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Abstract

We propose a novel methodology for forecasting chaotic systems which
uses information on local Lyapunov exponents (LLEs) to improve upon
existing predictors by correcting for their inevitable bias. Using simulated
data on the nearest-neighbor predictor, we show that accuracy gains can
be substantial and that the candidate selection problem identi�ed in Gué-
gan and Leroux (2009) can be solved irrespective of the value of LLEs. An
important corrolary follows: the focal value of zero, which traditionally
distinguishes order from chaos, plays no role whatsoever when forecasting
deterministic systems.

Keywords: Chaos theory - Lyapunov exponent - Lorenz attractor - Rössler
attractor - Monte Carlo Simulations.

JEL: C15 - C22 - C53 - C65.

�Paris School of Economics, CES-Université Paris-I Panthéon Sorbonne, 106-112 boulevard
de l�Hôpital, 75013 Paris, France. (Email: Dominique.Guegan@univ-paris1.fr)

yInstitute for Applied Economics, HEC Montréal and CIRPÉE, 3000 chemin de la Côte-
Ste-Catherine, Montréal, QC H3T 2A7, Canada. (Email: justin.leroux@hec.ca, Fax: (1)
514-340-6469, corresponding author )

1



1 Introduction

When taking a deterministic approach to predicting the future of a system,
the main premise is that future states can be fully inferred from the current
state. Hence, deterministic systems should in principle be easy to predict. Yet,
some systems can be di¢ cult to forecast accurately: such chaotic systems are
extremely sensitive to initial conditions, so that a slight deviation from a tra-
jectory in the state space can lead to dramatic changes in future behavior. We
propose a novel methodology for forecasting deterministic systems and illustrate
how our methodology can be used to improve upon the nearest-neighbor predic-
tor, but the same intuition can be applied to any non-parametric predictor (such
as methods based on kernels, radial functions, neural nets, wavelets, etc.; see
[1] and [2]) as it corrects for their inevitable bias by incorporating additional
information on the local chaoticity of the system via the so-called local Lya-
punov exponent (LLE). To the best of our knowledge, while several works exist
on the forecasting of chaotic systems (see, e.g., [3], [4], [5], [6], [7], [8]), none
exploit the information conveyed by the LLE. The general intuition behind the
methodology we propose can be viewed as a complement to existing forecasting
methods, and can be extended to chaotic time series. For illustrative purposes,
we describe how our methodology can be used to improve upon the well-known
nearest-neighbor predictor on two deterministic systems.
The nearest-neighbor predictor has proved to be a simple yet useful tool for

forecasting chaotic systems (see [9]). In the case of a one-neighbor predictor, it
takes the observation in the past which most resembles today�s state and returns
that observation�s successor as a predictor of tomorrow�s state. The rationale
behind this nearest-neighbor predictor is quite simple: given that the system
is assumed to be deterministic and ergodic, one obtains a sensible prediction
of the variable�s future by looking back at its evolution from a similar, past
situation. For predictions more than one step ahead, the procedure is iterated
by successively merging the predicted values with the observed data.
The nearest-neighbor predictor performs reasonably well in the short run but

is not satisfactory for even medium-run predictions ([10], [11]). The generally
accepted intuition being that the two trajectories (of the current state and of its
neighbor) will have separated signi�cantly by then, and the nearest neighbor�s
medium-run future will have little to do with the future one is trying to predict.
Intuitively, this failure to perform well in the medium run arises mainly from
the fact that short-run predictions are not accurate enough to withstand the
complex dynamics of the system and to remain accurate after being iterated
over a period of time of signi�cant length. We argue that this lack of accuracy
is inherent to the prediction method itself because the nearest neighbor on
which predictions are based can never exactly coincide with today�s state (or
else the underlying process, being deterministic, would also be periodic and,
thus, trivially predicted).
In previous work (Guégan and Leroux, 2009) we propose a novel methodol-

ogy which aims at correcting the above shortcoming by incorporating informa-
tion carried by the system�s LLE into the prediction. Our methodology yields
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two possible candidates, potentially leading to signi�cant improvements over the
nearest neighbor predictor, provided one manages to solve the selection prob-
lem, which is the issue we address here. We develop a systematic method for
solving the candidate selection problem and show, on two known chaotic sys-
tems, that it yields statisfactory results (close to a 100% success rate, for the
Rössler attractor).
The rest of the paper is organized as follows. In Section 2, we recall the

methodology developed in Guégan and Leroux (2008) on the use of LLEs in
forecasting and introduce the candidate selection problem. In Section 3, we
solve selection problem and show using simulated chaotic systems that the size
of the LLEs plays no role in the selection problem. However, the size of the
LLEs does matter for the success rate of our selection algorithm and has an
impact on the size of errors. These �ndings are presented in Section 4.

2 Methodology

Consider a one-dimensional series of T observations from a chaotic system,
(x1; :::xT ), whose future values we wish to forecast. Recall that a chaotic
system is characterized by the existence of an attractor in a d-dimensional
phase space (see [16]), where d > 1 is the embedding dimension.1 A pos-
sible embedding method involves building a d-dimensional orbit, (Xt), with
Xt = (xt; xt�� ; :::; xt�(d�1)� ). For the sake of exposition, we shall assume � = 1
in the remainder of the paper.
By de�nition, the local Lyapunov exponent (or LLE) of a dynamical system

characterizes the rate of separation of in�nitesimally close points of an orbit.
Quantitatively, two neighboring points in phase space with initial separation
�X0 are separated, t periods later, by the distance:

�X � �X0e�0t;

where j�j represents the modulus of the considered vectors and �0 is the (largest)
LLE of the system in the vicinity of the initial points. Typically, this local rate
of divergence (or convergence, if �0 < 0) depends on the orientation of the
initial vector �X0. Thus, strictly speaking, a whole spectrum of local Lyapunov
exponents exists, one per dimension of the state space. A dynamic system is
considered to be (locally) chaotic if �0 > 0, and (locally) stable if �0 < 0. (see,
e.g., [15])
Our goal is to exploit the local information carried by the LLE to improve

upon existing methods of reconstruction and prediction. We propose a method-
ology which builds upon the classical nearest-neighbor predictor, which we now
recall. Consider an orbit (X1; :::; XT ) whose one-step-ahead future, XT+1, we
are trying to predict. The nearest-neighbor predictor returns X̂T+1 = Xi+1,
where Xi is the element of the orbit with minimal distance to XT . Because

1The choice of the embedding dimension has been the object of much work (see [17] for a
survey) and is beyond the scope of this work.
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the dynamic system at hand is aperiodic (or else, forecasting would not be
an issue), the nearest-neighbor predictor is inevitably biased. Indeed, because
jXT �Xij > 0, it must also be the case that:

jjX̂T+1 �Xi+1jj � jjXT �Xijje�i > 0; (1)

where �i can be approximated in practice by the following expression:

�̂i = ln
jjXi+1 �Xj+1jj
jjXi �Xj jj

with Xj = arg min
t6=i;T

jjXt �Xijj (2)

It follows from Expression (1) that knowing the distance between the pre-
dictee and the nearest neighbor as well as the LLE at the nearest neighbor allows
us to predict the distance of the predictee�s image to the neighbor�s image. Note
that this is true regardless of the sign of �i; i.e., regardless of whether the system
is locally chaotic or locally stable.
Moreover, because the orbit considered results from the embedding of a

one-dimensional series, we also know all but the �rst coordinate of XT+1 =
(xT+1; xT ; :::; xT�d+2). Hence, XT+1 lies at the intersection of the sphere of ra-
dius jjXT�Xijje�̂i centered onXT and the line de�ned by f(z; xT ; :::; xT�d+2)jz 2
Rg which, in the Euclidean space, amounts to solving the following polynomial
for z 2 R:p
(z � xi+1)2 + (xT � xi)2 + :::+ (xT�d+2 � xi�d+2)2�jjXT�Xijje�̂i = 0 (3)

Typically, two candidates emerge, x̂�T+1 and x̂
+
T+1, respectively underestimat-

ing and overestimating the true value of observation xT+1(see Figure 1 in the
Appendix)2 .

[FIGURE 1 HERE]

3 Solving the selection problem

One di¢ culty lies in determining when the nearest-neighbor predictor overesti-
mates or underestimates the true value to be predicted. In Leroux and Guégan
(2009), we establish that being able to discriminate accurately between x̂�T+1
and x̂+T+1 may signi�cantly improve the accuracy the nearest-neighbor predic-
tor, as we next illustrate. Our goal is to improve on our previous work by
developing a systematic selection method to accurately select the best of the
two candidates. To do so, we further exploit the information conveyed by the
LLE. Indeed, the LLE bieng a measure of local chaoticity of a system (see [13],
[14]), it may also yield important clues regarding the regularity of the trajectory

2The situation whereby Expression (3) has no real solution would only arise if �i had been
greatly underestimated, which never occurred to us in practice using Expression (2).
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In fact, even �globally chaotic� systems are typically made up of both
�chaotic regions" where the LLE is positive and more stable regions where it is
negative (Bailey, 1997), as we illustrate in Figures 2 and 3 for the Lorenz and
the Rössler system, respectively. Hence, we may expect very stable trajectories
where the LLE is small, wheras regions where the LLE is large yield highly
unstable behavior.

[FIGURE 2]

[FIGURE 3]

Thus, we have investigated conditioning our selection process on the value
of the LLE. Formally, our algorithm can be de�ned as follows:�

If �T � ��, select the "most collinear" candidate
otherwise, select the "least collinear" candidate,

(4)

where �� is an exogenously given threshold value. We abuse terminology slightly
and denote by "most collinear" (resp. "least collinear") the candidate x̂T =
x̂�T+1; x̂

+
T+1 such that the scalar product (X̂T+1�XT ) � (Xi+1�Xt) is minimum

(resp. maximum). In words, this algorithm assumes that when the value of the
LLE is low, the orbit is relatively smooth, suggesting that the trajectory to be
predicted behaves similarly as the nearest neighbor�s trajectory. Alternatively,
when the LLE is "large", the trajectory is considered to behave erratically, so
that the trajectory to be predicted is assumed to di¤er from that of its nearest
neighbor.

Computations of average errors across all values of �� in the range of the
system�s LLE actually yield that the best value when �� is the upper bound of
the range (Figure 4). In other words, one is better o¤ alway selecting the most
collinear candidate and not conditioning the selection process on the LLE as in
Expression (4).

[FIGURE 4]

In the remainder of the paper, we evaluate the performance of the predictor
which systematically selects the most collinear candidate. We �nd (see Table 1)
that our procedure almost always selects the best of the two candidate and that
improvements upon the NNP, which is well-known for performing very well in
the very short run, are substantial. Surprisingly, of all 100 predicitons, the only
selection mistake occurs for a negative value of the LLE (-0.1776). Moreover,
when making 1000 predictions, our procedure still selects very accurately even-
though the range of the LLE is large. These �ndings con�rm the fact that our
selection procedure is hardly a¤ected by the sign of the LLE.
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Table 1: Rössler system
Number of predictions 100 1000

Success rate 99% 97.3%
Average error 0.0172 0.0157

NNP average error 0.0279 0.0236
Best candidate average error 0.0172 0.0155

otherSE 0.0590 0.0452
mean LLE (min;max) 0.1979 (-0.5254;0.6573) 0.1302 (-1.2453;0.9198)

mean LLE on mistakes (min;max) -0.1776 (�;�) 0.2582(-0.4824;0.9198)

With the Lorenz system (Table 2), we �nd that our procedure selects better
over 1000 predictions than it does over 100 predictions. We suspect this is the
case because the 100 predictions were made over a more chaotic segment of the
orbit, on average. The fact that the average LLE is larger on this segment of the
trajectory (0.2756 versus 0.1948) corroborates our suspicion. Hence, the value
of the LLE does seem to play a small role in the selection problem. Nevertheless,
recall that our results show that conditioning selection on the value of the LLE
as in Expression (4) would not lead to an improved success rate.

Table 2: Lorenz system
Number of predictions 100 1000

Success rate 87% 94.30%
Average error 0.0738 0.0390

NNP average error 0.1075 0.0548
Best candidate average error 0.0689 0.0372

otherSE 0.2041 0.1036
mean LLE (min;max) 0.2756(-0.9861;1.3639) 0.1940 (-1.4353;1.4580)

mean LLE on mistakes (min;max) 0.4685(-0.4020;1.3639) 0.4354 (-0.5142;1.3639)

4 Discussions

In this section, we detail the role of the LLE on the size of errors and on the
performance of the selection procedure.

6



4.1 Role of the LLE on error size

Average of errors:

Table 3: Average size of prediction errors. 1000 predictions.
Rössler Lorenz

LLE success failure raw 1-NN success failure raw 1-NN
-1.5,1.3 - - - 0.0077 - 0.0077
-1.3,-1.1 6.2538e�6 - 6.2538e�6 - - -
-1.1,-0.9 - - - 0.0335 - 0.0335
-0.9,-0.7 6.7189e�4 - 7.2159e�4 0.0286 - 0.0286
-0.7,-0.5 0.0188 - 0.0191 0.0451 0.0169 0.0479
-0.5,-0.3 0.0153 0.0045 0.0161 0.0541 0.005 0.0594
-0.3,-0.1 0.0199 0.0068 0.0224 0.0505 0.0899 0.0626
-0.1,0 0.0428 0.0012 0.0850 0.0477 0.0347 0.0580
0,0.1 0.0106 5.9019e�7 0.0168 0.0249 0.027391 0.0365
0.1,0.3 0.0100 0.0214 0.172 0.0342 0.0876 0.0539
0.3,0.5 0.0162 0.0623 0.0219 0.0290 0.0594 0.0626
0.5,0.7 0.0108 0.0170 0.0253 0.0325 0.0847 0.0560
0.7,0.9 - - - 0.0236 0.0562 0.0267
0.9,1.1 - 3.0565e�5 5.2792e�6 0.0152 0.396 0.0273
1.1,1.3 - - - 0.0433 0.0632 0.0333
1.3,1.5 - - - 0.1594 0.0432 0.0339

Mean 0.0154 0.0266 0.0236 0.0373 0.0667 0.0548

Notice that the size of errors is relatively stable over the range of LLEs when
selection is successful. This indicates that our method accurately corrects for
the dispersion of neighboring trajectories as measured by the value of the LLE.
If this were not the case, one would expect the size of errors to be larger for
larger values of LLEs. In fact, errors become large only for values of the LLE
near the upper end of their range (above 0.9 for the Rössler attractor, and above
1.1 for the Lorenz attractor). A possible reason for this sudden increase may be
that our estimator for the value of the LLEs is not su¢ ciently robust in regions
of high chaoticity. We expect that a more sophisticated estimation method for
the LLEs may solve this issue.
Notice that for the Rössler attractor, for values of the LLE in the [-0.5, 0.1]

range, the size of errors when failing to select is on average less than when select-
ing accurately. This apparently surprising observation is actually encouraging,
as it indicates that selection mistakes occur mostly when there is little need
for correction. Such situations may arise because XT�s nearest neighbor is very
close to XT or, alternatively, when both candidates, x̂

�
T+1 and x̂

+
T+1 are very

close to xi+1 due to space orientation considerations.
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4.2 Role of the LLE on success rate

Success rates:

Table 4: Success rates. 1000 predictions.
Rössler Lorenz

LLE success failure success rate success failure success rate
-1.5,1.3 - - - 1 0 100%
-1.3,-1.1 1 0 100% - - -
-1.1,-0.9 - - - 3 0 100%
-0.9,-0.7 5 0 100% 3 0 100%
-0.7,-0.5 68 0 100% 67 1 98.51%
-0.5,-0.3 106 2 98.14% 92 1 98.91%
-0.3,-0.1 105 3 97.22% 98 2 97.96%
-0.1,0 46 2 95.83% 47 4 91.49%
0,0.1 79 1 98.75% 61 4 93.44%
0.1,0.3 149 4 97.39% 109 7 93.58%
0.3,0.5 222 8 96.52% 195 8 95.90%
0.5,0.7 192 6 96.97% 223 22 90.13%
0.7,0.9 - - - 18 2 88.89%
0.9,1.1 0 1 0% 13 3 76.92%
1.1,1.3 - - - 9 2 77.88%
1.3,1.5 - - - 4 1 75%

Total 973 27 97.3% 943 57 94.3%

According to Table 4, our selection method performs almost perfectly on the
Rössler system. Our method selects perfactly for very low values of the LLE.
Selection mistakes start to appear past a value of LLE of -0.5, but the success
rate does not seem to fall signi�cantly as the value of the LLE increases up to
0.7. These results are evidence against the common intuition according to which
trajectories are more stable, or smoother, where the value of the LLE is small
and more irregular for large values of the LLE. For the Lorenz system, however,
the success rate falls as the LLE grows large, which is more in line with the
common intuition. Interestingly, mistakes occur even for negative values of the
LLE, where the system is stable, by de�nition. Hence, our results suggest that
the focal value of � = 0, traditionally separating order from chaos, is irrelevant
in terms of forecasting.

5 Concluding comments

This follow-up on our encouraging preliminary study ([12]) con�rms that the
potential gains identi�ed there are achievable. Indeed, the candidate selection
problem is no longer an issue thanks to a selection method which, surprisingly,
does not condition on the value of the LLE. Moreover, thedistribution of pre-
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diction errors and success rates we obtain sugegst that the focal value of zero
for the LLE, which traditionally separates stability from chaotic behavior, plays
no role when it comes to forecasting
The next steps include enhancing predictions via better estimations of the

LLE, either by using more neighbors, or thanks to neural network methods
(Gençay, 199x). Naturally, our ultimate goal is to evaluate how our method
holds up when confronted to real data, and particularly intra-day �nancial and
economic time series.
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6 Appendix
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Figure 1: Determination of the two candidates: x̂�T+1 and x̂
+
T+1.
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Figure 2: Evolution of LLE for the Rössler system
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Figure 3: Evolution of LLE for the Lorenz system
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Figure 4: Average error per prediction as a function of threshold ��. 1000 pre-
dictions
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