunities to learn about these workers before they

entered our sample. In the future, we hope to analyze other data sets containing pay

and performance measures to establish the generalizability of these findings.

Seemingly contradictory to most models of human capital accumulation (Becker

1964, Ben-Porath 1967), we find that a significant component of productivity evolves

unpredictably throughout the life cycle. One explanation for this finding is that

workers are assigned to different tasks throughout the life cycle and performance on

past tasks does not predict performance on future tasks. This interpretation suggests

that firms shift workers into job levels and tasks with little ability to predict worker

success there.

We believe that this paper contributes to the literature on employer learning in

two ways, methodologically and substantively. First, we provide and implement an

approach for estimating models of employer learning and dynamic productivity that

can be implemented when data contain multiple signals of worker productivity at

various points along the life-cycle. We hope that this approach will prove useful for

analyzing the growing set of firm level data-sets comprising personnel records that

are appearing in the literature. Second, we show that employer learning continues



throughout the life-cycle and we provide evidence against the implication of the ex-

isting models on employer learning (Farber and Gibbons 1996; Altonji and Pierret

2001; Lange, 2007) that incomplete information and employer learning are most im-

portant early in the life-cycle. To the contrary, in our context, incomplete learning

will generate the largest distortions in individual behaviors late in their careers.
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I A More General Class of Models

In section 2, we have presented a model with particular productivity and learning

structures. In this section, we show a more general class of models of learning about

worker productivity, drawing from Hamilton (1994). We will show how to derive

the second moment matrices of productivity signals and wages in this larger class

of models. To estimate the parameters of these models, one naturally will fit the

predicted and the observed second moment matrices of productivity signals and wages.



I.1 The Productivity Process

In period 0 (before production starts), individuals are endowed with a (nqx1)−vector

of productivity parameters θi,0 with E [θi,0] = 0 and E
[
θi,0θ

′

i,0

]
= P0. In subsequent

periods, productivity evolves according to a stochastic process represented by the

stochastic difference equation:

θi,t+1 = Φθi,t + εθi,t+1 (10)

εθi,t+1˜N(0, Rθ)

This implies that the productivity states in period 1, the first period of actual

production are θi,1 = Φθi,0 + εθi,1.

I.2 Prediction in the Initial Period

Before any production takes place, firms draw a signal about θi0. This signal is

summarized by an initial (nzx1) vector of signals zi,0. This vector is not observed

in the data, but represents the information available to firms at the beginning of an

individual’s career.

zi,0 = H ′0θi,0 + εzi,0 (11)

εzi,0˜N(0, Rz,0)

The dimensions of
(
H0, ε

z
i,0, Rz,0, P0

)
are implicitly defined to conform to zi,0 and θi,0.

Based on the signal vector zi,0 firms predict the state θi,0 :

θ̂i,0|0 = P0H0 (H0
′P0H0 +Rz,0)

−1
zi,0 (12)

= Kzzi,0



Firms set wages based on this predicted state θ̂i,0|0 taking into account that pro-

ductivity will evolve between the pre-period and period 1 according to equation (10).

Firms best guess about productivity in period 1 is:

θ̂i1|0 = Φθ̂i0|0

= ΦKzzi,0

and the posterior variance of the expectation error is:

P1|0 = Φ (P0 −KzH
′
0P0) Φ′ +Rθ

I.3 The Recursion

At the end of each period t > 0, a new (nxx1)−signal vector xit is drawn by the firm.

xi,t = H ′xθi,t + εxi,t (13)

εxi,t˜N(0, Rx)

Based on this signal, the expected posterior of θit conditional on xit is:

θ̂it|t = θ̂i,t|t−1 + Pt|t−1Hx

(
Hx
′Pt|t−1Hx +Rx

)−1 (
xi,t −H ′xθ̂it|t−1

)
(14)

= θ̂it|t−1 +Kt

(
xit −H ′xθ̂it|t−1

)
= (1−KtH

′
x) θ̂it|t−1 +Ktxit

Again, when firms form expectation they account for the evolution in productivity

described in equation (10). Therefore firms best guess about productivity in period



t+ 1 is:

θ̂it+1|t = Φθ̂it|t (15)

= Φ (1−KtH
′
x) θ̂it|t−1 + ΦKtxit

The variance of the expectation error then evolves according to

Pt+1|t = Φ
(
Pt|t−1 −KtH

′
xPt|t−1

)
Φ′ +Rθ (16)

This defines the complete prediction problem of the firm. The parameters are

(P0, Rz,0, Rx, Rθ, Hx, H0,Φ).

I.4 Wages

So far, we have described how the vector of individual productivity states θit and the

expectation of this state evolves over time. One component of the individual pro-

ductivity state is qit, the idiosyncratic component of log productivity. We now show

how log wages are related to log productivity. Because we assume that labor mar-

kets are frictionless spot markets and all information is common, we have that wages

W ∗
it equal expected productivity: W

∗
it = E [Q (x, t)Qit|I t] = E [Q (x, t) exp (qit) |I t] .

Here Q (x, t) is a productivity profile common to all individuals and Qit represents

individual productivity and I t represents the information set available at time t. We

assume also that wages are measured with multiplicative measurement error Ωit.

We have made a number of normality assumptions. One advantage of these as-

sumptions is that expected log productivity q̂it is normally distributed in each period.



We can therefore write:

Wit = Q (x, t)E [Qi,t|Iit] Ωit

= Q (x, t)E [exp (qi,t) |Iit] Ωit = Q (x, t) exp

(
q̂it +

1

2
v (t)

)
Ωit

where v (t) is the variance of the expectation of log productivity. Taking logs, we

obtain

wit =

(
q (x, t) +

1

2
v (t)

)
+ q̂it + ωit (17)

= h (x, t) + q̂it + ωit

where ωit is the noise in the measurement error with variance σ2ω. We assume that

ωit is uncorrelated with all other variables in the model.

We residualize wages to remove the common age profile h (x, t) and denote the

residual as rit.

I.5 Link to Observable Data: A State-Space Specification

The next task is to derive the second moments that the model implies for observable

quantities (rit, pit). We note that our problem takes the form of a linear state-space

specifications. The states that describe individuals are the individual productivity

states θit as well as the expectations firms hold θ̂it. We stack these two vectors and

denote the state vector by ξit =

(
θ̂it θit

)′
. The states evolve in a linear stochastic

way and the observed data is linearly related to the states. We denote the observed

data as yit =

(
rit pit

)′
.

The linear state space model consists of three parts. First, we need to specify

how the state evolves. This is done in equation (18) . Second, we need to specify

how the states map into observed variables. This measurement equation is given by



(19). Finally, we need to specify the distribution of the initial state ξi1, the forcing

variables vit, and the unobservable noise in the measurement equation eit.

ξit+1 = Ftξit + vit+1 (18)

yit = Mξit + eit (19)

ξi1 =

(
ΦKzzi,0
θi1

)
The matrix M has as many rows as there are observable objects. The vector eit

contains the noise in the measurement equations. The matrix Ft is given by

Ft =

Φ (1−KtH
′
x) ΦKtH

′
x

0 Φ


and the innovation vit+1 to the state vector is defined as:

vit+1 =

(
ΦKtε

x
it

εθit

)

The (Kz, Kt)−matrices were implicitly defined in equations (12) and (14) above.

I.6 The 2nd Moment Matrix of Observables

We can now derive the variance-covariance matrix for the observables yit and yiτ .

Without loss of generality, we can limit ourselves to τ ≥ t.

Because eit contains only measurement error, we can write the second moment

matrices of the observables as follows:

E
[
yity

′

iτ≥t

]
= ME [ξitξ

′
iτ ]M

′ + E [eite
′
iτ ] (20)



The M are deterministic and we therefore just have 2 components E [ξitξ
′
iτ ] , and

E [eite
′
iτ ] that need to be determined as functions of the parameters of the model. The

matrix E [eite
′
iτ ] is 0 for τ 6= t and is directly given from the is variance-covariance

matrix of measurement error within t. We therefore simply need to determine how

E [ξitξ
′
iτ ] is related to the parameters.

Tedious, but straightforward algebra yields

E [ξitξ
′
iτ ] =

j=t∑
j=2

{(
l=t−1∏
l=j

Fl

)
E
[
vi,jv

′

i,j

](l=τ−1∏
l=j

Fl

)′}
+

(
l=t−1∏
l=1

Fl

)
E [ξi1ξ

′
i1]

(
l=τ−1∏
l=1

Fl

)′
(21)

where

E [ξi1ξ
′
i1] =

ΦKz (H ′0P0H0 +Rz)K
′
zΦ
′ ΦKzH

′
0P0Φ

′

ΦP0H0K
′
zΦ
′ ΦP0Φ

′ +Rθ

 (22)

and

E
[
vi,jv

′

i,j

]
= E

ΦKj−1RxK
′
j−1Φ

′ 0

0 Rθ

 (23)

We have thus shown how to generate E [ytyτ ] as functions of the parameters

(P0, Rz,0, Rx, Rθ, Hx, H0,Φ) and the measurement matrix for any dynamic specifi-

cation of productivity that follows equation (10) and any normal learning model that

follows equations (11) and (13) .

I.7 The Nested Model as a Member of the General Linear

State Space Models

In this Appendix, we have described how the second moment of observable variables

is linked to the parameters of a general linear learning model. The nested model

encountered in Section 2 is a special case of such a linear learning model. We now show

in the remainder of this appendix what the nested model implies for the parameter



matrices of the learning model: (P0, Rz,0, Rx, Rθ, Hx, H0,Φ) andM. This will allow us

to implement equation (20) together with equations (21) , (22) , and (23) to generate

the covariance matrices of the wage residuals and performance ratings.

Define first the individual productivity states as ξit = (θ̂it, θit)
′ where:

θit =


qit

κi

εpit


Note here that we let the individual chumminess term εpit enter as an individual

state.

The individual state evolves as

θit+1 =


qit+1

κi

εpit+1

 =


1 1 0

0 1 0

0 0 ρ



qit

κi

εpit

+


εrit+1

0

uit+1


= Φθit + εθit

The vector vit+1 is therefore given by vit+1 =

(
ΦKtε

x
it

εθit

)
.

Now, the measurement equation is yit = Mξit + eit. Thus, we need to define M

and eit. We assume that there is measurement error in rit but that pit is observed

without error in our data. Thus:

eit =

 ωit

0



The measurement error variance is σ2ω and thus E [eite
′
it] =

σ2ω 0

0 0

 .



Next,

M =

1 0 0 0 0 0

0 0 0 1 0 1



Then

P0 =


σ2q 0 0

0 σ2κ 0

0 0 0



H0 =


1

0

0



Hx =


1 1

0 0

0 1


Rz,0 = σ20

Rx =

σ2z 0

0 0



Φ =


1 1 0

0 1 0

0 0 ρ



Rθ =


σ2r 0 0

0 0 0

0 0 σ2u


This specialization of the general linear state space model represents the nested

model we estimate in this paper.



II Identification

We now consider the identification of the pure learning and productivity model using

second moments of wages and performance signals.38 To simplify the discussion, we

assume the length of individuals’ careers is unbounded and that we can therefore

observe these moments at arbitrarily high experience levels.

II.1 The Pure Learning Model - Identification

The pure employer-learning model allows only for learning and fixes the idiosyncratic

component of worker productivity qit = qi over the life-cycle. This amounts to as-

suming that there is no heterogeneity in the drift κi nor in the individual innovations

εrit and is achieved by setting σ
2
κ = σ2r = 0. There remain 6 parameters that need to

be identified:
(
σ2q, σ

2
0, σ

2
u, σ

2
ω, ρ, σ

2
z

)
.

The pure learning model implies that in the limit wages asymptote towards indi-

vidual productivity. Therefore, we can identify the variance of productivity (σ2q) and

the variance of the measurement error (σ2ω) using the variance and covariance of wages

as experience grows. In particular, we obtain
(
σ2ω, σ

2
q

)
from limt→∞ (v (wt)) = σ2q+σ2ω

and limt→∞ (cov (wt, wt+1)) = σ2q.

The auto-correlations of pit with pit−k at different lags k inform us about the

parameters (ρ, σ2u) that govern the signal noise ε
p
it. As t grows, the distribution of pit

converges to an ergodic distribution which depends only on the parameters ρ and σ2u.

In particular, we have that limt→∞ v (pit)) = limt→∞ v (qit + εpit) = σ2q+ρ σ2u
1−ρ2 and that

cov (pit, pit+k) = cov
(
qi + εpit, qi + ρkεpit + Σk

j=1uit+j
)

= σ2q + ρkvar (εpit) . Combining,

38As described in the data section of this paper, the performance ratings in our data are ordinal,
which implies that we do not observe variances or covariances of performance ratings with other
objects. Therefore, we show how auto-correlations in performance ratings and correlations with
wages at different experience levels allows us to identify models of learnings and productivity.



we have that

lim
t→∞

lim
k→∞

cor(pit, pit+k) =
σ2q

σ2q + σ2u
1−ρ2

(24)

lim
t→∞

cor(pit, pit+1) =
σ2q + ρ σ2u

1−ρ2

σ2q + σ2u
1−ρ2

(25)

Since σ2q is already identified, we get
σ2u
1−ρ2 from equation (24) and ρ from equation

(25) .

This leaves only two parameters (σ2z, σ
2
0) that need to to be identified. σ

2
0 deter-

mines how much information the has about workers as they begin their careers. We

can identify this parameter using the variance of wages at t = 0, since w0i = E[qi|zi0]

and var (w0i) = var (E[qi|zi0]). Conditional on σ2q, this variance declines monoton-

ically in σ20 and we can therefore identify σ20 using the variance of log wages for

individuals beginning their careers.

The remaining parameter σ2z governs (together with the already identified σ
2
u and

ρ) how much additional information becomes available in any period. Conditional on

(σ20, σ
2
u, ρ), the variance of w1i = E[qi|z0i, p1i, z1i] declines monotonically in σ2z (as the

signal becomes less informative). Therefore we can identify σ2z using var (w1i), having

already identified the other parameters of the learning model.

II.2 The Pure Productivity Model - Identification

The pure productivity model assumes that firms have full information about worker

productivity and that wages equal productivity at all times. This assumption can be

imposed by restricting the signal noise for the unobserved signals to 0: σ20 = σ2z = 0.

There remain 6 parameters that need to be identified:
(
σ2q, σ

2
r, σ

2
u, σ

2
ω, σ

2
κ, ρ
)
.

Because wages at all times equal expected productivity, we can write ∆wit =

wit+1 − wit = κi + εrit+1 + ωit+1 − ωit. This implies that cov (∆wit,∆wit+2) = σ2κ,



cov (∆wit,∆wit+2) = σ2κ − σ2ω, and var (∆wit) = σ2κ + σ2r + 2 ∗ σ2ω. This system is

triangular and can easily be solved for the parameters (σ2κ, σ
2
r, σ

2
ω). Furthermore, we

can identify σ2q using var (wi0) = σ2q + σ2ω.

The remaining parameters that need to be identified are the parameters (ρ, σ2u)

that govern the noise in the performance rating pit. To identify these we rely on the

correlations between wages and performance ratings:

corr (pit, wit) =
var (qit)

(var (qit) + var (εpit))
1/2 (var (qit) + σ2ω)1/2

(26)

Since all the productivity parameters are identified, we can treat var (qit) and

σ2ω as known. Thus, eq (26) solves for the variance of the signal noise var (εpit) for

arbitrary t:

lim
t→∞

var (εpit) =
σ2u

1− ρ2 ⇒ σ2u =
(
1− ρ2

)
lim
t→∞

var (εpit) (27)

Since we know the var (εpit) for arbitrary t, we can exploit equation (4) to get

ρ2 =
var

(
εpit+1

)
− limt→∞ var (εpit)

var (εpit)− limt→∞ var (εpit)
(28)

These last two equations therefore deliver the parameters ρ and σ2u.We have thus

established the identification of both the pure learning and the pure productivity

model. We will now turn to the estimation of these models.

III Attrition

To obtain the results reported in the main body of the paper we assumed that the

individuals in our data are representative of the population of workers from which the

firm draws its white-collar workforce. That is, we assume that wages or productivity



of individuals with the same experience level do not depend on tenure at the firm. We

can investigate this assumption in reduced form using wages and performance mea-

sures. Figure A-1 and Figure A-2 show by how much log salary and the performance

of first-year workers of various ages differ from the incumbent workforce of the same

age. We observe that wages of new entrants and the incumbent work-force are quite

similar, but that performance is somewhat lower among new entrants compared with

the existing work-force. Table A-1 illustrates the mechanism that gives rise to this

relation. This table reports how the probability of exiting the firm depends on the

log salary as well as on the performance ratings of individuals, after controlling for

age.39

Table A-1: Probability of Exit from the Firm

The table illustrates that the performance ratings, but not the salary are statistically

significant predictors of attrition from the sample. In particular, individuals with

very low ratings are significantly more likely to attrit from the sample. The linear

probability model indicates that being in the lowest decile of the performance dis-

tribution raises the attrition probability by about 5 percentage points compared to

being in the second decile. Further moves up in the performance distribution have

a much smaller effect on attrition from the sample. These point estimates therefore

support the notion that leaving the firm is endogenous to performance rankings and

that the effect of performance on attrition is particular strong for very low ratings.

However, the R2 of the linear probability model also suggests that the overall impact

of turn-over based on performance ratings is small.

To be sure that our estimates reported in the paper are not spurious due to non-

39We control for performance ratings using dummies for each decile within the distribution of
performance rankings. These deciles are populated even though the performance ratings themselves
are only reported on a 5 point scale, because individuals ratings are regression adjusted for race,
gender, and education in a flexible manner.



random attrition, we estimate an attrition corrected version of our model. For this

purpose, we assume that individuals entering the firm are randomly drawn from the

population, but that the separation from the firm is governed by the relationship

captured by the Probit regression reported in column 1 of the Table A-1. That is, we

assume that the probability of separating is given by

Φ (βwwage+ β′PDPDi + βaage) (29)

where Φ (.) is the standard normal distribution, PDi denotes a vector of performance

deciles and the parameters (βw, β
′
PD, βa) are obtained from column 1 of Table A-1.

We estimate the parameters of the learning and productivity model using a simu-

lated method of moments. That is, we simulate a sample consisting of 1,000 workers

entering the firm at each experience level for a total of 40,000 workers entering with

experience levels 1-40. For a given point in the parameter space of the nested model

of learning and productivity (described in section 2), we simulate a history of wages

and performance ratings under the assumption that no worker attrits. We then ap-

ply the selection rule (29) to this sample and thus obtain a selected sample. Using

this selected, simulated sample, we generate the same moments (variance of wages,

performance and pay autocorrelation, pay-performance correlations at various leads

and lags) that we use in Section 2 to estimate the parameters of the model. We can

then estimate the parameters by minimizing the distance between the observed and

simulated moments in the same manner as before.40

In Table A-2 we report the attrition corrected parameters.

Table A-2: Parameter Estimates from Attrition Corrected Model
40Note that we estimate the parameters of the selection rule first. This is possible, because we

assume that conditional on performance, wages, and age, attrition is random. We can thus treat
the observed wages and performance measures as exogenous in estimating the parameters of the
attrition model. Because we estimate the parameters of the attrition rule separately, we do not
expect the fit of the model to improve as we correct for attrition.



To facilitate comparison this table also shows the parameter estimates reported for

the full model in table 4.41 The estimated parameters are close. In fact, the fit of

the attrition corrected and the uncorrected estimates is almost identical and none

of our conclusions on the relative importance of learning or productivity evolution

are sensitive to using the attrition corrected or the uncorrected estimates. Over-

all, we therefore believe that our results are robust to attrition based on observed

performance or wages.

41The computational burden of implementing the attrition correction is significant. We therefore
imposed two restrictions on the parameters to reduce the run-time. Because the main model provides
little evidence for measurement error in wages, we restricted the variation of measurement error to
0. We also restricted the auto-regressive parameter in the performance ranking to 0.64. Even after
imposeing these restrictions, estimating the attrition corrected parameters on our system requires
about 1 week of computing time. We therefore refrained from bootstrapping the attrition corrected
standard errors.



Table 1 Summary Statistics

Years 1969‐1988

Data Description

Managers of a medium‐

sized US firm in the 

service sector

# Employees1 9391

# Employee‐years 59485

% Male 76.2%

% White 89.4%

Age
39.02

(9.02)

Education

% HS 16.9%

% Some College 18.8%

% College 36.6%

% Advanced 27.7%

Salary2
$53,881

(25447)

[n=54364]

Performance3
3.12

(0.72)

[n=38933]

Performance Distribution

1 0.009

2 0.177

3 0.499

4 0.315

Notes: Parentheses contain standard deviations.  

1. Sample includes all employees who have a pay or performance 

measure between the ages of 25 and 54 and at least one more pay 

or performance measure, with a non‐missing education variable.

2. Salary is annual base pay, adjusted to 1988 dollars.

3. Performance is a categorical variable which we recode to be 

between 1 and 4, with 4 being the highest performance.



1‐5 6‐10 11‐15 16‐20 21‐25 26‐30

0.044 0.065 0.083 0.100 0.112 0.114

(0.001) (0.002) (0.002) (0.003) (0.006) (0.007)

Experience  1 2 3 4 5 6

1‐15 0.969 0.935 0.903 0.871 0.840 0.813

(0.001) (0.002) (0.003) (0.004) (0.006) (0.008)

16‐30 0.990 0.975 0.958 0.940 0.921 0.903

(0.000) (0.001) (0.002) (0.003) (0.004) (0.005)

Experience  1 2 3 4 5 6

1‐15 0.568 0.413 0.315 0.207 0.155 0.154

(0.008) (0.011) (0.014) (0.016) (0.018) (0.026)

16‐30 0.659 0.527 0.420 0.323 0.219 0.205

(0.009) (0.013) (0.016) (0.019) (0.021) (0.027)

Table 2 The Second Moments of Wages and Experience

Variances in Wages by Experience

Autocorrelation in Wages for lags 1‐6

Autocorrelations in Performance for lags 1‐6

Lags

Lags

Experience



‐6 ‐5 ‐4 ‐3 ‐2 ‐1

0.205 0.232 0.266 0.287 0.290 0.281

(0.025) (0.021) (0.017) (0.015) (0.013) (0.011)

0 1 2 3 4 5 6

0.249 0.266 0.263 0.265 0.253 0.234 0.232

(0.010) (0.011) (0.012) (0.014) (0.016) (0.018) (0.019)

‐6 ‐5 ‐4 ‐3 ‐2 ‐1

0.371 0.379 0.392 0.395 0.393 0.384

(0.019) (0.016) (0.015) (0.014) (0.013) (0013)

0 1 2 3 4 5 6

0.361 0.36 0.349 0.329 0.309 0.291 0.269

(0.013) (0.013) (0.015) (0.017) (0.019) (0.022) (0.024)

4 5 6 7 8 9

0.086 0.07 0.077 0.06 0.06 0.081

(0.013) (0.016) (0.015) (0.018) (0.019) (0.020)

Ex
p
er
ie
n
ce
 1
6
‐3
0

Lags

Table 2, cont'd The Second Moments of Wages and Experience

The table displays the second moments of wages and performance measures that form the basis of the estimation 

described in the paper. The same correlations are displayed in figure 2a and 2b. The correlations involving 

performance measures are polychoric correlations. The correlations involving only wages are pearson correlations.

Correlation of Performance of t with lags and leads in wages

Lags

Leads

Lags

Leads

Autocorrelations in Wage Growths for lags 4‐9

Ex
p
er
ie
n
ce
 1
‐1
5



Table 3 The Asymmetry in Correlations between Pay and Performance

Lag / Lead 1 2 3 4 5 6

Lag 0.281 0.290 0.287 0.266 0.232 0.205

Lead 0.249 0.266 0.263 0.265 0.253 0.234

Difference 0.032 0.024 0.024 0.001 ‐0.021 ‐0.029

(0.005) (0.010) (0.014) (0.018) (0.023) (0.028)

Lag / Lead 1 2 3 4 5 6

Lag 0.384 0.393 0.395 0.392 0.379 0.371

Lead 0.361 0.36 0.349 0.329 0.309 0.291

Difference 0.023 0.033 0.046 0.063 0.070 0.080

(0.004) (0.009) (0.014) (0.017) (0.021) (0.026)

Experience 1‐15

Experience 16‐30

To illustrate the content of this table consider column 1 for younger workers. This column contains 

first the correlation of the current wage with the performance measure received in the same year 

(0.281). This performance measure is the first that was not used in setting the current wage. Below, 

the column contains the correlation of the current wage with the last performance measure 

received before the current wage was set (0.249). Finally the table contains the difference of these 

two correlations and their standard error (0.032 and 0.005). The second column performs the same 

comparision, but uses the second performance measure received prior and after the current wage 

was set.



Table 4 Parameter Estimates for 3 Models

Employer Learning Productivity Combined

σq
2  0.118

(0.0057)

0.025

(0.0051)

0.037

(0.0072)

σr
2 ‐

0.0040

(0.00032)

0.00049

(0.00040)

σ0
2 0.383

(0.061)
‐

0.114

(0.071)

σu
2 0.650

(0.062)

0.405

(0.031)

0.488

(0.051)

σω
2 0.0049

(0.00021)

0.00030

(0.00048)

2.83e‐12

(4.95e‐12)

σκ ‐
0.00000027

(0.0000023)

0.00015

(0.000016)

ρ
0.645

(0.0084)

0.634

(0.0084)

0.640

(0.009)

σz
2 0.506

(0.131)
‐

0.206

(0.075)
Reported are the parameter values for the pure employer learning model, the pure productivity model and combined 

model. The pure employer learning model and the pure productivity model are estimated imposing zero restrictions 

on the relevant parameters. Standard errors are obtained by bootstrapping with 500 repetitions. 



Table 5 The Share of Returns to Investments Going to Individuals

Experience 0.9 0.92 0.95 0.97

0 0.67 0.71 0.78 0.84

5 0.60 0.66 0.75 0.82

10 0.61 0.67 0.75 0.81

15 0.60 0.64 0.71 0.76

20 0.56 0.60 0.64 0.68

25 0.49 0.51 0.55 0.57

30 0.39 0.40 0.42 0.43

35 0.25 0.25 0.26 0.26

Discount Factor R

The table displays the increase in the present discount value of life‐time wages as a fraction of the increase in 

the present discounted value of remaining life‐time production associated with a unit increase in worker 

productivity at experience level t. These ratios are shown for different experience levels and for the specified 

gross discount factors. The calculations are based on the parameter estimates for the combined model 

presented in Table 4. We assume that individuals careers last for 40 years. 



Appendix Table A-1: Probability of Exit from the Firm
(1) (2)

Probit
Linear Probability 

Model

0.0154 0.0034
(0.034) (0.007)

-0.204*** -0.0498***
(0.035) (0.008)

-0.231*** -0.0552***
(0.036) (0.008)

-0.212*** -0.0507***
(0.036) (0.008)

-0.280*** -0.0650***
(0.036) (0.008)

-0.350*** -0.0788***
(0.037) (0.008)

-0.411*** -0.0895***
(0.037) (0.008)

-0.335*** -0.0756***
(0.038) (0.008)

-0.453*** -0.0964***
(0.038) (0.008)

-0.00611*** -0.0013
(0.0009) (0.0002)
-0.657*** 0.236***
(0.043) (0.009)

Observations 33,151 33,151
R-squared 0.008

Standard errors in parantheses. *** p<0.01, ** p<0.05, * p<0.1

Performance - 7th 
Decile
Performance - 8th 
Decile
Performance - 9th 
Decile

Age

Constant

Reported are the estimates results from a Probit and Linear 

Probability model of separating from the job.

Performance - 6th 
Decile

Log wage

Performance - 2nd 
Decile
Performance - 3rd 
Decile
Performance - 4th 
Decile
Performance - 5th 
Decile



Table A-2 Parameter Estimates from Attrition Corrected and Baseline Model
Attrition Corrected Baseline

σq
2  0.0420

0.037

(0.0072)

σr
2 3.7E‐04

0.00049

(0.00040)

σ0
2 0.0716

0.114

(0.071)

σu
2 0.5025

0.488

(0.051)

σω
2 0                            

(fixed)

2.83e‐12

(4.95e‐12)

σκ 0.0125
0.00015

(0.000016)

ρ
0.64                         

(fixed)

0.640

(0.009)

σz
2 0.2464

0.206

(0.075)
Reported are the attrition corrected estimates of the nested model and as comparision the 

uncorrected estimates ("Baseline"). Standard errors for the attrition corrected estimates are not 

available due to the computational burden of estimating these parameters. Standard errors for 

the Baseline estimates are obtained from bootstrapping 500 times.
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Figure 1: Log Wages and Performance, by Age
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Figure 3: Results - Correlations between Pay and Performance
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Figure 4: Results - Pure Learning Model
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Figure 5: Results - Pure Productivity Model
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Figure 6: Results - Combined Model
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Figure A-1: Log Salary in First Year as a Function of Entry Age
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Figure A-2: Performance in First Year as a Function of Entry Age




