Portfolio Considerations in Differentiated Product Purchases: An Application to the Automobile Market*

Naoki Wakamori†
Bank of Canada
nwakamori@bankofcanada.ca

September 14, 2011

Abstract

Consumers often purchase more than one differentiated product, assembling a “portfolio,” which might potentially affect substitution patterns of demand, and oligopolistic firms’ pricing strategy as a consequence. This paper studies such consumers’ portfolio considerations by developing a structural model where consumers can purchase up to two differentiated products, allowing for flexible complementarities/substitutabilities depending on consumer attributes and product characteristics. I estimate the model using Japanese household-level data on automobile purchasing decision. My estimates suggest that strong complementarities arise when households purchase a combination of one small automobile and one minivan as their portfolio. Ignoring such effects leads to biased counterfactual analyses; simulation results suggest that a policy proposal of repealing the current tax subsidies for eco-friendly small automobiles would decrease the demand for those automobiles by 12%, which is less than the 17% drop predicted by a standard single discrete choice model. Similarly, model simulations indicate that the presence of complementarities significantly influences firms’ pricing behavior: firms potentially have incentive to use a mixed bundling strategy, when the number of products in the market is small.

Keywords: Automobiles, Multiple-Discrete Choices, Environmental Policy, Mixed Bundling

*The data used for this analysis comes from the Keio Household Panel Survey, provided by the Global Center of Excellence Program at Keio University, Japan.
†I am grateful to Elena Krasnokutskaya, Katja Seim, and Petra Todd for their constant support, guidance and encouragement. I am also grateful to Jason Allen, Flavio Cunha, Kim P. Huynh, Taiju Kitano, Aureo De Paula, Amil Petin, Philipp Schmidt-Dengler, Holger Sieg, Yasumari Tamada, Xun Tang, and Kenneth Wolpin for their helpful suggestions. I also wish to thank the participants of the 8th Annual International Industrial Organization Conference, 2010 Semiannual Meeting of Japanese Economic Association, and seminar participants at Bank of Canada, HEC Montreal, Keio University, National Graduate Institute for Policy Studies, University of North Carolina at Charlotte, University of Pennsylvania, and University of Tokyo. The view expressed in this paper is authors. No responsibility should be attributed to the Bank of Canada.
1 Introduction

In many differentiated product markets, such as the markets for automobiles and personal computers, consumers often purchase more than one product. They typically choose several different products rather than multiple units of an identical product, assembling a portfolio that meets their specific needs. For example, a married couple with three children might purchase one compact sedan to commute to work on the weekdays and one minivan to go camping on the weekends. This illustrative example suggests that, the utility from such a portfolio of products might not simply be the sum of the products’ individual utilities due to complementarities between products, though most of the existing literatures ignore such effects. In this paper, I call the extra utility that a household derives from purchasing combinations of products the “portfolio effect.”

This paper develops an empirical framework to estimate a market equilibrium model that incorporates portfolio effects in consumer demand and applies the framework to the Japanese automobile market. The Keio Household Panel Survey (KHPS), a newly collected household-level survey, suggests that of the households who purchase more than one automobile, more than half purchase at least one car from a category of small cars called kei-cars. The popularity of kei-cars is partially due to government tax subsidies that were introduced in the 1960’s to make small cars more affordable for Japanese households, and that currently promote ownership of environmentally-friendly small cars. In recent years, there has been discussion about a potential repeal of these tax subsidies. The opposition claims that the demand for fuel efficient kei-cars would dramatically decrease. If there is a positive portfolio effect between kei-cars and other types of cars, however, those households who purchase one minivan and one kei-car under the current tax scheme might maintain their portfolio by purchasing more affordable minivans and kei-cars after the subsidies are repealed. As a consequence, the demand for kei-cars might not decrease as sharply, i.e., the environmental effect of the repeal of tax subsidies for small automobiles might be limited.

The modeling framework developed in this paper extends previous models considered by Berry, Levinsohn and Pakes (2004) (hereinafter referred to as “micro-BLP”) and Gentzkow (2007). In my model, there are two types of agents - consumers and firms. Consumers choose to purchase one or two cars from a set of differentiated cars, or to purchase nothing.

1In single-discrete choice models, all choices are restricted a priori to be perfect substitutes.
2A kei-car is the smallest automobile classification in Japan. To be classified as a kei-car, an automobile must have an engine displacement of less than 660cc, and its exterior width, height, and length must be less than 4.86ft, 6.56ft, and 11.15ft, respectively.
Each automobile is characterized by a bundle of characteristics, such as horsepower and fuel efficiency, and consumers derive utility from these characteristics. When they purchase two cars, consumers may potentially derive an extra utility, the portfolio effect, depending on household attributes and product types. Motivated by the data, I introduce portfolio effects that vary by car categories. I divide the set of automobiles into three categories, i.e., kei-cars, regular cars and minivans, and assume that consumers obtain the same portfolio effect for any set of two automobiles that belong to the same respective categories. Consumers maximize utility by consuming automobile and non-automobile goods subject to a budget constraint. The supply side of the model follows Berry, Levinsohn and Pakes (1995); oligopolistic multi-product firms simultaneously set the prices for their products to maximize profits, taking into account the pricing strategies of other firms.

To estimate the model, I draw on various sources of information including individual-level data on purchasing decisions, macro-level data on market shares, and data on product-level characteristics. KHPS provides household-level data on annual automobile purchasing decisions, as well as basic household demographics, for 4,005 representative Japanese households. This micro-level dataset enables me to relate household attributes to the characteristics of purchased products and to identify the value of joint ownership of different categories of automobiles. New Motor Vehicle Registrations provides aggregate annual market share data, which helps to improve the accuracy of estimated model parameters. I construct the product characteristics dataset using Automotive Guidebook, which lists all available automobile models in Japan every year.

The model predicts choice probabilities for each household given its attributes and yields the pricing first order conditions for firms. Following the estimation procedure suggested by Berry, Levinsohn and Pakes (1995) and micro-BLP, I estimate the model by matching four sets of simulated moments to their data analogues: the macro market share of each product, the covariance between automobile characteristics and household attributes for those who purchased one automobile, the covariance between automobile characteristics for those who purchased two automobiles, and the firms’ first order conditions. I minimize the distance between the predicted and empirical moments for the last three sets of moments derived from the micro-data, subject to the first set of moments derived from the macro-data matches exactly.

The estimation results show that positive portfolio effects exist between kei-cars and regular cars, and also between kei-cars and minivans. The estimates also indicate that households are more likely to purchase two automobiles as its number of earners increases and if they
are located in rural areas. These results immediately suggest the following questions: Would ignoring portfolio effects lead to overestimation of the impact of repealing tax subsidies for small automobiles?

I use the estimated model to simulate the effect of eliminating the current tax subsidies for small automobiles. The results suggest that the total demand for kei-cars would decrease by 12%. To explore the importance of allowing for portfolio effects, I also estimate a standard single choice model, micro-BLP model. It predicts that the demand for kei-cars would decrease by 17%. This difference of about 5% can be accounted by the portfolio effect. My model also predicts that sales for cheaper minivans would increase under the new tax policy, while sales for expensive minivans would decrease. This can be explained by the fact that some households highly value a combination of one one kei-car and one minivan, and those households would purchase one kei-car and one relatively cheap minivan to maintain benefits from their portfolio under the new tax policy.

The simulation results also show that the profits of firms that primarily manufacture kei-cars would decrease by an average of 3.8%. The remaining manufacturers would have, on average, 2.5% higher profits. One firm, which produces only one model of kei-car among its 28 models, would increase its profit by 3.3%. Industry-wide profits for Japanese automobile makers would not change. This result reflects two offsetting effects; an increase in profit from households purchasing slightly larger and more expensive cars than kei-cars, and a negative effect on profit from households purchasing no automobiles under the new tax scheme.

Given the finding of strong positive portfolio effects between kei-cars and minivans (and kei-cars and regular cars), I address a question of interest to firms and government; I consider how profits would change if firms used a bundling strategy in their pricing, and how social welfare would change as a consequence. This simulation is performed for a hypothetical market with two firms. In practice, I choose two firms and two products for each firm that were found to have strong portfolio effects and allow these two firms to price bundles of products as well as individual products. The simulation results show that there is an incentive for firms to use a mixed bundling strategy. Compared to the case where firms are banned from bundling, both the single-car prices and the bundle prices are higher.

This paper builds on earlier empirical studies on estimating discrete-choice demand, especially, in automobile industries, such as Bresnahan (1987), Goldberg (1995) and Berry et al. (1995). As in Petrin (2002) and micro-BLP, I add individual-level data to the framework of Berry et al. (1995). Petrin (2002) quantifies the benefit of introducing new types of automobiles. I also build on Manski and Sherman (1980) who allow consumers to purchase two
automobiles, but assume that any two automobiles are complements. Instead, I allow for flexible portfolio effects, not restricting them to be complementarities ex-ante and allowing them to vary by household attributes and automobile categories.

This paper also contributes to the literature on estimating multiple-choice demand models. There are three approaches in the majority of the literature. Each approach needs to assume two differentiated products ex-ante are either substitutes as in Chan (2006), independent as in Augereau, Greenstein and Rysman (2006), or complements as in Manski and Sherman (1980) and Fan (2010).\(^3\) Gentzkow (2007), who studies the complementarities among print and online newspapers, allows for more flexibility in the sense that the two differentiated products could be substitutes, independent, or complements. This paper extends Gentzkow (2007)’s method, allowing the portfolio effect to depend on household attributes in order to obtain flexible complementarity patterns, which are likely of importance in the empirical setting.

Recent increasing environmental concerns have lead to a renewed policy focusing on automobile markets. One stream of literature analyzes the policy of promoting the retirement of old automobiles by subsidizing the scrappage of old automobiles or the purchase of new automobiles, such as Adda and Cooper (2000), Alberini et al. (1995), Chen et al. (2010), Hahn (1995), and Schiraldi (2009). Another literature on the effects of Corporate Average Fuel Economy (CAFE) Standards is also closely related to my paper.\(^4\) CAFE standards can be viewed as an implicit tax on large automobiles and a subsidy for eco-friendly small automobiles. However, the Japanese tax subsidies create a more direct consumer incentive to purchase eco-friendly automobiles. This empirical study complements aforementioned literature.

The rest of the paper is structured as follows: I describe the model in Section 2 and explain the estimation strategy in Section 3. I describe the data in Section 4. Section 5 presents the estimation results. Section 6 summarizes the results of the counterfactual analyses based on the estimated model, and Section 7 concludes.

\(^3\)For more comprehensive discussion, see Gentzkow (2007).

\(^4\)CAFE Standards are U.S. regulations intended to improve automobile fuel efficiency by charging penalty fees to automobile manufacturers when the average fuel economy of their annual fleet of automobile production falls below the standard. There are many papers that analyze CAFE standards using various approaches. These include Bento et al. (2009); Austin and Dinan (2005); Goldberg (1998); and Gramlich (2010).
2 The Model

Consider a differentiated product market. Each product is indexed by j, $j = 1, 2, \cdots, J$, and expressed as a bundle of characteristics, such as horsepower and fuel efficiency. Let p_j and x_j denote the price and other characteristics of automobile j. As a matter of convention, let $j = 0$ denote the outside good, i.e., purchasing no products. There are two types of agents: consumers and producers. I describe consumers’ and producers’ maximization problems in this section.

2.1 Household Behavior

Let $i = 1, 2, \cdots, N$ denote the individual households. Each household is characterized by its observed characteristics, (y_i, z_i), where y_i denotes the income of households and z_i denotes other household characteristics such as such as family size, age of the household head, number of kids and so on. In my model, I assume that each household purchase up to two automobiles. Let $d_i = (d_{i1}, d_{i2})$ denote an automobile purchase decision for household i, where each d_{ik} specify the product, i.e., $d_{ik} = 0, 1, \cdots, J$ for $k = 1, 2$. The households maximize their utility by choosing automobile consumptions and level of non-automobile consumption goods, C. Namely, each household i solves the following maximization problem:

$$\max_{C, (j, l)} u^c(C)u^a_i(j, l) \quad \text{s.t.} \quad C + p^c(p_j; \tau) + p^c(p_l; \tau) \leq y_i,$$

with

$$u^c(C) = C^\alpha,$$

$$\log(u^a_i(j, l)) = u_{ij} + u_{il} + \Gamma(j, l; z_i^c) + \varepsilon_{i,(j,l)},$$

where p_j is a price for automobile j that firms charge, $p^c(p_j; \tau)$ is an after-tax price for automobile j that consumers face under tax scheme τ, u^a_i is the utility from automobile consumption which could be different for each household even if they choose the same automobiles, and u^c is the utility from non-automobile consumption. This functional form is a Cobb-Douglas utility function in automobile and non-automobile consumptions. I assume that the log of utility from automobile consumption as a sum of the following components; (i) utilities from each automobile consumption, u_{ij} and u_{il}, (ii) an interaction term between two automobiles which I call the portfolio effect, $\Gamma(j, l; z_i^c)$, and (iii) idiosyncratic individual preference shock, $\varepsilon_{i,(j,l)}$, assumed to be independent of the product characteristics and of each other. In the following section, I explain the utilities from each automobile consumption and
Utility from Single Automobile Consumption

For each automobile consumption, each household derives the following utility:

$$u_{ij} = x_{j} \beta_i' + \xi_j = \sum_{m=1}^{M} x_{jm} \beta_{im} + \xi_j,$$

(1)

with

$$\beta_{im} = \bar{\beta}_m + \sum_{r=1}^{R} z_{ir}^p \beta_{mr}^o + \beta_{im}^u \nu_{im},$$

(2)

where $x_j = [x_{j1}, \cdots, x_{jM}]$ and ξ_j represent the observed and unobserved characteristics for product j respectively, $\beta_i = [\beta_{i1}, \cdots, \beta_{iM}]$ denotes household i’s valuation for each product characteristic, $z_i^p = [z_{i1}^p, \cdots, z_{iR}^p]$ and ν_i represent observed and unobserved household attributes assumed to follow standard normal distributions. Furthermore, I interact these evaluations for each automobile characteristics with household attributes. β^o and β^u denote the coefficient for the observable and unobservable household attributes.

One key feature of this specification is that each household is able to have a different valuation for each product. Moreover, even if the household characteristics are the same, it is still possible to have different valuations for each product. For example, as the household size increases, the households valuation of seating capacity might increase. This trend will be captured by β^o. However, it still possible to have different valuations due to the unobserved household heterogeneity, ν_{im}, which is the last term in equation (2).

Portfolio Effects

The most straightforward way to capture portfolio effects between two automobiles is by defining them pair-wise, i.e., defining them for each possible combination of j and l. It is, however, almost impossible to estimate these pair-wise portfolio effects due to difficulties in computation and identification. Thus, I introduce category-wise portfolio effects, motivated by the data showing that households are interested in having a particular combination of two different types of automobiles, such as one sedan and one minivan, not one specific sedan and one specific minivan. I categorize automobiles into three mutually exclusive sets, the set of kei-cars denoted by \mathcal{K}, the set of regular cars denoted by \mathcal{R}, and the set of minivans denoted by \mathcal{M}. Then, I assume that the portfolio effect is the same, for
all automobiles in the same category, respectively, i.e.,

\[
\begin{align*}
\Gamma(j, l, z_i^c) =
\begin{cases}
\Gamma_{KK}, & \text{if } (j, l) \in (K \times K) \\
\Gamma_{KR}, & \text{if } (j, l) \in (K \times R) \cup (R \times K) \\
\Gamma_{KM}, & \text{if } (j, l) \in (K \times M) \cup (M \times K) \\
\Gamma_{RR}, & \text{if } (j, l) \in (R \times R) \\
\Gamma_{RM}, & \text{if } (j, l) \in (R \times M) \cup (M \times R) \\
\Gamma_{MM}, & \text{if } (j, l) \in (M \times M) \\
0, & \text{otherwise.}
\end{cases}
\end{align*}
\]

Potentially, there are other possible ways to categorize automobiles. For example, I can categorize them by engine displacement, horsepower, or mileage. I discuss this issue in Section 5.\(^5\)

Moreover, I impose the following parametric assumption on the functional form of the portfolio effect, \(\Gamma\), for each combination \(r\);

\[
\Gamma_r = \Gamma_0 + \zeta_r + \sum_{l=1}^{L} \gamma_{rl} z_{il}^c, \quad \text{for } r = KK, KR, KM, RR, RM, MM
\]

where \(\Gamma_0 = \gamma_0 z_{00}^c\) is the constant utility shifters of owing two automobiles for all \(r\), \(\zeta_r\) is the combination specific unobserved term for combination \(r\), \(z_i^c = [z_i^c_1, \ldots, z_i^c_L]\) are the household \(i\)'s attributes that affect the portfolio effect but not the base utility of each product \(u_i(j)\), and \(\gamma_r = [\gamma_{r1}, \ldots, \gamma_{rL}]\) are the coefficients for the household characteristics.\(^6\)

The role of the first term, the \(\Gamma_0\), captures the effect of having two automobiles, because this term does not depend on any particular combination of automobiles. The combination specific unobserved terms play a similar role to that of the unobserved characteristics for each product, the \(\zeta_j\). The last term captures any patterns of holding a particular combination which might be driven by a particular households attributes. For example, if the household

\(^5\)This classification is be viewed as the passenger capacity of the automobiles, because the average passenger capacity of kei-cars, regular cars, and minivans are four, five, and seven respectively. Moreover, it is also possible to include the difference of capacities between the two automobiles, in the portfolio effect. However, this method offers too little variation, because the seating capacities do not vary enough and even taking the difference there is insufficient variation to estimate the coefficient. That it why I introduce the category-wise portfolio effect in this particular estimation.

\(^6\)This is necessary for the identification condition. To achieve identification, the household attributes included in the portfolio effect are different from the household attributes included in the random coefficient parts.
includes any children, the choice probabilities for combinations which include one minivan are typically high. It captures such trends.

Automobile Related Taxes In Japan, three types of taxes are levied for purchasing automobiles. First of all, based on acquisition prices, consumers must pay an *automobile acquisition tax*, depending on the displacement of automobiles, i.e.,

\[\tau_{1,j} = \begin{cases}
0.03, & \text{if } j \text{'s displacement is less than 660cc}, \\
0.05, & \text{otherwise}.
\end{cases} \]

Second, consumers also must pay an *automobile weight tax*, which is approximately $55 for any kei-cars per year, and $79 for every 0.5 tons for other automobiles. More specifically,

\[\tau_{2,j} = \begin{cases}
55, & \text{if } j \text{ is a kei-car}, \\
79\lfloor x_{j,1}/500 \rfloor, & \text{otherwise},
\end{cases} \]

where \(x_{j,1} \) is the weight of automobile \(j \) measured in kilo grams. Finally, depending on the engine displacement of the purchased automobile, consumers must pay an *automobile tax* or *kei-car tax*, denoted by \(\tau_{3,j} \). This tax is $90 for any kei-cars, while the automobile tax is summarized in Table 10.

In summary, if the price for automobile \(j \) is \(p_j \), consumers eventually need to pay the following price,

\[p_c^*(p_j, \tau) = (1 + \tau_{1,j}) p_j + 3\tau_{2,j} + 3\tau_{3,j}, \]

because consumers must pay these taxes for first three years at the time of the purchase.

Choice Probabilities Substituting (2) into (1) and putting them together with the original maximization problem, the utility of household \(i \) choosing \(j \) can be given by the following simple equation:

\[
\begin{align*}
 u_{ij} &= \sum_{m=1}^{M} x_{jm} \bar{\beta}_m + \xi_j + \sum_{m=1}^{M} x_{jm} \left[\sum_{r=1}^{R} z_{ir}^P \bar{\beta}_m^P + \beta_m^o \nu_{im} \right] \\
 &= \delta_j + \mu_{ij}.
\end{align*}
\]

7See Section 6 for more details.
8A definition of the floor function is \(\lfloor x \rfloor = \max \{ n \in \mathbb{Z} | n \leq x \} \)
For notational simplicity, let δ_j denote the mean utility derived from product j which is the same for every household, and $\mu_{ij} = \mu(x_j, \beta, \nu_i, z_i)$ denote the remaining part except ε_{ij}. When a household chooses the outside option, it will obtain $\delta_0 = 0$ and $\mu_{i0} = \alpha \ln(y_i)$.

Assuming that ε follows a Type I extreme value distribution, the probability of choosing product j and l conditional on household i’s attributes, all product characteristics, and parameter values is given by

$$\Pr[d_i = (j,l)|H_i, \nu_i, X, \delta, \theta]$$

$$= \frac{1}{F_i} \exp[\delta_j + \mu_{ij} + \delta_l + \mu_{il} + \alpha \log(y_i - p_j - p_l) + \Gamma(j,l; z_i)],$$

where $H_i = (z, y_i)$, $X = \{x_j, p_j\}_{j=1}^J$, and F_i is defined as

$$F_i = \exp[\alpha \log(y_i)] + \sum_{k=m+1}^{J} \sum_{m=0}^{J-1} \exp[\delta_k + \mu_{ik} + \delta_m + \mu_{im} + \alpha \log(y_i - p_k - p_m) + \Gamma(k,m; z_i)],$$

and θ is the set of parameters. Moreover, let q_{ij} denote the sum of probabilities of choosing product j for household i. Then, q_{ij} will be given by

$$q_{ij} = \frac{1}{F_i} \sum_{l \in (J \setminus \{j\}) \cup \{0\}} \exp[\delta_j + \mu_{ij} + \delta_l + \mu_{il} + \alpha \log(y_i - p_j - p_l) + \Gamma(j,l; z_i)].$$

Notice that this q_{ij} can be one at maximum, because each household purchases more than one product, but the are not allowed to purchase two exactly same automobiles in my model.

2.2 Firm Behavior

Each firm f, $f = 1, 2, \cdots, F$, maximizes the following profit function;

$$\max_{\{p_j\}_{j \in \mathcal{F}_f}} \sum_{j \in \mathcal{F}_f} (p_j - mc_j) Ms_j(p; x, \theta, \tau),$$

with

$$\ln(mc_j) = x_j\psi' + \omega_j,$$

where \mathcal{F}_f is the set of products produced by firm f, mc_j denotes the cost function of product j, M denotes the market size, $s_j(p; x, \theta)$ denotes the market share for product j, ψ denotes the cost parameters for the product characteristics, and ω_j represents the unobservable cost factors. This formulation is able to capture not only the strategic interaction among firms,
but also the pricing strategy within a single firm. Due to the fact that there are only seven manufacturers in the Japanese automobile market, it is natural to assume that their price setting behaviors are affected by other firms’ strategies. Moreover, all firms produce multiple products in Japan. Thus, when setting prices, the firms need to consider not only other firms’ strategies, but also the effect of their own pricing strategies on other products they produce.

Taking the first order condition with respect to \(p_j \), I can obtain the following Bertrand-Nash equilibrium condition:

\[
D_j(p; \tau) + \sum_{k \in \mathcal{F}_j} (p_k - m_{c_k}) \frac{\partial D_k(p)}{\partial p_j} = 0,
\]

where \(D_j(p; \tau) = M_{s_j}(p; x, \theta \tau) \).\(^9\) The first order conditions can be written in the following matrix form:

\[
D(p; \tau) + \Delta(p - mc) = 0,
\]

where \(D, p, \) and \(c \) represent vectors of demand, price, and marginal cost, and \(\Delta \) denotes a \(J \times J \) matrix with \((k, m) \) element defined by

\[
\Delta_{km} = \begin{cases}
\frac{\partial D_k}{\partial p_m}, & \text{if } k \text{ and } m \text{ are produced by the same firm,} \\
0, & \text{otherwise.}
\end{cases}
\]

Furthermore, the system of first order conditions can be solved for the vector of the marginal costs, \(mc \), i.e.,

\[
mc = p - \Delta^{-1}D(p; \tau).
\]

Notice that even though this system of first order conditions looks exactly the same as BLP model, the substitution matrix \(\Delta \) is different from BLP. This is because now the demand function includes consumers’ portfolio considerations.\(^{10}\) Economic intuition behind this complexity is the following. In BLP model, every products is perfect substitute, implying that an increase in price \(j \) would increase the choice probabilities for other product. However, in this model, an increase in price \(j \) would affect the product \(l \)’s choice probability in two way: (1) substitutability between \(j \) and \(l \) would increase the choice probability of product \(l \), and (2) complementarity between \(j \) and \(l \) would decrease the choice probability of product \(l \). You

\(^9\)I use this equation (4) for counterfactual analyses, when I find Bertrand-Nash equilibrium under new price vectors.

\(^{10}\)Due to this complexity, this study requires computer power, and see the derivation of substitution matrix in Appendix A1.
can see this trade-off in Appendix A1.

3 Estimation and Identification

If there is no unobservable term, ξ nor ζ, in the utility function, then the estimation can be done in a straightforward way, such as maximum likelihood, so that we can match the market share for each product to that observed in the macro data, or the individual choice probabilities to those observed in the micro data. In my model, however, there is an unobservable term, ξ, in the utility function. Thus, I apply the strategy developed by Berry (1994) and commonly used in other papers such as Berry et al. (1995) and Petrin (2002). Although Berry et al. (1995) uses only macro-level market share data, I have both micro-level decision data and macro-level market share data. In this situation, as Petrin (2002) developed and Berry et al. (2004) applied, I construct the GMM objective function from both micro- and macro-level data as moment conditions.\footnote{The theoretical background is given by Imbens and Lancaster (1994).} Intuitively, I minimize the set of moment conditions from micro-level data subject to the moment conditions from macro-level data being equal to zero. In particular, given a set of parameter values, I match the macro market share for each product by changing the mean utilities, the δ, in the first stage. Then, after matching the market shares, I evaluate the other moments using the set of parameter values and the mean utilities, the δ, which together satisfies the moment conditions for the macro data.

3.1 Objective Function

I estimate the parameters, $\theta = (\alpha, \{\bar{\beta}_m, \beta^p_m, \beta^{u}_m\}_{m=1}^M, \{\xi_r, \gamma_r\}_{r=1}^R, \{\gamma_0, \psi\})$, by matching four “sets” of predicted moments to their data analogues: (i) the market share of each product; (ii) the covariance between the observed consumer attributes z^o_i and the observed product characteristics, x_j which are chosen by the households that purchase only one automobile; (iii) the covariance between the observed product characteristics of two automobiles for those households purchasing two automobiles; and (iv) the first order conditions from the Bertrand-Nash equilibrium condition. In this section, I define these sets of moments, explaining the algorithm and procedure of my estimation.

Macro Market Share The first set of moments, the market shares of the J products, can be derived by the following procedure. Let w denote the vector of observed and unobserved...
individual heterogeneity, i.e., \(w = (z_i, \nu_i, \varepsilon_i) \). Moreover, let \(\mathcal{P}_w \) denote the distribution of \(w \) in the population. Then, given an initial guess of mean utilities, the \(\delta^0 \), and a set of parameters, the \(\theta \), the model predicts the market share for product \(j \) as

\[
s_j^p(\delta, \theta) = \int_{A_j(\delta, \theta)} \mathcal{P}_w(d(w)),
\]

where

\[
A_j(\delta, \theta) = \{ w | \max_{k,m} [u_{i,(k,m)}] = u_{i,(j,l)} \text{ for } j \leq l \}.
\]

This expression means that the demand for product \(j \) is generated by households who purchase product \(j \). In order to calculate this market share vector, I use KHPS. Households are characterized by their attributes, \((z_i, y_i) \), and I can observe these characteristics in KHPS. This procedure relies on the representativeness of KHPS. For these households, I calculate the choice probabilities for possible choices each product in order to integrate out the heterogeneity at the individual household level. Then, I sum up these probabilities to obtain the theoretical market share. In other words, I approximate the market shares by

\[
s_j^p(\delta(\theta)) \approx \frac{1}{2N} \sum_{i=1}^{N} \left\{ \sum_{j=0}^{J-1} \sum_{l=j+1}^{J} \Pr[d_i = (j, l) | H_i, \nu_i, X, \delta(\theta)] \right\}
\]

where \(N \) represents the number of households in Japan. The choice probabilities are given by equation (3) in the previous section. The reason why I divide the sum of probabilities by 2 is each household can purchase up to two automobiles.

Here, I define the 'zeroth' set of moments by taking a difference between empirical and predicted market shares for each product \(j \):

\[
G_j^0(\theta) = s_j - s_j^p(\delta(\theta))
\]

where \(s_j \) denote the empirical market share, and \(G^0 = [G_1^0(\theta), \ldots, G_J^0(\theta)]' \). After obtaining the predicted market shares, I utilize the contraction mapping method developed by Berry et al. (1995). Until the difference between the predicted market shares and the empirical

\[\text{---}\]

\[\text{---}\]
market shares is small, I iterate this procedure by updating the mean utilities via
\[
\delta^{T+1} = \delta^{T} + \log(s) - \log(s^p(\delta(\theta)))
\]
By doing so, I can exactly match the product-level market shares, i.e., \(G^0(\theta) = 0\), and obtain
the vector of mean utilities, \(\delta^*(\theta)\), which satisfies the first moment, given the parameter
values, \(\theta\).

Covariance between Households Attributes and Product Characteristics The second set of moments is derived from the micro data. In particular, in order to construct this moment, I use the households that purchase exactly one automobile during the period in the KHPS. Having obtained \(\delta\), it is straightforward to calculate the choice probabilities for each household by using the household characteristics via equation (3). Now, I prepare \(ns\) times of \(\nu_i\) for each household, and integrate them out to obtain the predicted choice probabilities for micro samples:

\[
\hat{Pr}[d_i = (j, l) | H_i, X, \delta(\theta)] = \frac{1}{ns} \sum_{k=1}^{ns} \Pr[d_i = (j, l) | Z_i, X, \delta(\theta), \nu^k_i].
\]

After obtaining these simulated choice probabilities, I construct the covariance of the observed consumer attributes \(z_i^p\) with the observed product characteristics \(x_j\) which are chosen by the households. Conceptually, it should be \(E[z x^D - z x^P]\) where \(x^D\) and \(x^P\) denote the product characteristics of the empirical data and model prediction, respectively. This set of moments enable us to predict the kinds of household attributes that incline them to purchase a particular product. For example, as the age of household head is getting higher, they tend to purchase more powerful automobiles. More precisely, I can obtain it as

\[
G^2(\theta) = \frac{1}{|B_1|} \sum_{i \in B_1} \left[z_i \left\{ \sum_{j=1}^{J} (x_j 1_{\{d_i = j\}} - x_j \Pr[d_i = (0, j) | H_i, X, \theta, d_i d_1 = 0] \right) \right\},
\]

where \(B_1\) denotes the set of households who purchase one product in the KHPS. Notice that
the probability in here is a conditional choice probability, as I know households purchase
exactly one automobile during the period. And, this conditional choice probabilities should be given as

\[
\hat{Pr}[d_i = (0, j) | d_i d_1 = 0] = \frac{\hat{Pr}[d_i = (0, j)]}{\sum_{l \in J} \Pr[d_i = (0, l)]}
\]

where every choice probability is given \((H_i, X, \delta(\theta))\).
Covariance between Observed Characteristics for Two Automobiles Next, I set the third set of moments as the covariance of the observed product characteristics for two automobiles, given that the households eventually own two automobiles. Conceptually, it should be $E[x_1^D x_2^D - x_1^P x_2^P]$ where x_1^P and x_1^D denote the l-th automobile's characteristics of the model prediction and actual data, respectively. More precisely, I can obtain it as

$$G^3(\theta) = \frac{1}{|B_2|} \sum_{i \in B_2} \left[\sum_{l=1}^{J-1} \sum_{j=0}^{J-1} \left\{ x_j x_l 1_{d_1 = j} 1_{d_2 = j'} - x_j x_l \Pr[d_i = (j, l) | H_i, \nu_i, x, \theta, \delta, d_{i1} \neq 0] \right\} \right],$$

where B_2 denotes the set of households who purchase two products in the KHPS, and the conditional choice probabilities in here should be given as

$$\hat{\Pr}[d_i = (0, j)] = \frac{\hat{\Pr}[d_i = (j, l)]}{\sum_k \sum_m \Pr[d_i = (k, m) | k \neq 0]},$$

These moment conditions are particularly important for identifying the coefficients in the portfolio effect terms, such as γ_r. This is because that these moment conditions enable us to predict the kinds of household attributes that incline them to purchase a particular combination of products.

The Berry et al. Moments Finally, the first and the fourth sets of moments comes from the orthogonality condition of $E[\xi | (X, W)] = 0$ and $E[\omega | (X, W)] = 0$. Mean utilities vector will give us ξ as

$$\xi = \delta^*(\theta) - X \hat{\beta}.$$

Similarly, the first order conditions derived in Section 3 gives the ω’s:

$$mc = p - \Delta^{-1} D,$$

and I can solve for the unobserved product specific costs, ω_j for each product j. As a matter of convention, as sets of instrument for this set of moments, I use (i) the average product characteristics produced by other firms, (ii) the average characteristics of products other than j, produced by the same firm, and (iii) characteristics of product j. I also add the number of products that firm f produces, to identify the constant terms in both utility and cost functions. Thus, defining Z_1 and Z_4 as the sets of instrument explained above, the first and
fourth sets of moments can be expressed as follows:

\[G^1(\theta) = \frac{1}{J} \sum_{j=1}^{J} Z_{1,j} \xi_j, \quad \text{and} \quad G^4(\theta) = \frac{1}{J} \sum_{j=1}^{J} Z_{4,j} \omega_j. \]

3.2 The GMM Estimator and Standard Errors

I use the Method of Simulated Moment (MSM) to estimate this model, i.e., I solve the following minimization problem;

\[
\min_{\theta \in \Theta} \ G(\theta)' S^{-1} G(\theta)
\]

subject to \(G^0(\theta) = 0 \)

where \(S \) is a weighting matrix which is a consistent estimate of \(E[G(\theta)G(\theta)'] \) and

\[G(\theta) = [G^1(\theta) \ G^2(\theta) \ G^3(\theta) \ G^4(\theta)]', \]

where each \(G^m(\theta) \), for \(m = 1, \cdots 4 \), is defined above. To solve this problem, I use the method suggested by ? to ease the computational burden. Namely, the mean utilities do not depend on the parameter values of \(\{\hat{\beta}_m\}_{m=1}^{M} \), and they only depend on \(\alpha \)'s, \(\{\beta^0_m, \beta^u_m\}_{m=1}^{M} \) and the parameters in portfolio effects term. Thus, I can exclude \(\{\hat{\beta}_m\}_{m=1}^{M} \) from the search algorithm.

The estimator is consistent and asymptotically normal, shown by ?. The asymptotic variance of \(\sqrt{n}(\hat{\theta} - \theta) \) is given by

\[(\hat{\Gamma}' \hat{\Gamma})^{-1} \hat{\Gamma}' \hat{\Gamma} (\hat{\Gamma}' \hat{\Gamma})^{-1}. \]

where

\[\hat{\Gamma}_{ij} = \frac{\partial G_j(\theta)}{\partial \theta_i} \bigg|_{\theta = \theta}, \]

and \(G_j \) is the \(j \)-th element defined in the previous section. Notice that this \(\hat{\Gamma} \) is different from the portfolio effect term.\(^{14}\) The variance-covariance of the parameters can be decomposed into two parts: (1) the derivative matrix of the first order conditions evaluated at the true parameter values, and (2) the variance-covariance of the first order conditions evaluated at the true parameter values, as shown in ?. As for (1), it can be consistently estimated by taking derivative of the sample moment’s first order condition, \(\hat{\Gamma} \), explained above. As for (2), there are three sources of randomness: (i) the standard GMM variance term given by

\(^{14}\)In order to follow the standard notation in this literature, I use \(\hat{\Gamma} \) to denote the derivative matrix in this section.
\(\hat{V}_1 = S(\hat{\theta}) \), (ii) the difference between observed market shares and true market shares which is zero in my case, i.e., \(\hat{V}_2 = 0 \), and (iii) simulation error in my calculations. The variance term due to simulation error can be given by

\[
\hat{V}_3 = \frac{1}{H} \sum_{h=1}^{H} \left[G(\hat{\theta}, P_{ns}^h) - \frac{1}{H} \sum_{h=1}^{H} G(\hat{\theta}, P_{ns}^h) \right] \left[G(\hat{\theta}, P_{ns}^h) - \frac{1}{H} \sum_{h=1}^{H} G(\hat{\theta}, P_{ns}^h) \right]',
\]

where \(P_{ns}^h \) is independently redrawn \(H \) times. These three randomness are independent each other, and thus \(\hat{V} \) will be the sum of these three \(\hat{V}_i \), for \(i = 1, 2, 3 \).

4 The Data

For this empirical study, I mainly use three datasets; *Keio Household Panel Survey* which contains household-level data on purchasing decisions, *New Motor Vehicle Registrations* which gives the aggregate sales number of automobiles in a given year, and *Automotive Guidebook* which provides the product-level panel data. I describe the characteristics of these datasets and show some summary statistics in this section.

Keio Household Panel Survey

The *Keio Household Panel Survey* is provided by Keio University, a private research university in Tokyo, Japan. One of the main goals of KHPS is to provide the Japanese household-level micro panel data in order to promote empirical research about Japan. The sample size of KHPS was approximately 4,000 households from 2004 to 2006.\(^\text{15}\) In terms of automobile ownership, KHPS inquires in 2004 about: (1) month and year of purchase; (2) maker, brand, and model of each automobile; and (3) whether it was purchased as a new car or a used car, for up to three cars. Every year after 2004, KHPS inquires (1) whether the household purchases automobiles or not up to two cars; and (2) whether the household discards automobiles or not up to two cars. I extract information from these three years of data.

New Motor Vehicle Registrations

The *New Motor Vehicle Registrations* series issued by Japan Automobile Dealers Association provides the number of automobiles sold in a given year under the supervision of Ministry of Land, Infrastructure, Transportation, and Tourism. Because all Japanese automobiles must be registered with the government, the exact numbers

\(^{15}\)Starting from 2007, the sample size increased by 1,400 households with 2,500 individuals. Thus we currently have 5,400 households with 9,500 individuals in total.
of each automobile sold in a given year is available.

Automotive Guidebook: Micro Data for Products The *Automotive Guidebook* series is issued by Japan Automobile Manufactures Association (JAMA) every year. I construct the product-level panel data from this series of books, since each edition provides the set of available automobile models and the characteristics for each, such as price, interior and exterior dimensions, seating capacity, and engine displacement. Table 1 shows the average characteristics of automobiles sold in 2004 to 2006.

4.1 Deciding on a Choice Set

Foreign Automobiles I decided not to use foreign automobiles. There are two reasons for this. First of all, Foreign automobiles hold tiny market shares in Japan. Domestic automobiles are dominant in Japan and about 94% of the market share is held by automobiles produced by domestic automobile manufacturers. Second, compared to Japan’s domestic automobiles, information about foreign automobiles is mis-reported often in my micro data. Therefore, I chose to use only domestic automobiles in this empirical study.

Secondary Markets I do not use the secondary market data for this empirical exercise. There are two reasons for this. Most importantly, the secondary market is not big in Japan, and more than 65% of them purchase new automobiles in KHPS. This is partially because of the costly automobile inspection system and owning old automobiles is costly in Japan. Second, the total sales data for secondary market is not available in Japan. Compared to the sales of brand new cars, the secondary market is not well monitored by the government. Even though statistics on total automobile “trading” exist, it is hard to know how many cars are sold/purchased, because in these statistics, we must count the number of trades as two when someone sells an automobile to a used car dealer and the used car dealer then sells it to another person. On the other hand, if someone sells an automobile directly to a friend, we only need count it as one trade. In other words, one transfer of ownership counts as one trade, which makes counting the actual sales difficult. In addition to this problem in macro data issue, micro data, *KHPS*, does not include details about automobile models, nor does it include used car sales prices. Therefore, I ignore used car purchases, because it is not possible to use the information from the macro- and micro-data correctly.

16As for the sales of used automobiles, however, it is difficult to know the exact number of automobile sales since there are so many companies which deal with used cars and it is difficult to collect and aggregate this decentralized market information. I will discuss this issue later.
The Choice Set To finalize the choice set, I also eliminate several discontinued domestic automobile models during 2004 to 2006 and whose sales are less than 1,000 per year. This leaves 154 automobiles that I use in this study. Also, because very few households purchased two minivans and none of them purchased two exactly identical automobiles, I exclude the combinations of two minivans and two identical products from the potential choice set.

<table>
<thead>
<tr>
<th>Table 1: Mean and Std. Dev. of Product Characteristics for Each Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Capacity (person)</td>
</tr>
<tr>
<td>Kei-car</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Minivan</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>Fuel Efficiency (km/l)</td>
</tr>
<tr>
<td>Kei-car</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Minivan</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>Horsepower (PS/rpm)</td>
</tr>
<tr>
<td>Kei-car</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Minivan</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>Displacement (cc)</td>
</tr>
<tr>
<td>Kei-car</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Minivan</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>Price ($)</td>
</tr>
<tr>
<td>Kei-car</td>
</tr>
<tr>
<td>Regular</td>
</tr>
<tr>
<td>Minivan</td>
</tr>
<tr>
<td>All</td>
</tr>
</tbody>
</table>

Note: For each product characteristic and each automobile category, I report the mean, standard deviation, minimum, and maximum. For price calculation, I use the following exchange rate: $1.00 = ¥ 80.0.

4.2 Descriptive Statistics

In this section, using the datasets introduced above, I summarize some descriptive statistics for automobiles included in the choice set. Table 1 displays means, standard deviations, and
the max and min of several automobile characteristics for each category. Compared to other automobiles, it is clear that kei-cars have less seating capacity, horsepower, and polluting gas emissions, but are more fuel-efficient and affordable. Also, within the categories of kei-car and minivan, the standard deviations for each characteristic are much smaller than for regular cars. This is because regular cars include all automobiles, except kei-cars and minivans, i.e., the regular car category includes hatchbacks, sedans, station wagons, sport cars, and sport utility vehicles (SUVs).

Table 2 lists all domestic automobile manufacturers included in my estimation. It also shows the number of models and aggregate sales for each category by these manufacturers. The table clearly indicates that the total sales for kei-cars and minivans are indeed huge in Japan, accounting for about 31% and 21% of total automobile sales, respectively. In particular, while kei-car models represent only about 20% of all considered automobile models, the total number of kei-car sales accounts for 30% of the total automobile sales, implying that each kei-car model has more sales than other types of automobiles, on average. It is also clear that several firms, such as Mitsubishi and Suzuki, rely heavily on kei-car production, because kei-cars represent 63% and 88% of their unit sales, respectively. Mazda and Nissan, on the other hand, sold significantly fewer numbers of kei-cars. In particular, Mazda’s kei-cars represent only 16.5% of its sales, even though Mazda produces five models of kei-car.

4.3 Data Implementation

A: Decision Period

I chose the three years from 2003 to 2005 as one decision period. That is, as long as a household purchases automobiles within that period, I assume that the household purchases automobiles in a decision period. Three years might not be long enough, because some fraction of households that eventually purchase two automobiles might not purchase both of them within the decision period. They might purchase just one automobile within these three years, and purchase another automobile later. Thus, the longer the decision period, the better the estimation.

However, interestingly, the automobile purchase cycle of Japanese households’ is quick. This is because the Japanese government has implemented a costly automobile inspection system for car owners. If a consumer purchases an brand new automobile, that car must get inspected after three years of purchase, and every other year after that. The cost of

\[17\] Hendel (1999) also uses three years as one decision period to studies the demand of personal computers for firms.
Table 2: List of Automobile Makers and Product Lineups

<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>Number of models</th>
<th>Units sold (Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kei-car</td>
<td>Regular</td>
</tr>
<tr>
<td>Daihatsu/Toyota</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(12.7%)</td>
<td>(69.8%)</td>
</tr>
<tr>
<td>Honda</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(17.6%)</td>
<td>(47.1%)</td>
</tr>
<tr>
<td>Mazda</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(31.3%)</td>
<td>(50.0%)</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(33.3%)</td>
<td>(41.7%)</td>
</tr>
<tr>
<td>Nissan</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(3.7%)</td>
<td>(77.8%)</td>
</tr>
<tr>
<td>Subaru</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(50.0%)</td>
<td>(50.0%)</td>
</tr>
<tr>
<td>Suzuki</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(53.8%)</td>
<td>(38.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>(20.1%)</td>
<td>(61.0%)</td>
</tr>
</tbody>
</table>

Note: The first three columns show the number of products which fall into each category for each firm. The next three columns show the total sales of products in each category. The numbers in parentheses display the percentage of models and units sold for each category within a firm.

Automobile inspection is about $1,000 to $2,500 USD per inspection, which could be about 8% to 20% of the average price of kei cars. Many households discard their automobiles at the end of three, or five years in order to avoid the inspection costs. Therefore, by observing their purchasing behavior for three years, I can predict their eventual number of automobile purchases with high accuracy.

B: Alternative Data Implementation

It is also possible to model consumers’ utility based on the current automobile holding, taking advantage of panel structure of the data. For example, suppose a household purchased one minivan before 2002, and one kei-car during the decision period, as described in Figure 1. An alternative way of using data would be to estimate demand parameters depending on the category of current automobile, or specifying different utility functions depending on the
current automobile holding. In that way, I might be able to take advantage of information from the data. However, these alternative ways of modeling have endogeneity problems. If a household expects that the government would eliminate tax subsidies for small automobiles in the near future, they might not purchase a combination of one minivan and one kei-car that they would purchase. In order to avoid this issue, my model does not allow utility to vary by the current automobile holdings.

C: Potential Market Share

As Nevo (2000) notes, the potential market size is one of the big issues in this Berry et al. (1995) style random coefficient model, because the potential market size is crucial for the market share of outside options. As Berry et al. (1995) dealt with this problem and Nevo (2000) suggested, the most common way of setting the potential market size is to use the number of households in the market. However, in this study, I allow the households to choose more than one alternative. Thus, I set the potential market share as the sum of the doubled number of households, i.e., 83,669,000.

5 Estimation Results

Estimates Tables 3 and 4 present the demand side estimates. Table 3 displays the parameters associated with random coefficients, while Table 4 lists the parameters in the portfolio effect term. As one can see from these tables, most of the estimates are statistically significant.

For the parameter estimates associated with random coefficients, I first show the coefficients for the log of the income term, \(\log(y_i - p_j) \), which are interacted with the percentile income. These are listed in the top three rows. As household level income increases, \(\alpha \) becomes larger. Similar results can be observed in Petrin (2002). I have a larger coefficient \(\alpha \) for 50% to 75% percentile income households than for slightly wealthy households. This
might be a result of dropping expensive domestic automobiles and foreign automobiles from the choice set. The average prices for foreign automobiles are much higher than those of domestic automobiles. Thus, by dropping them from the choice set, I might underestimate their marginal utility of automobile consumption.

The next three rows show the estimates associated with seating capacity. I include the family size as one of the variables for explaining the valuation of seating capacity, because a reduced form analysis indicates that family size is one of the most important determinants for seating capacity. Not surprisingly, the result shows that a household with more members is more likely to purchase an automobile with larger seating capacity, showing high statistical significance. The reason I have a relatively large standard deviation for seating capacity may be because of the fact that some large-family households purchase small capacity automobiles such as kei-cars, and vice versa. The rest of the parameters also can be interpreted in the same way. I include the age of the household’s head as one of the variables for explaining the valuation of horsepower. Again, not surprisingly, the result shows that a higher head-of-household age contributes to the purchase of automobiles with higher horsepower.

The estimation results for portfolio effects are presented in Table 4. The first three rows show the fixed effect of having two automobiles. As one might expect, the larger the number of earners within a household, the higher the probability of purchasing two automobiles. In Japan, cities are classified by population, and the government categorizes them into the following three groups: the 14 biggest cities, other cities, and villages. The estimation results show that households in less populated areas are more likely to purchase two automobiles.

The combination specific unobserved terms, listed in the next five rows, shows that combinations of kei-cars and minivans create the highest portfolio effect, whereas combinations of two kei-cars give the lowest portfolio effect. The combination of two regular cars also shows a positive portfolio effect, because the category of regular cars includes all automobiles except kei-cars and minivans and households might enjoy the combination of one sedan and one SUV, for example. According to the results, the presence of children might also be a driving force in the purchase of at least one kei-car, because any combinations that include at least one kei-car are higher than other combinations that do not include any kei-cars.

Finally, the estimation results on the supply side are summarized in Table 5. The negative coefficient for MPG may be a result of the constant returns to scale assumption. The reason

\[18\text{Recently, the categorization was changed because of municipal amalgamations that occurred between 2000 and 2005.}\]
Table 3: Estimated Parameters of the Demand Sides

<table>
<thead>
<tr>
<th>Product Characteristics</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term on Price (α)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income ≤ 50 percentile</td>
<td>14.98**</td>
<td>0.450</td>
</tr>
<tr>
<td>Income ∈ [50,75]</td>
<td>44.78**</td>
<td>2.368</td>
</tr>
<tr>
<td>Income ≥ 75 percentile</td>
<td>42.11**</td>
<td>2.063</td>
</tr>
<tr>
<td>Seating Capacity (β₁)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (β̂₁)</td>
<td>0.242**</td>
<td>0.003</td>
</tr>
<tr>
<td>Family Size (βu₁)</td>
<td>0.010**</td>
<td>0.003</td>
</tr>
<tr>
<td>Std. Deviation (β̂u₁)</td>
<td>1.397**</td>
<td>0.034</td>
</tr>
<tr>
<td>Miles Per Gallon (β₂)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (β̂₂)</td>
<td>0.159**</td>
<td>0.036</td>
</tr>
<tr>
<td>Std. Deviation (β̂u₂)</td>
<td>0.688**</td>
<td>0.026</td>
</tr>
<tr>
<td>log(HP) (β₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (β̂₃)</td>
<td>0.240*</td>
<td>0.151</td>
</tr>
<tr>
<td>Age of Household Head (βu₃)</td>
<td>1.69E-04**</td>
<td>1.52E-06</td>
</tr>
<tr>
<td>Std. Deviation (β̂u₃)</td>
<td>0.030**</td>
<td>0.002</td>
</tr>
<tr>
<td>log(Weight) (β₄)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (β̂₄)</td>
<td>0.418**</td>
<td>0.030</td>
</tr>
<tr>
<td>Std. Deviation (β̂u₄)</td>
<td>2.395**</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Note: For horsepower and weight of automobiles, I use logarithms. ** and * indicate 95% and 90% level of significance, respectively.

is as follows: The best selling automobiles tend to have high MPG, and the model predicts that these best selling automobiles should have a smaller marginal cost than they actually do by assuming the constant returns to scale. Thus, by omitting sales or production from the model, we might underestimate the coefficient for MPG, because sales and MPG are positively correlated and marginal cost is probably decreasing in sales. In fact, Berry et al. (1995) encounter the same problem, and explain and solve this problem by including sales data as an explanatory variable.\(^{19}\)

Model Fit The predicted macro market shares are exactly the same as the empirical market shares, due to the first step in the estimation procedure. Thus, I show the model fit using my micro samples. Table 6 demonstrates the fit of my model using the data for households purchasing one automobile in the KHPS. I calculate the probability of choosing SUVs, sport

\(^{19}\)For more detail, see Berry et al. (1995), pp.876-877.
Table 4: Estimated Parameters for Portfolio Term

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effect of having two cars (Γ_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of earns</td>
<td>3.157**</td>
<td>0.318</td>
</tr>
<tr>
<td>City dummy</td>
<td>3.674**</td>
<td>0.758</td>
</tr>
<tr>
<td>Village dummy</td>
<td>3.548**</td>
<td>0.113</td>
</tr>
<tr>
<td>Combination specific unobserved terms (ζ_r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kei-Kei</td>
<td>-2.667**</td>
<td>0.591</td>
</tr>
<tr>
<td>Kei-Regular</td>
<td>6.816**</td>
<td>1.324</td>
</tr>
<tr>
<td>Kei-Minivan</td>
<td>9.446**</td>
<td>1.310</td>
</tr>
<tr>
<td>Regular-Regular</td>
<td>7.361**</td>
<td>1.032</td>
</tr>
<tr>
<td>Regular-Minivan</td>
<td>6.430**</td>
<td>0.270</td>
</tr>
<tr>
<td>Presence of children interacted with combinations (γ_r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kei-Kei</td>
<td>9.260**</td>
<td>0.517</td>
</tr>
<tr>
<td>Kei-Regular</td>
<td>5.234**</td>
<td>0.335</td>
</tr>
<tr>
<td>Kei-Minivan</td>
<td>4.117**</td>
<td>0.288</td>
</tr>
<tr>
<td>Regular-Regular</td>
<td>3.496**</td>
<td>0.300</td>
</tr>
<tr>
<td>Regular-Minivan</td>
<td>3.544**</td>
<td>0.244</td>
</tr>
</tbody>
</table>

Note: The first three columns display the variables included in the fixed effect of having two automobiles, Γ_0. The next five columns display the estimation results for combination specific unobserved terms. The last five columns display the interaction terms between combinations of automobiles and the presence of children. ** and * indicate 95% and 90% level of significance, respectively.

Table 5: Estimates for Supply Side Parameters

<table>
<thead>
<tr>
<th></th>
<th>My Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimates</td>
</tr>
<tr>
<td>Capacity</td>
<td>-0.3100**</td>
</tr>
<tr>
<td>Miles Per Gallon</td>
<td>0.4202**</td>
</tr>
<tr>
<td>Horsepower/Weight</td>
<td>0.2582**</td>
</tr>
</tbody>
</table>

Note: ** and * indicate 95% and 90% level of significance, respectively.

cars, and minivans, which are not directly targeted in the estimation procedure, using the household attributes found in the micro data. My model also predicts the average expenditure for automobiles. These numbers are reported in the second column, while empirical probabilities and expenditures are reported in the third column. For example, my model
Table 6: Model Fit 1 - Households Purchasing One Automobile

<table>
<thead>
<tr>
<th></th>
<th>All Samples</th>
<th></th>
<th>Family Size = 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted</td>
<td>Data</td>
<td>Predicted</td>
<td>Data</td>
</tr>
<tr>
<td>Probability of choosing SUV</td>
<td>0.0390</td>
<td>0.0335</td>
<td>0.0375</td>
<td>0.0376</td>
</tr>
<tr>
<td>Probability of choosing Sport</td>
<td>0.0038</td>
<td>0.0094</td>
<td>0.0055</td>
<td>0.0150</td>
</tr>
<tr>
<td>Probability of choosing Minivan</td>
<td>0.2600</td>
<td>0.2890</td>
<td>0.1845</td>
<td>0.1654</td>
</tr>
<tr>
<td>Average Expenditure ($)</td>
<td>21,369</td>
<td>21,286</td>
<td>19,622</td>
<td>19,846</td>
</tr>
</tbody>
</table>

Note: ‘All samples’ means that I include all households that purchase one automobile during the decision period. Probabilities of choosing particular categories of automobiles are aggregated with the probabilities of choosing each automobile that falls into the category. Average expenditures are calculated by summing up prices weighted by choice probabilities.

suggests that the choice probability for SUVs is 0.0390, whereas the empirical data shows 0.0335. Predicted average expenditure’s can be computed by summing up prices weighted by the choice probabilities. My model indicates an average expenditure of $21,369, which is almost identical to the average expenditure in the data ($21,286). Overall, the results show that the model fits well.

Furthermore, I also report similar results for limiting the samples to those having family size equal to four. This helps to clarify the extent of my model fit. The predicted choice probabilities and average expenditures are reported in the fourth column, and their empirical counterparts are reported in the fifth column. Excepting the choice probabilities for sport cars, the results show that the model fits well. The reason I underestimate the choice probabilities for sports cars is that my model does not include any variables that distinguish sports cars from other automobiles. Although it might be possible to enhance the fit of my model by including a sport car dummy in my model, I hesitate to take the approach that far because the choice probabilities for sports cars are so small.

Table 7 demonstrates the model fit using only the households purchasing two automobiles in the KHPS. I report the predicted average characteristics for all automobiles purchased by these households in the second column, and empirical averages in the third column. Notice that the average, standard error, minimum and maximum of horsepower are 134.5, 61.2, 43, 280, respectively. (from Table 1). Thus, comparing the predicted average horsepower, 97.21, with the empirical average horsepower, 97.68, I conclude the model also fits well for those households that purchase two automobiles.

I also summarize the model fit for some targeted moments in Table 8, using the data from
Table 7: Model Fit 2 - Households purchasing two automobiles

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Capacity</td>
<td>5.313</td>
<td>5.313</td>
</tr>
<tr>
<td>Average MPG</td>
<td>14.67</td>
<td>14.52</td>
</tr>
<tr>
<td>Average Horsepower</td>
<td>97.21</td>
<td>97.86</td>
</tr>
</tbody>
</table>

Note: Average characteristics computed by summing up characteristics for all automobiles weighted by choice probabilities.

households purchasing two automobiles. In the table, I report the predicted and empirical choice probabilities for each combination. I slightly overestimate the choice probabilities for the combination of a kei-car and a minivan, while I slightly underestimate the choice probabilities for the combination of a regular-size car and a minivan. Overall, however, these probabilities are close to each other, which enables me to use this estimated model for counterfactual analyses in the next section.

Table 8: Model Fit 3 - Combination (Targeted Moments)

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kei-Kei</td>
<td>13.30%</td>
<td>13.33%</td>
</tr>
<tr>
<td>Kei-Regular</td>
<td>21.52%</td>
<td>21.90%</td>
</tr>
<tr>
<td>Kei-Minivan</td>
<td>25.94%</td>
<td>27.62%</td>
</tr>
<tr>
<td>Regular-Regular</td>
<td>17.84%</td>
<td>17.14%</td>
</tr>
<tr>
<td>Regular-Minivan</td>
<td>21.37%</td>
<td>20.00%</td>
</tr>
</tbody>
</table>

6 Counterfactual Analysis

Using the estimated model, I conduct two counterfactual analyses. The first experiment compares the effects of repealing current tax subsidies for small automobiles to the results from a standard single choice model, micro-BLP. In the second experiment, to illustrate the effectiveness of a bundling strategy in the presence of the portfolio effect, I explicitly allow firms to use a bundling strategy. I describe these analyses in this section.
6.1 Repeal of Tax Subsidies

In this subsection, I examine the effects of repealing the tax subsidies for kei-cars. The estimation results show that a positive portfolio effect exists between kei-cars and regular cars or minivans. Thus, by ignoring a strong portfolio effect, we might overestimate the effect of repealing tax subsidies for small automobiles. First, I describe the details of the tax subsidies in Japan. Then I show the results of the simulation using an estimated model. At the same time, I also show the results from a standard single-choice model as a benchmark.

A: Details of Tax Subsidies

When consumers purchase automobiles in Japan, there are three types of taxes. Table 9 summarizes these taxes. First of all, based on acquisition prices, consumers must pay an automobile acquisition tax of 3% of the purchase price for any kei-cars and 5% for any other automobiles. Second, consumers also must pay an automobile weight tax, which is $55 for any kei-cars per year, and $79 for every 0.5 tons for other automobiles. Although it seems the difference between kei-cars and other cars is small, the Japanese government requires consumers to pay the automobile weight tax for three years. Thus, multiplying by three, the difference will be more than $300. Finally, depending on the engine displacement of the purchased automobile, consumers must pay an automobile tax or kei-car tax. This tax is $90 for any kei-cars, while the automobile tax is at least $369 for other automobiles and about $62 for every additional 500cc of engine displacement.20

Table 9: List of Taxes Associated with Automobile Purchases

<table>
<thead>
<tr>
<th>Tax Type</th>
<th>Kei-cars</th>
<th>Full-size cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Acquisition Tax</td>
<td>3% of acquisition</td>
<td>5% of acquisition</td>
</tr>
<tr>
<td>Acquisition Price</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automobile</td>
<td>¥ 4,400 ($55.00)</td>
<td>¥ 6,300/500kg</td>
</tr>
<tr>
<td>Weight Tax</td>
<td>for any kei-cars</td>
<td>($78.75/0.5t)</td>
</tr>
<tr>
<td>Automobile Tax/</td>
<td>¥ 7,200 ($90.00)</td>
<td>See</td>
</tr>
<tr>
<td>Kei-car Tax</td>
<td>for any kei-cars</td>
<td>Table</td>
</tr>
</tbody>
</table>

Note: Listed prices for automobile weight tax and automobile/kei-car tax are annual rates, and consumers are required to pay these taxes for three years. I use the following exchange rate: $ 1.00 = ¥ 80.

20Detail tax scheme is summarized in Table 10.
To see how large these tax subsidies are, Table 11 summarizes tax payment for a selected kei-car, the Nissan MOCO, as an example. The price, displacement and weight of MOCO are $13,054, 658cc, and 850kg, respectively. Based on this information, we can calculate the total tax with and without these tax subsidies. I find that the difference would be more than $1,400, which is more than 10 percent of the original price. This difference might be large enough to change consumers’ purchasing behavior.

These tax subsidies were introduced in the 1960s to make small automobiles more affordable for Japanese households that could not afford to purchase regular size automobiles. Later, the goal of this policy shifted to promote consumption of eco-friendly automobiles. Recently, there has been discussion over whether these tax subsidies should be repealed or not, and those who oppose the repeal claims that the demand for ekei-cars (which are eco-friendly automobiles) would dramatically decrease. However, considering the strong positive portfolio effects, it might not be the case. To examine the effects of repealing these tax subsidies, I set the same tax scheme for small cars as regular automobiles.

B: Simulation Results

Table 12 summarizes by automobile category the predicted effects of repealing tax subsidies. If subsidies were eliminated, the total demand for kei-cars would decrease by 12.2%, and total demand for regular cars and minivans would increase 5.7% and 0.6%, respectively. In
Table 11: Example of Tax Subsidies for a Selected Kei-car, MOCO

<table>
<thead>
<tr>
<th></th>
<th>With Tax Subsidies</th>
<th>Without Tax Subsidies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Price</td>
<td>$13,054</td>
<td>$13,054</td>
</tr>
<tr>
<td>Tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition Tax</td>
<td>$392</td>
<td>$653</td>
</tr>
<tr>
<td>Automobile Weight Tax</td>
<td>$165</td>
<td>$473</td>
</tr>
<tr>
<td>Automobile/Kei-car Tax</td>
<td>$270</td>
<td>$1,106</td>
</tr>
<tr>
<td>Tax sub-total</td>
<td>$827</td>
<td>$2,232</td>
</tr>
</tbody>
</table>

Note: MOCO is produced by Nissan. MOCO’s engine displacement is 658cc and its weight is 850kg. Because automobile weight tax must be paid for three years, I multiply the numbers by three. Although the automobile/kei-car must be paid annually, most Japanese households do not discard an automobile within three years, thus I also multiplied them by three. For prices, I use the following exchange rate: $1.00 = ¥ 80.

Table 12: Tax Elimination Effect on Automobile Sales

<table>
<thead>
<tr>
<th></th>
<th>micro BLP (w/o P.E.)</th>
<th>my Model (w P.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current Sales</td>
<td>After %</td>
</tr>
<tr>
<td>Kei-cars</td>
<td>3,942,028</td>
<td>-16.73</td>
</tr>
<tr>
<td>Regular</td>
<td>6,216,555</td>
<td>9.43</td>
</tr>
<tr>
<td>Minivan</td>
<td>2,660,215</td>
<td>0.97</td>
</tr>
<tr>
<td>Total</td>
<td>12,818,798</td>
<td>-0.37</td>
</tr>
</tbody>
</table>

Note: The third and fifth columns show the total units sold for each category after repealing tax subsidies, predicted by micro-BLP and my model, respectively. The fourth and sixth columns show the % changes from the current sales to the predicted sales.

In order to compare these results to the case where there is no portfolio effect, I also estimate micro-BLP model using the same dataset. The estimation results from micro-BLP model are summarized in the middle column of Table 12, and the simulation results suggest that the total demand for kei-cars (ignoring portfolio effects) would decrease by 16.7%. Thus, this difference of about 5% can be accounted by the portfolio effect.

In Table 13, I show more detailed results for some selected kei-cars. Comparing the fourth and fifth columns (which display the percentage change in demand predicted by micro-BLP and my model) one can see that the standard single choice model overestimates the effects
of repealing tax subsidies. Most automobiles are overestimated by 5%. Table 13 indicates that demand for more expensive cars would tend to decrease, because consumers would give up purchasing expensive kei-cars and would purchase relatively affordable regular cars instead. However, those households that purchase cheap automobiles would not change their choices, because there is no cheaper class of automobiles available. The COPEN, produced by Daihatsu, shows a strange pattern. Even though it is expensive, the demand would not decrease much, because the COPEN is a sport type kei-car, and there is no suitable substitute for this automobile, while other automobiles have a large number of competitors.

There is one more interesting pattern in Table 13: the percentage changes in prices for MR WAGON, KEI, and ALTO are almost zero, though other automobiles’ prices increase in my model’s prediction. This is because these three automobiles are produced by Suzuki, which mainly produces kei-cars. As Table 2 suggests, other manufacturers have many substitutes for kei-cars, and thus they charge higher prices for kei-cars to shift the demand toward their other automobiles. Suzuki, however, cannot do so.

I also display more detailed results for some selected minivans in Table 14. The Micro-BLP model predicts that demand for minivans would slightly increase, while my model predicts that demand for expensive minivans would decrease while demand for affordable minivans would increase. This is because in micro-BLP model, all automobiles are substitutes and thus choice probabilities for other automobiles increase when kei-cars’ prices are increased by repealing tax subsidies. Thus, the changes in demand for minivan decreases, as the automobile prices increase. On the other hand, my model predicts that the demand for expensive minivans would decrease. This can be explained by the fact that there are some households highly value a combination of one one kei-car and one minivan. Those households would purchase one kei-car and one slightly cheap minivan to maintain their portfolios under the new tax policy. Thus, the demand for expensive minivans would decrease. At the same time, the demand for affordable minivans would increase.
Figure 2: Change in Units Sold for All Automobiles

![Graph showing change in units sold for all automobiles with categories: Kei-car, -1500cc, -2000cc, -2500cc, -3000cc, -3500cc, 3501cc+. The graph compares predictions from My Model and Micro BLP.]

Figure 3: Change in Units Sold for Regular Cars

![Graph showing change in units sold for regular cars with categories: -1500cc, -2000cc, -2500cc, -3000cc, -3500cc, 3501cc+. The graph compares predictions from My Model and Micro BLP.]

32
Table 13: Tax Reduction Effects for Selected Kei-cars

<table>
<thead>
<tr>
<th>Name</th>
<th>Maker</th>
<th>Original</th>
<th>m-BLP</th>
<th>My Model</th>
<th>% change in Demand</th>
<th>Price (Before Tax)</th>
<th>Car Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>Daihatsu</td>
<td>110,842</td>
<td>-18.5%</td>
<td>-14.0%</td>
<td>14,806</td>
<td>0.20%</td>
<td>0.95%</td>
</tr>
<tr>
<td>TERIOS KID</td>
<td>Daihatsu</td>
<td>49,353</td>
<td>-19.0%</td>
<td>-14.0%</td>
<td>16,090</td>
<td>0.16%</td>
<td>0.61%</td>
</tr>
<tr>
<td>PAJERO Mini</td>
<td>Mitsubishi</td>
<td>41,942</td>
<td>-19.3%</td>
<td>-12.9%</td>
<td>17,150</td>
<td>-0.06%</td>
<td>0.02%</td>
</tr>
<tr>
<td>LIFE</td>
<td>Honda</td>
<td>455,705</td>
<td>-17.0%</td>
<td>-12.3%</td>
<td>15,081</td>
<td>0.00%</td>
<td>0.38%</td>
</tr>
<tr>
<td>MOCO</td>
<td>Nissan</td>
<td>133,389</td>
<td>-17.1%</td>
<td>-12.0%</td>
<td>13,054</td>
<td>0.29%</td>
<td>0.66%</td>
</tr>
<tr>
<td>THAT’S</td>
<td>Honda</td>
<td>80,958</td>
<td>-17.1%</td>
<td>-11.9%</td>
<td>15,052</td>
<td>-0.05%</td>
<td>0.11%</td>
</tr>
<tr>
<td>EK</td>
<td>Mitsubishi</td>
<td>329,863</td>
<td>-16.6%</td>
<td>-11.8%</td>
<td>14,224</td>
<td>-0.08%</td>
<td>0.33%</td>
</tr>
<tr>
<td>NAKED</td>
<td>Daihatsu</td>
<td>24,105</td>
<td>-18.1%</td>
<td>-11.4%</td>
<td>14,577</td>
<td>0.28%</td>
<td>0.15%</td>
</tr>
<tr>
<td>MR WAGON</td>
<td>Suzuki</td>
<td>165,552</td>
<td>-15.6%</td>
<td>-11.2%</td>
<td>14,681</td>
<td>-0.31%</td>
<td>-0.02%</td>
</tr>
<tr>
<td>SUBARU R2</td>
<td>Subaru</td>
<td>61,152</td>
<td>-16.5%</td>
<td>-10.5%</td>
<td>13,125</td>
<td>0.01%</td>
<td>0.03%</td>
</tr>
<tr>
<td>SPIANO</td>
<td>Mazda</td>
<td>22,429</td>
<td>-16.7%</td>
<td>-10.3%</td>
<td>13,558</td>
<td>0.01%</td>
<td>0.02%</td>
</tr>
<tr>
<td>KEI</td>
<td>Suzuki</td>
<td>86,818</td>
<td>-14.3%</td>
<td>-10.2%</td>
<td>11,926</td>
<td>-0.40%</td>
<td>-0.01%</td>
</tr>
<tr>
<td>ALTO</td>
<td>Suzuki</td>
<td>342,567</td>
<td>-13.7%</td>
<td>-9.6%</td>
<td>11,282</td>
<td>-0.63%</td>
<td>0.00%</td>
</tr>
<tr>
<td>COPEN</td>
<td>Daihatsu</td>
<td>24,232</td>
<td>-9.4%</td>
<td>-6.8%</td>
<td>18,725</td>
<td>-1.09%</td>
<td>-0.01%</td>
</tr>
</tbody>
</table>

Note: Daihatsu, in the second column, is one of the companies in Toyota group. The third and sixth columns show the original units sold and the original prices for each automobile. The fourth and seventh columns show the predicted demand changes and price changes for each automobile calculated by micro-BLP model. The fifth and eighth columns show the predicted demand changes and price changes for each automobile calculated by my model. The ninth to twelfth columns show the engine displacement, SUV dummy, Sport dummy and weight of automobiles, respectively. For prices, I use the following exchange rate: $1.00 = ¥ 80.
Table 14: Tax Reduction Effects for Selected Minivans

<table>
<thead>
<tr>
<th>Name</th>
<th>Maker</th>
<th>Original Unit Sold</th>
<th>m-BLP Units</th>
<th>m-BLP %</th>
<th>My Model Units</th>
<th>My Model %</th>
<th>Car Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHARD</td>
<td>Toyota</td>
<td>222,910</td>
<td>223,333</td>
<td>0.18%</td>
<td>221,996</td>
<td>-0.41%</td>
<td>46,438</td>
</tr>
<tr>
<td>ELYSION</td>
<td>Honda</td>
<td>30,274</td>
<td>30,337</td>
<td>0.21%</td>
<td>30,160</td>
<td>-0.38%</td>
<td>43,056</td>
</tr>
<tr>
<td>ESTIMA</td>
<td>Toyota</td>
<td>130,768</td>
<td>130,991</td>
<td>0.17%</td>
<td>130,276</td>
<td>-0.38%</td>
<td>46,943</td>
</tr>
<tr>
<td>ELGRAND</td>
<td>Nissan</td>
<td>107,618</td>
<td>107,761</td>
<td>0.13%</td>
<td>107,233</td>
<td>-0.36%</td>
<td>43,583</td>
</tr>
<tr>
<td>DELICA SG*</td>
<td>Mitsubishi</td>
<td>10,790</td>
<td>10,805</td>
<td>0.14%</td>
<td>10,758</td>
<td>-0.30%</td>
<td>36,813</td>
</tr>
<tr>
<td>BONGO F**</td>
<td>Mazda</td>
<td>10,940</td>
<td>10,963</td>
<td>0.21%</td>
<td>10,918</td>
<td>-0.20%</td>
<td>31,340</td>
</tr>
<tr>
<td>PRESAGE</td>
<td>Nissan</td>
<td>57,693</td>
<td>57,865</td>
<td>0.30%</td>
<td>57,648</td>
<td>-0.08%</td>
<td>30,525</td>
</tr>
<tr>
<td>NOAH</td>
<td>Toyota</td>
<td>261,156</td>
<td>262,094</td>
<td>0.36%</td>
<td>261,063</td>
<td>-0.04%</td>
<td>32,834</td>
</tr>
<tr>
<td>SERENA</td>
<td>Nissan</td>
<td>146,151</td>
<td>146,635</td>
<td>0.33%</td>
<td>146,104</td>
<td>-0.03%</td>
<td>31,406</td>
</tr>
<tr>
<td>VOXY</td>
<td>Toyota</td>
<td>196,672</td>
<td>197,476</td>
<td>0.41%</td>
<td>196,633</td>
<td>-0.02%</td>
<td>31,397</td>
</tr>
<tr>
<td>STEP WAGON</td>
<td>Honda</td>
<td>131,739</td>
<td>132,154</td>
<td>0.32%</td>
<td>131,778</td>
<td>0.03%</td>
<td>28,155</td>
</tr>
</tbody>
</table>

Note: The third column shows the units sold in data. The fourth and sixth columns show the predicted units sold based on micro-BLP model and my model, respectively. The fifth and seventh columns show the percentage changes in units sold for micro-BLP and my model. Price figures are measured in USD, and I use the following exchange rate: $1.00 = ¥ 80. Engine displacement and weight are measured in cc and kg, respectively.

*DELICA SG stands for DELICA SPACE GEAR

**BONGO F stands for BONGO FRIENDEE
Economic intuition behind these results are also confirmed by Figures 2, 3, and ??.

In Figure 2, I show the simulated changes in units sold from my model and micro-BLP model, depending on engine displacement. It is clear that the demand for kei-cars decrease sharply in both my model and micro-BLP model, while the demand for other automobiles increase in both models. In particular, as automobiles’ engine displacement increases, the change is getting smaller. Moreover, I decompose these results depending on the category of automobiles: regular cars and minivans. In Figure 3, the patterns are preserved. However, in Figure ??, the reason why I have smaller increase in the class of less than 1500cc minivans is there are only few number of minivans.

Figure 4: Change in Units Sold for Manufacturers

In Table 15, I show the simulated profits for automobile manufacturers in Japan. Repealing the tax subsidies would cause lower profits for four out of seven manufacturers, because those four firms rely heavily on profits from kei-cars. The other firms, however, would achieve higher profits. One of the firms, Nissan, would increase its profit by 3.3%. This is largely because Nissan produces only one model of kei-car among its 27 models. Mazda would also get higher profits, even though it produces five models of kei-car. This is because Mazda’s kei-cars are not its best-selling automobiles, and its total sales of kei-cars account for only 16.5% of its profit, as seen in Table 2.

Finally, Table 16 presents the changes in consumer surplus, producer surplus, and tax revenue. The results show that repealing tax subsidies would force consumers to spend
Table 15: Tax Elimination Effect on Producer Surplus

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Before</th>
<th>After</th>
<th>% Change</th>
<th>Kei</th>
<th>Reg.</th>
<th>Mini.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daihatsu/Toyota</td>
<td>61,701</td>
<td>62,340</td>
<td>+1.04</td>
<td>8</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Honda</td>
<td>15,166</td>
<td>15,063</td>
<td>-0.67</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Mazda</td>
<td>4,524</td>
<td>4,661</td>
<td>+3.02</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>4,565</td>
<td>4,338</td>
<td>-4.96</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Nissan</td>
<td>15,508</td>
<td>16,021</td>
<td>+3.30</td>
<td>1</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Subaru</td>
<td>3,158</td>
<td>3,120</td>
<td>-1.21</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Suzuki</td>
<td>10,787</td>
<td>9,876</td>
<td>-8.45</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>115,409</td>
<td>115,418</td>
<td>+0.01</td>
<td>31</td>
<td>94</td>
<td>29</td>
</tr>
</tbody>
</table>

Note: The second and third columns show the estimated profits under the current tax policy, and the simulated profits under the new tax policy where there are no tax subsidies for kei-cars. The fourth column displays the percentage change for firms’ profit. The remaining columns show the number of models that each manufacturer produces. Profit figures are measured in millions of dollars, and I use the following exchange rate: $1.00 = ¥ 80.

Table 16: Welfare Implication in Million Dollars

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ(Consumer Surplus)</td>
<td>-7,106</td>
</tr>
<tr>
<td>Δ(Producer Surplus)</td>
<td>+9</td>
</tr>
<tr>
<td>Δ(Tax Revenues)</td>
<td>+5,934</td>
</tr>
</tbody>
</table>

Note: For consumer surplus, I use compensation variations (CV). Figures are expressed in millions of dollars, and I use the following exchange rate: $1.00 = ¥ 80.

their money for purchasing automobiles, and thus their surplus would decrease remarkably. Although the profits of Suzuki, one of the most famous manufacturers producing kei-cars, would decrease by 9%, total producer surplus would remain nearly the same, as mentioned above. Lastly, tax revenue for the Japanese government would increase, because repealing tax subsidies implies that the government keeps more money. Moreover, raising tax ratio causes social welfare to decrease, and creates a dead-weight loss.
6.2 Bundling

The discovery of the strong portfolio effects between kei-cars and other categories of automobiles immediately raises the following questions: How would profits change if firms used a bundling strategy? And, how would social welfare change as a consequence of these firms’ behavior? To answer the questions, I allow firms to use a particular bundling strategy in this counterfactual analysis.

A: Competitive Mixed Bundling

In the following counterfactual analysis, I allow the use of mixed bundling strategy, where firms are able to price the bundle of the products, as well as each product. To empirically examine this mixed bundling strategy, I first choose two firms and two products for each firm. Then, I simulate the Bertrand-Nash equilibrium of this game.

The framework I use in this hypothetical bundling experiment is quite close to the model used in Thanassoulis (2007).\footnote{For more comprehensive discussion on price discrimination including bundling, see the recent survey by Armstrong (2007).} In Thanassoulis (2007), there are two firms and each firm sells two products. These firms are competing in prices. There are consumers who want to have only product A or B, and there are consumers who want to have both A and B. Therefore, his model is similar to this hypothetical bundling setting. However, there are two differences. First of all, consumers in my model are not limited to purchasing one or two products, whereas consumers in his model are explicitly assumed to purchase a specific number of products, exogenously. Second, when consumers purchase two products in my model, they might purchase two same types of products, say two A’s, whereas consumers must purchase a combination of A and B in his model.

Most empirical literature on product bundling that use structural approach focus on channel bundling in Cable TV industries, where bundles include more than ten products.\footnote{For example, see Crawford (2000), Crawford and Shum (2006), Crawford and Yurukoglu (2009) and Goolsbee and Petrin (2004).} The mixed bundling strategy this paper applies is also closely related to second degree price discrimination, because firms can price discriminate consumers by charging different prices when they purchase more than one product, i.e., quantity discount. This is because that this strategy can be viewed as a coupon which can be obtained at the first purchase and redeemed at the second purchase. There are several papers that empirically study second degree price discrimination. For example, Cohen (2008) develop an equilibrium model to examine whether...
second degree price discrimination occurs in paper towel industry, and welfare effect under counterfactual pricing scheme.

B: Simulation Results

As described above, I choose two firms, namely Honda and Toyota, and two products for each firm. For Honda, I choose one kei-car, LIFE (Product H1), and one regular car, FIT (Product H2). For Toyota, I choose one kei-car, MOVE (Product T1), and one regular car, VITZ (Product T2). Thus, there are only four available automobiles in this hypothetical setting, though the demand structure is the same as before. Then, I find the Bertrand-Nash equilibrium for each case where firms are banned from bundling as a benchmark to compare the case where firms can use the mixed bundling strategy.

More precisely, in the case where firms are banned from bundling, each firm f, $f = H, T$, solves the following maximization problem:

$$
\max_{p_1^f, p_2^f} \sum_{i=1}^{2} \left[p_i^f D_i^f(p) - C_i^f(D_i^f(p)) \right],
$$

while, in the case where firms can use the mixed bundling strategy, each firm f, $f = H, T$, solves the following maximization problem:

$$
\max_{p_1^f, p_2^f, p_B} \sum_{i=1}^{2} \left[p_i^f D_i^f(p) - C_i^f(D_i^f(p)) \right] - p_B \int_E \mathcal{P}_w d(w),
$$

where

$$
E = \{ w | u(f1, f2) \geq u(j, l) \text{ for } \forall (j, l) \}.
$$

The set E denotes a set of consumers who purchase both types of product from the same firm f, and they are eligible to get discount of p_B^f. And thus, firms’ profit should be subtracted by $p_B^f \int_E \mathcal{P}_w d(w)$, as firms need to give discount for those who purchase two products. Therefore, this mixed bundling strategy can be seen as one of the form of bundle-size pricing or volume discounting.

Table 17 summarizes all of the simulation results. The second column shows the prices for automobiles and profits for firms when these firms are banned from bundling, while the third column shows the prices for automobiles and profits for firms when they use bundling.

23 Other examples include, Verboven (2002) and McManus (2007).

24 Chu et al. (2011) empirically shows that the mixed bundling strategy can be approximated by the bundle-size pricing strategy.
Table 17: Mixed Bundling Strategy

<table>
<thead>
<tr>
<th></th>
<th>No Bundling</th>
<th>Bundling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price for Kei (p_H^k)</td>
<td>15,962</td>
<td>19,085</td>
</tr>
<tr>
<td>Price for Regular (p_H^r)</td>
<td>18,667</td>
<td>20,485</td>
</tr>
<tr>
<td>Price for Bundle (p_H^b)</td>
<td>–</td>
<td>35,565</td>
</tr>
<tr>
<td>Profit for Honda</td>
<td>57,509</td>
<td>62,797</td>
</tr>
<tr>
<td>Toyota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price for Kei (p_T^k)</td>
<td>14,372</td>
<td>14,602</td>
</tr>
<tr>
<td>Price for Regular (p_T^r)</td>
<td>15,713</td>
<td>19,154</td>
</tr>
<tr>
<td>Price for Bundle (p_T^b)</td>
<td>–</td>
<td>31,455</td>
</tr>
<tr>
<td>Profit for Toyota</td>
<td>48,973</td>
<td>50,348</td>
</tr>
</tbody>
</table>

Note: Profit figures are measured in millions of dollars. The second and third columns display the simulation results where two firms are banned from bundling and where two firms can use bundling, respectively. I use the following exchange rate: $1.00 = ¥ 80.

strategies. First of all, the results shows that both firms have an incentive to use a mixed bundling strategy, yielding higher profits for both firms. By observing that prices for bundles are strictly less than the sum of two products for each firm, one can confirm the validity of this result.

To interpret the results, suppose firms are banned from using bundling. In that case, their prices should be the same as in the second column. When firms can use bundling, both firms set the price of the product bundle to the sum of the prices of the kei-car and the regular car in the bundle. Then, these firms would obtain the same profit. Now, most consumers who want one automobile would purchase one automobile, even if firms charge higher prices for separate automobiles, because they are less price elastic than consumers who want to have two automobiles. Moreover, as long as both firms are charging the same prices for their bundles, neither firm would lose profits. Thus, the firms can charge higher prices for separate, non-bundled automobiles. However, these firms are also competing in prices at the same time, and cannot increase their prices much.

According to Thanassoulis (2007), the prices for bundles should be less than the sum of the component prices of no bundling case. That is, p_H^b and p_T^b should be less than $15,962 + 18,667$ and $14,372 + 15,713$, respectively. However, as mentioned before, this model setting is slightly different from his model. In particular, all four automobiles in this...
experiment are differentiated, implying that the bundles offered by the two firms are also
differentiated. This mechanism drives up these bundling prices.

7 Conclusion

In this paper, I develop a market equilibrium model where consumers can purchase up to two
automobiles taking into account the portfolio effects, which depend on household attributes
and product characteristics. I estimate the model using unique Japanese household level
panel data on automobile purchases in order to examine the role of these portfolio effects
play. My estimates suggest that strong positive portfolio effects exist between kei-cars and
regular cars or minivans.

Ignoring such portfolio effects leads to biased counterfactual analyses. In particular, I
conduct a counterfactual experiment where the Japanese government repeals current tax
subsidies for kei-cars. My model suggests that a repeal of the current tax subsidies for small
automobiles would decrease the demand for small automobiles by 12%, which is smaller than
the 17% drop predicted by a standard discrete choice model, i.e., micro-BLP model. The
simulation results from my model also show that the demand for expensive minivans would
decrease and the demand for affordable minivans would increase, whereas the demand for all
automobiles except kei-cars would increase in micro-BIL model.

I also conduct another counterfactual experiment where firms are explicitly allowed to use
a bundling strategy. My simulation results show that firms have an incentive to use a mixed
bundling strategy. Compared to the case where firms are banned from bundling, both the
single-car prices and the bundle prices are higher.

Technical Appendix

A1: Substitution Matrix

In Section 3, I define the sum of the probability that a household i choose product j in its
portfolio as

$$q_{ij} = \frac{1}{F_i} \sum_{l \in (J \setminus \{j\}) \cup \{0\}} \exp[\delta_j + \mu_{ij} + \delta_l + \mu_{il} + \alpha \log(y_i - p_j - p_l) + \Gamma(j, l; z_i)].$$
where

\[F_i = \exp[\alpha \log(y_i)] + \sum_{k=m+1}^{J} \sum_{m=0}^{k-1} \exp[\delta_k + \mu_{ik} + \delta_m + \mu_{im} + \alpha \log(y_i - p_k - p_m) + \Gamma(k, m; z_i)], \]

Then, each own price elasticity for product \(j \) is given by

\[
\frac{\partial q_{ij}}{\partial p_j} = \frac{1 - q_{ij}}{F_i} \sum_{l \in J \cup \{0\}} \frac{\alpha \exp[\delta_j + \mu_{ij} + \delta_l + \mu_{il} + \alpha \log(y_i - p_j - p_l) + \Gamma(j, l; z_i)]}{y_i - p_j - p_l},
\]

whereas cross price elasticities for product \(j \) with respect to product \(n, n \neq j \), is given by

\[
\frac{\partial q_{ij}}{\partial p_n} = \frac{q_{ij}}{F_i} \sum_{l \in J \cup \{0\}} \frac{\alpha \exp[\delta_n + \mu_{in} + \delta_l + \mu_{il} + \alpha \log(y_i - p_n - p_l) + \Gamma(n, l; z_i)]}{y_i - p_n - p_l} - \frac{1}{F_i} \frac{\alpha \exp[\delta_j + \mu_{ij} + \delta_n + \mu_{in} + \alpha \log(y_i - p_j - p_n) + \Gamma(n, j; z_i)]}{y_i - p_j - p_n}.
\]

Therefore, summing over \(i \), I can obtain the market level price elasticities:

\[
\frac{\partial s_k}{\partial p_m} = \sum_{i=1}^{N} \frac{\partial q_{ik}}{\partial p_n}.
\]

A2: Computational Details

In this technical appendix section, I explain the simulation and estimation procedure.

1. Prepare random draws, which do not change throughout estimation, for the macro moment, \(G^1 \), and the micro moments, \(G^2 \) and \(G^3 \).

2. Choose an initial guess of parameters, \(\theta_0 \).

3. Calculate the predicted market share for each product, \(s^P_j \), by summing up choice probabilities for each consumer \(i = 1, \cdots, n_M \). Using the contraction mapping developed by Berry et al. (1995),

\[
\delta_j^{t+1} = \delta_j^t + \ln(s_j) - \ln(s_j^P(\theta)),
\]

41
iterate until the difference between the predicted market share and the empirical market shares is small. This step enable to find a vector of the mean utilities, $\delta^*_j(\theta_0)$, which satisfies the first moment being equal to zero, i.e., $G^1(\theta_0) = 0$.

4. Find the objective value by calculating the following three moments:

(a) For each consumer in KHPS, calculate the average choice probabilities for each product given the parameters value, i.e.,

$$\hat{q}_{ij} = \frac{1}{n_s} \sum_{k=1}^{n_s} q_{ijk}$$

which is the approximated choice probabilities of product j for each household i. It is straightforward to calculate the moment conditions $G^2(\theta)$ and $G^3(\theta)$.

(b) Because of the household heterogeneity, we need to approximate Δ by

$$\Delta_{km} = \frac{1}{n_M} \sum_{i=1}^{n_M} \frac{\partial q_{ik}}{\partial p_m}$$

Given this Δ, we can compute the inverse matrix, which enables us to obtain the firms’ first order conditions, i.e., $G^4(\theta)$.

5. Go back to step 2, until the objective function is minimized.

References

