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Abstract

This paper studies the quantitative implications of the interaction between robust con-

trol and stochastic volatility for key asset pricing phenomena. We present an equilibrium

term structure model with a representative agent and an output growth process that is

conditionally heteroskedastic. The agent does not know the true model of the economy

and chooses optimal policies that are robust to model misspeci�cation. The choice of

robust policies greatly ampli�es the e¤ect of conditional heteroskedasticity in consump-

tion growth, improving the model�s ability to explain asset prices. In a robust control

framework, stochastic volatility in consumption growth generates both a state-dependent

market price of model uncertainty and a stochastic market price of risk. We estimate the

model using data from the bond and equity markets, as well as consumption data. We

show that the model is consistent with key empirical regularities that characterize the

bond and equity markets. We also characterize empirically the set of models the robust

representative agent entertains, and show that this set is �small�. That is, it is statistically

di¢ cult to distinguish between models in this set.
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1 Introduction

This paper studies the implications of the interaction between robust control and stochastic

volatility for key asset pricing phenomena. We quantitatively show that robustness, or fear of

model misspeci�cation, coupled with state-dependent volatility provides an empirically plau-

sible characterization of the level and volatility of the equity premium, the risk free rate, and

the cross-section of yields on treasury bonds. We also show that robustness o¤ers a novel way

of reconciling the shape of the term structure of interest rates with the persistence of yields.

Finally, we quantify the level of robustness encoded in the agents�behavior.

We construct a continuous-time, Lucas tree, asset pricing model in which a representative

agent is averse to both risk and ambiguity. The presence of ambiguity stems from the agent�s

incomplete information about the economy�s data generating process (DGP). In other words,

the agent does not know which of several possible models is the true representation of the econ-

omy. Introducing ambiguity aversion into our framework allows us to reinterpret an important

fraction of the market price of risk as the market price of model (or Knightian) uncertainty. We

model ambiguity aversion using robust control techniques as in Anderson et al. (2003).1 In our

model, the representative agent distrusts the reference model and optimally chooses a distorted

DGP. His consumption and portfolio decisions are then based on this distorted distribution.

Ambiguity aversion gives rise to endogenous pessimistic assessments of the future.

A key assumption in the model is that the output growth process is conditionally het-

eroskedastic. The consumption growth process inherits this heteroskedasticity, which gives rise

to a stochastic market price of risk.2 The main contribution of this paper is to show that

ambiguity aversion greatly ampli�es the e¤ect of stochastic volatility in consumption growth

and, therefore, can explain asset prices in an empirically plausible way. In the absence of ambi-

guity aversion, plausible degrees of stochastic volatility in consumption growth do not generate

su¢ cient variation in the stochastic discount factor.

By choosing a distorted DGP, the robust representative agent has biased expectations of fu-

ture consumption growth. Being pessimistic, the agent tilts his subjective distribution towards

1Behavioral puzzles such as the Ellsberg paradox (Ellsberg (1961)) led to the axiomatization of the maxmin
decision making by Gilboa and Schmeidler (1989). Robust control is one way of modeling Knightian uncertainty.
For a comprehensive treatment of robustness see Hansen and Sargent (2007a). Examples of the use of robust
control in economics and �nance include Anderson et al. (2003), Cagetti et al. (2002), Gagliardini et al. (2004),
Hansen and Sargent (2007b), Hansen et al. (2006), Liu et al. (2005), Maenhout (2004), Routledge and Zin (2001),
Uppal and Wang (2003). An alternative approach to modeling ambiguity allows agents to have multiple priors.
See, for example, Epstein and Schneider (2003), Epstein and Wang (1994).

2Recently, several authors (e.g., Bansal and Yaron (2004), Bansal et al. (2005)) argue that conditionally
heteroskedastic consumption growth is potentially important to understand asset prices. We agree that this
channel is indeed important, but claim that it is the interaction with ambiguity aversion that is critical.
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states in which marginal utility is high. With stochastic volatility, positive volatility surges

result in a more di¤use distribution of future consumption growth. In that case, the objective

distribution assigns more probability mass to future �bad�realizations of consumption growth.

The agent seeks policies that can reasonably guard against such �bad� realizations. Conse-

quently, he increases the distortion to his expectations of consumption growth. The interaction

between robustness and stochastic volatility introduces a state dependent distortion to the drift

of consumption growth, and therefore, to the drift in the agent�s intertemporal marginal rate

of substitution.3 This state dependent distortion generates sharp implications for asset pricing

phenomena.

We estimate our model and assess its implications using data from the equity and bond

markets, as well as consumption data. We exploit cross-equation restrictions across bond and

equity markets to improve both the identi�cation of structural parameters in our model and

the estimation of the market price of risk and uncertainty.4 Our main �ndings are as follows.

First, we show that our model, calibrated with a unitary degree of risk aversion and elasticity

of intertemporal substitution (EIS), can reproduce both the high and volatile equity premium

and the low and stable risk free rate observed in the data. Previous studies, such as Mehra

and Prescott (1985) and Weil (1989), have shown that explaining the behavior of the equity

premium requires implausibly high levels of risk aversion. Ambiguity aversion generates an

uncertainty premium that helps to alleviate the di¢ culties these previous studies have encoun-

tered. Since there is no benchmark value for the degree of ambiguity aversion, we use detection

error probabilities to show that the degree of robustness required to �t the data is reasonable.

In other words, we empirically show that the set of models the robust representative agent

entertains is small. That is, it is statistically di¢ cult to distinguish between models in this set.

Second, our model can account for the means of the cross-section of bond yields. In partic-

ular, we can replicate the upward sloping unconditional yield curve observed in the data. This

result highlights a novel interpretation of the uncertainty premium generated by robustness. On

empirical grounds, we assume that the conditional variance of output growth, and hence con-

3In the next section and in the empirical section of the paper we provide an additional, more technical,
explanation for the link between stochastic volatility and the robust distortion by using the properties of the
relative entropy and the size of the set of models the agent entertains.

4Campbell (2000) convicingly argues that "it is important to reconcile the characterization of the SDF
provided by bond market data with the evidence from stock market data. Term structure models of the SDF are
ultimately unsatisfactory unless they can be related to the deeper general-equilibrium structure of the economy.
Researchers often calibrate equilibrium models to �t stock market data alone, but this is a mistake because
bonds carry equally useful information about the SDF. The short-term real interest rate is closely related to the
conditional expected SDF and thus to the expected growth rate of marginal utility; in a representative-agent
model with power utility of consumption, this links the real interest rate to expected consumption growth...The
risk premium on long-term bonds is also informative."
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sumption growth, is stationary and positively correlated with the consumption growth process.

This positive correlation implies that when marginal utility is high the conditional variance of

consumption growth is low. Consequently, a downward bias in the subjective conditional ex-

pectations of consumption growth induces a negative distortion to the subjective expectations

of variance changes. We show that this negative distortion is a linear function of the level of

the conditional variance process. Consequently, the unconditional distortion is a linear negative

function of the objective steady state of the variance process. Therefore, the subjective steady

state of the variance process is lower than the objective steady state. In other words, on average,

the agent thinks that the conditional variance of consumption growth should decrease. Since

the unconditional level of bond yields and the steady state level of the conditional volatility

of consumption growth are inversely related, the agent expects, on average, that yields will

increase. Consequently, the unconditional yield curve is upward sloping.

Third, our model can replicate the declining term structure of unconditional volatilities of

real yields, and the negative correlation between the level and the spread of the real yield curve.

The fact that the robust distortion to the conditional variance process is a linear function of

the level of the variance implies that the distorted process retains the mean reversion structure

of the objective process. Since shocks to the conditional variance are transitory, the short end

of the yield curve is more responsive to volatility shocks relative to the long end. Hence, short

maturity yields are more volatile than long maturity yields. Also, our model implies that yields

are an a¢ ne function of the conditional variance of consumption growth. Therefore, all yields

are perfectly positively correlated. Since short yields are more responsive to volatility shocks

relative to long yields, but both move in the same direction, when yields decrease the spread

between long yields and short yields increases and becomes more positive. Thus, the level and

spread of the real yield curve are negatively correlated.

Fourth, the model can reconcile two seemingly contradictory bond market regularities: the

strong concavity of the short end of the yield curve and the high degree of serial correlation

in bond yields.5 The intuition for this result is closely linked to the mechanism behind the

upward sloping real yield curve. Generally, in a one-factor a¢ ne term structure model, the

serial correlation of yields is driven by the serial correlation of the state variable implied by

the objective DGP. In contrast, in our model the slope of the yield curve is shaped by the

degree of mean reversion of the conditional variance process implied by the agent�s distorted

(i.e., subjective) distribution. The state dependent distortion to the variance process not only

changes the perceived steady state of the variance but also its velocity of reversion. With

5In a standard one-factor model, it is di¢ cult to separate these two properties, since both observations are
directly tied to the persistence of the underlying univariate shock process.
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positive correlation between consumption growth and the conditional variance process, we show

that the subjective mean reversion is faster than the objective one. Ex ante, the agent expects

shocks to the variance process to die out fast, but ex-post these shocks have a longer lasting

e¤ect than expected. The slope of the yield curve is a re�ection of how fast the agent expects

the e¤ect of variance surges to dissipate. Hence, the positive slope of the yield curve is rapidly

declining when the subjective mean reversion is high. However, the serial correlation of yields

is measured ex-post. Hence, if the objective persistence of the variance process is high, yields

are highly persistent, which is in line with the empirical evidence. When the agent seeks more

robustness, the separation between the ex-ante and ex-post persistence is stronger.

The remainder of the paper is organized as follows. In section 2 we present the robust

control idea in a simple two-period asset pricing model. The main purpose of this section is to

highlight the channels through which uncertainty aversion considerations alter the predictions

of a standard asset pricing model. In section 3 we present our continuous time model and

discuss its implications for the equity market�s valuation patterns and the implied risk free

rate. In section 4 we discuss the model�s predictions concerning the bond market. We derive

analytical a¢ ne term structure pricing rules and discuss the distinction between the market

price of risk and uncertainty. In section 5 we present empirical evidence that supports our

modeling assumptions. We also estimate our complete model and investigate the implied level of

uncertainty aversion exhibited by the representative agent. In section 6 we o¤er our concluding

remarks and discuss potential avenues for future research.

2 Robustness in a Two-Period Example

In this section we introduce the terminology and concepts used throughout the paper using a

two-period consumption-saving example. This example helps build our intuition and motivate

the modeling assumptions used in our model.

2.1 Reference and Distorted Models

The representative agent in our economy uses a reference or approximating model. However,

since he fears that this model is potentially misspeci�ed, he chooses to diverge from it when

making his decisions.6 In the context of this paper, the reference model is assumed to generate

6Another possibility is to claim that for some reason the agent dislikes extreme negative events and wants
to take special precautionary measures against these events. If we choose this behavioral interpretation, we can
then assume the agent knows the true DGP, but that his marginal utility function is very high in bad states of
the world. Low consumption is so costly that the agent requires policies that are robust to these states. Even
though there is complete observational equivalence between the two approaches, they are utterly di¤erent from
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the observed data. In contrast with the rational expectations paradigm, the agent entertains

alternative DGPs. The size of the set of possible models is implicitly de�ned by a penalty

function (relative entropy) incorporated into the agent�s utility function. So the agent chooses

an optimal distribution for the exogenous processes. In other words, the agent optimally chooses

his set of beliefs simultaneously with the usual consumption and investment decisions. The

robust agent distorts the approximating model in a way that allows him to incorporate fear of

model misspeci�cation. We will refer to the optimally chosen model as the distorted model.7

2.2 A Two-Period Model

We now discuss a simple two-period example. Our discussion is intentionally informal. Our

goal is to illustrate how robustness considerations alter the predictions of a standard asset

pricing model. We consider a Lucas-tree type economy in which the agent receives one unit

of consumption good in the �rst period. He decides how many units (�) of a claim to the

stochastic endowment in period one (D1) to buy. The unit price of a claim to the tree�s output

is denoted by S0. We assume that period one output is drawn from a lognormal distribution,

which is referred to as P:
lnD1 � N

�
�; �2

�
:

We denote the agent�s subjective distribution by Q. The robust agent solves a max-min
problem, where the minimization takes place over Q:8

max
�
min
Q

�
u (C0) + �EQ [u (C1) + �R (Q)]

	
(2.1)

subject to:

C0 = 1� �S0; C1 = �D1:

Here C0 and C1 are the levels of consumption in periods zero and one, respectively. The

object R (Q) represents the penalty imposed on the agent whenever he decides to choose a
distribution di¤erent from P. We assume that this penalty is the relative entropy, or Kullback-
Leibler divergence, between the objective (P) and subjective (Q) distributions. The parameter

a behavioral perspective.
7An alternative is to allow for the possibility that a di¤erent, unspeci�ed model, is actually the DGP. In this

scenario, it is likely that neither the distorted nor the reference model generate the data. The agent must in this
case infer which model is more likely to generate the data. See Hansen and Sargent (2007b) for an example.

8This preference speci�cation is referred to in the literature as �multiplier preferences�. The decision theoretic
foundation for the use of multiplier preferences is discussed in Maccheroni et al. (2006) and Strzalecki (2007).
These authors also discuss the interpretation of the parameter � as a measure of the level of ambiguity aversion
which the agent exhibits.
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� is a multiplier which determines the sensitivity of the agent�s value function to the relative

entropy. Without this penalty, the minimization problem would have a boundary solution in

which the agent assigns all the probability mass to the worst possible state (if the support is

the entire real line, the agent will distort the mean to negative in�nity). Note also that when

� !1, problem (2.1) converges to the conventional time-additive expected utility case. In this
case, the penalty for distorting the objective distribution is so large, that the agent optimally

decides to construct his beliefs using the objective measure P (since R (Q) = 0 when P = Q).
In continuous time, one can show that given a conditional normal distribution for the growth

rate of output, the distorted distribution is also normal with the same variance and a lower

mean. This result follows from the regularity conditions (i.e., absolute continuity) required

when using relative entropy.9 Since our complete model is cast in continuous time, we consider

only mean distortions in this two-period example in order to make the transition to the full

model more transparent. The following lemma characterizes more generally what distortions

the agent considers in discrete time over the class of univariate Normal distributions:

Lemma 1 Consider the class of Normal distributions. If u (C) = ln (C) then the agent chooses
�Q = �+h and �

2
Q = �

2. If u (C) = C1�
= (1� 
) ; 
 6= 1 then the agent chooses �Q = f (�; �2)
and �2Q = g (�; �

2) for some f; g : R� R! R such that if � > �Q then
@�2Q

@(���Q)
> 0

Proof. See Appendix A.
We assume that utility is logarithmic. Lemma 1 shows that, in this case, it is optimal for

a robust agent to distort only the mean of the distribution. An agent with logarithmic utility

derives no bene�t from distorting the variance, since he cares only about the �rst moment of

the distribution. But, he incurs a cost since an increase in variance raises the relative entropy

of the two distributions. In contrast, in the non-logarithmic case (
 6= 1), the agent also cares
about the second moment of the distribution and therefore distorts the variance. We see that

@�2Q=@
�
�� �Q

�
> 0 since the �distance�between the distributions is positively related to mean

distortions. However, for a given mean distortion, the agent needs to distort the variance in

order to maintain a desired distance between the distributions.

Let Q be N (�+ h; �2), where h 2 R represents the mean distortion chosen by the robust
9Relative entropy and Radon-Nikodym are ultimately likelihood ratios. In continuous time, likelihood ratios

are extremely sensitive to variance distortions. This is because high frequency observations allow us to estimate
the variance fairly accurately. So, the likelihood ratio reveals the di¤erence between models with di¤erent
variances easily. In the robust control formulation, this imposes a large penalty on the agent. Thus, he
optimally chooses not to distort the variance.
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agent. The relative entropy of P and Q is given by,

R (Q) �
R
ln

�
dQ
dP

�
dQ;

=
h2

2�2
: (2.2)

Not surprisingly, the divergence between P and Q is a positive function of the distortion

to the mean, h. The presence of the variance in the denominator re�ects the fact that the

distortion in the mean must be measured relative to the degree of volatility associated with the

distribution.

Assuming that u (C) = lnC and using (2.2) we can rewrite (2.1) as:

max
�
min
h

�
ln (1� �S0) + �EQ

�
ln (�D1) +

�h2

2�2

��
:

Note that now the minimization problem is taken over h which serves as a su¢ cient statistic

for the divergence between P and Q. The �rst-order condition with respect to h yields:

h = ��
2

�
� 0:

This is the distortion to the mean of the conditional distribution of next period�s output. As the

penalty parameter � becomes smaller, the agent seeks more robust policies and the (absolute)

size of the distortion increases. A result that will prove particularly important in our context

is that the distortion becomes more pronounced as the output is expected to be more volatile.

The intuition for this result is rather simple: a robust agent is more prone to take precautionary

measures against misspeci�cation when bad outcomes are more likely.

Since h is independent of the other controls (i.e., neither consumption nor the investment

policy a¤ect the choice of h), the maximization with respect to � and the imposition of the

equilibrium condition (� = 1) yield the usual pricing formula:

S0 =
�

1 + �
:

The maximization also yields the usual decision rule for consumption. The agent consumes

a fraction of his wealth that is independent of the price of the risky asset:

C0 =
1

1 + �
:
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Note that up to this point, the robust considerations do not alter any of the model�s predic-

tions: both consumption and the price of the risky asset are una¤ected by the choice of h. To

understand this result, note that the optimal level of investment in the risky asset is a¤ected

by two forces. First, the robust agent fears exposing his capital to adverse shocks to the return

on the risky asset. Second, the agent fears a bad output growth realization that will leave him

�hungry�next period and prefers to save. When momentary utility is logarithmic, these two

e¤ects cancel out.10

The implications of robustness in our setup take the form of a precautionary savings motive.

To see this, �rst consider the Euler equation used to price a risk free one-period bond which is

in equilibrium in zero net supply

1 = �EQ
1=D1

(1 + �)
exp (r) ; (2.3)

where r is the continuously compounded risk-free rate. Using our distributional assumptions,

one can show that:

r = ln
1 + �

�
+ �� �2

�
1

2
+
1

�

�
:

We see that robustness does indeed a¤ect the risk free rate: as � decreases and the agent

becomes more robust, there is downward pressure on r due to an increased precautionary

savings motive. Notice that this e¤ect is independent from the degree of the EIS: the increased

precautionary savings motive allows us to derive a low risk free rate despite a unitary EIS.

There is no upwards pressure on the risk free rate due to the usual substitution e¤ect. Note

also that when the agent does not seek robust policies (� !1), we are back to the expected
additive utility case.

In this context it is immediately possible to see how robustness considerations can alter the

model�s predictions regarding the equity premium. In this two-period example, the continuously

compounded return on the risky asset is given by ln (D1=S0) and the observed equity premium

is simply:

E ln
D1

S0
� r = �2

�
1 +

1

�

�
:

Hence, it is theoretically possible to generate a high equity premium and a low risk free rate

with low enough values of the robustness parameter �. This result will be later con�rmed and

quanti�ed in the context of our complete model.11

10Miao (2004) also discusses a similar example.
11Standard models with time additive expected utility violate the Hansen-Jagannathan (HJ) bound (Hansen

and Jagannathan (1991)). Examining the HJ bound can shed more light on how robustness modi�es a standard
asset pricing framework. The robust Hansen-jagannathan bound needs to be modi�ed and it takes the following
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While the two-period example provides interesting insight into the implications of robust-

ness, it does not allow us to analyze the main focus of this study: the term structure of interest

rates. In the next section, we describe a continuous time, in�nite horizon model in which

we not only embed robustness considerations but also enrich the environment to allow for a

time-varying investment opportunity set.

3 Robustness in a Continuous Time Model with Sto-

chastic Volatility

In this section we present an in�nite horizon, continuous time, general equilibrium model in

which a robust representative agent derives optimal policies about consumption and investment.

For simplicity we assume a Lucas tree type economy with a conditionally heteroskedastic growth

rate of output. Our ultimate goal is to analyze the implied equilibrium yield curve in this

economy and, in particular, identify the implications of robustness for the term structure of

interest rates.12

form
� (m)

EQ (m)
� h

� (Re)| {z }
Model implied

� jE (Re)j
� (Re)| {z }
Data

where m = �u0 (C1) =u
0 (C0) is the intertemporal marginal rate of substitution (IMRS) and Re is the excess

return on a given asset class relative to the risk free rate (for a more general treatment see, for example, Barillas
et al. (2007)). Why do we need to modify the HJ bound when the agent seeks robust policies? Note that the
HJ bound links observed data (RHS) to the predictions of a candidate model (LHS). Since we refer to P as the
objective measure, the moments on the RHS are taken with respect to P (i.e. the data are actually generated
under P). However, pricing is done using the subjective distribution Q since the robust agent�s IMRS serves as
the pricing kernel. In our two period example, one can show that the LHS takes the following form

� (m)

EQ (m)
� h

� (Re)
� �

�
1 +

1

�

�
Again, with the appropriate � one can potentially satisfy the bound. Now the restriction is not only on the
unconditional volatility of the IMRS as is usually the case with the HJ bound. The additional term �h=� (Re)
on the LHS can be very dominant, depending on the degree of robustness adopted by the agent.
12Gagliardini et al. (2004) also study robust control implications for the behavior of the term structure of

interest rates in a Cox et al. (1985) type economy. We di¤er in two dimensions. They study a two factor model
closely related to Longsta¤ and Schwartz (1992). We focus on a one factor model. More importantly, we study
the empirical implications of our model and quantify the contribution of the state dependent market price of
model uncertainty to our understanding of asset prices both in the equity and bond market. We also document
supporting evidence to our key assumption of state dependent volatility in consumption growth. Finally, we
estimate the implied degree of uncertainty aversion implied by the data.
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3.1 The Economy

There is a single consumption good which also serves as the numeraire. We �x a complete

probability space (
;F ;P) supporting a univariate Brownian motion B = fBt : t � 0g. The
di¤usion of information is described by the �ltration fFtg on (
;F). All stochastic processes
are assumed progressively measurable relative to the augmented �ltration generated by B.

Note however that this probability space corresponds to an approximating model and serves

only as a reference point for the robust agent. The agent entertains a set of possible probability

measures on (
;F), denoted by P, which size is determined by a penalty function (relative
entropy) imposed on the agent�s utility function. Every element in P is equivalent to P (i.e.,
de�ne the same null events as P). We denote the distorted measure the agent chooses as

Q 2 P. The relative entropy imposes strong structure on the possible distorted measures. By
Girsanov�s theorem we require the distorted measure to be absolutely continuous with respect to

the reference measure. Finally, the conditional expectation operator under P and Q is denoted
respectively by Et (�) � E (�jFt) and EQt (�) � EQ (�jFt).
Let D be an exogenous output process that follows a geometric Brownian motion and solves

the following stochastic di¤erential equation (SDE)

dDt = Dt�dt+Dt

p
vtdBt (3.1)

One can obviously think of D as a general dividend process of the economy. In either

interpretation we will allow the trading of ownership on the tree that yields this output. The

parameters � and v are the local expectations (drift) and the local variance of the output growth

rate, respectively. We assume that v follows a mean-reverting square-root process

dvt = (a0 + a1vt) dt+
p
vt�vdBt; (3.2)

a0 > 0; a1 < 0; �v 2 R; 2a0 � �2v

Note that the same shock (Wiener increments) drives both the dividend growth rate and

volatility processes.13 This assumption is made solely to retain the parsimonious description of

the economy. The requirement a1 < 0 guarantees that v indeed converges back to its steady

state level �a0
a1
(= �v) at the velocity �a1. This long run level is positive since a0 > 0. The Feller

condition 2a0 � �2v guarantees that the drift is su¢ ciently strong to ensure v > 0 a.e. once

v0 > 0. �v is a di¤usion constant. Later we will show that the sign of �v plays an important

13We could also make the expected instantaneous output growth rate, �, stochastic. By assuming, for example,
an a¢ ne relation between �t and vt, the model remains tractable and can be solved analytically. For the purpose
of this paper, however, we maintain the assumption of a constant drift in the dividend process.
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role in our model since it determines the risk exposure of default free bonds to the source of

risk in the economy.

The assumption of stochastic volatility is important in our context and we will later doc-

ument it empirically. We know that if v is constant, the market price of risk is also state

independent, and thus the expectations hypothesis of the term structure of interest rates holds.

This result stands in sharp contrast to the empirical evidence (e.g., Fama and Bliss (1987),

Campbell and Shiller (1991), Backus et al. (1998), Cochrane and Piazzesi (2002)). We will

show in the next section how stochastic volatility interacts with robustness considerations to

a¤ect the predictions of our model.

Let dRt be the instantaneous return process on the ownership of the output process and St
be the price of ownership at time t. Then, we can write

dRt � dSt +Dtdt

St
(3.3)

= �R;tdt+ �R;tdBt

where �R and �R are determined in equilibrium. We also let r be the short rate process, which

will be determined in equilibrium.

3.2 The Dynamic Program of the Robust Representative Agent

The robust representative agent consumes continuously and invests both in a risk-free and a

risky asset. The risky asset corresponds to the ownership on the output process (the tree).

The risk free asset is in zero net supply in equilibrium. In addition, as discussed earlier in

Section 2, the agent chooses optimally a distortion to the underlying model in a way that

makes his decisions robust to statistically small model misspeci�cation. Formally, the agent

has the following objective function

sup
C;�
inf
Q

�
EQt
�R1
t
e��(s�t)u (Cs) ds

�
+ �Rt (Q)

	
(3.4)

subject to his dynamic budget constraint

dWt =
�
rtWt + �tWt

�
�R;t � rt

�
� Ct

�
dt+ �tWt�R;tdBt (3.5)

where Q is the agent�s subjective distribution, W is the agent�s wealth, � is the subjective

discount factor, C is the consumption �ow process, � is the portfolio share invested in the

risky asset, and � is the multiplier on the relative entropy penalty R, which will be interpreted

11



as the magnitude of the desire to be robust. When � is set to in�nity, (3.4) converges to the

expected time additive utility case. A lower value of � means the agent is more fearful of model

misspeci�cation and thus chooses Q further away from P in the relative entropy sense. In other
words, the set P is larger the smaller � is.
Let L2 be the set of all progressively measurable univariate processes h such that

R1
0
h2sds <

1 a.s.. Let H be the set of all h 2 H � L2 such that the process �Q de�ned by

�Qt = exp

�R t
0
hsdBs �

1

2

R t
0
h2sds

�
; t � 0 (3.6)

is a P-martingale. Then, h de�nes the probability Q 2 P by Q (F ) = lim
t!1

E
�
1F �

Q
t

�
for every

F 2 F , and �Q is also the conditional density process, or the Radon-Nikodym derivative of Q
with respect to P, and satis�es

�Qt = Et
�
dQ
dP

�
; t � 0

By Girsanov�s theorem, for every h 2 H we can de�ne a Brownian motion under Q as

BQt = Bt �
R t
0
hsds; t � 0 (3.7)

Using (3.7) we can also rewrite (3.6) as

�Qt = exp

�R t
0
hsdB

Q
s +

1

2

R t
0
h2sds

�
; t � 0 (3.8)

Note that �Q is not a Q-martingale.
With this setup at hand, the relative entropy processR (Q) for someQ 2 P can be expressed

conveniently as14

Rt (Q) =
1

2
EQt
�R1
t
e��(s�t)h2sds

�
; t � 0 (3.9)

The expression in (3.9) allows us to rewrite (3.4) as

sup
C;�
inf
h

�
EQt
R1
t
e��(s�t)

�
u (Cs) +

�

2
h2s

�
ds

�
(3.10)

Note that now the in�mization problem is well de�ned over H.
Finally, using (3.7) we write (3.1), (3.2) and (3.5) under the distorted measure Q. For

14See, for example, Hansen et al. (2006) and section 3, and especially proposition 4, in Skiadas (2003).
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example, the wealth process under the agent�s subjective distribution corresponds to

dWt =

264rtWt + �tWt

�
�R;t � rt

�
� Ct + ht�tWt�R;t| {z }

Drift contamination

375 dt+ �tWt�R;tdB
Q
t : (3.11)

In the context of the market return, for example, this drift contamination has an obvious

interpretation: it is the uncertainty premium the agent requires for bearing the risk of potential

model misspeci�cation

dRt =

24�R;t � (�ht�R;t)| {z }
Uncertainty premium

35 dt+ �R;tdBQt : (3.12)

The process h is the (negative of) the process for the market price of model uncertainty.

The di¤usion part �R;t on the return process is, as usual, the risk exposure of the asset. Their

multiplication is the equilibrium uncertainty premium. In order to obtain the risk premium in

the drift, one needs to rewrite the return process under the risk neutral measure. Let ' � �R�r
�R

be the local Sharpe ratio, or the process for the market price of risk in the model. Then,

using the same arguments that lead to (3.7) we can link the reference measure to a risk neutral

measure, denoted by Bq

Bqt = Bt +
R t
0
'sds; t � 0 (3.13)

or, alternatively, use both (3.7) and (3.13) to relate the risk neutral measure to the distorted

measure

Bqt = B
Q
t +

R t
0
('s + hs) ds: (3.14)

Then, the return process can be written as

dRt =

0B@�R;t � 't�R;t| {z }
Risk premium

1CA dt+ �R;tdBqt
Here, we see that the risk exposure �R is identical to the asset�s uncertainty exposure. This

leads to perfect correlation of risk and uncertainty premia in our model.
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3.3 Optimal Policies with Robust Control

In this subsection we solve the robust representative agent�s dynamic problem posited in Section

3.2. We use dynamic programming to derive closed form solutions for his optimal consumption

and investment decisions policies together with the conditional distorted distribution.

Let J (Wt; vt) denote the agent�s value function at time t where Wt and vt correspond to

current wealth and the conditional variance level respectively. The agent�s Hamilton-Jacobi-

Bellman (HJB) equation is15 ;16

�J = logCt +
�

2
h2t +DQJ (3.15)

where DQ is the Dynkin generator under the distorted measure. Informally, DQJ is EQ (dJ) =dt
and is derived by applying Ito�s lemma and using (3.11) and the distortion of (3.2) to character-

ize the dynamics of J . The only di¤erence between this HJB equation and a standard one is the

introduction of a cost and bene�t for distorting the objective distribution. The cost is given by

the relative entropy term �
2
h2t (pessimism is costly) and the bene�t is hidden in the distortion

of the Dynkin generator. The drift of the J process is distorted since the state processes are

themselves distorted.

The solution for h from the in�mization problem is given by

ht = �
1

�
(JW;t�W;t + Jv;t�v

p
vt) (3.16)

One can immediately see that the intuition from the 2-period example survives our in�nite-

horizon, continuous-time setting. First and foremost, the robustness correction h is state de-

pendent. The robust agent derives the distorted conditional distribution in such a way that

the reference conditional distribution �rst order stochastically dominates the chosen distorted

conditional distribution. If it was not the case then there would be states of the world in

which the robust agent would be considered optimistic. Also, the agent wants to maintain the

optimal relative entropy penalty constant since � is constant. In order to achieve this when con-

ditional volatility is stochastic, the distortion has to be stochastic and increase with volatility

(see expression (2.2)).

Second, the size of the distortion is inversely proportional to the penalty parameter �: the

distortion vanishes as � ! 1. Third, whenever the marginal indirect utility and volatility of
wealth (JW and �W ) are high, the agent becomes more sensitive to uncertainty and distorts

15See also Anderson et al. (2003) and Maenhout (2004) for similar formulations.
16See Appendix B for a more detailed derivation of the policies and the value function.
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the objective distribution more. Low levels of wealth imply large marginal indirect utility of

wealth. These are states in which the agent seeks robustness more strongly. The second term

in the parentheses corresponds to the e¤ect of the state v on the distortion h. Since Jv < 0

for all reasonable parametrizations, the sign of �v dictates the optimal response of the agent.

Consider the benchmark case when �v is positive. Following a positive shock, marginal utility

falls as consumption rises, and volatility v increases. Therefore, the investment opportunity

set deteriorates exactly when the agent cares less about it. Since the evolution of v serves as a

natural hedge for the agent, he reduces the distortion h. The opposite occurs when �v < 0.

Maximizing (3.15) over �, the optimal portfolio holding of the risky asset at time t can be

expressed in two equivalent forms, each emphasizing a di¤erent aspect of the intuition. The

�rst one is the myopic demand

�t =
�QR;t � rt
�2R;t

: (3.17)

Equation (3.17) that the demand for the risky asset is myopic: the agent only cares about

the current slope of the mean-variance frontier. However, this slope is constructed using his

subjective beliefs. From an objective point of view, the agent deviates from the observed mean-

variance frontier portfolio due to his (negative) distortion to the mean h: he believes the slope

is lower and thus decreases his demand for the risky asset. The second form of the demand for

the risky asset captures this idea

�t =
�R;t � rt
�2R;t

+
ht
�R;t

: (3.18)

The �rst element on the right-hand side of equation (3.18) describes the myopic demand of

a log-utility agent who is endowed with the objective measure. However, the pessimistic agent

optimally reduces his holdings of the risky asset by h=�R < 0 since he believes the expected

return on the risky asset is lower than the one implied by the objective measure.

We posit the guess that the value function is concave (log) in the agent�s wealth and a¢ ne

in the conditional variance

J (Wt; vt) =
logWt

�
+ �0 + �1vt (3.19)

Now, we can use (3.19) to rewrite (3.16) as

ht = �
1

�

�
1

�
+ �1�v

�
p
vt (3.20)

Here, we see that the distortion, or the (negative of the) market price of model uncertainty
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is linear in the conditional volatility of the output growth rate. In equilibrium
p
v is the

conditional volatility of the consumption growth rate.17

We can also rewrite (3.17) as

�t =
1

1 + 1
��

�R;t � rt
�2R;t| {z }

Myopic demand

�
1
�

1 + 1
��

Jv�v| {z }
Hedging demand

The �rst element on the RHS corresponds to a variant of the usual myopic demand for a

risky asset in a log-utility setup. This term simply gives the trade-o¤ between excess return

compensation and units of conditional variance. Note that the coe¢ cient is not unitary, as in the

usual log problem. The reason is best understood when one keeps in mind the mapping between

a robust control agent and an SDU agent with unitary EIS. When introducing robustness, we

e¤ectively increase risk aversion, but maintain the unitary EIS. This e¤ect pushes down the

demand schedule for the risky asset. The second element is the hedging-type component arising

from uncertainty aversion, and it is larger in absolute terms the larger Jv or �v, ceteris paribus.

The hedging part is positive since Jv�v > 0 due to the intuition given in (3.16).

The consumption policy is unchanged when the agent seeks robust policies: C = �W . The

wealth and substitution e¤ects still cancel out in our setup. When volatility increases, the agent

decreases his holdings of the risky asset substantially since he cannot amortize the volatility

increase through changes in his consumption. Unitary EIS implies a constant consumption-

wealth ratio, thus all volatility changes are channelled through the asset market. In other

words, robustness, or pessimism, entails that the agent perceives the local expectations on the

risky asset to be lower than the objective drift on the same asset. The substitution e¤ect implies

that the agent should invest less since the asset is expected to yield low return in the future. In

contrast, the wealth e¤ect predicts that he should consume less today and save instead. In the

17It is possible to assume an exogeneous process for � separately from v and still maintain a fairly simple
closed-form equilibrium. All one needs is to scale the local volatility of � with the current level of

p
v. One such

possible model will assume
d�t = (x0 + x1�t) dt+

p
vt��dB2;t; x1 < 0

Then, the value function for the robust agent is

J (Wt; �t; vt) =
logWt

�
+ �0 + �1�t + �2vt

and the robust correction is still linear in the conditional stochastic volatility

h = �
p
v

�

�
1

�
+ �1�� + �2�v

�
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case of log utility, these two e¤ects cancel each other. Consequently, the e¤ect of robustness

on the consumption policy is eliminated. Changing a log-agent�s desire to be robust will only

a¤ects the risk free rate and the return on the risk free asset.

3.4 Robust Equilibrium

In this section we solve for the equilibrium price of the risky asset and the risk free rate. We

de�ne and discuss the implications of the robustness assumption on the equilibrium prices.

Speci�cally, we will examine the level and volatility of both the equity premium and the risk

free rate. First, we de�ne a robust equilibrium:

De�nition 1 A robust equilibrium is a set of consumption and investment policies/processes

(C; �) and a set of prices/processes (S; r) that support the continuous clearing of both the market

for the consumption good and the equity market (C = D;� = 1) and (3.10) is solved subject to

(3.5), (3.2) and (3.7).18

The only di¤erence between this equilibrium de�nition and a conventional one is that the

agent solves a robust control problem. We will now show that this a¤ects the equilibrium short

rate.

In equilibrium, since the agent consumes the output (C = D) the local consumption growth

rate and the local output growth rate are the same (�C = �). Also, the agent�s equilibrium path

of wealth is identical to the evolution of the price of the �tree�since � = 1. Therefore, W = S.

Hence, D = C = �W = �S. As is usually the case with a log representative agent, not only the

consumption wealth ratio is constant but so is the dividend-price ratio
�
C
W
= D

S
= �

�
. We see

that, as in the two-period example, the robustness considerations do not a¤ect the consumption

policy and the pricing of the �tree�. In that case, what are the implications of the fact that the

agent seeks robust policies? The e¤ect shows up in the risk free rate and the way expectations

are formed about growth rates or the return on the risky asset. The equilibrium risk free rate

can be derived from (??)

rt = �+ �C;t +
p
vtht � vt

= �+ �C;t � vt
�
1 +

1

�

�
1

�
+ �1�v

��
= �+ �� �vt (3.21)

18The same de�nition also appears in Maenhout (2004). Without stochastic volatility considerations, he also
derives the equilibrium risk free rate and equity premium.
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For the remainder of the paper we de�ne

� � 1 + 1
�

�
1

�
+ �1�v

�
The usual comparative statics arguments apply to this short-rate equation. A higher sub-

jective discount rate preference parameter � makes the agent wants to save less, so that the

equilibrium real rate must be higher to compensate the agent for saving as much as before.

Higher future expected consumption growth makes the agent want to consume more today

(substitution e¤ect). The real rate must therefore be higher to prevent him from borrowing.

Higher consumption volatility activates a precautionary savings motive, so that the real rate

must be lower to prevent the agent from saving. The role of robustness can be interpreted in

two ways. First, robustness distorts the expected consumption growth rate. Lower expected

consumption growth rate lowers the equilibrium risk free rate since the substitution e¤ect is

now weaker. The second interpretation, which may be more intuitive, is that robustness ampli-

�es the e¤ect of the precautionary savings motive in the same direction (h < 0 when � < 1),
and thus lowers the equilibrium level of the short rate. All else equal, the robust agent wants

to save more than an expected utility agent and therefore the former needs a stronger equilib-

rium disincentive to save in the form of lower risk free rate. In this latter interpretation, the

distortion is proportional to consumption growth rate volatility and thus can be interpreted as

a modi�cation to the precautionary savings motive.

The equilibrium local expected return on the risky asset can immediately be derived from

(3.3) and the fact that S = D=�

dRt =
�
�D;t + �

�
dt+ �D;tdBt

=
�
�D;t + �+ ht�D;t

�
dt+ �D;tdB

Q
t

And the observed equity premium is19

�R;t � rt = �vt = vt|{z}
Risk Premium

+ (�� 1) vt| {z }
Uncertainty Premium

= covt

�
dCt
Ct
; dRt

�
+
1

�

�
1

�
+ �1�v

�
vt

19We use the quali�er �observed�to emphasize again that what the agent treats as merely a reference model
is actually the DGP. Therefore, anything under the reference measure is what the econometrician observe when
he has long time series of data.
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The equity premium has both a risk premium and an uncertainty premium components. The

former is given by the usual relation between the agent�s marginal utility and the return on

the risky asset. If the correlation between the agent�s marginal utility and the asset return

is negative, the asset commands a positive risk premium
h
covt

�
dCt
Ct
; dRt

�
> 0

i
and vice versa.

The higher the degree of robustness (i.e., the smaller the parameter �) higher are the uncertainty

premium and the market price of model uncertainty. While a decrease in � increases the equity

premium, it also decreases the risk free rate through the precautionary savings motive. The EIS

is independent of �. By lowering � we are e¤ectively increasing the aversion to model uncertainty

but not a¤ecting the intertemporal substitution. Also, the distortion of equilibrium prices is

not surprising since the agent believes consumption growth rate is lower than the actual growth

rate under the reference model. Hence, his IMRS process is distorted.

We see that robustness can account for both a high observed equity premium and low level

of the risk free rate. What about the volatility of the risk free rate? Since we do not change the

substitution motive, the only magni�cation is through the precautionary savings. Empirically

v is extremely smooth and, thus, contributes very little to the volatility of r.20

Previous studies (e.g., Anderson et al. (2003), Skiadas (2003), Maenhout (2004)) have

showed that without wealth e¤ects, a robust control economy is observationally equivalent

to a recursive utility economy in the discrete time case (Epstein and Zin (1989), Weil (1990))

or to a stochastic di¤erential utility (SDU) in the continuous time economy as in Du¢ e and

Epstein (1992a) and Du¢ e and Epstein (1992b). Thus, our combined market price of risk and

uncertainty can be viewed as an e¤ective market price of risk in the SDU economy.21 The di¢ -

culty with such approach is that it requires implausibly high degrees of risk aversion. Another

di¢ culty arises in the context of the Ellsberg paradox. Our approach assumes that agents

do not necessarily know the physical distribution and want to protect themselves against this

uncertainty.

20If we allow for a stochastic � with positive correlation with v, �uctuations in v will be countered by
movements in � since they a¤ect the risk free rate with opposite signs. In other words, if we allow the substitution
e¤ect and the precautionary motive to vary positively over time, the risk free rate can be very stable.
21Even though we do not lose the homotheticity of our problem since our agent has log preferences, Maenhout

(2004) discusses the need to rescale the problem in order to obtain an exact mapping from the robust control
economy to an SDU economy. We do not incorporate this rescaling since our interpretation focuses solely on
an agent who faces Knightian uncertainty and acts as an ambiguity averse agent. Thus, we conduct this study
with the intention of studying the behavior of both the market price of risk and uncertainty.
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4 Pricing the Term Structure of Interest Rates

Denote the intertemporal marginal rate of substitution (IMRS) process by � where �t �
e��t=Ct. Using Ito�s lemma we characterize the dynamics of �

d�t
�t

= �rtdt�
p
vtdB

Q
t (4.1)

where the drift is the (negative of) the short rate and the di¤usion part is the market price of

risk.

Using (4.1) it is straightforward to price default free bonds.22 ;23 We use the following guess

for the functional form for the time t default-free zero-coupon bond price (an a¢ ne yield

structure) that matures at time T . Let � = T � t

p (� ; vt) = exp [�0 (�) + �1 (�) vt] : (4.2)

Start with the fundamental pricing equation where the expected marginal utility weighted

price is a martingale

EQt [d (�tpt)] = 0 =) EQt
�
dpt
pt

�
� rtdt = �

d�t
�t

dpt
pt
: (4.3)

The excess expected return on a bond over the short rate is determined by the conditional

covariance of the return on the bond and marginal utility, or alternatively, by the product of

the market price of risk and the risk exposure of the bond. As usual, if they covary positively,

the asset serves as a hedge against adverse �uctuations in marginal utility and commands a

negative risk premium. In times of high volatility, the precautionary savings motive induces

the agent to shift his portfolio away from the equity market and towards bonds. Such a shift

induces an upward pressure on bond prices (and thus yields decrease). Therefore, bonds pay

well in good times, rendering them a risky investment. Note, however, that the expectations

are taken over the distorted measure. These distorted expectations a¤ect prices in a systematic

way relative to the prices that would have prevailed under the objective measure, introducing

an uncertainty premium element into the price of the bond.

22A more detailed derivation of the bond pricing rule, using the PDE approach, is in appendix C.
23Our paper belongs to the vast literature on a¢ ne term structure models. The term structure literature is too

large to summarize here but studies can be categorized into two strands - equilibrium and arbitrage free models.
Our paper belongs to the former strand. The advantage of the equilibrium term structure models is mainly the
ability to give meaningful macroeconomic labels to factors that a¤ect asset prices. Dai and Singleton (2003)
and Piazzesi (2003), for example, review in depth the term structure literature.
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From (4.2) one can show that the risk premium on a default free bond is

�d�t
�t

dpt
pt
= �1 (�)�vvt

where �1 is positive and determines the cross section restrictions amongst di¤erent maturity

bonds. The sign of the risk premium is determined by the correlation of the output growth rate

and the conditional variance. In the next section we discuss the intuition behind the predictions

of the model, and especially the role robustness plays in our context.

Moreover, the observed excess return that long term bonds earn over the short rate is

not completely accounted for by the risk premium component. We derive the dynamics of the

return on a bond with arbitrary maturity by applying Ito�s lemma to (4.2). Under the objective

measure we have,

dp (� ; vt)

p (� ; vt)
=

24rt + �1 (�)�vvt| {z }
Risk Premium

+ �1 (�)�vvt (�� 1)| {z }
Uncertainty Premium

35 dt+ �1 (�)�vpvtdBt:
In the presence of uncertainty aversion, there is an uncertainty premium that drives a wedge

between the return on a � -maturity bond and the short rate. The more robust the agent, the

larger the market price of uncertainty is in absolute terms (i.e., � is larger so �h = (�� 1)
p
v

is larger). Also, higher conditional variance increases the uncertainty premium since the agent

distorts the mean of the objective model more. In other words, higher �v also increases the

uncertainty exposure of the asset. We can express the uncertainty premium as

�ht|{z}
Price of uncertainty

� diff
�
dp (� ; vt)

p (� ; vt)

�
| {z }
Uncertainty Exposure

= �1 (�)�vvt (�� 1)| {z }
Uncertainty premium

where diff (�) is the di¤usion part of the process. The intuition and implication of this result
are discussed in the empirical section (5).

The yield on a given bond is simply an a¢ ne function of the conditional variance

Y (� ; vt) = �
1

�
ln p (� ; vt) :

The two extreme ends of the yield curve are lim�!0 Y (� ; vt) = rt and lim�!1 Y (� ; vt) =
�+ �� a0��1. Thus the spread is

lim
�!1

Y (� ; vt)� lim
�!0

Y (� ; vt) = �a0��1 + �vt
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where the expression for ��1 is given in Appendix C.

4.1 Why Can The Model Explain the Cross Section of Bond Yields?

Some Intuition

In this section we explain more intuitively why the model accounts for the cross section regulari-

ties of bond yields. More importantly, we focus on the contribution of robustness considerations

to the results.

4.1.1 Bond Returns and Upward Sloping Yield Curve

A bond price is the conditional expected IMRS. Ceteris paribus, a positive shock to the ex-

pected growth rate of consumption lowers the equilibrium bond price, and thus, increases the

yield on that bond. The bond price decreases due to a negative substitution e¤ect. If expected

consumption growth rate has positive contemporaneous correlation with consumption, or nega-

tive marginal utility, the bond is considered a safe asset and therefore commands a negative risk

premium. The opposite also holds true. Furthermore, the expected IMRS is also a¤ected by the

conditional variance of consumption growth but in the opposite direction. Holding everything

else constant, a positive shock to the conditional variance of the growth rate of consumption

increases the bond price, and thus, lowers the yield on that bond. Here, people want to save

more due the precautionary savings motive and therefore, in equilibrium, bond prices are higher

and yields are lower. Again, what determines the sign of the risk premium is the correlation

of the conditional variance with marginal utility. If the correlation with marginal utility is

negative the bond is considered a risky asset since it pays well in good times. Hence, investors

require a positive risk premium on the bond.

Since the distortion h is linear in the conditional volatility of consumption growth (v), it is

natural to think of robustness as magnifying the precautionary savings motive. Mean reversion

of the conditional variance process coupled with a positive correlation between conditional

variance and consumption growth entails a positive risk premium on long term bonds relative

to short term bonds. Also, since long term yields are averages of future expected short term

yields plus a risk premium, the average yield curve is expected to be upward sloping.

An alternative way of interpreting the average positive slope of the yield curve is by ex-

amining the objective and subjective (endogenous) evolution of the conditional variance of

consumption growth rate. The (perceived) evolution of v under the distorted measure Q is

di¤erent from the evolution of v under the objective measure P in two respects. Write (3.2)
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under both measures

dvt = ��v (vt � �v) dt+ �v
p
vtdBt

= ��Qv
�
vt � �vQ

�
dt+ �v

p
vtdB

Q
t : (4.4)

Here, �v is the velocity of reversion and �v is the steady state of v, both under the reference

measure. However, the subjective velocity of reversion is

�Qv = �v � �v (1� �) > �v (4.5)

and the subjective steady state is

�vQ =
�v

�Qv
�v < �v: (4.6)

Observation (4.6) is enough to explain the positive slope of the yield curve. Note that

pricing is done using the IMRS of the robust agent and he thinks that the steady state of

the conditional variance of consumption growth rate is lower than the objective target. By

persistently missing the target, the agent on average believes that v is expected to decrease. In

other words, he on average thinks that yields are expected to increase due to the e¤ect of the

precautionary savings motive on prices.

A di¤erent way of interpreting (4.4) is the following. The variance dynamics are character-

ized by a non-negative mean-reverting process. This process gravitates towards its steady state

and the speed of reversion is stronger the further the variance level is from its steady state. Ro-

bustness introduces a negative distortion to the drift of the variance process
�
ht�v

p
vt = �v (1� �) vt < 0

�
.

A negative distortion to the drift that depends linearly on the level of the variance introduces

zero as an additional focal point to the variance process. When the variance is above its objec-

tive steady state, both the distortion and the pull towards the objective steady state work in

the same direction. However, when the variance is below its steady state, both forces work in

opposite directions. The distortion always pulls down towards zero while the other force pulls

the variance up towards its objective steady state. The point where these two forces are equal

is the subjective steady state and it is between the objective steady state (positive) and zero,

leading to (4.4).
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4.1.2 Negative Contemporaneous Correlation Between the Spread and the Level
of Yields (Yield Curve Rotation), and the Term Structure of Unconditional
Volatilities of Yields

In quarterly data over the sample 52:Q2 � 06:Q4 the correlation between the level and slope
of the real yield curve is �0:5083 with standard errors of 0:0992 (Newey-West corrected with
4 lags). Here, the slope is the di¤erence between the 1-year and 3-months yields. This �nding

is robust over di¤erent time intervals and di¤erent frequencies. The model can account for this

fact in the following way.24 Recall that a positive shock to conditional volatility lowers yields.

Also note that yields are perfectly (positively) correlated since all of them are an a¢ ne function

of the same factor. However, short yields are more sensitive to conditional volatility shocks.

To understand why, it helps to think about the mean reversion of the conditional variance (the

ergodicity of its distribution). The e¤ect of any shock is expected to be transitory. The full

impact of the shock happens at impact and then the conditional variance starts reverting back

to its steady state. Therefore, the e¤ect of, say, a positive shock is expected to dissipate and

yields are expected to start to climb back up. This expected e¤ect is incorporated into long

term yields immediately. Short yields in the far future are almost una¤ected by the current

shock since it is expected that the e¤ect of the shock will disappear eventually. Since long term

yields are an average of future expected short yields plus expected risk premia, they tend to be

smoother than short term yields.

The expected risk premium is also a linear function of the state, and thus inherits its mean

reversion. Therefore, the expected risk premium in the far future is also smoother than the risk

premium in the short run. This also contributes to the rotation of the yield curve: since the

short end of the yield curve is very volatile relative to the long end, whenever yields decrease,

the spread increases (or become less negative, depending on the initial state). The opposite

also holds true.

4.1.3 How Does the Model Account for the Rapidly Declining Slope of the Yield
Curve and the High Persistence of Yields?

Traditionally, one factor models encounter an inherent di¢ culty in trying to account simultane-

ously for the rapidly declining slope of the yield curve (i.e., strong convexity of the slope of the

yield curve) and the high persistence of yields. Time-series evidence implies that interest-rate

shocks die out much more slowly than what is implied from the rapidly declining slope of the

24We explain the intuition through the time variation of the conditional volatility of consumption growth
rate. One can alternatively use the substitution channel and focus on time variation in expected consumption
growth rate.
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average yield curve (Gibbons and Ramaswamy (1993)).

Even though we present a one factor model, we can still account for these two facts with a

single parametrization. The key lies in expression (4.5). The agent believes that the conditional

variance reverts to its steady state faster than under the objective measure
�
�Qv > �v

�
. Since

yields are a¢ ne functions of the conditional variance of consumption growth, they inherit the

velocity of reversion of v under the objective model. In other words, the persistence of yields is

measured ex-post and is solely determined by the objective evolution of v without any regard

to what the agent actually believes.

At the same time, the slope of the yield curve (or the pricing of bonds) is completely

determined by what the agent believes the evolution of v is. If �Qv is substantially larger than

�v, the slope of the yield curve can �atten at relatively short horizons, re�ecting the beliefs of

the agent that v will quickly revert to its steady state level. Since the agent persistently thinks

that �Qv > �v the slope can be on average rapidly declining. When analyzing the results of our

estimation we will show that this is indeed the case.

4.1.4 Biased Expectations: Pessimism and (the Reverse of) Doubt

Abel (2002) argues that one can potentially account for the equity premium and the risk free

rate when modeling pessimism and doubt in an otherwise standard asset pricing (Lucas tree)

model. Pessimism is de�ned as a leftward translation of the objective distribution in a way

that the objective distribution �rst order stochastically dominates the subjective distribution.

Doubt is modeled in a way that the subjective distribution is a mean preserving spread of the

objective distribution.

There is evidence that people tend to consistently underestimate both market return and

the conditional volatility of output growth rate (e.g., Soderlind (2006)). Also, Giordani and

Soderlind (2006) confront the Abel (2002) suggestion with survey data and �nd strong support

for the pessimism argument in growth rates of both GDP and consumption. The result is

robust over forecasts of di¤erent horizon and with both the Livingston survey and the Survey

of Professional Forecasters data. However, they also �nd evidence of overcon�dence in the sense

that forecasters underestimate uncertainty. Therefore, the evidence suggests the existence of

the reverse of doubt.

Our model endogenously predicts both phenomena.25 First, robustness requirements lead

the agent to pessimistic assessments of future economic outcomes (e.g., expression (3.12) in

25For a decision-theoretic link between ambiguity averse agent and the setup of Abel (2002), see Ludwig and
Zimper (2006).
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which the agent negatively distorts the expected return on the risky asset). Consequently, the

agent persistently underestimates expected growth rates of both the risky asset and consump-

tion. In that sense, robustness endogenizes the pessimism idea of Abel (2002). Our model also

predicts biased expectations concerning the dynamics of the conditional variance process v in

a way that is consistent with the data. Expressions (4.5) and (4.6) formalize this idea. In the

case where �v > 0 (an assumption that we later support empirically), a pessimistic assessment

of expected output growth rate leads to what can be interpreted as optimistic beliefs about

future output growth volatility. In other words, the model predicts also the reverse of doubt.

Note that here the agent knows exactly the current conditional variance but wrongly estimates

its future evolution.

5 The Empirical Study

In this section we undertake three tasks. First, we provide empirical support for our assumption

that the volatility of consumption growth is state dependent. Our discussion complements the

analysis of Bansal and Yaron (2004) and Bansal et al. (2005) who argue that there is stochastic

volatility in the growth rate of consumption. Second, we estimate our model.26 There are six

parameters in the model, �ve of which are standard. Third, we interpret the non-standard

parameter � using detection error probabilities to map �. Since the model is a description of a

real economy, all the data we use are expressed in real terms. The description and discussion

of the data are relegated to Appendix D.27

5.1 Conditionally Heteroskedastic Consumption Growth

In this subsection we provide direct empirical evidence about the level and behavior of the condi-

tional variance of real aggregate consumption growth. We examine two measures of conditional

volatility: realized volatility and series estimated from various GARCH speci�cations.

5.1.1 ARMAX-GARCH Real Consumption Growth Rate

We start with a simple univariate time series parametric estimation. The model we are �tting

to the consumption growth process is an ARMAX(2; 2; 1) model and a GARCH(1; 1) to the

26Wachter (2001), for example, studies the e¤ect of consumption externalities (habits) on the term structure
of interest rate by drawing empirical restrictions from consumption data and both the equity and bond markets.
27A few studies, for example Brown and Schaefer (1994) and Gibbons and Ramaswamy (1993), also use real

data to estimate a term structure model. However, they do not draw restrictions from the equity market and
consumption data and their preferences assumption is standard which implies that the equity premium and risk
free rate puzzles are still present in the models they estimate.
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innovations process:

A (L)
�Ct
Ct�1

= c+B (L)Rt�1 + C (L) �C;t; (5.1)

�C;t+1 = �C;t"C;t+1; "C;t � N (0; 1) ;
D (L)�C;t = ! + F (L) �2C;t;

where A;B;C;D; F are polynomials of orders 2; 1; 2; 1; 1 respectively, in lag operators. �Ct
Ct�1

, Rt,

�t are, respectively, the realized real consumption growth rate at time t, the real return on the

aggregate market index at time t�1, and an innovation process with time-varying variance. In
Figure 5.1 we plot the GARCH volatility estimates for both real aggregate consumption growth

rate and the real return on the aggregate stock market. We also plot a measure of realized

volatility for both consumption growth and market return series that we obtain by �tting an

ARMA(2; 2) to the original data and then use the square innovations to construct the realized

variance series. The sample period is Q2:52�Q4:06.
First, there seems to be evidence of what has been dubbed as the �Great Moderation�

(e.g., Stock and Watson (2003)). It is clear that consumption growth volatility has slowly

declined over the sample period but the volatility of the market return did not. This pattern is

apparent in both measures of conditional volatility. Second, it seems that there are both high

frequency (business cycle) �uctuations and a very low frequency stochastic trend in consumption

growth volatility. We will show that the estimation procedure mostly identi�es these higher

frequency movements in the conditional variance and not the very low frequency movements.

Our hypothesis is that higher frequency �uctuations are channeled through the asset market

while there are other aspects which we do not identify that contribute to the low frequency

�uctuations. In other words, when we estimate the full model, the e¤ect of the equity and

bond market restrictions is re�ected in the implied persistency of the conditional variance

process. Here, we use the Hodrick-Prescott �lter with parameter 1600 to disentangle these

two components of consumption growth volatility. Figure 5.2 presents this result and makes

clear that the decline in the low frequency component started in the 060, before the Great

Moderation.28

28In our model it is hard to make �conditional�statements about the economy, mainly because we modeled a
constant drift to the consumption growth rate process. It is obviously interesting to think about the correlation
structure of expected consumption growth rate and the conditional variance process. Empirically, there is
evidence that suggests that interest rates are procyclical (e.g., Donaldson et al. (1990)) and volatility is either
countercyclical or at least slightly leads expected growth rates which are believed to be countercyclical (e.g.,
Whitelaw (1994)). Our conditional variance process is assumed to correlate positively with realized consumption
growth rate. Also, the conditional variance correlate negatively with interest rates. In this sense, variance and
real interest rates behave as in the data. If, for example, expected growth rate correlate negatively with realized
consumption growth rates, they will correlate negatively with the conditional variance. In that case, a positive
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Figure 5.1: ARMAX-GARCH estimation for both real consumption growth rate and real aggregate market
return. We �t model (5.1) and present the GARCH estimates for the conditional variance of real consumption
growth rate and real aggregate market return in the left panel. The right panel present the square innovations
from an ARMX speci�cation to real consumption growth and real aggregate market return. The quarterly
data is Q2:52�Q4:06. The gray bars are contraction periods determined by the NBER.

We also use the volatility estimates to explain asset prices (see also Chapman (1997), Bansal

and Yaron (2004), Bansal et al. (2005)). In particular, in �gure 5.3 we examine the dynamic

cross correlation patterns between consumption growth volatility obtained from the GARCH

estimation in (5.1) and the spread between the real 1-year real yield and the real 3-months real

yield.

These patterns agree with the model�s predictions. We know that shorter maturity yields

respond more than longer maturity yields to a volatility shock. This result is mainly due to

the ergodicity of the state variable that a¤ect yields. If the state is assumed to revert back to a

known steady state, we expect the longer yield to have a smaller response to contemporaneous

shock to consumption growth rate will have a double negative e¤ects on real interest rates. Expected growth
rates will be low and thus the substitution e¤ect will make equilibrium real interest rates lower. At the same
time, conditional variance will be higher and the precautionary savings motive will push the equilibrium real
interest rate even lower. Also, Chapman (1997) documented the strong positive correlation of real yields and
consumption growth rate when excluding the monetary experiment period of 1979� 1985.
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Figure 5.2: HP-�itered conditional variance of real consumption growth rate derived from an ARMAX-
GARCH estimation in (5.1). The top panel presents the low frequency trend and bottom panel presents the
cyclical component. The HP-�lter parameter is 1600. The quarterly data is over the period Q2:52�Q4� 06.

shocks. Note that we do not identify the type of shock in this exercise. We merely observe a

shock that happens to a¤ect both consumption growth volatility and the bond market.

The second result is the sign response of the yields to a volatility shock. When conditional

volatility increases we see that yields decrease. From the precautionary savings motive e¤ect

we do expect such response. Since in our model ambiguity aversion ampli�es the precautionary

savings motive, we expect this channel to play an important role when linking consumption

growth volatility and yields. When combining these two results, we expect the spread to increase

with a volatility shock. In other words, on average, the yield curve rotates when a shock to

volatility occurs.

There are three caveats to these results. First, the upper left panel in Figure 5.1 depicts the

behavior of the conditional variance of real consumption growth. One can argue that the series

exhibit a non-stationary behavior. If this is the case, then the GARCH process is potentially

misspeci�ed. Given the slow-moving component we identi�ed, it is hard to convincingly argue

against such hypothesis. Second, our macro data is sampled at quarterly frequency. Drost and

29



­10 ­5 0 5 10
­0.1

0

0.1

0.2

0.3

0.4

Yields Spread (t) and Conditional Variance (t+ j,  j= ­12,...,12)

Quarters

C
or

re
la

tio
n

Figure 5.3: Dynamic cross-correlation between real consumption growth rate volatility and the real spread
between the 1 year and 3 months yields. The quarterly data covers the period Q2:52�Q4:06.

Nijman (1993) have shown that temporal aggregation impedes our ability to detect GARCH

e¤ects in the data. Even if our model is not misspeci�ed, the fairly low frequency sampling

may suggest it is (see also Bansal and Yaron (2004)). Third, we showed that the (sign of

the) correlation between shocks to realized consumption growth and the conditional variance

is important in explaining risk and uncertainty premia. The simple GARCH exercise does not

help us identify the sign of this correlation. We address this di¢ culty next.

5.1.2 Real Dividends Growth Rate: GJR-GARCH

Since we argue that the sign of �v plays an important role in understanding risk premia in our

model, we also estimate a GJR-GARCH(1; 1) (Glosten et al. (1993)). Originally, this model

was constructed to capture �leverage�e¤ects when examining market returns (i.e., a negative

shock to returns means lower prices and more leveraged �rms, hence higher volatility of future

returns). Here we use it with a di¤erent interpretation in mind. We use the leverage coe¢ cient

to extract information about the sign of the correlation between consumption/dividends growth

rate innovations and conditional variance innovations. Since we argue that the sign of �v is
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positive, as indicated by asset prices behavior, we hope to �nd the reverse of a leverage e¤ect.29

We �t the following time series model

�Ct
Ct�1

= c+ �C;t; (5.2)

�C;t+1 = �C;t"C;t+1; "C;t � N (0; 1) ;
D (L)�C;t = ! + F (L) �2C;t +G (L) If�C;t<0g�

2
C;t;

where the polynomial G captures the leverage e¤ects and

If�C;t<0g =
(
1 �C;t < 0

0 otherwise
:

We regress the realized consumption growth rate only on a constant (e¤ectively demeaning

the growth rate) since we assume in our model that dividends growth rate drifts on a constant.

The more negative � is, the larger is �2. Thus, we expect the leverage e¤ect coe¢ cient to

be negative in order to capture the positive correlation between shocks to growth rates and

conditional variance. In most lag speci�cations we estimated, the leverage coe¢ cients in the G

polynomial have a negative sign, which suggests that negative shocks to the dividends growth

rate implies a negative shock to the conditional variance. However, and perhaps not surprisingly,

with quarterly frequency data it is hard to detect these GARCH e¤ects. Leverage e¤ects are

especially hard to detect. In most cases we cannot reject the null that leverage e¤ects are

not present. In order to investigate the sign of �v further, we use real dividends instead of

consumption. To alleviate the problem with the GARCH estimation, we use monthly data.30

Figure 5.4 displays the results of a GJR-GARCH(1; 1) estimation where c is the unconditional

mean of the real growth rate of aggregate dividends

This �gure shows the presence of volatility clustering. The estimation procedure suggests

that �v is indeed positive since the leverage coe¢ cient is always negative and statistically

signi�cant. On average, when a negative shock hits the dividends growth rate, we tend to see a

decline in the conditional variance of the same process. Table 5.1.2 summarizes the estimation

results for the leverage coe¢ cient over di¤erent time intervals.31

It is interesting to note that the earlier post-war data supports more strongly the hypothesis

that shocks to dividends are positively correlated with shocks to volatility. This covariation

29Even though our interpretation has nothing to do with the leverage e¤ect discussed in Glosten et al. (1993),
we still use this term for convenience.
30We obtained the real dividends series from Robert Shiller�s website. See also Appendix D.
31This suggestive evidence is also consistent with di¤erent time intervals and with EGARCH estimation (see

Nelson (1991)) over the same time intervals. Results are available from the authors upon request.
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Figure 5.4: GJR-GARCH(1; 1) estimation (model 5.2) of the conditional variance of real aggregate dividends
growth rate with monthly observations over the period M1:52�M4:06.

measures the risk exposure of default free bonds to risk and uncertainty. If the market prices of

these risks and uncertainty did not move in the opposite direction one should, ceteris paribus,

expect to observe higher risk premia in the earlier part of the sample.

In summary, the data seems to con�rm two things. First, the existence of a small time-

varying component in the volatility of growth rates. Second, the correlation of shocks to

dividends growth rate and shocks to conditional variance is positive.

5.2 Model Estimation

In this section we present and interpret our complete model estimation results. Since the model

permits closed-form expressions for �rst and second moments we use the generalized method

of moments (GMM) in the estimation procedure (Hansen (1982)). Even though conditional

variance is not directly observable in the data it is theoretically an a¢ ne function of the short

rate (or any other real yield with arbitrary maturity). Therefore, we use the short rate as an
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Table 5.1: Estimating the �leverage�coe¢ cient over di¤erent time intervals. The data is monthly real aggre-
gate dividends over M1:52 �M12:06 from Robert Shiller�s website. A negative point estimate means that a
negative shock to realized dividends growth rate is accompanied by a negative shock to the conditional vari-
ance of dividends growth rate.

Period �Leverage�Coe¢ cient Standard Errors
M1:52�M12:06 �0:390 0:129
M1:62�M12:06 �0:242 0:175
M1:72�M12:06 �0:312 0:215
M1:82�M12:06 �0:263 0:163
M1:90�M12:06 �0:256 0:195
M1:52�M12:81 �0:509 0:167
M1:52�M12:89 �0:442 0:156

observable that completely characterizes the behavior of the conditional variance.32 We also

compare the moments implied by the model to their empirical counterparts.

5.2.1 Orthogonality Restrictions and Identi�cation

Our procedure is similar to the one used by, for example, Chan et al. (1992). Our approach

is to focus mainly on the time series restrictions to estimate the structural parameters. We

do not focus on the cross sectional restrictions of the model as in Longsta¤ and Schwartz

(1992) and Gibbons and Ramaswamy (1993). Since we have a single factor model, yields are

perfectly correlated. Therefore, including cross sectional restrictions may reduce the power

of the overidentifying restrictions in small samples. We use our point estimates to generate

the model�s implied yield curve and compare it to the empirical yield curve. In that sense, our

approach is more ambitious. It is important to note that since our model only makes statements

about the real economy, all the data we use is denominated in real terms. Other authors have

used nominal data to estimate real models (e.g., Brown and Dybvig (1986)).

We need to estimate 6 parameters fa0; a1; �; �; �; �vg. We form orthogonality conditions

32We also used the simulated method of moments (SMM, Du¢ e and Singleton (1993)) to estimate the model.
This method is natural when the model contains unobservables. The results we obtain using SMM support
the results we obtain using GMM and are available from the authors upon request. Bansal et al. (2007) also
compare their GMM estimates to an SMM estimates and conclude that in the presence of time averaging, using
SMM can prove useful.
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implied by the model using the following notation

Yt+1 �
�
�Y (1; vt+1) ; Rt+1;

�Ct+1
Ct

;Y (4; vt)� Y (1; vt)
�
;

Xt � Y (1; vt) ;

Zt �
�
1;Y (1; vt) ; Rt;

�Ct
Ct�1

�
;

where Yt+1 is observed at time t + 1 and contains the change in the one-quarter real yield

(�Y (1; vt+1)), the realized real aggregate market return (Rt+1), the realized real aggregate
consumption growth rate

�
�Ct+1
Ct

�
and the real spread between the 1-year and 3-months real

yields (Y (4; vt)� Y (1; vt)). Xt is the explanatory factor. We use the 3-months yield as a

su¢ cient statistic for the unobserved conditional variance process. Last, we use lagged 3-

months, market return and realized consumption growth rate as instruments in the vector Zt.

The stacked orthogonality conditions are given in m

u1;t+1 � Yt+1 � �Y;tjXt;

u2;t+1 � diag
�
u1;t+1u

0
1;t+1 � �Y;t�0Y;tjXt

�
;

mt+1 �
h
u1;t+1 u2;t+1

i

 Zt:

We draw �rst and second moment restrictions. �Y;tjXt and �Y;tjXt have the parametric forms

implied by the model and are a¢ ne in Xt.

What about identi�cation? Note that since robust preferences are observationally equiv-

alent to recursive preferences, disentangling the risk aversion coe¢ cient from the robustness

parameter � is generally not trivial. Since we have log-utility we do need to worry about such

a potential identi�cation problem: log preferences restrict to unity the EIS and risk aversion

and thus allow us to identify the uncertainty parameter �. Also, � is identi�ed through the

consumption growth rate restriction. Once � is identi�ed, we can identify � from the aggregate

market return condition. The three parameters that govern the dynamics of the conditional

variance v can be identi�ed either from the second moment of consumption growth rate or the

second moment of the aggregate market return. Also, the bond market contributes important

information about v. The fact that identifying the dynamics of v is done through these three

channels can potentially create some ambiguity in the interpretation of the level and speed of

reversion of the conditional variance. Nevertheless, we believe that these sources of information

shed some new light on the dynamics of v in a way that will be clear in our interpretation of
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the point estimates, a task we undertake next.

5.2.2 Point Estimates of Structural Parameters

Table 5.2 presents the point estimates over di¤erent time periods. In Table 5.3 we perform the

same estimation exercise without including the volatility of consumption growth rate in our set

of moments.
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Aside from the robustness parameter �, all coe¢ cients are immediately interpretable. All

parameters are statistically di¤erent from zero. Also, the model is not being rejected according

to the J-test. We will explain the DEP�s column later.

Note that � is stable and equal to the average real aggregate quarterly consumption growth

rate over the sample. Similarly, � is stable over di¤erent samples and invariant to the consump-

tion volatility restriction.

One obvious �nding is that the estimated � is sensitive to the inclusion of consumption

volatility in the estimation. When the volatility of consumption growth is ignored, the procedure

is not restricted by the smooth consumption process and thus the implied pricing kernel (SDF)

is much more volatile and more robustness is not needed to justify the observed asset prices.

In this sense, the implied volatility of the SDF is closer to the Hansen-Jagannathan bound.

Also, note that a0 and �v are much larger when we do not impose the consumption volatility

restriction. The reason is that the procedure mainly picks up the aggregate market return

volatility, which is much larger than the volatility of consumption growth rate. The implied

evolution of v is much more volatile when consumption growth volatility is excluded.

Interestingly, the velocity of reversion (�a1) of v is invariant to the consumption growth
rate volatility. What is obvious from Tables 5.2 and 5.3 is that the estimation procedure detects

mostly high frequency movements and not the potential slow moving component in consumption

growth volatility we identi�ed earlier (Figure 5.2). Hence, it appears that the high-frequency

component from the market data dominates in the full-model estimation.

Panel A of Table 5.2.2 presents the half life of the volatility shock process implied by the

estimation procedure. We also present in that panel the perceived half life by the robust agent.

Expression (4.5) shows that the perceived velocity of mean reversion is faster than the physical

speed at which shocks to volatility die out. In general, the point estimates imply that shocks

to volatility die out relatively fast. For comparison purposes, Panel B of Table 5.2.2 presents

the implied reversion coe¢ cient and half life derived using the autoregressive coe¢ cient we

calculated from the GARCH estimated conditional variance series in (5.1) without adding the

market as an explanatory variable to the consumption growth rate.33 These results con�rm

that without forcing asset market restrictions on the consumption series, we observe a very

slow moving process for conditional variance. At the same time, the conditional variance of the

aggregate market return is much less persistent. The general estimation procedure results in

33Our point estimates correspond to quarterly data. In general, with data sampled at quarterly frequency one
can map an autoregressive coe¢ cient to a coe¢ cient governing the speed of reversion as our �v. Let �̂ denote
the autoregressive coe¢ cient. Then, the quarterly speed of reversion coe¢ cient �v = � ln (�̂) and the half life
is ln (2) =�v.
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panel A are, to some extent, a combination of these two e¤ects.34

Table 5.4: Panel A: Point estimates of the velocity of reversion coe¢ cient and the implied half life (in quar-
ters) of the conditional variance process. Objective referes to the physical rate in which the conditional vari-
ance gravitates to its steady state. Distorted referes to the rate in which the robust agent believes the condi-
tional variance gravitates to its steady state. These point estimates are from the estimation procedure that
imposes the volatility of real aggregate consumption growth rate as a moment condition. Panel B: implied
reversion coe¢ cients and half lifes (in quarters) for the conditional volatility of consumption growth rate and
aggregate market return derived from the GARCH procedure. The consumption growth rate mean is modeled
as an ARMAX(2,2,1) and the aggregate market return is modeled as ARMA(2,2).

Panel A: Q2:52�Q4:06 Q1:90�Q4:06
Estimate Half Life (Q) Estimate Half Life (Q)

Objective 0:1951 3:553 0:0997 6:952
Distorted 0:2994 2:315 0:1343 5:161
Panel B: Q2:52�Q4:06

Estimate Half Life (Q)
Consumption 0:010 68:373
Market 0:4069 1:704

Interestingly, in our benchmark estimation result we �nd the half life of the conditional

variance process to be 3:553 quarters. The recent �long run risks�literature usually calibrates

asset pricing models with a highly persistent conditional variance process.35 For example,

Bansal and Yaron (2004) assume that the autoregressive coe¢ cient (with monthly frequency

data) in the conditional variance of the consumption growth process is 0:987.36 This number

implies a half life of 13:24 quarters, which is almost 4 times higher than the number we obtain

in our empirical results. As explained earlier, this di¤erence is driven largely by the inclusion

of equity and bond markets in our set of moments. What we show in this paper is that robust

decision making coupled with state dependent volatility requires moderate levels of persistence

in the conditional variance of the consumption growth process. Recall that we assume a constant

drift in consumption growth. If we assume a stochastic and highly persistent �, as in Bansal

and Yaron (2004), we would need to worry about the volatility of the risk free rate. In other

words, if the substitution e¤ect channel is very persistent and the precautionary savings motive
34We conduct this comparison only for the entire period Q2:52 � Q4:06 since we want to examine evidence

concerning very low frequency components. Even our longest sample is somewhat short to conveniently detect
the slow moving component. We believe that shorter samples will make the detection exercise impossible.
35Bansal and Yaron (2004) �nd that introducing a small highly persistent predictable component in consump-

tion growth can attenuate the high risk aversion implications of standard asset pricing models with recursive
utility preferences. However, this persistent component is di¢ cult to detect in the data. Croce et al. (2006)
present a limited information economy where agents face a signal extraction problem. Their model addresses
the identi�cation issues of the long run risk component. Hansen and Sargent (2007b) is another example for
the di¢ culty in identifying the long run risk component. However, in addition to a signal extraction problem,
their agent seeks robust policies and consequently his estimation procedure is modi�ed.
36See table IV in Bansal and Yaron (2004).
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is much less persistent, the short rate can potentially be very volatile. If shocks to � were to

die out much slower than shocks to v, the ergodic distribution of the short rate would be very

volatile. In that sense, we might be able to reconcile our results with the calibration exercise

of Bansal and Yaron (2004) if we assumed an expected consumption growth rate process.

Expressions (4.5) and (4.6) allow us to discuss a mechanism which is central to our results.

In Figure 5.5 we plot the objective and perceived impulse response functions for the conditional

variance v following a shock. Note that, unlike a rational expectations agent, the robust agent

is on average wrong about the future evolution of v. Hence, his biased expectations lead him to

believe that the conditional variance will decrease. As mentioned earlier, this should lead to an

upward-sloping unconditional sloping yield curve through the precautionary savings channel.
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Figure 5.5: Biased expectations. Using the parameters estimated over the entire period Q2:52 � Q4:06, the
�gure shows the impulse response function of the conditional variance to a positive and negative shocks. The
solid line represents the objective evolution of v and the dashed line represents what the robust agent believes
the evolution of v is going to be.
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5.2.3 Theoretical and Empirical Moments

Table 5.5 presents a comparison of model-implied and empirical moments over di¤erent time

spans for the equity and consumption data. Table 5.6 presents the same exercise, but without

imposing consumption growth rate volatility in the estimation. The model fares well, especially

with the aggregate market return and the equity premium.37 Also, the model is doing a good

job in matching the low consumption growth rate. The same conclusion seems to hold over

di¤erent time horizons. Note, however, that again we see the tension between market return

and consumption growth volatility. When imposing consumption growth volatility, the model

compromises on the implied market return volatility being somewhere between the empirical

consumption growth rate volatility and the empirical market return volatility. When ignoring

the consumption growth volatility from the estimation procedure, the model easily matches the

aggregate market return volatility. This result is obviously not surprising since we have a log-

agent that consumes a constant fraction of his wealth. Given that the substitution e¤ect and

the income e¤ects cancel each other, the agent absorbs all market �uctuations to his marginal

utility.

Tables 5.7 and 5.8 report model implied and empirical moments for the bond market, where

the second table ignores the volatility of consumption growth in our set of moments. The model

is doing a good job in reproducing the levels of the 3-months and 1-year real yields. The results

in the last two columns of each table are particularly interesting. The second to last column

(� (Y3m)) reports the �rst-order autocorrelation of the 3-months yield. Note that we do not
impose this restriction in our estimation and yet the model is able to produce this moment with

high accuracy. This information is indirectly encoded into the orthogonality conditions though

the imposition of the change in the 3-months yield. The last column captures the holding

period returns of a strategy that dictates buying a 1-year bond and selling it after 3 quarters.

Backus et al. (1989) point to the di¢ culty of representative agent models to account for both

the sign and magnitude of holding period returns in the bond market. Again we note that we

did not impose any holding period returns conditions in the estimation procedure and yet the

model captures the returns dynamics well. Nevertheless, we should note that by imposing the

spread and the change in the short rate conditions, we provide the estimation procedure with

enough information about the dynamics of the 1-year and 3-months yields to the extent that

the holding period returns are captured accurately by the model.

The top panel in Figure 5.6 presents estimation results over the years 097�0 06. During this
period TIPS bonds were traded in the U.S. and thus provide a good proxy to real yields. The

37Erbas and Mirakhor (2007) document global evidence (53 emerging and mature markets) that a large part
of the equity premium re�ects investor aversion to ambiguities resulting from institutional weaknesses.
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Table 5.5: Empirical and theoretical equity and goods market moments (with consumption volatility restric-
tion). The period column represents the time interval of the data that is used to estimate the model. The
data is in quarterly frequency with quarterly values. T is the number of quarterly observations used to esti-
mate the model. Columns with the number (1) present the empirical moments. Empirical moments computed
with the data and theoretical moments are implied by the estimated model. Columns with the number (2)
present the theoretical moments. The theoretical moments were generated using 1; 000 replications of the
economy that was calibrated using the estimated parameters over the corresponding period. Robust standard
errors are given below each moment. The standard errors were corrected using the Newey-West procedure
with 4 lags. The standard errors for the theoretical moments were computed over the 1; 000 replications. All
moments are given in % values. �R, �C , �R, and Y3m are the real return on the market (including dividends),
real growth rate of consumption, volatility of real aggregate market return and real 3 month yield, respec-
tively.

Period T �R �R � Y3m �R �C
(1) (2) (1) (2) (1) (2) (1) (2)

Q2:52�Q4:06 218 12:820 13:692 11:289 11:719 34:306 22:385 2:109 2:924
2:321 0:024 2:350 0:034 2:164 0:038 0:174 0:022

Q1:62�Q4:06 180 11:879 12:586 10:130 10:552 35:499 22:748 2:085 2:940
2:544 0:028 2:562 0:039 2:487 0:044 0:188 0:025

Q1:72�Q4:06 140 12:611 12:985 10:925 10:879 36:599 23:302 1:937 2:882
3:021 0:033 3:029 0:044 2:865 0:045 0:204 0:030

Q1:82�Q4:06 100 15:424 14:614 13:234 12:218 35:510 24:372 2:206 3:259
3:240 0:039 3:206 0:051 2:941 0:041 0:178 0:035

Q1:90�Q4:06 68 13:060 12:298 11:393 10:579 34:075 23:315 2:035 2:971
3:887 0:044 3:807 0:057 3:753 0:046 0:203 0:040

Q2:52�Q4:81 118 10:749 17:617 9:784 16:053 32:983 24:751 2:004 2:977
3:155 0:042 3:276 0:062 3:111 0:097 0:279 0:036

Q2:52�Q4:89 149 12:710 15:950 11:241 13:842 34:411 23:964 2:143 3:086
2:905 0:034 2:976 0:048 2:642 0:063 0:236 0:029
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Table 5.6: Empirical and theoretical equity and goods market moments (without consumption volatility re-
striction). The period column represents the time interval of the data that is used to estimate the model.
The data is in quarterly frequency with quarterly values. T is the number of quarterly observations used to
estimate the model. Columns with the number (1) present the empirical moments. Empirical moments com-
puted with the data and theoretical moments are implied by the estimated model. Columns with the number
(2) present the theoretical moments. The theoretical moments were generated using 1; 000 replications of the
economy that was calibrated using the estimated parameters over the corresponding period. Robust standard
errors are given below each moment. The standard errors were corrected using the Newey-West procedure
with 4 lags. The standard errors for the theoretical moments were computed over the 1; 000 replications. All
moments are given in % values. �R, �C , �R and Y3m are the real return on the market (including dividends),
real growth rate of consumption, volatility of real aggregate market return and real 3 month yield, respec-
tively.

Period T �R �R � Y3m �R �C
(1) (2) (1) (2) (1) (2) (1) (2)

Q2:52�Q4:06 218 12:820 19:564 11:289 17:682 34:306 36:566 2:109 4:110
2:321 0:043 2:350 0:056 2:164 0:080 0:174 0:037

Q1:62�Q4:06 180 11:879 18:579 10:130 16:616 35:499 36:742 2:085 4:117
2:544 0:050 2:562 0:064 2:487 0:095 0:188 0:043

Q1:72�Q4:06 140 12:611 18:648 10:925 16:713 36:599 37:482 1:937 4:139
3:021 0:057 3:029 0:072 2:865 0:094 0:204 0:049

Q1:82�Q4:06 100 15:424 18:802 13:234 16:548 35:510 37:124 2:206 4:496
3:240 0:063 3:206 0:079 2:941 0:081 0:178 0:056

Q1:90�Q4:06 68 13:060 15:531 11:393 13:782 34:075 34:177 2:035 3:992
3:887 0:070 3:807 0:087 3:753 0:087 0:203 0:062

Q2:52�Q4:81 117 10:592 25:701 9:625 24:142 33:078 41:079 2:025 4:257
3:204 0:083 3:327 0:109 3:132 0:231 0:278 0:067

Q2:52�Q4:89 149 12:710 23:824 11:241 21:822 34:411 39:497 2:143 4:347
2:905 0:062 2:976 0:083 2:642 0:148 0:236 0:052
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Table 5.7: Empirical and theoretical bond market moments (with consumption volatility restriction). The
period column represents the time interval of the data that is used to estimate the model. The data is in
quarterly frequency with quarterly values. T is the number of quarterly observations used to estimate the
model. Columns with the number (1) present the empirical moments. Empirical moments computed with the
data and theoretical moments are implied by the estimated model. Columns with the number (2) present the
theoretical moments. The theoretical moments were generated using 1; 000 replications of the economy that
was calibrated using the estimated parameters over the corresponding period. Robust standard errors are
given below each moment. The standard errors were corrected using the Newey-West procedure with 4 lags.
The standard errors for the theoretical moments were computed over the 1; 000 replications. All moments,
aside from the autocorrelations, are given in % values. Y3m, Y1y, and � (Y3m) are the real 3 month yield, real
1 year yield and the �rst order autocorrelation coe¢ cient of the real 3 month yield, respectively. The last
column reports real holding period return for buying a one year to maturity bond and selling it after three
quarters.

Period T Y3m Y1y � (Y3m) ln
h
p(1;vt+3)
p(4;vt)

i
(1) (2) (1) (2) (1) (2) (1) (2)

Q2:52�Q4:06 218 1:531 1:973 2:250 2:659 0:843 0:863 2:465 2:888
0:263 0:010 0:234 0:007 0:060 0:000 0:274 0:006

Q1:62�Q4:06 180 1:749 2:033 2:241 2:501 0:835 0:881 2:394 2:658
0:292 0:011 0:279 0:008 0:071 0:000 0:321 0:007

Q1:72�Q4:06 140 1:686 2:106 2:214 2:601 0:830 0:876 2:359 2:766
0:362 0:012 0:351 0:008 0:075 0:001 0:406 0:007

Q1:82�Q4:06 100 2:190 2:396 2:742 2:926 0:862 0:888 2:932 3:105
0:366 0:012 0:378 0:009 0:062 0:001 0:443 0:009

Q1:90�Q4:06 68 1:666 1:719 2:015 2:073 0:897 0:892 2:118 2:190
0:422 0:013 0:371 0:011 0:058 0:001 0:420 0:010

Q2:52�Q4:81 118 0:965 1:565 1:865 2:467 0:804 0:800 1:976 2:768
0:330 0:020 0:247 0:011 0:096 0:001 0:275 0:008

Q2:52�Q4:89 149 1:469 2:107 2:358 2:934 0:823 0:834 2:586 3:211
0:328 0:015 0:292 0:009 0:077 0:001 0:348 0:007
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Table 5.8: Empirical and theoretical bond market moments (without consumption volatility restriction). The
period column represents the time interval of the data that is used to estimate the model. The data is in
quarterly frequency with quarterly values. T is the number of quarterly observations used to estimate the
model. Columns with the number (1) present the empirical moments. Empirical moments computed with the
data and theoretical moments are implied by the estimated model. Columns with the number (2) present the
theoretical moments. The theoretical moments were generated using 1; 000 replications of the economy that
was calibrated using the estimated parameters over the corresponding period. Robust standard errors are
given below each moment. The standard errors were corrected using the Newey-West procedure with 4 lags.
The standard errors for the theoretical moments were computed over the 1; 000 replications. All moments,
aside from the autocorrelations, are given in % values. Y3m, Y1y, and � (Y3m) are the real 3 month yield, real
1 year yield and the �rst order autocorrelation coe¢ cient of the real 3 month yield, respectively. The last
column reports real holding period return for buying a one year to maturity bond and selling it after three
quarters.

Period T Y3m Y1y � (Y3m) ln
h
p(1;vt+3)
p(4;vt)

i
(1) (2) (1) (2) (1) (2) (1) (2)

Q2:52�Q4:06 218 1:531 1:882 2:250 2:525 0:843 0:864 2:465 2:739
0:263 0:013 0:234 0:009 0:060 0:000 0:274 0:008

Q1:62�Q4:06 180 1:749 1:962 2:241 2:417 0:835 0:874 2:394 2:570
0:292 0:014 0:279 0:010 0:071 0:001 0:321 0:009

Q1:72�Q4:06 140 1:686 1:935 2:214 2:422 0:830 0:868 2:359 2:585
0:362 0:015 0:351 0:011 0:075 0:001 0:406 0:010

Q1:82�Q4:06 100 2:190 2:253 2:742 2:777 0:862 0:885 2:932 2:955
0:366 0:017 0:378 0:013 0:062 0:001 0:443 0:012

Q1:90�Q4:06 68 1:666 1:749 2:015 2:092 0:897 0:891 2:118 2:205
0:422 0:018 0:371 0:015 0:058 0:001 0:420 0:014

Q2:52�Q4:81 117 0:967 1:559 1:828 2:381 0:806 0:800 1:963 2:650
0:333 0:027 0:237 0:016 0:096 0:001 0:278 0:013

Q2:52�Q4:89 149 1:469 2:002 2:358 2:798 0:823 0:837 2:586 3:065
0:328 0:021 0:292 0:014 0:077 0:001 0:348 0:011
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solid line is the average level of the yield curve over this period with 95% con�dence bands.

The dot-dashed line is the model-implied average yield curve. Note that we only impose two

bond market restrictions in the estimation procedure and yet the model can closely imitate the

behavior of the entire yield curve (within the con�dence bands). The bottom panel depicts

the term structure of the volatilities of yields. Clearly, the model can replicate the downward

slope due to the mean reversion in the estimated conditional variance process, as discussed

earlier. The impression is that the procedure anchors the implied �rst and second moments of

the 1-year yield to its empirical counterpart, but it is still doing a good job in approximating

the entire curve.

As discussed earlier, our model can reconcile the di¢ culty one factor models face when

trying to match both the high persistence of yields and the high convexity of the curve. Figure

5.6 shows that the agent prices the yield curve as if shocks to v die out fast. However, Tables 5.7

and 5.8 con�rm that the model can still match the persistence of the short rate. Empirically,

all yields exhibit the same level of persistence.38

5.3 �Disciplining Fear�: Detection Error probabilities

In this section, we undertake the task of interpreting �. We showed so far that the model can

account for di¤erent asset pricing facts and puzzles. Nevertheless, we have yet to tackle an

important question - does the model imply too much uncertainty aversion? Even though we

showed that coe¢ cients of relative risk aversion and elasticity of intertemporal substitution of

unity are su¢ cient, we still need to gauge the amount of ambiguity aversion implied by the

data. Detection error probabilities (DEP�s) are the mechanism through which we can interpret

�, and consequently, assess the amount of ambiguity aversion implied by our estimation.

In order to quantify ambiguity aversion, we ask the following: when the agent examines the

(�nite amount of) data available to him and has to decide whether the reference or the distorted

model generated the data, what is the probability of making a model detection mistake? If the

probability is very low, this indicates that the two models are far apart statistically, and that

the agent should easily be able to distinguish between them. In this case, one might be led

to conclude that the degree of robustness implied by our estimation is unreasonably high. If

to the contrary, the DEP is high, then it is reasonable to believe that the agent would �nd it

di¢ cult to determine which model is the true representation of the economy.39

38The term structure literature usually identi�es 3 factors that account well for most of the variation in the
yield curve (Litterman and Scheinkman (1991)): level, slope and curvature. The level slope is very persistent
and, thus, accounts for most of the observed persistence of yields.
39For an elaborate discussion of DEP�s see, for example, Anderson et al. (2003) and Barillas et al. (2007). For

a textbook treatment of robustness and DEP�s see chapters 9 and 10 in Hansen and Sargent (2007a).
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Figure 5.6: Top panel: average real yield curve extracted from the TIPS data from M1:97 � M12:06 (solid
line) with 95% con�dence bands with Newey-West (12 lags) correction. Model implied average yield curve
(dot-dashed line). The model is estimated over the same period as the empirical yield curve. Bottom panel:
empirical term structure of unconditional volatilities of the TIPS data (solid line). with 95% con�dence bands
with Newey-West (12 lags) correction. The model is estimated over the same period as the empirical yield
curve.

Technically, DEP�s are a mapping from the space of structural parameters to a probability

space, which is inherently more easily interpretable than parameter values. Based on our

estimate of the parameter �, we infer the detection error probabilities from the data. It then

allows us to interpret whether the degree of ambiguity aversion in our parameterization seems

excessive. Appendix E details how to derive the DEP for a given economy using simulations.

The last column in tables 5.2 and 5.3 presents the implied DEP�s in each economy. First, it

is important to point out that DEPs have to be between 0% and 50% (if both models are the

same, then there is a 50% chance of making a mistake when assessing which model is the true

one). What we �nd is that our implied DEPs are de�nitely not unreasonably small, particularly

in the context of a framework where the only source of uncertainty is a single shock. This is,

once again, an outcome of the interaction between the two main building blocks of our model

- robust decision making and state dependent volatility. Together they imply a high enough
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market price of risk and uncertainty, and in fact with stochastic volatility the agent does not

need to distort the reference model �too much�. Therefore, the DEPs are su¢ ciently large.

The lowest DEP is for our benchmark model. This is not surprising for two reasons. First, we

use the longest possible sample, making it easier for the agent/econometrician to distinguish

between the objective and distorted models. Second, imposing (the very low) consumption

growth rate volatility restricts the implied volatility of the SDF severely. Therefore, the model

implies a stronger distortion in a way that enables us to achieve the Hansen-Jagannathan bound.

When either the number of observations is smaller or we ignore the consumption growth rate

volatility, the DEP increases.

Figure 5.7 present two comparative statics exercises on the implied DEPs. The left panel

�xes the benchmark model and varies only �. The right panel introduces variation only in the

number of observations available to the econometrician. We see a clear pattern: Higher � means

less robustness. Thus, it becomes harder to statistically distinguish between the reference and

the distorted models as the agent distorts less and less. As � !1 the DEP reaches 0:5. This

is not surprising, since � =1 implies that the distortion to the DGP is zero (recall (3.20)) and

both models are therefore indistinguishable. On the other hand, a lower value of � means more

robustness and the models become statistically distant from each other (in the relative entropy

sense), re�ected in a lower DEP. Similarly, more observations reduce the DEP, in line with our

earlier intuition.

5.3.1 The Evolution of �Fear�

In this subsection we document the way fear of model misspeci�cation evolved over time in

the context of our framework. We constructed Figure 5.8 by estimating our complete model

using rolling (overlapping) windows of 20 years of quarterly data, from the early 1970s to 2007.

For any given estimation iteration, we present the point estimate of � with its corresponding

95% con�dence interval and DEP. It is apparent from this �gure that � and DEPs are closely

related to each other, with a cross correlation of 0:8113 and Newey-West standard errors with 4

lag correction of 0:0418. Therefore, it strongly con�rms the suggestion that we should examine

DEPs when trying to understand the level of uncertainty aversion exhibited by economic agents.

On the basis of this exercise it seems that the agent was seeking more robustness in the

later period of the sample. An interesting question is to determine whether this evolution could

be linked to macroeconomic and �nancial developments over the same time period, and in

particular its link with the discussion about the Great Moderation.40 Since the investigation of

40On the one hand, macro volatility, and in particular consumption growth volatility, has steadily declined
in the later period of our sample (the Great Moderation). However, market return volatility does not exhibit
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Figure 5.7: Comparative statics on DEP�s. Left panel: Fixing all the estimated parameters in the bechmark
case with consumption growth volatility as a restriction and over the longest sample Q2:52 � Q4:06. Varying
robustness in the model (by varying � on the x-axis) we compute the implied DEP�s (y-axis). Right panel:
Fixing all the parameters in the benchmark model and varying only the hypothetical number of observations
(x-axis) and computing the implied DEP�s (y-axis).

any causality is outside the scope of this study, we leave this question for future research.

6 Conclusion

We presented an equilibrium dynamic asset pricing model that can account for key regularities

in the market for default free bonds, while predicting an equity premium, risk free rate and

consumption growth as in the data. We estimated the model and showed that it performs

well, even though the structural parameters of risk aversion and elasticity of intertemporal

substitution are unitary. The results are driven by the interaction of the robust control decision

the same pattern. One possibility is that the smoother consumption growth is interpreted by the estimation
procedure as an increased uncertainty aversion which implies the decline in detection error probabilities in the
later part of the sample. In other words, it is harder to achieve the HJ bound with smoother consumption.
Thus, the estimation procedure compensates for this di¢ culty by encoding more robustness into the agent�s
behavior. Consequently, the implied DEPs are higher.
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Figure 5.8: Evolution of � and DEP�s over time. We estimate our complete model by using rolling (overlap-
ping) windows of 20 years of quarterly data. For any given estimation iteration, we present the point estimate
of � (dot-dashed line) with its corresponding 95% con�dence interval (gray bands). The standard errors are
corrected using the Newey-West procedure with 4 lags. Given the estimated parameters in each iteration, we
compute the implied DEP (solid line).

mechanism and state dependent conditional volatility of consumption growth. We interpreted

most of what is usually considered risk premium as a premium for Knightian uncertainty. The

agent is being compensated in equilibrium for bearing the possibility of model misspeci�cation.

We also showed that modeling robustness can help explain biases in expectations documented

in surveys.

We showed that under the assumption of state dependent conditional volatility of consump-

tion growth, not only the market price of risk is stochastic but also the market price of model

uncertainty. As part of our research agenda, we are currently investigating a model with het-

erogenous robust control agents. Such a model can generate both state dependent risk and

uncertainty premia even though the conditional volatility of consumption is constant. The

channel through which the model generates stochastic market prices of risk and uncertainty is

the trade between the agents and the consequent �uctuations in the agent�s relative wealth.41

41Liu et al. (2005) introduce state dependent market price of uncertainty by modeling rare events. Hansen
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We also suggested that di¤erent frequencies in the conditional volatility of consumption

growth are potentially important in understanding asset prices. We �nd it easier to detect

high frequency variation in the volatility of consumption growth rate. Also, the full estimation

of the model has trouble detecting the lower frequency component. We believe that further

investigation of this point is warranted. In addition, an interesting extension would be to

consider the link between the evolution of volatility over time and the behavior of asset prices,

in the presence of ambiguity aversion. This is directly linked to the recent literature on the

Great Moderation in macroeconomics.

We also believe that extending the empirical investigation to a broader asset class can

be fruitful. Liu et al. (2005), for example, examine options data in the context of a robust

equilibrium with rare events. We believe that one can address di¤erent empirical regularities

pertaining to the valuation of interest rate sensitive assets with robust considerations. Also,

we think that robustness can shed more light on our understanding of exchange rate dynamics,

and in particular the failure of uncovered interest rate parity. Finally, our model is a complete

characterization of a real economy. One can extend this framework to a nominal one either by

assuming an exogenous price level process as in Cox et al. (1985) and Wachter (2001) or by

modelling an exogenous money supply process as in Buraschi and Jiltsov (2005) to derive an

endogenous price level.

and Sargent (2007b) introduce state dependent market price of uncertainty through the distortion (tilting) of
Bayesian model averaging.
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A Proof of Lemma 1

We will prove the lemma in the context of the two period example. Given the class of Normal

distributions, we need to calculate the relative entropy between the reference measure P and an
arbitrary Normal distribution Q � N

�
�Q; �

2
Q
�
. Recall that the relative entropy between two

distributions is de�ned as

R (Q) �
R
ln

�
dQ
dP

�
dQ:

We �rst calculate the integrand
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�
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Then, we take expectations with respect to Q
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�2
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:

In the log-utility case, we need to minimize (2.1) over the (potentially) distorted mean and

variance. First, we take the �rst order condition with respect to �Q

1|{z}
Bene�t

+ �
�Q � �P
�2P| {z }
Cost

= 0

=) �Q = �P �
�2P
�
:

Therefore, the mean distortion is additive and equals to ��2P
�
. Also, the �rst order condition

with respect to the variance distortion reveals that the robust control agent chooses not to

distort the variance

�
�
���1Q + �Q�

�2
P
�| {z }

Cost

= 0

=) �Q = �P
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We next show that when the agent has power utility with risk aversion coe¢ cient 
 6= 1

he chooses to distort both the mean and variance of the reference distribution. However, the

variance distortion has a particular structure. We let u (C) = C1�
= (1� 
) ; 
 6= 1 and take
�rst order condition with respect to the distorted mean

�1�
 exp
�
(1� 
)�Q + (1� 
)

2 �2Q=2
�| {z }

Bene�t

+ �
�Q � �P
�2P| {z }
Cost

= 0: (A.1)

And the �rst order condition with respect to the variance distortion is given by

�1�
 (1� 
)�Q exp
�
(1� 
)�Q + (1� 
)

2 �2Q=2
�| {z }

Bene�t

+ �
�
���1Q + �Q�

�2
P
�| {z }

Cost

= 0: (A.2)

These two equations can be solved numerically to obtain the optimal distortions. However,

we can show that the variance distortion is linked to the mean distortion in a particular way.

Divide (A.2) by (A.1) and rearrange to isolate for the distorted variance

�2Q =
�2P

1� (
 � 1)
�
�P � �Q

� :
Assuming 
 > 1 and the distorted mean �Q < �P then �

2
Q > �2P and @�

2
Q=@

�
�P � �Q

�
> 0.

This completes the proof.

B Optimal Policies and Equilibrium

In this appendix we provide some additional details on the derivation of the optimal policies of

the agent and the solution of the value function in equilibrium. With a slight abuse of notation,

we write the HJB equation as

0 =

�
logCt +

�

2
h2t

�
dt+ EQt dJ � �Jdt: (B.1)

We posit the following guess for the agent�s value function

J (Wt; vt) =
logWt

�
+ �0 + �1vt: (B.2)
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Applying Ito�s lemma to (B.2) and omitting time subscripts for convenience we get

dJ = JWdW + Jvdv +
1

2
JWW [dW ]

2 (B.3)

=

�
JW�

Q
W + Jv

�
a0 + a1v + �vh

p
v
�
+
1

2
JWW�

2
W

�
dt+

�
JW�W + Jv

p
v�v

�
dBQ

=

�
1

�W
(rW + �W (�R � r)� C + �W�Rh) + �1

�
a0 + a1v + �vh

p
v
�
� �

2�2R
2�

�
dt

+

�
��R
�
+ �1

p
v�v

�
dBQ:

Next, for the minimization problem we take the derivative of the value function with respect

to h and obtain

�h|{z}
Cost

+
��R
�
+ �1�v

p
v| {z }

Bene�t

= 0

=) h = �1
�

�
��R
�
+ �1�v

p
v

�
:

Recall that in equilibrium the agent holds the entire claim on the output process, and thus

� = 1. This yields expression (3.20).

Deriving � requires taking �rst order conditions in the maximization problem which shows

up only in the drift of dJ . Also, deriving the consumption policy yields the usual envelope type

condition u0 (C) = JW .

We now solve for the parameters �0 and �1. First, plug in (B.2) and (B.3) into (B.1) and

use the optimal policies for h, � and C and the equilibrium risk free rate and market return

0 = log �+ logW +
v

2�

�
1

�
+ �1�v

�2
� �

�
1

�
logW + �0 + �1v

�
+
1

�W
(rW + �W (�R � r)� C + �W�Rh) + �1

�
a0 + a1v + �v

p
vh
�
� �

2�2R
2�

;

0 = log �+
v

2�

�
1

�2
+
2�1�v
�

+ �21�
2
v

�
� ��0 � ��1v

+
1

�

�
�� v

�

�
1

�
+ �1�v

��
+ �1

�
a0 + a1v � �v

v

�

�
1

�
+ �1�v

��
� v

2�
:

Collecting coe¢ cients for v

1

2�

�
1

�2
+
2�1�v
�

+ �21�
2
v

�
� ��1 �

1

��

�
1

�
+ �1�v

�
+ �1a1 � �1

�v
�

�
1

�
+ �1�v

�
� 1

2�
= 0:
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Rearranging to get a quadratic in �1�
�2v
2�
� �

2
v

�

�
�21 +

�
�v
��
+ a1 � ��

�v
��
� �v
��

�
�1 +

�
1

2��2
� 1

2�
� 1

��2

�
= 0;

�2v
2�
�21 �

�
a1 � ��

�v
��

�
�1 +

�
1

2�
+

1

2��2

�
= 0:

Solve the quadratic equation

A =
�2v
2�
;

B = �
�
a1 � ��

�v
��

�
;

C =
1

2�
+

1

2��2
:

To prove that it is indeed an equilibrium check that

B2 � 4AC =

�
a1 � ��

�v
��

�2
� 4�

2
v

2�

�
1

2�
+

1

2��2

�
=

�
a1 � ��

�v
��

�2
� �

2
v

��

�
1 +

1

��

�
= (a1 � �)2 � 2 (a1 � �)

�v
��
�
�2y
��

� (a1 � �)2 � 2 (a1 � �)
�v
��
�
�2y

�2�2

=

�
a1 � ��

�v
��

�2
� 0:

The �rst inequality follows from the fact that �
2
v

��
� 0 and 0 � �� < 1.

With a solution for �1, we �nd �0 by collecting the constant terms

log �� ��0 +
�

�
+ �1a0 = 0

=) �0 =
1

�

�
log �+

�

�
+ �1a0

�
:
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C Pricing the Term Structure

In this appendix we give a more detailed derivation of the bond price. We use the partial

di¤erential equation approach which is very common when pricing �xed income securities.

Applying Ito�s lemma to (4.2) we derive the dynamics of the bond price with arbitrary

maturity
dpt
pt
= � [�00 (�) + �01 (�) vt] dt+ �1 (�) dvt +

1

2
�21 (�) [dvt]

2 : (C.1)

Next, plug (3.2), (3.21), (4.1) and (C.1) into (4.3) to get

0 = � [�00 (�) + �01 (�) vt] + �1 (�) [a0 + (a1 + �v (1� �)) vt] +
1

2
�21 (�)�

2
vvt

� (�+ b0) + �vt � �1 (�)�vvt:

Collecting the coe¢ cients of v and the free coe¢ cients we get two simple ordinary di¤erential

equations. The �rst is a Riccati equation with constant coe¢ cients

�01 (�) =
1

2
�2v�

2
1 (�) + (a1 � ��v) �1 (�) + �;

and the second becomes trivial after we solve for �1

�00 (�) = �1 (�) a0 � (�+ b0) ;

with the boundary conditions

�0 (0) = �1 (0) = 0:

let ��1 be a particular (constant) solution. In that case ��
0
1 = 0, and ��1 is given by

��1 =
� (a1 � ��v)�

q
(a1 � ��v)2 � 2�2v�
�2v

:

Let �1 = ��1 +
1
z
. Then

�
��1 (�) +

1

z (�)

�0
=

1

2
�2v

�
��1 +

1

z (�)

�2
+ (a1 � ��v)

�
��1 +

1

z (�)

�
+ �;

� z
0 (�)

z2 (�)
=

1

2
�2v

�
2��1
z (�)

+
1

z2 (�)

�
+ (a1 � ��v)

1

z (�)

=) z0 (�) +
�
�2v
��1 + (a1 � ��v)

�
z (�) +

1

2
�2v = 0:
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The solution is derived by simple integration. The boundary condition on z is determined

through the boundary condition on �1. Since �1 (0) = 0 we have that ��1+
1
z(0)

= 0 =) z (0) =

� 1
��1
. De�ne

� � �2v
��1 + (a1 � ��v)

= �
q
(a1 � ��v)2 � 2�2v�:

Then,

z (�) e�� = �1
2
�2v

Z
e�sds+ const:

= �1
2
�2v

�
e�s

�

�����
0

+ const:

= �1
2
�2v

�
e�� � 1
�

�
+ const::

Taking into account the normalizing constant, we get

z (�) = �1
2
�2v

�
1� e���
�

�
� e

���

��1

= � �
2
v

2�
+

�
�2v
2�
� 1
��1

�
e���

= �0 + �1e
��� :

Finally, we need to back-out �0 (�) with the boundary condition �0 (0) = 0

�0 (�) = a0

Z
�1 (s) ds� (�+ b0) � + const:

= a0

Z �
��1 +

1

z (s)

�
ds� (�+ b0) � + const:

= a0

Z
ds

z (s)
�
�
�+ b0 � a0��1

�
� + const:

= a0

�
s

�0
+

1

��0
ln
���0 + �1e��s�������

0

�
�
�+ b0 � a0��1

�
� + const:

= a0

�
�

�0
+

1

��0
ln

�����0 + �1e����0 + �1

������ ��+ b0 � a0��1� � + const:
=

a0
��0

ln

�����0 + �1e����0 + �1

����� ��+ b0 � a0��1 � a0�0
�
� :
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Given the bond pricing rule, one can easily price the forward yield curve. Let f (� ; vt) be the

instantaneous forward rate contracted at time t for delivery at time t + � (i.e., instantaneous

borrowing or lending at time t+ �). Then,

f (� ; vt) = �p� (� ; vt)
p (� ; vt)

= � [�00 (�) + �01 (�) vt] ;

where p� is the derivative of p with respect to maturity � .

Similarly, given the prices of all default-free zero-coupon bonds, we can price any arbitrary

forward contract. Let F (� ; s; vt) be the forward rate (price) contracted at time t for delivery

at time t+ � with maturity t+ s, where s � � . Then,

F (� ; s; vt) � ln p (� ; vt)� ln p (s; vt)
s� �

=
1

s� � � [��Y (� ; vt) + sY (s; vt)]

=
1

s� � f[�0 (�)� �0 (s)] + [�1 (�)� �1 (s)] vtg :

Note that lim
s#�
F (� ; s; vt) = f (� ; vt) and lim

�;s"1
F (� ; s; vt) = rt.

Using forward rates, one can conduct regression analysis as in Fama and Bliss (1987) and

Backus et al. (1998) to verify the failure of the expectation hypothesis (return predictability).

D Data

Unless otherwise stated, all data are quarterly from Q2:1952�Q4:2006.

� McCulloch-Kwon-Bliss data set: nominal prices and yields of zero coupon bonds - see
McCulloch and Kwon (1993) and Bliss (1999). In the estimation exercises we use only

the 3 month and 1 year nominal yields at the quarterly frequency to create the real

counterparts. The data we use spans the period Q2:52�Q4:96

� Treasury In�ation-Protected Securities (TIPS) data from McCulloch: real yields from

M1:97 � M12:06. Although the data is available at higher frequencies, we use only

observations at the quarterly frequency

� Quarterly market index (NYSE/AMEX/NASDAQ) including distributions from CRSP
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� Quarterly CPI (all items), SA, from the BLS (see FREDII data source maintained by the
federal reserve bank of St. Louis for full description)

� Semi-annual in�ation expectations from the Livingston survey (maintained by the federal
reserve bank of Philadelphia) - period H1:52 � H1:81. From Q3:81 quarterly in�ation

expectations data from the Survey of Professional Forecasters (SPF) becomes availabe

� Quarterly in�ation expectations from the SPF maintained by the federal reserve bank of

Philadelphia. The sample period covers Q3:81�Q4:06

� Quarterly real Personal Consumption Expenditures (PCE): services and nondurables from
the BEA, SA

� Quarterly real Personal Consumption Expenditures PCE: imputed services of durables
from the Federal Board of Governors

� Civilian Noninstitutional Population series from the BLS

� Monthly real dividends obtained from Robert Shiller�s website over the period M1:52 �
M12:06 (http://www.econ.yale.edu/~shiller/data.htm). This data set was used in the

GARCH-GJR exercise

Since we use only real data in the estimation, we convert nominal prices to real ones using

the price level data. For the short rate (3 months) we use a 3 year moving average of realized

in�ation to construct a 3 month ahead expected in�ation measure. For the 1 year yield we use

both the Livingston and SPF survey data to construct a quarterly series of expected in�ation.

The SPF is sampled at quarterly frequency but it is available only in the latter part of the

sample. We interpolate the semi-annual Livingston data to construct quarterly data using

piecewise cubic Hermite interpolation.

E Computing Detection Error Probabilities

In this appendix we shortly discuss how we compute DEP�s. The discussion is based on chapter

9 in Hansen and Sargent (2007a). The econometrician observes
n
�Ct+1
Ct

oT
t=1

and construct the

log-likelihood ratio of the distorted model relative to the objective model

`T =
TP
t=1

log
f
�
�Ct+1
Ct

j� <1
�

f
�
�Ct+1
Ct

j� =1
� :
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The distorted model is denoted with f (�j� <1) and the reference model is denoted with
f (�j� =1). The distorted model is selected when `T > 0 and the objective model is selected
otherwise.

There are two types of detection errors:

1. Choosing the distorted model when actually the reference model generated the data

P
�
`T > 0j� =1

�
= E

�
1f`T>0gj� =1

�
:

2. Choosing the reference model when actually the distorted model generated the data

P
�
`T < 0j� <1

�
= E

�
1f`T<0gj� <1

�
= E

�
exp

�
`T
�
1f`T<0gj� =1

�
:

Therefore, the average error (denoted }) with a prior of equiprobable models is

} =
1

2

�
P
�
`T > 0j� =1

�
+ P

�
`T < 0j� <1

��
=

1

2
E
�
min

�
exp

�
`T
�
; 1
�
j� =1

	
: (E.1)

We can write an (approximate) transition likelihood ratio as

f
�
�Ct+1
Ct

j� <1
�

f
�
�Ct+1
Ct

j� =1
� = exp

264�1
2
�

�
�Ct+1
Ct

� �� ht
p
vt

�2
�
�
�Ct+1
Ct

� �
�2

vt

375
= exp

24�1
2
�
�2
�
�Ct+1
Ct

� �
�
(1� �) vt + (1� �)2 v2t
vt

35
= exp

"�
�Ct+1
Ct

� �
�
(1� �)� (1� �)

2 vt
2

#
:

We simulate the economy 5; 000 times using the point estimates of the parameters and

construct a likelihood ratio for each economy. Using (E.1) we can immediately derive }.
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