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Abstract

We study the effect of dynamic and investment externalities in a

one-sector growth model. In our model, two agents interact strate-

gically in the utilization of capital for consumption, savings, and in-

vestment in technical progress. We consider two types of investment

choices: complements and substitutes. For each case, we derive the

equilibrium and provide the corresponding stationary distribution. We

then compare the equilibrium with the social planner’s solution.

Keywords: Capital accumulation, Dynamic game, Growth, Invest-

ment, Technical progress.

JEL Classifications: C72, C73, D81, D92, O40.
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1 Introduction

The relation between present decisions and future outcomes forms the basis

for studying a dynamic economy. The one-sector, aggregate, growth model

provides a simple way of addressing dynamic issues as studied in Solow

(1956) for the positive non-stochastic case, Mirman (1972, 1973) for the

positive stochastic case, Cass (1965) and Koopmans (1965) for the optimal

non-stochastic case, and Brock and Mirman (1972) and Mirman and Zilcha

(1975) for the optimal stochastic case. The optimal growth analysis has also

been extended to non-classical settings (Amir et al., 1991) as well as learn-

ing environments (Koulovatianos et al., 2009). Although it is important to

understand the optimal path of aggregate capital, optimal growth analysis

precludes studying the strategic interactions of agents in competing for cap-

ital. Specifically, in utilizing capital, agents in the economy need to consider

the interests of their competitors. This is particularly relevant for capital

such as airports, harbors, roads, pipe lines, transmission grids, railroads,

telecommunications lines, stocks of natural resources, and energy.

Externalities arise naturally in models with strategic interactions. Differ-

ent types of strategic interactions imply different sorts of externalities. The

first one to be studied in a dynamic strategic context was the dynamic ex-

ternality (Mirman, 1979; Levhari and Mirman, 1980), i.e., the utilization of

capital by one agent has an effect on the other agents’ availability of capital

in the future. For instance, an agent that increases usage of telecommunica-

tion lines reduces the effective use of this capital structure by other agents.

The dynamic externality yields over-utilization of the capital, and, therefore,

a smaller steady state. In a more recent paper, Koulovatianos and Mirman

(2007) studies the link between market structure and industry dynamics. The

interaction of entities in the market for the final good gives rise to a market

externality. Koulovatianos and Mirman (2007) shows that the combination

of market and dynamic externalities has an ambiguous effect on the overall

utilization of the capital as well as the steady state. The study of strategic

interactions and its effect on the path of capital is not limited to the one-

sector growth model. In a two-sector growth model, Fischer and Mirman
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(1992, 1996) consider a dynamic game of exploiting two resources with both

dynamic and capital externalities.1 Datta and Mirman (1999, 2000) study

strategic interactions with dynamic and capital externalities in a two-sector

growth model with trading.

In the one-sector growth model, dynamic and market externalities are

not the only externalities affecting the path of capital. Various agents in the

economy also invest in technical progress. The interaction of agents investing

in maintaining and improving the efficiency of the stock of capital gives rise

to an investment externality, i.e., the investment in technical progress by

one agent has an effect on the other agent’s payoff through the appreciation

of the future stock. For instance, if one agent improves or maintains the

effectiveness of telecommunication lines, then all agents benefit.

It is the purpose of this paper to study the dynamics of the economy when

agents interact strategically. Specifically, in a one-sector growth model, we

study the equilibrium path of capital in the presence of both dynamic and

investment externalities.2 To that end, we adapt the Levhari and Mirman

(1980) framework to gain insight into the effect of strategic investment in

technical progress on both behavior and the dynamics of capital. In our

model, there are two agents interacting strategically. Each period, agents

divide capital into consumption, savings and investment in technical progress.

Consumption yields immediate payoffs. Savings and investment in technical

progress have an effect on the future level of capital. Specifically, savings

refers to the amount of present capital used in the production for the next

period. Investment in technical progress modifies the technical possibilities

in the production process. Together, savings and investment in technical

progress influence the amount of capital available in the next period. Since

both agents save and invest in technical progress, there are dynamic and

investment externalities. That is, an agent’s savings and investment decisions

1Capital externalities are called biological externalities in the context of natural re-
sources.

2We consider the equilibrium path of capital corresponding to the Cournot equilibrium.
For the study of the equilibrium path of capital in a decentralized economy, see Mirman
et al. (2008).

4



have an effect on the other agent’s future payoffs via production.3

We consider two types of investment choices: complements and substi-

tutes. The investment choices are complements when the input of both agents

is necessary to yield technical progress. In other words, if one agent fails to

invest in technical progress, there is no production in the next period. The

investment choices are substitutes if only total investment matters for the

future production. That is, the individual contribution in technical progress

has no effect on future capital except through the total amount. For each

case, we derive the dynamic Cournot-Nash equilibrium under finite and infi-

nite horizons. We also provide the stationary distribution corresponding to

the infinite-horizon equilibrium. We then compare the outcome of the game

with the social planner’s solution. We show that there is a tragedy of the

commons in the sense that the game (compared to social planning) yields

more utilization of the stock. In addition, the game leads to an increase in

consumption and a decrease in investment for technical progress. As a result,

the investment externality has a negative effect on the stationary distribution

of capital.

The paper is organized as follows. Section 2 presents the model and

defines the equilibrium. Section 3 characterizes the equilibrium under for

both complements and substitutes and provides the stationary distributions

under a game. Section 4 studies the effect of the investment externality by

comparing the equilibrium outcomes with the solution of the social planner.

Section 5 offers some concluding remarks.

2 Model and Equilibrium

In this section, we present a dynamic game with two agents. Each period,

agents divide capital into consumption, savings and investment in technical

3The investment externality in this paper is different from the biological (or capital)
externality studied in two-sector growth models (Fischer and Mirman, 1992, 1996; Datta
and Mirman, 1999, 2000). The biological externality arises directly from the presence of
two goods. That is, the future stock of one type of capital depends on the interaction of
the savings for both types of capital. In our one-sector growth model, there is only one
stock of capital, i.e., aggregate capital.
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progress. Consumption yields immediate payoffs. Savings and investment

in technical progress have an effect on the future level of capital. We first

present the growth model. We then define the recursive Cournot-Nash equi-

librium. In the subsequent sections, we characterize the equilibrium under

both complementary and substitutionary investment choices. We then com-

pare the equilibrium outcomes with the social planner’s solution.

Let yt be the stock of capital available at the beginning of period t.

Absent utilization and investment, the stock of capital evolves stochastically

according to the rule4

ỹt+1 = f(yt, α̃t) (1)

where f(·) is the transition function and α̃t is an i.i.d. random technological

shock in period t, i.e., the shock is realized in period t + 1.

In period t, for j = 1, 2, agent j utilizes ej,t units of capital in order to

consume cj,t units and invests ij,t units for technical progress, i.e., ej,t = cj,t+

ij,t. Consumption yields immediate payoffs π(cj,t). The agents’ utilization of

the capital and their level of investment in technical progress have an effect

on the future stock. Using (1),

ỹt+1 = g(i1,t, i2,t, η̃t) · f(yt − e1,t − e2,t, α̃t) (2)

where g(·) is the investment function and η̃t is a vector of i.i.d. shocks in

period t. To simplify notation, the t-subscript for indexing time is hereafter

removed and the hat sign is used to indicate the value of a variable in the

subsequent period, i.e., y is stock today and, given any realizations of η and

α,

ŷ = g(i1, i2,η) · f(y − e1 − e2, α) (3)

is stock tomorrow. From (3), investment in technical progress is needed to

maintain capital and ensure its future use.

To distinguish among different horizons of the dynamic game, we use

the index τ = 0, 1, . . . , T . Given a horizon and the present stock of the

aggregate capital, agent j maximizes the expected sum of discounted payoffs

4A tilde sign distinguishes a random variable from its realization.
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over utilization and investment. Formally, for j, k = 1, 2, j �= k, the τ -period-

horizon value function of agent j is

vτj (y) = max
ej ,ij

{π(ej − ij) + δEvτ−1
j (g(ij, ik, η̃) · f(y − ej − ek, α̃))} (4)

where cj = ej − ij and E is the expectation operator for η̃ and α̃. From (4),

agent k’s choices have an effect on agent j’s expected sum of discounted

payoffs through the dynamics of capital.

In general, in a dynamic game, the value function defined in (4) might not

be concave (Mirman, 1979). In addition, our model includes two inherently

dynamic decisions for each agent as well as several random shocks. In order to

characterize the equilibrium and study its properties under different cases of

investment choices, we resort to a modified version of the Levhari and Mirman

(1980) framework. The following assumptions hold for the remainder of the

paper. We leave the investment function unspecified for the moment and

consider several types of investment choices in the next sections.

Assumption 2.1. The joint p.d.f. of η̃ and α̃ is φ(η, α),η ∈ (0, 1)2, α ∈
(0, 1). Let η ≡ Eη̃ and α ≡ Eα̃ be the means of the random shocks.

Assumption 2.2. For j = 1, 2, π(cj) = ln cj.

Assumption 2.3. For α ∈ (0, 1), f(y − ej − ek, α) = (y − ej − ek)
α.

We now define the recursive Cournot-Nash equilibrium for a T -period-

horizon game (Levhari and Mirman, 1980). The equilibrium consists of the

strategies of the two agents for every horizon from the first period (when there

are T periods left) to the last period (when there is no horizon). Without

loss of generality, we assume that in the last period the two agents split the

stock equally and do not invest. The assumption of a log utility function

implies that the allocation of the stock in the last period has no effect on

the dynamic game. Condition 1 states the behavior in the last period, i.e.,

when the horizon is τ = 0. Condition 2 states the recursive equilibrium

for every horizon of the game. Expression (6) for τ = 1 is consistent with

statement 1, i.e., for all j, V 0
j (y) = ln(E0

j (y) − I0j (y)). Expression (6) for
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τ = 2, . . . , T − 1 reflects the recursive nature of the equilibrium in which the

equilibrium continuation value function for a τ -period horizon depends on

the equilibrium strategies for τ ′-period horizons, τ > τ ′ ≥ 0.

Definition 2.4. The tuple {Eτ
1(y), I

τ
1(y), E

τ
2(y), I

τ
2(y)}Tτ=0 is a recursive Cournot-

Nash equilibrium for a T -period-horizon game if, for all y > 0,

1. For τ = 0, E0
1(y) = E0

2(y) = y/2, I01(y) = I02(y) = 0.

2. For τ = 1, 2, . . . , T , for j, k = 1, 2, j �= k, given {Eτ
k(y), I

τ
k(y)}

and {Et
1(y), I

t
1(y), E

t
2(y), I

t
2(y)}τ−1

t=0 ,

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{
ln(ej − ij)

+ δ

∫
V τ−1
j (g(ij, I

τ
k(y),η) · (y − ej − Eτ

k(y))
α) · φ(η, α)dηdα

}

(5)

where, for any x > 0,

V τ−1
j (x) =

{
ln(x/2), τ = 1

ln(Eτ−1
j (x)− Iτ−1

j (x)) + δ
∫
V τ−2
j (Λ) · φ(η, α)dηdα, τ = 2, 3, ..., T

(6)

with

Λ ≡ g(Iτ−1
1 (x), Iτ−1

2 (x),η) ·
(
x−

∑2

s=1
Eτ−1

s (x)
)α

. (7)

3 Equilibrium Characterization

In this section, we fully characterize the equilibrium for any finite horizon.

We then show that the limit of the finite-horizon equilibrium exists. In other

words, there exists an equilibrium for the infinite horizon that is consistent

with the sequence of finite-horizon equilibrium. We then provide the station-

ary distribution for capital corresponding to the limiting case.

We begin with the case of complementary investment choices. We then re-

peat the analysis for the case of substitutionary investment choices. The main
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difference between complements and substitutes concern uniqueness. When

investment choices are complementary, the equilibrium is unique whereas

there is a continuum of equilibrium points with substitutionary investment

choices. However, regardless of the type of investment, the stationary distri-

bution of capital is unique. In the next section, we compare the equilibrium

with the solution of the social planner.

3.1 Complementary Investment Choices

When investment choices are complementary, the investment function is spec-

ified as

g(i1, i2,η) = iη11 iη22 , (8)

η ≡ [η1, η2]. Using (8), (3) is rewritten as

ŷ = iη11 iη22 (y − e1 − e2)
α. (9)

The investment term iη11 iη22 reflects the complementarity of the agents’ in-

vestments. The shocks η1 and η2 measure the individual contribution of the

level of investment toward the future stock.

Proposition 3.1 provides the utilization level as well as the levels for con-

sumption and investment corresponding to the unique equilibrium for any

finite horizon. The equilibrium displays certainty equivalence, i.e., the means

of the shocks are the only moments of the distribution to have an effect on

decisions. Moreover, the equilibrium is in general asymmetric unless the

means of the investment shocks are identical.

Proposition 3.1. Suppose that the investment choices are complementary.

Then, there exists a unique recursive Cournot-Nash equilibrium for a T -

period game, T = 1, 2, . . . In equilibrium, for τ = 0, 1, . . . , T , for j = 1, 2,

agent j utilizes

Eτ
j (y) =

1 + δηj

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)y (10)
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units of capital for the production of

Cτ
j (y) =

1

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)y (11)

units of consumption and

Iτj (y) =

δηj

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt (η1 + η2 + α)t
)y (12)

units of investment.

Proof. We first derive utilization, investment, and value functions in the one-

period horizon. We then consider a τ -period horizon and solve for utilization,

investment and value functions recursively. We finally impose the initial

condition given by the one-period-horizon solution.

1. Consider first the one-period horizon. Using (5), (6), and (9), for j, k =

1, 2, j �= k, given {E1
k(y), I

1
k(y)}, agent j’s one-period-horizon optimal

policies satisfy

{E1
j (y), I

1
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δηj ln ij + δηk ln I

1
k(y)

+δα ln(y − ej −E1
k(y))− δ ln 2

}
. (13)

The first-order conditions corresponding to (13) are

ej :
1

ej − ij
=

δα

y − ej −E1
k(y)

, (14)

ij :
1

ej − ij
=

δηj
ij

, (15)

evaluated at ej = E1
j (y) and ij = I1j (y). Since the Hessian matrix is

negative definite, the second-order condition holds. For j, k = 1, 2, j �=
k, solving (14) and (15) for the equilibrium yields the unique solution
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for one-period-horizon utilization and investment,

E1
j (y) =

1 + δηj
2 + δ (η1 + η2 + α)

y, (16)

I1j (y) =
δηj

2 + δ (η1 + η2 + α)
y. (17)

Plugging (16) and (17) for the two agents into the objective function

in (13) yields

V 1
j (y) = (1 + δ(η1 + η2 + α)) ln y +Ψ1, (18)

where Ψ1 is a constant for the one-period horizon that has no effect on

the solution.

2. Having solved for the one-period horizon, we consider next a τ -period

horizon for which the continuation value function is of the form V τ−1
j (y) =

κτ−1 ln y+Ψτ−1 where κτ−1 and Ψτ−1 are constants. For j, k = 1, 2, j �=
k, given V τ−1

j (y) = κτ−1 ln y + Ψτ−1 and {Eτ
k (y), I

τ
k(y)}, agent j’s τ -

period-horizon optimal policies satisfy

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δηjκτ−1 ln ij + δηkκτ−1 ln I

τ
k(y)

+δακτ−1 ln(y − ej − Eτ
k(y)) + δΨτ−1} . (19)

The first-order conditions corresponding to (19) are

ej :
1

ej − ij
=

δακτ−1

y − ej − Eτ
k(y)

(20)

ij :
1

ej − ij
=

δηjκτ−1

ij
(21)

evaluated at ej = Eτ
j (y) and ij = Iτj (y). Since the Hessian matrix is

negative definite, the second-order condition holds. For j, k = 1, 2, j �=
k, solving (20) and (21) for the equilibrium yields the unique solution
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for τ -period utilization and investment,

Eτ
j (y) =

1 + δηjκτ−1

2 + δκτ−1(η1 + η2 + α)
y (22)

Iτj (y) =
δηjκτ−1

2 + δκτ−1(η1 + η2 + α)
y. (23)

Plugging (22) and (23) for the two agents into the objective function

in (19) yields

V τ
j (y) = (1 + δκτ−1(η1 + η2 + α)) ln y +Δτ , (24)

≡ κτ ln y +Ψτ , (25)

where Δτ and Ψτ are constants that we ignore since they have no effect

on the solution. Hence,

κτ = 1 + δκτ−1(η1 + η2 + α) (26)

with, from (18), initial condition

κ1 = 1 + δ(η1 + η2 + α). (27)

From (26) and (27), it follows that

κτ =

τ∑
t=0

δt(η1 + η2 + α)t. (28)

Plugging (28) into (22) and (23) yields (10) and (12), respectively.

Plugging (10) and (12) into Cτ
j (y) = Eτ

j (y)− Iτj (y) yields (11).

We now show that there is no disparity between the finite and infinite

horizons. Specifically, using Proposition 3.1, we show that the limits of the

equilibrium outcomes exist. In other words, there exists a unique equilibrium

for the infinite horizon that is consistent with the sequence of finite-horizon
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equilibrium. We then use these limiting outcomes to derive the unique sta-

tionary distribution for capital. Proposition 3.2 provides the limits of the

equilibrium outcomes.

Proposition 3.2. Suppose that the investment choices are complementary.

If η1 + η2 + α ∈ (0, 1), then for j, k = 1, 2, j �= k, limT→∞ET
j (y) ≡ E∞

j (y),

limT→∞CT
j (y) ≡ C∞

j (y), and limT→∞ ITj (y) ≡ I∞j (y) exist such that

E∞
j (y) =

1− δ(ηk + α)

2− δ(η1 + η2 + α)
y, (29)

C∞
j (y) =

1− δ(η1 + η2 + α)

2− δ(η1 + η2 + α)
y, (30)

I∞j (y) =
δηj

2− δ(η1 + η2 + α)
y. (31)

Proof. Given that η1 + η2 + α ∈ (0, 1), taking limits of (10), (11) and (12)

yields (29), (30) and (31), respectively.

Using the limiting outcomes, Proposition 3.3 provides the stationary dis-

tribution of capital. Due to the fact that the equilibrium displays certainty

equivalence, the stationary distribution depends directly on the means of the

shocks. However, through (9), the stationary distribution of capital depends

on the distribution of the shocks, i.e., first and higher moments.

Proposition 3.3. Suppose that the investment choices are complementary.

Then, the stationary distribution of capital is defined by

Ỹ =

(
ηη̃11 ηη̃22 αα̃δη̃1+η̃2+α̃

(2− δ (η1 + η2 + α))η̃1+η̃2+α̃

) 1
1−(η̃1+η̃2+α̃)

. (32)

Proof. Plugging (29) and (31) into (9) and solving for Ỹ = ŷ = y yields (32).
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3.2 Substitutionary Investment Choices

When investment choices are substitutionary, the investment function is spec-

ified as

φ(i1, i2,η) = (i1 + i2)
η, (33)

η ≡ η. Using (33), (3) is rewritten as

ŷ = (i1 + i2)
η(y − e1 − e2)

α, (34)

The investment term (i1 + i2)
η reflects the perfect substitutability of the

agents’ investments.

Unlike the case of complementary investment choices, the equilibrium is

not unique. In fact, when investment choices are substitutionary, there is a

continuum of equilibrium that admits any allocation of the total investment

between the two agents but leaves total investment unchanged. The multi-

plicity of the equilibrium has no bearing on the dynamics of the capital and

thus on agents’ future payoffs since, from (34), only total investment matters.

Proposition 3.4 states the properties of the equilibrium. The multiplicity

of the equilibrium is reflected by the allocation of the investment between

agents 1 and 2. That is, for j = 1, 2, γ1,τ ∈ [0, 1] is the fraction of total

investment undertaken by agent j when the horizon is τ periods. Hence,

γ1,τ + γ2,τ = 1.

Proposition 3.4. Suppose that the investment choices are substitutionary.

Then, there exists a continuum of recursive Cournot-Nash equilibrium for a

T -period game, T = 1, 2, . . . For any equilibrium, for τ = 1, ..., T ,

1. Cτ
1(y) = Cτ

2(y).

2. For j = 1, 2 and for any allocation {γ1,τ , γ2,τ} such that γ1,τ , γ2,τ ∈
[0, 1], γ1,τ + γ2,τ = 1, Iτj (y) = γj,τ · (Iτ1(y) + Iτ2(y)).

Proof. See the proof of Proposition 3.5.

Proposition 3.5 provides the utilization level as well as the production lev-

els for consumption and investment choices corresponding to the equilibrium

14



for any finite horizon. As in the case of complementary investment choices,

the equilibrium displays certainty equivalence.

Proposition 3.5. Suppose that the investment choices are substitutionary.

Then, in equilibrium, for τ = 0, 1, . . . , T , for j = 1, 2, given an allocation

{γ1,τ , γ2,τ}, agent j utilizes

Eτ
j (y) =

1 + γj,τδη

(
τ−1∑
t=0

δt (η + α)t
)

2 + δ(η + α)

(
τ−1∑
t=0

δt (η + α)t
)y (35)

units of capital for the production of

Cτ
j (y) =

1

2 + δ(η + α)

(
τ−1∑
t=0

δt (η + α)t
)y (36)

units of consumption and

Iτj (y) =

γj,τδη

(
τ−1∑
t=0

δt (η + α)t
)

2 + δ(η + α)

(
τ−1∑
t=0

δt(η + α)t
)y (37)

units of investment.

Proof. We first derive utilization, investment, and value functions in the one-

period horizon. We then consider a τ -period horizon and solve for utilization,

investment and value functions recursively. We finally impose the initial

condition given by the one-period-horizon solution.

1. Consider first the one-period horizon. Using (5), (6) and (34), for

j, k = 1, 2, j �= k, given {E1
k(y), I

1
k(y)}, agent j’s one-period-horizon

optimal policies satisfy

{E1
j (y), I

1
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δη ln(ij + I1k(y))

+δα ln(y − ej − E1
k(y))− δ ln 2

}
. (38)
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The first-order conditions corresponding to (38) are

ej :
1

ej − ij
=

δα

y − ej −E1
k(y)

, (39)

ij :
1

ej − ij
=

δη

ij + I1k(y)
, (40)

evaluated at ej = E1
j (y) and ij = I1j (y). Since the Hessian matrix is

negative definite, the second-order condition holds. However, individ-

ual investment cannot be determined because I1j (y) and I1k(y) have an

effect on equilibrium condition only through their sum. To see this,

for j = 1, 2, plugging C1
j (y) = E1

j (y) − I1j (y) into (39) and (40) and

rearranging yields the system

1

C1
1(y)

=
δα

y − C1
1(y)− I11(y)− C1

2(y)− I12(y)
, (41)

δη

I11(y) + I12(y)
=

δα

y − C1
1(y)− I11(y)− C1

2(y)− I12(y)
, (42)

1

C1
2(y)

=
δη

y − C1
2(y)− I12(y)− C1

1(y)− I11(y)
, (43)

δη

I11(y) + I12(y)
=

δα

y − C1
2(y)− I12(y)− C1

1(y)− I11(y)
, (44)

which defines the one-period-horizon solution for the equilibrium, i.e.,

{C1
j (y), I

1
j (y)}2j=1. From (42) and (44), one equation is redundant,

which implies that there are three equations for four unknowns. In

fact, C1
j (y), C

1
k(y) and I1k(y) + I1j (y) have unique solutions, but I1j (y)

and I1k(y) cannot be determined separately.

Letting γj,1 ∈ (0, 1) be the fraction of total investment by agent j in

the one-period horizon, solving (39) and (40) for the equilibrium yields

the solution for one-period-horizon utilization and investment:

E1
j (y) =

1 + γj,1δη

2 + δ (η + α)
y (45)

I1j (y) = γj,1
δη

2 + δ (η + α)
y. (46)
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Plugging (45) and (46) for the two agents into the objective function

in (38) yields

V 1
j (y) = (1 + δ (η + α)) ln y +Ψ1 (47)

where Ψ1 is a constant for the one-period horizon that has no effect on

the solution.

2. Having solved for the one-period-horizon, we consider next a τ -period-

horizon for which the continuation value function is of the form V τ−1(y) =

κτ−1 ln y + Ψτ−1 where κτ−1 and Ψτ−1 are unknown constants. For

j, k = 1, 2, j �= k, given V τ−1(y) = κτ−1 ln y +Ψτ−1 and {Eτ
k(y), I

τ
k(y)},

agent j’s τ -period-horizon optimal policies satisfy

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{ln(ej − ij) + δηκτ−1 ln(ij + Iτk(y))

+δακτ−1 ln(y − ej −Eτ
k(y)) + δΨτ−1} . (48)

The first-order conditions corresponding to (48) are

ej :
1

ej − ij
=

δακτ−1

y − ej −Eτ
k(y)

, (49)

ij :
1

ej − ij
=

δηκτ−1

ij + Iτk(y)
(50)

evaluated at ej = Eτ
j (y) and ij = Iτj (y). Since the Hessian matrix is

negative definite, the second-order condition holds. However, as noted

in the one-period-horizon, individual investment cannot be determined

because I1j (y) and I1k(y) have an effect on equilibrium condition only

through their sum. Letting γj,τ ∈ (0, 1) be the fraction of total invest-

ment produced by agent j in the τ -period horizon, Solving (49) and (50)

for the equilibrium yields the solution for utilization and investment,

Eτ
j (y) =

1 + γτ,jδηκτ−1

2 + δκτ−1 (η + α)
y (51)

Iτj (y) =
γτ,jδηκτ−1

2 + δκτ−1 (η + α)
y. (52)
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Plugging (51) and (52) for the two agents into the objective function

in (48) yields

V τ
j (y) = (1 + δκτ−1 (η + α)) ln y +Δτ (53)

≡ κτ ln y +Ψτ , (54)

where Δτ and Ψτ are constants that we ignore since they have no effect

on the solution. Hence,

κτ = 1 + δκτ−1 (η + α) (55)

with, from (47), initial condition

κ1 = 1 + δ (η + α) . (56)

From (55) and (56), it follows that

κτ =
τ∑

t=0

δt(η + α)t. (57)

Plugging (57) into (51) and (52) yields (35) and (37). Plugging (35)

and (37) into Cτ
j (y) = Eτ

j (y)− Iτj (y) yields (36).

For each point in the continuum of finite-horizon equilibrium, the limits

to the finite-horizon equilibrium outcomes exist. As in the case of comple-

mentary investment choices, the case of substitutionary investment choices

yields no disparity between the finite and infinite horizons. Proposition 3.6

provides the equilibrium for an infinite horizon, i.e., the limits of the equi-

librium outcomes in Proposition 3.5.

Proposition 3.6. Suppose that the investment choices are substitutionary.

If η+α ∈ (0, 1), then for j = 1, 2, limT→∞ET
j (y) ≡ E∞

j (y), limT→∞CT
j (y) ≡

18



C∞
j (y), and limT→∞ ITj (y) ≡ I∞j (y) exist such that, given an allocation {γ1,∞, γ2,∞},

E∞
j (y) =

1− δ ((1− γj,∞)η + α)

2− δ (η + α)
y (58)

C∞
j (y) =

1− δ (η + α)

2− δ (η + α)
y (59)

I∞j (y) =
γj,∞δη

2− δ (η + α)
y. (60)

Proof. Given that η + α ∈ (0, 1), taking limits of (35), (36), and (37)

yields (58), (59) and (60).

Although the equilibrium is a continuum, the perfect substitutability of

the investment implies a unique stationary distribution of capital. Hence,

Proposition 3.7. Suppose that the investment choices are substitutionary.

Then, the stationary distribution of capital is defined by

Ỹ =

(
δη̃+α̃ηη̃αα̃

(2− δ (η + α))η̃+α̃

) 1
1−(η̃+α̃)

. (61)

Proof. Plugging (58) and (60) into (34) and solving for Ỹ = ŷ = y yields (61).

Before proceeding with the comparison between the Cournot-Nash equi-

librium and the solution of the social planner, we compare differences between

complements and substitutes. Apart from the uniqueness property, by com-

paring Propositions 3.1 and 3.2 with Propositions 3.5 and 3.6, the policy

functions for the agents’ behavior are of similar form. Proposition 3.8 shows

that the ordering of individual utilization, consumption, and investment de-

pends on the means of the investment shocks.

Proposition 3.8. Suppose that η > (<)(=)η1+η2, then, under complements,

extraction and consumption are highest (lowest) (equal) and investment is

lowest (highest) (equal).

Proof. Comparing (29), (30), and (31) with (58), (59) and (60) yields the

result.
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4 Investment Externality

Having characterized the recursive Cournot-Nash equilibrium, we study the

effect of the investment externality (combined with the dynamic external-

ity) on behavior and the stationary distribution of capital. To that end, we

first provide the social planner’s solution in the infinite horizon case.5 We

then characterize the tragedy of the commons. We finally derive the sta-

tionary distributions of capital corresponding to the social planner’s solution

and compare them with the stationary distributions corresponding to the

recursive Cournot-Nash equilibrium.

Under social planning, the infinite-horizon value function of the social

planner satisfies

W∞(y) = max
{ej ,ij}2j=1

{
ln(e1 − i1) + ln(e2 − i2) + δEW∞(g(i1, i2, η̃) · (y − e1 − e2)

α̃)
}
,

(62)

where g(i1, i2, η̃) = iη̃11 iη̃22 if investment choices are complements and g(i1, i2, η̃) =

(i1 + i2)
η̃ if substitutes. For j = 1, 2, let E∗∞

j (y), C∗∞
j (y), and I∗∞j (y) be

the optimal solutions for utilization, consumption and investment where the

symbol ∗ distinguishes optimal behavior from behavior in the Cournot-Nash

equilibrium.

Proposition 4.1 provides the social planner’s solution for total utilization,

and total consumption and total investment under complementary and sub-

stitutionary investment choices. The introduction of the game has an effect

on the comparative analysis. Under social planning with either complemen-

tary or substitutionary investment choices, there is separation in the sense

that the investment shock η has no effect on total utilization whereas the

shock α has no effect on total investment. However, with a game, from

Propositions 3.2 and 3.6, an increase in any of the means of the investment

shocks decreases total utilization and an increase in α causes total investment

to increase.

Proposition 4.1. There exists a unique optimal solution to (62).

5To simplify the discussion, we omit the finite-horizon case. Our results on the tragedy
of the commons hold for any finite horizon.
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1. Suppose that investment choices are complementary. If η1 + η2 + α ∈
(0, 1), then

E∗∞
1 (y) + E∗∞

2 (y) = (1− δα)y, (63)

C∗∞
1 (y) + C∗∞

2 (y) = (1− δ(η1 + η2 + α))y, (64)

I∗∞1 (y) + I∗∞2 (y) = δ(η1 + η2)y. (65)

2. Suppose that investment choices are substitutionary. If η + α ∈ (0, 1),

then

E∗∞
1 (y) + E∗∞

2 (y) = (1− δα)y, (66)

C∗∞
1 (y) + C∗∞

2 (y) = (1− δ(η + α))y, (67)

I∗∞1 (y) + I∗∞2 (y) = δηy. (68)

Proof. See Appendix A.

Whether the investment choices are complementary or substitutionary,

the investment externality yields a tragedy in the commons in the following

sense. Under a game, total utilization increases. Moreover, consumption

increases at the expense of investment.

Proposition 4.2. Suppose that investment choices are either complementary

or substitutionary. Then,

E∗∞
1 (y) + E∗∞

2 (y) < E∞
1 (y) + E∞

2 (y), (69)

and

C∗∞
1 (y) + C∗∞

2 (y) < C∞
1 (y) + C∞

2 (y), (70)

I∗∞1 (y) + I∗∞2 (y) > I∞1 (y) + I∞2 (y). (71)

Proof. Comparing Propositions 3.2, 3.6, and 4.1 yields inequalities (69), (70),

and (71).
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The investment externality has an effect on the stationary distribution of

capital as well. Proposition 4.3 provides the stationary distribution of capital

under social planning.

Proposition 4.3. Under social planning, the stationary distribution of cap-

ital is unique.

1. If investment choices are complementary, then

Y ∗ =
(
ηη̃11 ηη̃22 αα̃δη̃1+η̃2+α̃

) 1
1−(η̃1+η̃2+α̃)

. (72)

2. If investment choices are substitutionary, then

Y ∗ =
(
ηη̃αα̃δη̃+α̃

) 1
1−(η̃+α̃) . (73)

Proof. If investment choices are complementary, then plugging (63), (81),

and (82) into (9) and solving for Ỹ ∗ = ŷ = y yields (72). Next, if investment

choices are substitutionary, then plugging (66) and (68) into (34) and solving

for Ỹ ∗ = ŷ = y yields (73).

Regardless of the type of investment choices, the effect of the investment

externality on the stationary distribution is illustrated in Figure 1.6 The two

solid concave lines depict expression (2) evaluated at the highest and lowest

value of the realizations of the random shocks under social planning, i.e.,

yt+1 = g(I∗∞1 (yt), I
∗∞
2 (yt),η) · f(yt −E∗∞

1 (yt)− E∗∞
2 (yt), α). (74)

The two dotted concave lines also depict expression (2) evaluated at the

highest and lowest value of the realizations of the random shocks but under

a game, i.e.,

yt+1 = g(I∞1 (yt), I
∞
2 (yt),η) · f(yt −E∞

1 (yt)−E∞
2 (yt), α). (75)

6When investment choices are complementary, compare (32) and (72). With substi-
tutes, compare (61) and (73).
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yt+1

yt

Ymin

Ymax

Y ∗
min

Y ∗
max

Figure 1: The Effect of the Investment Externality on the Stationary Distri-
bution

The intersection of these lines with the 45 degree line defines the end-points

of the stationary distributions under social planning and under a game.7

Specifically, the stationary distribution under social planning has support

[Y ∗
min, Y

∗
max] whereas the stationary distribution under a game has support

[Ymin, Ymax]. Since Ymin < Y ∗
min and Ymax < Y ∗

max, the effect of the game

with an investment externality is to reduce the effectiveness of the stock of

aggregate capital. However, it is ambiguous whether the negative effect is

strongest with complements or substitutes, i.e., it depends on the values of

the parameters.

7Recall that in our model investment is required to maintain the capital. Without
investment, the stationary distribution is degenerate at zero.
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5 Final Remarks

In order to study the effect of the investment externality on utilization, pro-

duction and the dynamic path of aggregate capital, we have considered a

stochastic environment in which agents know the true distribution of the

random shocks. However, agents generally face more than just uncertainty in

outcomes since the true distributions of these shocks are never known exactly.

In other words, agents generally face structural uncertainty because they do

not know the structure of the economy. The issue of structural uncertainty

in a dynamic game with an investment externality is studied in a compan-

ion paper (Mirman and Santugini, 2014). Unlike uncertainty in outcomes,

structural uncertainty evolves through learning. In that case, agents make

utilization and production decisions as well as learn simultaneously about

the stochastic process. Although the characterization of a dynamic game

with Bayesian dynamics (and without the assumption of adaptive learning)

is generally intractable, we characterize the symmetric Bayesian-learning re-

cursive Cournot-Nash equilibrium. The addition of learning to a stochastic

environment is shown to have a profound effect on the equilibrium since

decision-making and learning are nonseparable and influence each other.
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A Solution of the Social Planner

In this appendix, we derive the social planner’s solution in the case of com-

plementary and substitutionary investment choices. We consider the infinite

horizon by conjecturing that the value function is of the form W∞(y) =

κ∞ ln y+Ψ∞. As noted, the linear conjecture can be inferred by solving the

problem recursively.

Given W∞(y) = κ∞ ln y +Ψ∞, (62) is rewritten as

W∞(y) = max
{ej ,ij}2j=1

{ln(e1 − i1) + ln(e2 − i2) + δκ∞η1 ln i1 + δκ∞η2 ln i2

+δκ∞α ln(y − e1 − e2) + δΨ∞} (76)

if investment choices are complementary and

W∞(y) = max
{ej ,ij}2j=1

{ln(e1 − i1) + ln(e2 − i2) + δκ∞η ln(i1 + i2)

+δκ∞α ln(y − e1 − e2) + δΨ∞} (77)

if investment choices are substitutionary.

For complements, for j = 1, 2, the first-order conditions corresponding

to (76) are

ej :
1

ej − ij
=

δκ∞α

y − e1 − e2
, (78)

ij :
1

ej − ij
=

δκ∞ηj
ij

, (79)

which yields

E∗∞
j (y) =

1 + δκ∞ηj
2 + δκ∞(η1 + η2 + α)

y, (80)

I∗∞j (y) =
δκ∞ηj

2 + δκ∞(η1 + η2 + α)
y. (81)
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Plugging (80) and (81) back into (76) implies that

κ∞ =
2

1− δ(η1 + η2 + α)
. (82)

Plugging (82) into (80) and (81) and summing over j yields (63) and (65).

Plugging (63) and (65) into
∑2

j=1C
∗∞
j (y) =

∑2
j=1(E

∗∞
j (y)−I∗∞j (y)) yields (64).

For substitutes, for j = 1, 2, the first-order conditions corresponding

to (77) are

ej :
1

ej − ij
=

δκ∞α

y − e1 − e2
(83)

ij :
1

ej − ij
=

δκ∞η

i1 + i2
, (84)

which yields

E∗∞
j (y) =

2 + δκ∞η

4 + 2δκ∞(η + α)
y (85)

I∗∞1 (y) + I∗∞2 (y) =
δκ∞η

2 + δκ∞(η + α)
y (86)

since the social planner only needs to solve for total investment. Plug-

ging (85) and (86) back into (77) yields

κ∞ =
2

1− δ(η + α)
. (87)

Plugging (87) into (85) and summing over j yields (66). Plugging (87)

into (86) yields (68). Plugging (66) and (68) into
∑2

j=1C
∗∞
j (y) =

∑2
j=1(E

∗∞
j (y)−

I∗∞j (y)) yields (67).
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