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1 Introduction

One important venue of portfolio allocation research started with Markowitz (1952). According

to the mean-variance model, investors maximize the expected return for a given risk level, where

risk is measured by the variance. In this framework Fleming, Kirby, and Ostdiek (2001) study the

economic value of volatility timing and de Roon, Nijman, and Werker (2003) show its usefulness

in currency hedging for international stock portfolios. Recently, models have been proposed where

the variance is replaced by another risk measure, the Value-at-Risk (VaR) being one of them. The

VaR is defined as the maximum expected loss on an investment over a specified horizon given

some confidence level, see Jorion (1997) for more information. Campbell, Huisman, and Koedijk

(2001) propose a model which allocates financial assets by maximizing the expected return subject

to the constraint that the expected maximum loss should meet the VaR limits. Their model is

applied in a static context to find optimal weights between stocks and bonds for a past period. In

this context the VaR is estimated by computing the quantiles from parametric distributions or by

non parametric procedures such as empirical quantiles or smoothing techniques. See Gourieroux,

Laurent, and Scaillet (2000) for an example of the latter techniques.

Contrary to many papers that evaluate statistically the accuracy of the VaR estimation for

individual assets (see for example Mittnik and Paolella (2000), Giot and Laurent (2003) and

Giot and Laurent (2004)), this paper proposes to generalize the work of Campbell, Huisman,

and Koedijk (2001), CHK hereafter, to a flexible forward looking dynamic portfolio selection

framework. A dynamic portfolio selection model which combines assets in order to maximize the

portfolio expected return subject to a VaR risk constraint, allowing to give future investment

recommendations. We determine, from both a statistical and economic point of view, the best

daily investment recommendations in terms of percentage to borrow or lend and the optimal

weights of the assets in the risky portfolio. For the estimation of the VaR we use ARCH-type

models and we investigate the importance of several parametric innovation distributions.

Figure 1 shows the importance of estimating the 95% level-VaR dynamically in an out-of-

sample, or forward looking, context using Russell2000 index return data (see Section 4.3 for more

details), a GARCH(1,1) model and a skewed-t innovation distribution. In the dynamic case, the

failure rate is 6.7% and in the constant case is 13.5%, i.e. in the last case the realized confidence

level is more than twice the desired one. Thus, from a risk management point of view it could pay

off to shift from the static to the dynamic framework.

Guermat and Harris (2002) working with three equity return series find more accurate VaR

forecasts using a model that allows for time variation not only in the variance but also in the

kurtosis of the return distribution. Jondeau and Rockinger (2003), investigating the time-series

behavior of five stock indices and of six foreign exchange rates, find time dependence of the
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Returns, constant and dynamic VaR of Russell2000, during the out-of-sample period. The dynamic VaRs are

estimated using the GARCH(1,1) model with the skewed-t innovation distribution. The confidence level is 95%.

The constant VaR is equal to −0.012. Out-of-sample period from 02/01/1997 until 20/12/2000 (1000 days).

Figure 1: Returns, constant and dynamic VaR

asymmetry parameter and generally a constant degrees of freedom parameter. Patton (2004) in

the context of asset allocation studies the skewness in the distribution of individual stocks and

the asymmetry in the dependence between stocks. Our approach, apart from time variation in the

variance, also allows for an evolution of the skewness and kurtosis of the portfolio distributions.

This is done by estimating the model parameters by Weighted Maximum Likelihood (WML) in a

increasing window setup.

For two datasets, one consisting of indices and another of stocks, we perform out-of-sample

forecasts applying our dynamic portfolio selection model to determine the daily optimal portfolio

allocations. We work with two stock indices and two individual stocks and not with bonds indices

in order to capture the asymmetric dependence documented only for stock returns, see Patton

(2004). The dynamic model we propose outperforms the CHK model in terms of failure rates,

defined as the number of times the desired confidence level used for the estimation of the VaR

is violated. Based on this statistical criterion, the APARCH model gives as good results as the

GARCH model. However, if we consider not only the failure rate but also an economic criterion

like the achieved wealth, we find that for similar levels of risk, the APARCH model outperforms

the GARCH model. A sensitivity analysis with respect to the distribution innovation shows that

the skewed-t is preferred to the normal and Student-t.

The plan of the paper is as follows: In Section 2 we present the optimal portfolio selection in
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a VaR framework. In Section 3, we describe different model specifications for the estimation of

the VaR. Section 4 presents two empirical applications using out-of-sample forecasts to determine

the optimal investment strategies. We use portfolios formed by either two US indices (SP500-

RUSELL2000) or by two stocks (Colgate-IBM). We compare the performance of the different

models using the failure rates and the wealth achieved as instruments to determine the best

model. Section 5 evaluates several related aspects of the models and Section 6 concludes and

provides an outlook for future research.

2 Optimal portfolio selection

This section follows Campbell, Huisman, and Koedijk (2001). The portfolio model allocates

financial assets by maximizing the expected return subject to a risk constraint, where risk is

measured by a Value-at-Risk (VaR). The optimal portfolio is such that the maximum expected

loss should not exceed the VaR for a chosen investment horizon at a given confidence level α. We

consider the possibility of borrowing and lending at the market interest rate, considered as given.

Define Wt as the investor’s wealth at time t, bt the amount of money that can be borrowed

(bt > 0) or lent (bt < 0) at the risk free rate rf . Consider n financial assets with prices at time

t given by pi,t, with i = 1, . . . , n. Define Xt ≡ [xt ∈ Rn :
∑n

i=1
xi,t = 1] as the set of portfolios

weights at time t, with well-defined expected rates of return, such that wi,t = xi,t(Wt + bt)/pi,t is

the number of shares of asset i at time t. The budget constraint of the investor is given by:

Wt + bt =
n

∑

i=1

wi,tpi,t = w′

tpt. (1)

The value of the portfolio at t + 1 is:

Wt+1(wt) = (Wt + bt)(1 + Rt+1(wt)) − bt(1 + rf ), (2)

where Rt+1(wt) is the portfolio return at maturity. The VaR of the portfolio is defined as the

maximum expected loss over a given investment horizon and for a given confidence level α:

Pt[Wt+1(wt) ≤ Wt − V aR∗] ≤ 1 − α, (3)

where Pt is the probability conditioned on the available information at time t and V aR∗ is the

cutoff return or the investor’s desired VaR level. Note that (1−α) is the probability of occurrence.

Equation (3) represents the second constraint that the investor has to take into account. The

portfolio optimization problem can be expressed in terms of the maximization of the expected

returns EtWt+1(wt), subject to the budget restriction and the VaR-constraint:
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w∗

t ≡ arg max
wt

(Wt + bt)(1 + EtRt+1(wt)) − bt(1 + rf ), (4)

s.t. (1) and (3). EtRt+1(wt) represents the expected return of the portfolio given the information

at time t. The optimization problem may be rewritten in an unconstrained way. To do so,

replacing (1) in (2) and taking expectations yields:

EtWt+1(wt) = w′

tpt(EtRt+1(wt) − rf ) + Wt(1 + rf ). (5)

Equation (5) shows that a risk-averse investor wants to invest a fraction of his wealth in risky

assets if the expected return of the portfolio is bigger than the risk free rate. Substituting (5) in

(3) gives:

Pt[w
′

tpt(Rt+1(wt) − rf ) + Wt(1 + rf ) ≤ Wt − V aR∗] ≤ 1 − α, (6)

so that,

Pt

[

Rt+1(wt) ≤ rf −
V aR∗ + Wtrf

w′

tpt

]

≤ 1 − α, (7)

defines the quantile q(wt, α) of the distribution of the return of the portfolio at a given confidence

level α or probability of occurrence of (1 − α) . Then, the portfolio can be expressed as:

w′

tpt =
V aR∗ + Wtrf

rf − q(wt, α)
. (8)

Finally, substituting (8) in (5) and dividing by the initial wealth Wt we obtain:

Et(Wt+1(wt))

Wt

=
V aR∗ + Wtrf

Wtrf − Wtq(wt, α)
(EtRt+1(wt) − rf ) + Wt(1 + rf ), (9)

and therefore,

w∗

t ≡ arg max
wt

EtRt+1(wt) − rf

Wtrf − Wtq(wt, α)
. (10)

The two fund separation theorem applies, i.e. the investor’s initial wealth and desired V aR =

Wtq(wt, α) do not affect the maximization procedure. As in traditional portfolio theory, investors

first allocate the risky assets and second the amount of borrowing and lending. The latter reflects

by how much the VaR of the portfolio differs according to the investors’ degree of risk aversion

measured by the selected VaR level. The amount of money that the investor wants to borrow or

lend is found by replacing (1) in (8):

bt =
V aR∗ + Wtq(w

∗

t , α)

rf − q(w∗

t , α)
. (11)
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In order to solve the optimization problem (10) over a large investment horizon T, we partition

this in one-period optimizations, i.e. if T equals 30 days, we optimize 30 times one-day periods to

achieve the desired final horizon.

We illustrate the framework by a simple hypothetical example with n = 2, an initial investor’s

wealth of US$ 10000 and an annual risk free rate equal to 1.24%. We also assume any non-normal

innovation distribution. The hypothetical values were selected to show a fact noted by Campbell,

Huisman, and Koedijk (2001): the portfolio VaR in absolute value increases when the confidence

level increases. However, the portfolio weights are non-monotonic functions of the confidence level,

unless the normal distribution is used. Table 1 presents these hypothetical results.

Table 1: Optimal portfolio selection under VaR.

α(%) Asset1(%) Asset2(%) Portfolio V aR($)

90 30 70 -5.0

94 35 65 -5.6

95 40 60 -6.5

97 30 70 -7.5

99 25 75 -8.5

Next, we determine the amount of money to borrow or lend. First, assume that the desired

V aR∗ is equal to 6.5 (that corresponds to the 95% confidence level) and that we have two kinds of

investors. One that is less risk averse (Investor 1) and chooses a confidence level of 90% and the

other that is more risk averse (Investor 2) and chooses a confidence level of 99%. Table 2 presents

the decisions based on their particular types.

Table 2: Investment decision of different type of investors.

Type of Investor b(%) Asset1(%) Asset2(%) Tot-portfolio

Less risk averse 28.08 38.42 89.66 128.08

More risk averse -22.62 19.35 58.03 77.38

We observe that Investor 1 borrows (b > 0) at the risk-free rate an amount equivalent to 28.08% of

his initial wealth investing everything (128.08%) in the portfolio made of the two assets. Investor 2

prefers to lend (b < 0) 22.62% of his wealth at the risk-free rate, investing the difference (77.38%)

in the risky portfolio.
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3 Methodology

We observe the following steps in the estimation of the optimal portfolio allocation and its evalu-

ation:

1. Estimation of portfolio returns:

A typical model of the portfolio return Rt may be written as follows:

Rt = µt + ǫt, (12)

where µt is the conditional mean and ǫt an error term. As mentioned for example by Merton

(1980) and Fleming, Kirby, and Ostdiek (2001), predicting returns is more difficult than

predicting of variances and covariances.

In the empirical application we predict the expected return by the unconditional mean

using observations until day t − 1. We also modelled the expected return by autoregressive

processes, but the results were not satisfactory, either in terms of failure rates or in terms of

wealth evolution.

2. Estimation of the conditional variance:

The error term ǫt in equation (12) can be decomposed as σtzt where zt is an IID innova-

tion with mean zero and variance 1. We distinguish three different specifications for the

conditional variance σ2
t :

• The CHK model, similar to the model presented in Section 2, where σ2
t is estimated

as the empirical variance using data until t − 1. In fact, this can be interpreted as a

straightforward dynamic extension of the application presented in Campbell, Huisman,

and Koedijk (2001).

• The GARCH(1,1) model of Bollerslev (1986), where

σ2
t = ω + αǫ2t−1 + βσ2

t−1.

• The APARCH(1,1) model of Ding, Granger, and Engle (1993), where

σδ
t = ω + α1(|ǫt−1| − αnǫt−1)

δ + β1σ
δ
t−1.

with ω, α1, αn, β1 and δ parameters to be estimated. The parameter δ (δ > 0) is the

Box-Cox transformation of σt. The parameter αn (−1 < αn < 1), reflects the leverage

effect such that a positive (negative) value means that the past negative (positive)

shocks have a deeper impact on current conditional volatility than the past positive
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shocks of the same magnitude. Note that if δ = 2 and αn = 0 we get the GARCH(1,1)

model.

With respect to the innovation distribution, several parametric alternatives are available in

the literature. In the empirical application, see Section 4, we consider the normal, Student-t

and skewed-t distributions. The skewed-t distribution was proposed by Hansen (1994) and

reparameterized in terms of the mean and the variance by Lambert and Laurent (2001) in

such a way that the innovation process has zero mean and unit variance. The skewed-t

distribution depends on two parameters, one for the thickness of tails (degrees of freedom)

and the other for to the skewness.

Following Mittnik and Paolella (2000) the parameters of the models are estimated by Weighted

Maximum Likelihood (WML). We use weights which multiply the log-likelihood contribu-

tions of the returns in period t, t = 1, . . . , T . This allows to give more weight to recent

data in order to obtain parameter estimates that reflect the ”current” value of the ”true”

parameter. The weights are defined by:

ωt = ρT−t. (13)

If ρ < 1 more weight is given to recent observations than those far in the past. The case

ρ = 1 corresponds to usual maximum likelihood estimation. The decay factor ρ is obtained

by minimizing the failure rate (defined later in this section) for a given confidence level.

Figure 2 illustrates the failure rate-ρ relationship for portfolios made of Russell2000 and

SP500 indices for an investor using VaR at 90% level. The model used is the GARCH(1,1)

with normal innovation distribution. The optimal ρ that minimizes the failure rate is equal

to 0.994. We find similar results for other cases. Moreover, the value of the optimal ρ is

robust to different innovation distributions. We use WML in an increasing window setup,

i.e. the number of observations of the sample increases through time in order to consider

the new information available. The improvement, in terms of better approximation to the

desired confidence levels, using WML in an increasing window setup instead of ML is of the

order of 10%. See also Section 5 for more details.

By using WML in a increasing window setup, q1−α in (14) takes into account the time

evolution of the degrees of freedom and asymmetry parameters when we use the skewed-t

distribution. We do not specify an autoregressive structure for the degrees of freedom and for

the asymmetry parameter like Jondeau and Rockinger (2003). They find that this approach

is subject to numerical instabilities.

3. Estimation of the VaR:
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for a 1000 out-of-sample period. Portfolios made of Russell2000 and SP500 indices for an investor with VaR-90.

The model used is the GARCH with normal innovation distribution Out-of-sample period from 02/01/1997 until

20/12/2000 (1000 days).

Figure 2: Failure rates-ρ relationship

The VaR is a quantile of the distribution of the return of a portfolio, see Equations (3) and

(7). In an unconditional setup the VaR of a portfolio may be estimated by the quantile of

the empirical distribution at a given confidence level α. In parametric models, such as the

ones we are using, the quantiles are functions of the variance of the portfolio return Rt. The

V aRt,α (VaR for time t at the confidence level α) is calculated as:

V aRt,α = µ̂t + σ̂tq1−α, (14)

where µ̂t and σ̂t are the forecasted conditional mean and variance using data until t−1 and,

q1−α is the (1 − α)-th quantile of the innovation distribution.

4. Determine the optimal risky portfolio allocation:

Once we have determined the VaR for each of the risky portfolios, we use equation (10) to

find the optimal portfolio weights. These weights correspond to the portfolio that maximizes

the expected returns subject to the VaR constraint.

5. Determine the optimal amount to borrow or lend:

As shown in section 2, the two fund separation theorem applies. Then, in order to determine

the amount of money to borrow or lend we simply use equation (11).

6. Evaluate the models:

A criterion to evaluate the models is the failure rate:
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f =
1

n

T
∑

t=T−n+1

1[Rt < −V aRt−1,α], (15)

where, n is the number of out-of-sample days, T is the total number of observations, Rt is

the observed return at day t and V aRt−1,α is the threshold value determined at time t − 1.

A model is correctly specified if, the observed return is bigger than the threshold values in

100α percent of the predictions.

We also evaluate the models by analyzing the wealth evolution generated by the application

of the portfolio recommendations of the different models. With this economic criterion, the

best model will be the one that reports the highest wealth for similar risk levels.

4 Empirical application

We develop two applications of the model presented in the previous sections. We construct 1000

daily out-of-sample portfolio allocations based on conditional variance predictions of GARCH

and APARCH models and compare the results with the ones obtained with the CHK model.

The parameters are estimated using WML in a rolling window setup. Moreover, we use the

normal, Stutent-t and skewed-t distributions to investigate the importance of the choice of several

innovation densities for different confidence levels. Each of the three models can be combined with

the three innovation distributions resulting in nine different specifications. In the applications

we consider an agent’s problem of allocating his wealth (set to 1000 US dollars) among two

different American indices and two stocks, Russell2000-SP500 and Colgate-IBM respectively. For

the riskfree rate we use the one-year Treasury bill rate in January 1998 (approximately 4.47%

annual). We have considered only the trading days in which both indices or stocks where traded.

We define the daily returns as log price differences from the adjusted closing price series .

With the information until time t, the models forecast one-day ahead the percentage of the

cumulated wealth that should be borrowed (bt > 0) or lent (bt < 0) according to the agent’s risk

aversion expressed by his confidence level α, and the percentage that should be invested in the

portfolio made of the two indices or the two stocks. The models give the optimal weights of each of

the indices or stocks in the optimal risky portfolio. Then, with the investment recommendations

of the previous day, we use the real returns and determine the agent’s wealth evolution according

to each model suggestions. Since the parameters of the GARCH and APARCH models change

slowly from one day to another, these parameters are re-estimated every 10 days to take into

account the expanding information and to keep the computation time low. We also re-estimate

the parameters daily, every 5, 15 and 20 days (results not shown). We find similar results in

terms of the parameter estimates. However, in the case of daily and 5-day re-estimation, the
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computational time was about 10-times bigger.

For the estimation of the programs we use a Pentium Xeon 2.6 Ghz. The time required for

the GARCH and APARCH models is 90 and 120 minutes on average, respectively. Estimating

the models with a fixed window requires 60 and 90 minutes on average to run the GARCH and

APARCH models respectively.

In the next section we present the statistical characteristics of the data. Then, we present

generally how the models work only for two specific examples due to space limitations. Finally,

we present the key results for all the models in terms of failure rates and total achieved wealth

and stress their differences.

4.1 Description of the data

4.1.1 SP500 - Russell2000

We use daily data of the SP500 composite index (large stocks) and the Russell2000 index (small

stocks). The sample period goes from 02/01/1990 to 20/12/2000 (2770 observations). Descriptive

statistics are given in the left panel of Table 3. We see that for all indices skewness and excess

kurtosis is present and that the means and standard deviations are similar. Figure 3 presents the

daily returns during the out-of-sample period for both indices.

Note that our one-day ahead forecast horizon is four years (more or less 1000 days). During

this period we observe mainly a bull market, except for the last days, when the indices start a

sharp fall. The lower panel of Table 3 presents the descriptive statistics corresponding to the

out-of-sample period. Note that the volatility in this period is higher than the previous one.

4.1.2 Colgate - IBM

The daily sample period for these two stocks goes from 10/01/1990 to 31/12/2000 (2,870 observa-

tions). Descriptive statistics are given in the right panel of Table 3. Both series present skewness

and excess kurtosis. However, Colgate is positively skewed meanwhile IBM is negatively skewed.

The excess of kurtosis is higher than in the indices case due to the presence of more extreme returns

(either positive or negative), which is a common finding when stocks are used instead of indices.

The mean of the Colgate returns is higher than the mean of the IBM returns and interestingly,

the standard deviation of Colgate is also smaller. In Figure 4 we present the daily returns during

the out-of-sample period for both assets.

As observed in the case of the indices, during the forecast period we observe mainly a bull

market, except for the last days, where the stock prices start to fall. The right panel of Table 3

also presents the descriptive statistics of the out-of-sample period. As noted in the previous case,

the volatility in this out-of-sample period is higher than the previous period.

10



Table 3: Descriptive statistics

02/01/1990 - 20/12/2000 10/01/1990 - 31/12/2000

N=2770 N=2870

SP500 Russell2000 Colgate IBM

Mean 0.045 0.035 0.073 0.045

Standard deviation 0.946 0.937 1.730 2.012

Skewness -0.293 -0.642 0.012 -0.101

Kurtosis 7.741 9.084 13.108 10.203

Minimum -7.114 -7.533 -17.329 -16.889

Maximum 4.990 5.678 18.499 12.364

02/01/1997 - 20/12/2000 10/01/1997 - 31/12/2000

N=1000 N=1000

SP500 Russell2000 Colgate IBM

Mean 0.053 0.020 0.090 0.085

Standard deviation 1.247 1.279 2.311 2.481

Skewness -0.306 -0.454 0.035 -0.317

Kurtosis 6.059 6.308 10.915 8.648

Minimum -7.114 -7.533 -17.329 -16.889

Maximum 4.990 5.678 18.499 12.364

Descriptive statistics for the daily returns of the corresponding indices (left panel) and stocks

(right panel). The mean, the standard deviation, the minimum and maximum values are ex-

pressed in %.
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(a) SP500 daily returns. Out-of-sample period from 02/01/1997 until 20/12/2000 (1000 days)
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(b) Russell2000 daily returns. Out-of-sample period from 02/01/1997 until 20/12/2000 (1000

days)

Figure 3: SP500 and Russell2000 out-of-sample returns
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(a) Colgate daily returns. Out-of-sample period from 10/01/1997 until 31/12/2000 (1000 days)
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(b) IBM daily returns. Out-of-sample period from 10/01/1997 until 31/12/2000 (1000 days)

Figure 4: Colgate and IBM out-of-sample returns
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4.2 A general view of the daily recommendations

We present two examples of model configurations to illustrate the main results. For all the cases

the investor’s desired V aR∗

t is set to 1% of his cumulated wealth at time t−1. First, we explain the

investment decisions based on the CHK model using the normal distribution for portfolios made

of Russell2000-SP500. The agent desired VaR confidence level is α = 90%, i.e. a less risk-averse

investor. Figure 5 shows the evolution of the percentage of the total wealth to be borrowed (bt > 0)

or lent (bt < 0). In this case the model suggests until day 829 to borrow at the risk-free rate and

to invest everything in the risky portfolio. However, after that day the model recommendation

is to change from borrowing to lending. This is a natural response to the negative change in the

trend of the indices and to the higher volatility observed in the stock market during the last days

of the out-of-sample period (Figure 3). Figure 6 presents the evolution of the share of the risky

portfolio to be invested in the Russell2000 index. The model suggests for 807 days to invest 70%

of the wealth (on average) in Russell2000 index and the difference in SP500 index. After that day,

the model recommendations change drastically favoring the investment in SP500, which increases

its portfolio weights to 66%, i.e. going from 30% to almost 50% at the end of the out-of-sample

period. Again, this responds to the higher volatility of the Russell2000 compared with the SP500

during the last days. Thus, the model recommend to shift from the more risky index to the less

risky one and from the risky portfolio to the risk free investment.

Figure 7 compares the wealth evolution obtained by applying the CHK model suggestions with

investments made in either one or the other index. The wealth evolution is higher than the one

that could be obtained by investing only in Russell2000 but lower if investing only in SP500 during

the out-of-sample forecast period. We also include the wealth evolution that an agent can realize

when investing everything at the risk-free rate (assumed constant during the whole forecasted

period). More details can be found in Section 4.3.

As a second example we present the results of applying our dynamic optimal portfolio selection

model to the Colgate-IBM data for which the conditional variance is estimated using the APARCH

model. The agent’s desired VaR confidence level is α = 99%, i.e. a risk-averse investor and the

distribution is the skewed-t distribution. In Figure 8 we observe how the model accommodates its

recommendations to higher risk aversion. The model suggests during the whole forecasted period

to lend a big proportion of the wealth at the risk free rate (70% on average) which comes as

no surprise given his desired confidence level. Figure 9 shows the model recommendations with

respect to the weight invested in Colgate. It varies considerably, showing how the model adjusts

its suggestions in order to maximize the expected return subject to the VaR constraint.

Figure 10 presents the wealth evolution obtained by applying the model suggestions and com-

pares it with investments in either one or the other stock. An agent that desires a 99% VaR
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Riskfree weights for portfolios made of Russell2000 and SP500 indices for an investor with VaR-90, based on the

CHK model using the normal distribution. Out-of-sample period from 02/01/1997 until 20/12/2000 (1000 days).

Figure 5: Riskfree weights using CHK model with normal distribution
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Risky weights of Russell2000 for an investor with VaR-90, based on the CHK model using the normal distribution.

Out-of-sample period from 02/01/1997 until 20/12/2000 (1000 days).

Figure 6: Risky weights on Russell2000 using CHK model with normal distribution
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Portfolios made of Russell2000 and SP500 indices for an investor with VaR-90. Wealth evolution for 1000 out-

of-sample forecast using the model recommendations (Model) compared with the wealth evolution obtained by

investments made on Russell2000 or SP500 alone and with investments done at the risk-free rate. Out-of-sample

period from 02/01/1997 until 20/12/2000.

Figure 7: Wealth evolution using CHK model

confidence level is a highly risk-averse investor. As a result, the investment decisions are very

conservative, since his risk constraint is tight. Even though the returns are lower than the ones

obtained by investing in either one of the two stocks, it is higher (during the whole period) than

the investment at the risk-free rate.1

The two previous illustrations show how the model recommendations change according to new

information coming to the market, allowing the agent to maximize expected return subject to

budget and risk constraints in a dynamic way. The next section presents more synthetically the

comparison of all models for different distributional assumptions and different confidence levels.

4.3 Results

This section presents concisely the results of all the model configurations we used. We compare

the three different models explained in Section 3: the CHK model in which the variance is es-

timated simply from the observed past returns and the parametric dynamic model in which the

conditional variance is estimated using either the GARCH or the APARCH model. Moreover, we

1The same graph for a more risky investor, i.e. with a desired VaR confidence level of 90% for example, shows

that the wealth evolution is always higher than the one resulting of investing only in Colgate and sometimes higher

than only investing in IBM. Moreover, the final wealth attained with the model recommendations is higher than

the final wealth achieved by investing only in IBM.
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Riskfree weights for portfolios made of Colgate and IBM for an investor with VaR-99, based on the APARCH model

using the skewed-t distribution. Out-of-sample period from 10/01/1997 until 31/12/2000 (1000 days).

Figure 8: Riskfree weights using APARCH model with skewed-t distribution
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Risky weights on Colgate for an investor with VaR-99, based on the APARCH model using the skewed-t distribution.

Out-of-sample period from 10/01/1997 until 31/12/2000 (1000 days).

Figure 9: Risky weights on Colgate using APARCH model with skewed-t distribution
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Portfolios made of Colgate and IBM for an investor with VaR-99. Wealth evolution for 1000 out-of-sample forecast

using the model recommendations (Model) compared with the wealth evolution obtained by investments made on

Colgate or IBM alone and with investments made at the risk-free rate. Out-of-sample period from 10/01/1997 until

31/12/2000.

Figure 10: Wealth evolution using APARCH model

investigate three different distributional assumptions: the normal, the Student-t and the skewed-

t. We consider three VaR confidence levels: 90%, 95% and 99%, corresponding to increasing risk

aversion and show how these levels affect the results. The parameters are estimated using WML

in a rolling window setup.

From the optimization procedure presented in Section 2, see Equation (10), we determine the

weights of the risky portfolio and, considering the agent’s desired risk expressed by the desired

VaR (V aR∗), the amount to borrow or lend, see Equation (11). With this information at time t

the investment strategy for day t+1 is set: percentage of wealth to borrow or lend and percentage

to be invested in the risky portfolio. In order to evaluate the models we consider the wealth

evolution of the initial invested amount and the failure rate of the returns obtained by applying

the strategies with respect to the desired VaR level. A model is good when the wealth is high and

when the failure rate is respected.

We expect that the forecasted VaR’s by the different models be less or equal than the threshold

values. To test this we perform a likelihood ratio test comparing the failure rate with the desired

VaR level, as proposed by Kupiec (1995). We present the Kupiec-LR test for the portfolios made

of Russell2000-SP500 (Table 4) and of Colgate-IBM (Table 6), for the probabilities of occurrence

of 1 − α = 10% (upper panel), 5% (middle panel) and 1% (lower panel). Several failure rates are

significantly different from their nominal levels when we do out-of-sample forecasts. For in-sample
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forecast (results not presented) we found p-values as high as those presented by Giot and Laurent

(2004) for example. This is understandable since the information set, on which we condition,

contains only past observations so that the failure rates tend to be significantly different from

their nominal levels. However, these failures rates are not completely out of scope of the desired

confidence level, see for example Mittnik and Paolella (2000) for similar results.

Table 4 presents the failure rates and p-values for the Kupiec LR ratio test for portfolios made

of Russell2000 and SP500. In general we observe that the dynamic model performs considerably

better than its CHK counterpart for any VaR confidence level α. In terms of the distributional

assumption we see that in the case of the probability of occurrence of 1 − α = 10% the normal

distribution performs better than the Student-t even for low degrees of freedom (7 on average).

This happens because the two densities cross each other at more or less that confidence level. See

Guermat and Harris (2002) for similar results. Looking at lower probabilities of occurrence (higher

confidence levels), one remarks that the skewed-t distribution performs better than the other two

distributions. This is due to the fact that the skewed-t distribution allows not only for fatter tails

but it can also capture the asymmetry present in the long and short sides of the market. This

result is consistent with the findings of Mittnik and Paolella (2000), Giot and Laurent (2003) and

Giot and Laurent (2004) who used single indices, stocks, exchange rates or a portfolio with unique

weights.

With respect to the conditional variance models, we observe that for all the confidence levels,

the APARCH model performs almost as good as the GARCH model, but from inspection of

Table 4 we cannot conclude which model is better. However, considering that an agent wants

to maximize his expected return subject to a risk constraint, we look after good results for the

portfolio optimization (in terms of the wealth achieved), respecting the desired VaR confidence

level (measured by the failure rate). To have a complete picture of the model performances, Table

5 presents the final wealth attained with portfolios made of Russell2000-SP500. From Table 5 we

can appreciate the following facts: first, it happens that the final wealth obtained by the static

model not only is lower than the wealth attained by the dynamic models but also, as pointed

out before, has a higher risk. Second, even though we cannot select a best model between the

APARCH and GARCH models in terms of failure rates, we can see that for almost the same level

of risk the APARCH model investment recommendations allow the agent to get the highest final

wealth. Therefore, we infer that the APARCH model outperforms the GARCH model. Thus, if

an investor is a less risk averse (1−α = 10%) he could have earned an annual rate return of 9.5%,

two times bigger than simple investing at the risk-free rate.

Tables 6 and 7 present the results for the Colgate-IBM dataset. Like for the previous dataset,

the dynamic models outperform the CHK model in terms of the failure rate. The normal distribu-

tion behaves better than the Student-t when the VaR confidence level is set to 90% (1−α = 10%).
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Table 4: Failure rates for portfolios made of Russell2000 - SP500

1 − α Model Normal p Student-t p Skewed-t p

0,10 CHK 0,177 0,000 0,200 0,000 0,188 0,000

GARCH 0,114 0,148 0,130 0,002 0,117 0,080

APARCH 0,126 0,008 0,129 0,003 0,118 0,064

0,05 CHK 0,127 0,000 0,135 0,000 0,120 0,000

GARCH 0,071 0,004 0,074 0,001 0,060 0,159

APARCH 0,083 0,000 0,081 0,000 0,062 0,093

0,01 CHK 0,068 0,000 0,048 0,000 0,032 0,000

GARCH 0,029 0,000 0,021 0,002 0,011 0,754

APARCH 0,030 0,000 0,027 0,000 0,012 0,538

Empirical tail probabilities for the out-of-sample forecast for portfolios made of linear combinations

of Russell2000 and SP500 indices. The Kupiec-LR test is used to determine the specification of the

models. The null hypothesis is that the model is correctly specified, i.e. that the failure rate equal

to the probability of occurrence 1 − α. Results obtained using WML with ρ = 0.994.

Table 5: Final wealth achieved by investing in portfolios made of Russell2000-SP500

1 − α Model Normal r Student-t r Skewed-t r

0,10 CHK 1306 6,9 1303 6,8 1303 6,8

GARCH 1355 7,9 1351 7,8 1346 7,7

APARCH 1586 12,2 1630 13,0 1439 9,5

0,05 CHK 1297 6,7 1300 6,8 1296 6,7

GARCH 1324 7,3 1328 7,3 1317 7,1

APARCH 1497 10,6 1517 11,0 1368 8,2

0,01 CHK 1277 6,3 1270 6,2 1263 6,0

GARCH 1290 6,6 1296 6,7 1281 6,4

APARCH 1409 8,9 1388 8,5 1310 7,0

Final wealth achieved by investing in portfolios made of Russell2000-SP500. r is the annual

rate of return in (%). The risk-free interest rate is 4.47% annual.
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In general, we see that the skewed-t distribution outperforms the other distributions. In terms of

the failure rate, the APARCH is slightly better than the GARCH but this difference is not striking

enough to conclude that the APARCH model outperforms the GARCH model. If we also consider

the wealth achieved by the application of the model recommendations (Table 7) we see that the

APARCH outperforms the GARCH.

Table 6: Failure rates for portfolios made of Colgate - IBM

1 − α Model Normal p Student-t p Skewed-t p

0,10 CHK 0,145 0,000 0,175 0,000 0,166 0,000

GARCH 0,100 1,000 0,112 0,214 0,122 0,024

APARCH 0,097 0,751 0,115 0,122 0,114 0,148

0,05 CHK 0,092 0,000 0,102 0,000 0,085 0,000

GARCH 0,060 0,159 0,065 0,037 0,066 0,027

APARCH 0,058 0,257 0,063 0,069 0,064 0,051

0,01 CHK 0,037 0,000 0,028 0,000 0,020 0,005

GARCH 0,024 0,000 0,022 0,001 0,016 0,079

APARCH 0,025 0,000 0,018 0,022 0,015 0,139

Empirical tail probabilities for the out-of-sample forecast for portfolios made of linear combi-

nations of Colgate and IBM. The Kupiec-LR test is used to determine the specification of the

models. The null hypothesis is that the model is correctly specified, i.e. that the failure rate

equal to the desired probability of occurrence 1 − α.

Finally, in order to be sure that the final wealth is not just caused by an outlier, we present

as examples, the wealth evolution of the portfolios made of Russell2000 - SP500 (Figure 11) and

Colgate - IBM (Figure 12). The distributional assumption used was the skewed-t. The VaR

confidence level used in the first case was 90% and in the second case 99%. Figures 11 and 12

show that the final wealth achieved by the recommendations of the APARCH model is consistently

larger than the wealth achieved by the GARCH model suggestions.

5 Evaluation

5.1 Risk-free interest rate sensitivity

We have used as a risk-free interest rate the one-year Treasury bill rate in January 1998 (ap-

proximately 4.47% annual) as an approximation for the average risk-free rate during the whole

out-of-sample period (January 1997 to December 2000). In order to analyze the sensitivity of our
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Table 7: Final wealth achieved by investing in portfolios made of Colgate-IBM

1 − α Model Normal r Student-t r Skewed-t r

0,10 CHK 1758 15,2 1830 16,3 1799 15,8

GARCH 1559 11,7 1602 12,5 1624 12,9

APARCH 1658 13,5 1641 13,2 1691 14,0

0,05 CHK 1638 13,1 1661 13,5 1622 12,8

GARCH 1491 10,5 1476 10,2 1491 10,5

APARCH 1577 12,1 1521 11,1 1506 10,8

0,01 CHK 1506 10,8 1470 10,1 1432 9,4

GARCH 1415 9,1 1353 7,8 1392 8,6

APARCH 1496 10,6 1446 9,7 1400 8,8

Final wealth achieved by investing in portfolios made of Colgate-IBM. r is the annual rate of

return in (%). The risk-free interest rate is 4.47% annual.
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Wealth evolution of portfolios made of Russell2000 - SP500. The distribution used is the skewed-t and the confidence

level for the VaR is 90%. Out-of-sample period goes from 02/01/1997 until 20/12/2000.

Figure 11: Compared Wealth evolution using GARCH and APARCH models
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Wealth evolution of portfolios made of Colgate - IBM. The distribution used is the skewed-t and the confidence

level for the VaR is 99%. Out-of-sample period goes from 10/01/1997 until 31/12/2000.

Figure 12: Compared Wealth evolution using GARCH and APARCH models

our results to changes of the risk-free rate, we develop four scenarios based on increments (+1%

and +4%) or decrements ( −1% and −4%) with respect to the benchmark.

The results show that neither the borrowing/lending nor the risky portfolios weights are

strongly affected by either of these scenarios. This is due to the fact that we are working with

daily optimizations, and that those interest rates at a daily frequency are low. For example 4.47%

annual equals 0.01749% daily (based on 250 days).

5.2 Time varying kurtosis and asymmetry

As in Guermat and Harris (2002), our framework allows for time varying degrees of freedom

parameters, related to the kurtosis, when working with either the Student-t or the skewed-t distri-

butions. Moreover, when the skewed-t distribution is used we allow for time varying asymmetry

parameters. Figure 13 presents the pattern of the degrees of freedom and asymmetry parame-

ter of the skewed-t distribution estimated using the APARCH model. Similarly to Jondeau and

Rockinger (2003), we find time dependence of the asymmetry parameter but we also remark that

the degrees of freedom parameter is time varying.

We also test the significance of the asymmetry parameter and of the asymmetry and degrees

of freedom parameters, for the Student-t and skewed-t respectively. We find that they are highly

significant. As an example, Table 8 presents the results for the first out-of-sample day for portfolios
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Time varying degrees of freedom and Asymmetry for the skewed-t innovation distribution estimated using the

APARCH model. The parameters are estimated every 10 days during the out-of-sample forecast. The figure

corresponds to a portfolio made only of RUSSELL2000.

Figure 13: Time varying degrees of freedom and asymmetry parameters
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made of linear combinations of Russell2000 and SP500 using the WML procedure with ρ = 0.994.

The skewed-t distribution was estimated using the APARCH model. Similar results are observed

in the other procedures.

Table 8: Significance of the asymmetry and degrees of freedom parameters.

This table presents the parameter estimates and the statistical significance of the asymmetry and degrees of freedom

parameters of the skewed-t distribution estimated using the APARCH model. The results correspond to the first

day of the out-of-sample forecast for portfolios made of linear combinations of Russell2000 and SP500 using the

WML procedure with ρ = 0.994.

Parameter Estimates Std-errors T-value p-value

asymmetry -0.064 0,025 -2,582 0.000

degrees of freedom 6,918 0,897 7,712 0.000

5.3 Weighted Maximum Likelihood vs Maximum Likelihood

We study the effect of using Weighted Maximum Likelihood (WML) instead of Maximum Likeli-

hood (ML). Note that when ρ = 1 WML is equal to ML. Table 9 presents a comparison of failure

rates for portfolios made of Russell2000-SP500. Both dynamic models improve their failure rates

by using WML in a rolling window setup instead of ML. In terms of the p-values (not presented)

it turns out that when ML is used almost none of the failure rates were significant at any level.

Thus, using WML helps to satisfy the investor’s desired level of risk.

5.4 Rolling window of fixed size

We analyze the effect of using a rolling window of fixed size. The idea behind this procedure is

that we assume that information until n days in the past convey some useful information for the

prices, meanwhile the rest does not. We use a rolling window of fixed size of n = 1000 days for

performing the out-of-sample forecasts. The results presented in Tables 10 and 11 show that the

gains in better model specification are nil: the failure rates are worse and the final wealth achieved

are almost the same. The computational time decreases (about 30% less).

5.5 VaR subadditivity problem

According to Artzner, Delbaen, Eber, and Heath (1999), Frey and McNeil (2002) and Szegö (2002),

a coherent risk measure satisfies the following axioms: translation invariance, subadditivity, posi-
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Table 9: Comparison of failure rates

Normal Student-t Skewed-t

α Model ML WML ML WML ML WML

0,90 CHK 0,177 0,177 0,200 0,200 0,188 0,188

GARCH 0,128 0,114 0,153 0,130 0,139 0,117

APARCH 0,132 0,126 0,149 0,129 0,126 0,118

0,95 CHK 0,127 0,127 0,135 0,135 0,120 0,120

GARCH 0,085 0,071 0,094 0,074 0,069 0,060

APARCH 0,085 0,083 0,086 0,081 0,068 0,062

0,99 CHK 0,068 0,068 0,048 0,048 0,032 0,032

GARCH 0,037 0,029 0,026 0,021 0,011 0,011

APARCH 0,040 0,030 0,030 0,027 0,014 0,012

Comparison of empirical tail probabilities for the out-of-sample forecast for portfolios

made of linear combinations of Russell2000 and SP500 using the ML procedure (ρ = 1)

with WML with ρ = 0.994.

Table 10: Failure rates for portfolios made of Russell2000-SP500, using ML with rolling window

of fixed size

1 − α Model Normal p Student-t p Skewed-t p

0,10 CHK 0,177 0,000 0,200 0,000 0,188 0,000

GARCH 0,133 0,001 0,148 0,000 0,129 0,003

APARCH 0,141 0,000 0,145 0,000 0,130 0,002

0,05 CHK 0,127 0,000 0,135 0,000 0,120 0,000

GARCH 0,081 0,000 0,088 0,000 0,069 0,009

APARCH 0,085 0,000 0,087 0,000 0,067 0,019

0,01 CHK 0,068 0,000 0,048 0,000 0,032 0,000

GARCH 0,039 0,000 0,028 0,000 0,012 0,538

APARCH 0,045 0,000 0,031 0,000 0,016 0,079

Empirical tail probabilities for the out-of-sample forecast for portfolios made of linear combina-

tions of Russell2000 and SP500 using a rolling window of fixed size of 1000 days. The Kupiec-LR

test is used to determine the specification of the models. The null hypothesis is that the model is

correctly specified, i.e. that the failure rate equal to the desired probability of occurrence 1 − α.
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Table 11: Final wealth achieved by investing in portfolios made of Russell2000-SP500, using ML

with rolling window of fixed size

1 − α Model Normal r Student-t r Skewed-t r

0,10 Static 1306 6,9 1303 6,8 1303 6,8

GARCH 1311 7,0 1283 6,4 1300 6,8

APARCH 1663 13,6 1704 14,3 1461 9,9

0,05 Static 1297 6,7 1300 6,8 1296 6,7

GARCH 1292 6,6 1284 6,5 1284 6,5

APARCH 1579 12,1 1564 11,8 1390 8,6

0,01 Static 1277 6,3 1270 6,2 1263 6,0

GARCH 1271 6,2 1258 5,9 1248 5,7

APARCH 1465 10,0 1436 9,5 1336 7,5

Final wealth achieved by investing in portfolios made of Russell2000-SP500. r is the annual

rate of return in (%). The risk-free interest rate is 4.47% annual.

tive homogeneity and monotonicity. They show that VaR satisfies all but one of the requirements

to be considered as a coherent risk measure: the subadditivity property. Subadditivity means that

”a merger does not create extra risk”, i.e. that diversification must reduce risk. Moreover, the

VaR is not convex with respect to portfolio rebalancing no matter what is the assumption made

on the return distribution. Following Consigli (2002), we do not discuss the limits of the VaR and

instead we try to generate more accurate VaR estimates considering the asymmetry and kurtosis

of the financial data.

Figure 14 presents the VaR and wealth evolution for an investor whose desired confidence level

is 5%, the model used is GARCH and the innovation distribution is the skewed-t. The optimal

portfolio VaR’s are consistently smaller that the VaR’s of the individual series. This is the case for

all the models in our empirical application implying that by combining the two indices or stocks

optimally we are reducing the risk. Moreover, the portfolio model not only allows to decrease risk

but also to obtain portfolio returns between the returns of the individual indices.

Figure 15 presents the same graph for portfolios made of Colgate-IBM. The VaR of the op-

timal portfolios are always smaller than the individual VaRs. Moreover, we can appreciate the

advantages of diversification by looking at the wealth evolution at the end of the out-of-sample

period (lower panel). The wealth evolution by only investing on IBM reduces rapidly while the

portfolio wealth does not. At the end of the out-of-sample period the final wealth is almost the

same.
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VaR-95 evolution (above) and Wealth evolution (below) for SP500, Russell2000 and for the optimal portfolios

using GARCH model with skewed-t innovation distribution. Out-of-sample period goes from 02/01/1997 until

20/12/2000.

Figure 14: Compared VaR and Wealth evolution: Russell2000-Sp500
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VaR-95 evolution (above) and Wealth evolution (below) for Colgate, IBM and for the optimal portfolios us-

ing APARCH model with skewed-t innovation distribution. Out-of-sample period goes from 02/01/1997 until

20/12/2000.

Figure 15: Compared VaR and Wealth evolution: Colgate-IBM
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6 Conclusions and future work

The dynamic portfolio selection model we propose performs well out-of-sample statiscally in terms

of failure rates, defined as the number of times the desired confidence level used for the estimation

of the VaR is violated. Based on this criterion, the APARCH model gives as good results as the

GARCH model. However, if we consider not only the failure rate but also the wealth achieved,

we find that for similar levels of risk, the APARCH model outperforms the GARCH model. A

sensitivity analysis with respect to the distributional innovation hypothesis shows that in general

the skewed-t is preferred to the normal and Student-t. Estimating the model parameters by

Weighted Maximum Likelihood in an increasing window setup allows us to account for a changing

time pattern of the degrees of freedom and asymmetry parameters of the innovation distribution

and to improve the forecasting results in the statistical and economical sense: smaller failure rates

and larger final wealth.

There are a number of directions for further research along the lines presented here. A potential

extension could use the dynamic model to study the optimal time of portfolio rebalancing, as day-

to-day portfolio rebalancing may be neither practicable nor economically viable. A more ambitious

extension is to work in a multivariate setting, where a group of different financial instruments are

used to maximize the expected return subject to a risk constraint. Another interesting extension

of the model is to investigate its intra-daily properties. This extension could be of special interest

for traders who face the market second by second during the trading hours in the financial markets.
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