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Abstract

This paper constructs an estimator for the number of common factors in a setting where both

the sampling frequency and the number of variables increase. Empirically, we document that the

covariance matrix of a large portfolio of US equities is well represented by a low rank common

structure with sparse residual matrix. When employed for out-of-sample portfolio allocation, the

proposed estimator largely outperforms the sample covariance estimator.

Keywords: High-dimensional data, high-frequency data, latent factor model, principal compo-

nents, portfolio optimization.
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1 Introduction

This paper proposes an estimator, using high frequency data, for the number of common factors in

a large-dimensional dataset. The estimator relies on principal component analysis (PCA) and novel

joint asymptotics where both the sampling frequency and the dimension of the covariance matrix

increase. One by-product of the estimation method is a well-behaved estimator of the increasingly
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large covariance matrix itself, including a split between its systematic and idiosyncratic matrix

components.

Principal component analysis (PCA) and factor models represent two of the main methods at our

disposal to estimate large covariance matrices. If nonparametric PCA determines that a common

structure is present, then a parametric or semiparametric factor model becomes a natural choice to

represent the data. Prominent examples of this approach include the arbitrage pricing theory (APT)

of Ross (1976) and the intertemporal capital asset pricing model (ICAPM) of Merton (1973), which

provide an economic rationale for the presence of a factor structure in asset returns. Chamberlain and

Rothschild (1983) extend the APT strict factor model to an approximate factor model, in which the

residual covariances are not necessarily diagonal, hence allowing for comovement that is unrelated

to the systematic risk factors. Based on this model, Connor and Korajczyk (1993), Bai and Ng

(2002) and Onatski (2010) propose statistical methodologies to determine the number of factors,

while Bai (2003) provides tools to conduct statistical inference on the common factors and their

loadings. Connor and Korajczyk (1988) use PCA to test the APT.

In parallel, much effort has been devoted to searching for observable empirical proxies for the

latent factors. The three-factor model by Fama and French (1993) and its many extensions are

widely used examples, with factors constructed using portfolios returns often formed by sorting firm

characteristics. Chen et al. (1986) propose macroeconomic variables as factors, including inflation,

output growth gap, interest rate, risk premia, and term premia. Estimators of the covariance matrix

based on observable factors are proposed by Fan et al. (2008) in the case of a strict factor model

and Fan et al. (2011) in the case of an approximate factor model. A factor model can serve as the

reference point for shrinkage estimation (see Ledoit and Wolf (2012) and Ledoit and Wolf (2004)).

Alternative methods rely on various forms of thresholding (Bickel and Levina (2008a), Bickel and

Levina (2008b), Cai and Liu (2011), Fryzlewicz (2013), and Zhou et al. (2014)) whereas the estimator

in Fan et al. (2013) is designed for latent factor models.

The above factor models are static, as opposed to the dynamic factor models introduced in

Gouriéroux and Jasiak (2001) to represent stochastic means and volatilities, extreme risks, liquidity

and moral hazard in insurance analysis. Dynamic factor models are developed in Forni et al. (2000),

Forni and Lippi (2001), Forni et al. (2004), and Doz et al. (2011), in which the lagged values of

the unobserved factors may also affect the observed dependent variables; see Croux et al. (2004) for

a discussion. Forni et al. (2009) adapt structural vector autoregression analysis to dynamic factor

models.

Both static and dynamic factor models in the literature have typically been cast in discrete

time. By contrast, this paper provides methods to estimate continuous-time factor models, where

the observed variables are continuous Itô semimartingales. The literature dealing with continuous-

time factor models has mainly focused on models with observable explanatory variables in a low
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dimensional setting. For example, Mykland and Zhang (2006) develop tools to conduct analysis of

variance as well as univariate regression, while Todorov and Bollerslev (2010) add a jump component

in the univariate regression setting and Aı̈t-Sahalia et al. (2014) extend the factor model further to

allow for multivariate regressors and time-varying coefficients.

When the factors are latent, however, PCA becomes the main tool at our disposal. Aı̈t-Sahalia

and Xiu (2015) extend PCA from its discrete-time low frequency roots to the setting of general

continuous-time models sampled at high frequency. The present paper complements it by using PCA

to construct estimators for the number of common factors, and exploiting the factor structure to

build estimators of the covariance matrix in an increasing dimension setting, without requiring that a

set of observable common factors be pre-specified. The analysis is based on a general continuous-time

semiparametric approximate factor model, which allows for stochastic variation in volatilities as well

as correlations. Independently, Pelger (2015a) and Pelger (2015b) propose an alternative estimator

for the number of factors and factor loadings, with a distributional theory that is entry-wise, whereas

the present paper concentrates on the matrix-wise asymptotic properties of the covariance matrix

and its inverse.

This paper shares some theoretical insights with the existing literature of approximate factor

models in discrete time, in terms of the strategy for estimating the number of factors. However,

there are several distinctions, which require a different treatment in our setting. For instance, the

identification restrictions we impose differ from those given by e.g., Bai (2003), Doz et al. (2011),

Fan et al. (2013), due to the prevalent presence of heteroscedasticity in high frequency data. Also,

the discrete-time literature on determining the number of factors relies on random matrix theory for

i.i.d. data (see, e.g., Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013)), which is not

available for semimartingales.

The methods in this paper, including the focus on the inverse of the covariance matrix, can be

useful in the context of portfolio optimization when the investable universe consists of a large number

of assets. For example, in the Markowitz model of mean-variance optimization, an unconstrained

covariance matrix with d assets necessitates the estimation of d(d + 1)/2 elements, which quickly

becomes unmanageable as d grows, and even if feasible would often result in optimal asset allocation

weights that have undesirable properties, such as extreme long and short positions. Various ap-

proaches have been proposed in the literature to deal with this problem. The first approach consists

in imposing some further structure on the covariance matrix to reduce the number of parameters

to be estimated, typically in the form of a factor model along the lines discussed above, although

Green and Hollifield (1992) argue that the dominance of a single factor in equity returns can lead

empirically to extreme portfolio weights. The second approach consists in imposing constraints on

the portfolio weights (Jagannathan and Ma (2003), Pesaran and Zaffaroni (2008), DeMiguel et al.

(2009a), El Karoui (2010), Fan et al. (2012), Gandy and Veraart (2013)) or penalties (Brodie et al.
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(2009)). The third set of approaches are Bayesian and consist in shrinkage of the covariance esti-

mates (Ledoit and Wolf (2003)), assuming a prior distribution for expected returns and covariances

and reformulating the Markowitz problem as a stochastic optimization one (Lai et al. (2011)), or

simulating to select among competing models of predictable returns and maximize expected utility

(Jacquier and Polson (2010)). A fourth approach consists in modeling directly the portfolio weights

in the spirit of Aı̈t-Sahalia and Brandt (2001) as a function of the asset’s characteristics (Brandt

et al. (2009)). A fifth and final approach consists in abandoning mean-variance optimization alto-

gether and replacing it with a simple equally-weighted portfolio, which may in fact outperform the

Markowitz solution in practice (DeMiguel et al. (2009b)).

An alternative approach to estimating covariance matrices using high-frequency data is fully

nonparametric, i.e., without assuming any underlying factor structure, strict or approximate, la-

tent or not. Two issues have attracted much attention in this part of the literature, namely the

potential presence of market microstructure noise in high frequency observations and the potential

asynchronicity of the observations: see Aı̈t-Sahalia and Jacod (2014) for an introduction. Various

methods are available, including Hayashi and Yoshida (2005), Aı̈t-Sahalia et al. (2010), Christensen

et al. (2010), Barndorff-Nielsen et al. (2011), Zhang (2011), Shephard and Xiu (2012) and Bibinger

et al. (2014). However, when the dimension of the asset universe increases to a few hundreds, the

number of synchronized observations is bound to drop, which requires severe downsampling and

hence much longer time series to be maintained. Dealing with an increased dimensionality without a

factor structure typically requires the additional assumption that the population covariance matrix

itself is sparse (see, e.g., Tao et al. (2011), Tao et al. (2013b), and Tao et al. (2013a)). Fan et al.

(2015) assume a factor model but with factors that are observable.

The rest of the paper is organized as follows. Section 2 sets up the model and assumptions.

Section 3 describes the proposed estimators and their properties. We show that both the factor-

driven and the residual components of the sample covariance matrix are identifiable, as the cross-

sectional dimension increases. The proposed PCA-based estimator is consistent, invertible and well-

conditioned. Additionally, based on the eigenvalues of the sample covariance matrix, we provide a

new estimator for the number of latent factors. Section 4 provides Monte Carlo simulation evidence.

Section 5 implements the estimator on a large portfolio of stocks. We find a clear block-diagonal

pattern in the residual correlations of equity returns, after sorting the stocks by their firms’ global

industrial classification standard (GICS) codes. This suggests that the covariance matrix can be

approximated by a low-rank component representing exposure to some common factors, plus a sparse

component, which reflects their sector/industry specific exposure. Empirically, we find that the

factors uncovered by PCA explain a larger fraction of the total variation of asset returns than that

explained by observable portfolio factors such as the market portfolio, the Fama-French portfolios,

as well as the industry-specific ETF portfolios. Also, the residual covariance matrix based on PCA
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is sparser than that based on observable factors, with both exhibiting a clear block-diagonal pattern.

Finally, we find that the PCA-based estimator outperforms the sample covariance estimator in out-

of-sample portfolio allocation. Section 6 concludes. Mathematical proofs are in the appendix.

2 Factor Model Setup

Let (Ω,F , {Ft},P) be a filtered probability space. LetMd×r be the Euclidian space of d×r matrices.

Throughout the paper, we use λj(A), λmin(A), and λmax(A) to denote the jth, the minimum, and

the maximum eigenvalues of a matrix A. In addition, we use ‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote

the L1 norm, the L∞ norm, the operator norm (or L2 norm), and the Frobenius norm of a matrix

A, that is, maxj
∑

i |Aij |, maxi
∑

j |Aij |,
√
λmax(AᵀA), and

√
Tr(AᵀA), respectively. When A is a

vector, both ‖A‖ and ‖A‖F are equal to its Euclidean norm. We also use ‖A‖MAX = maxi,j |Aij | to

denote the L∞ norm of A on the vector space. We use ei to denote a d-dimensional column vector

whose ith entry is 1 and 0 elsewhere. K is a generic constant that may change from line to line.

We observe a large intraday panel of asset log-prices, Y on a time interval [0, T ] at instants

0,∆n, 2∆n, . . . , n∆n, where ∆n is the sampling frequency and n = [T/∆n]. We assume that Y

follows a continuous-time factor model,

Yt = βXt + Zt, (1)

where Yt is a d-dimensional vector process, Xt is a r-dimensional unobservable common factor process,

Zt is the idiosyncratic component, and β is a constant factor loading matrix of size d×r. The constant

β assumption, although restrictive, is far from unusual in the literature. In fact, Reiß et al. (2015)

find evidence supportive of this assumption using high-frequency data.

The asymptotic framework we employ is one where the time horizon T is fixed (at 1 month in

the empirical analysis), the number of factors r is unknown but finite, whereas the cross-sectional

dimension d increases to ∞ as the sampling interval ∆n goes to 0.

To complete the specification, we make additional assumptions on the respective dynamics of the

factors and the idiosyncratic components.

Assumption 1. Assume that the common factor X and idiosyncratic component Z are continuous

Itô semimartingales, that is,

Xt =

∫ t

0
hs ds+

∫ t

0
ηsdWs, Zt =

∫ t

0
fsds+

∫ t

0
γsdBs. (2)

We denote the spot covariance of Xt as et = ηtη
ᵀ
t , and that of Zt as gt = γtγ

ᵀ
t . Wt and Bt are

independent Brownian motions. In addition, ht and ft are progressively measurable, the process ηt,

γt are càdlàg, and et, et−, gt, and gt− are positive-definite. Finally, for all 1 ≤ i, j ≤ r, 1 ≤ k, l ≤ d,

there exist a constant K and a locally bounded process Ht, such that |βkj | ≤ K, and that |hi,s|, |ηij,s|,
|γkl,s|, |eij,s|, |fkl,s|, and |gkl,s| are all bounded by Hs for all ω and 0 ≤ s ≤ t.
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The existence of uniform bounds on all processes is necessary to the development of the large

dimensional asymptotic results. This is a fairly standard assumption in the factor model literature,

e.g., Bai (2003). Apart from the fact that jumps are excluded, Assumption 1 is fairly general, allowing

almost arbitrary forms of heteroscedasticity in both X and Z. While jumps are undoubtedly impor-

tant to explain asset return dynamics, their inclusion in this context would significantly complicate

the model, as jumps may be present in some of the common factors, as well as in the idiosyncratic

components (not necessarily simultaneously), and in their respective characteristics (hs, ηs, fs, γs).

We leave a treatment of jumps to future work.

We also impose the usual exogeneity assumption. Different from those discrete-time regressions or

factor models, this assumption imposes path-wise restrictions, which is natural in a continuous-time

model.

Assumption 2. For any 1 ≤ j ≤ r, 1 ≤ k ≤ d, and 0 ≤ t ≤ T , [Zk,t, Xj,t] = 0, where [·, ·] denotes

the quadratic covariation.

Combined with (1), Assumptions 1 and 2 imply a factor structure on the spot covariance matrix

of Y , denoted as ct:

ct = βetβ
ᵀ + gt, 0 ≤ t ≤ T. (3)

This leads to a key equality:

Σ = βEβᵀ + Γ, (4)

where for notational simplicity we omit the dependence of Σ, E, and Γ on the fixed T ,

Σ =
1

T

∫ T

0
ctdt, Γ =

1

T

∫ T

0
gtdt, and E =

1

T

∫ T

0
etdt. (5)

To complete the model, we need an additional assumption on the residual covariance matrix Γ.

We define

md = max
1≤i≤d

∑
1≤j≤d

1{Γij 6=0} (6)

and impose the so-called sparsity assumption on Γ, i.e., Γ cannot have too many non-zero elements.

Assumption 3. When d→∞, the degree of sparsity of Γ, md, grows at a rate which satisfies

d−amd → 0 (7)

where a is some positive constant.

At low frequency, Bickel and Levina (2008a) establish the asymptotic theory for a thresholded

sample covariance matrix estimator using this notion of sparsity for the covariance matrix. The degree

of sparsity determines the convergence rate of their estimator. In a setting with low-frequency time

series data, Fan et al. (2011) and Fan et al. (2013) suggest imposing the sparsity assumption on the

residual covariance matrix. As we will see, a low-rank plus sparsity structure turns out to be a good

match for asset returns data at high frequency.
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3 Estimators: Factor Structure and Number of Factors

3.1 Identification

There is fundamental indeterminacy in a latent factor model. For instance, one can rotate the factors

and their loadings simultaneously without changing the covariance matrix Σ. The canonical form

of a classical factor model, e.g., Anderson (1958), imposes the identification restrictions that the

covariance matrix E is the identity matrix and that βᵀβ is diagonal. The identification restriction

E = Ir is often adopted by the literature of approximate factor models as well, e.g., Doz et al. (2011)

or Fan et al. (2013). However, this is not appropriate in our setting, since factors are heteroscedastic

and hence the factor covariance matrix E is time-varying and non-deterministic.

The goal in this paper is to propose a new covariance matrix estimator, taking advantage of

the assumed low-rank plus sparsity structure. We do not, however, try to identify the factors or

their loadings, which can be pinned down by imposing sufficiently many identification restrictions

by adapting to the continuous-time setting the approach of, e.g., Bai and Ng (2013). Since we only

need to separate βEβᵀ and Γ from Σ, we can avoid some strict and, for this purpose unnecessary,

restrictions.

Chamberlain and Rothschild (1983) study the identification problem of a general approximate

factor model in discrete time. One of their key identification assumptions is that the eigenvalues of

Γ are bounded, whereas the eigenvalues of βEβᵀ diverge because the factors are assumed pervasive.

It turns out that we can relax the boundedness assumption on the eigenvalues of Γ.1 In fact, the

sparsity condition imposed on Γ, implies that its largest eigenvalue diverges but at a slower rate

compared to the eigenvalues of βEβᵀ.

These considerations motivate the identification assumption below.

Assumption 4. E is a positive-definite covariance matrix, with distinct eigenvalues bounded away

from 0. Moreover,
∥∥d−1βᵀβ − Ir

∥∥→ 0, as d→∞.

This leads to our identification result.

Theorem 1. Suppose Assumptions 1, 2, 3 with a = 1/2, and 4 hold. Also, assume that ‖E‖MAX ≤
K, ‖Γ‖MAX ≤ K almost surely. Then r, βEβᵀ, and Γ can be identified as d → ∞. That is, if d is

sufficiently large, r̄ = r, where r̄ = arg min1≤j≤d(d
−1λj + jd−1/2md) − 1, and {λj , 1 ≤ j ≤ d} are

the eigenvalues of Σ. Moreover, suppose {ξj , 1 ≤ j ≤ d} are the corresponding eigenvectors of Σ, we

have ∥∥∥∥∥∥
r̄∑
j=1

λjξjξ
ᵀ
j − βEβᵀ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md, and

∥∥∥∥∥∥
d∑

j=r̄+1

λjξjξ
ᵀ
j − Γ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md.

1This unboundedness issue has also been studied by Onatski (2010) in a different setting.
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The key identification condition is d−1/2md = o(1), which creates a sufficiently wide gap between

two groups of eigenvalues, so that we can identify the number of factors as well as the two components

of Σ. To identify the number of factors only, d−1/2md can be replaced by other penalty functions that

dominate d−1md, so that d−1/2md = o(1) can be relaxed, as shown in Theorem 2 below. Note that the

identification is only possible when d is sufficiently large – the so called “blessing of dimensionality.”

This is in contrast with the result for a classical strict factor model, where the identification is

achieved by matching the number of equations with the number of unknown parameters.

This model falls into the class of models with “spiked eigenvalues” in the literature, e.g., Doz et al.

(2011) or Fan et al. (2013), except that the gap between the magnitudes of the spiked eigenvalues

and the remaining ones is smaller in our situation. Moreover, our model is distinct from others in the

class of spiked eigenvalue models discussed by Paul (2007) and Johnstone and Lu (2009), in which

all eigenvalues are of the same order, and are bounded as the dimension grows. This explains the

difference between our result and theirs – the eigenvalues and eigenvectors of the sample covariance

matrix can be consistently recovered in our setting even when d grows faster than n does, as shown

below. The next section provides a simple nonparametric covariance matrix estimator with easy-to-

interpret tuning parameters, such as the number of digits of the GICS code and the number of latent

factors. We also provide a new estimator to determine the number of factors.

3.2 High-Frequency Estimation of the Covariance Matrix

Let ∆n
i Y = Yi∆n−Y(i−1)∆n

denote the observed log-returns at sampling frequency ∆n. The estimator

begins with principal component decomposition of the covariance matrix estimator, using results from

Aı̈t-Sahalia and Xiu (2015):2

Σ̂ =
1

T

n∑
i=1

(∆n
i Y )(∆n

i Y )ᵀ. (8)

Suppose that λ̂1 > λ̂2 > . . . > λ̂d are the simple eigenvalues of Σ̂, and that ξ̂1, ξ̂2, . . . , ξ̂d are the

corresponding eigenvectors.

With r̂, an estimator of r discussed below, we can in principle separate Γ from Σ:

Γ̂ =
d∑

j=r̂+1

λ̂j ξ̂j ξ̂
ᵀ
j .

Since Γ is assumed sparse, we can enforce sparsity through, e.g., soft-, hard-, or adaptive thresh-

olding; see, e.g., Rothman et al. (2009) for a discussion of thresholding techniques. But this would

inevitably introduce tuning parameters that might be difficult to select and interpret. Moreover, it is

difficult to ensure that after thresholding, the resulted covariance matrix estimator remains positive

semi-definite in finite samples.

2Without the benefit of a factor model (1), PCA should be employed on the spot covariance matrices instead of the

integrated covariance matrix.
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We adopt a different approach motivated from the economic intuition that firms within simi-

lar industries, e.g., Pepsico and Coca Cola, are expected to have higher correlations beyond what

can be explained by their loadings on common and systematic factors. This intuition motivates a

block-diagonal structure on the residual covariance matrix Γ, once stocks are sorted by their in-

dustrial classification. This strategy leads to a simpler, positive semi-definite by construction, and

economically-motivated estimator. It requires the following assumption.

Assumption 5. Γ is a block diagonal matrix, and the set of its non-zero entries, denoted by S, is

known prior to the estimation.

The block-diagonal assumption is compatible with the sparsity assumption 3. In fact, md in (6)

is the size of the largest block. There is empirical support for the block-diagonal assumption on Γ:

for instance, Fan et al. (2015) find such a pattern of Γ in their regression setting, after sorting the

stocks by the GICS code and stripping off the part explained by observable factors.

Our covariance matrix estimator Σ̂S is then given by

Σ̂S =

r̂∑
j=1

λ̂j ξ̂j ξ̂
ᵀ
j + Γ̂S , (9)

where by imposing the block-diagonal structure,

Γ̂S = (Γ̂ij1(i,j)∈S). (10)

This covariance matrix estimator is similar in construction to the POET estimator by Fan et al.

(2013) for discrete time series, except that we block-diagonalize Γ instead of using soft- or hard-

thresholding.

Equivalently, we can also motivate our estimator from least-squares estimation as in Stock and

Watson (2002), Bai and Ng (2013), and Fan et al. (2013) in a discrete-time, low frequency setting.

Our estimator can be re-written as

Σ̂S = T−1FGGᵀF ᵀ + Γ̂S , Γ̂ = T−1 (Y − FG) (Y − FG)ᵀ , and Γ̂S = (Γ̂ij1(i,j)∈S), (11)

where Y = (∆n
1Y,∆

n
2Y, . . . ,∆

n
nY ) is a d×n matrix, G = (g1, g2, . . . , gn) is r̂×n, F = (f1, f2, . . . , fd)

ᵀ

is d× r̂, and F and G solve the least-squares problem:

(F,G) = arg min
fk,gi∈Rr̂

n∑
i=1

d∑
k=1

(
∆n
i Yk − f

ᵀ
k gi
)2

= arg min
F∈Md×r̂,G∈Mr̂×n

‖Y − FG‖2F (12)

subject to the constraints

d−1F ᵀF = Ir̂, GGᵀ is an r̂ × r̂ diagonal matrix. (13)

9



This least-squares estimator is adopted by Bai and Ng (2002), Bai (2003), and Fan et al. (2013).

Bai and Ng (2002) suggest that PCA can be applied to either of the d× d matrix YYᵀ or the n× n
matrix YᵀY, depending on the relative magnitude of d and n. We apply PCA to the d × d matrix

YYᵀ regardless, because in our high frequency continuous time setting, the spot covariance matrices

et and ct are stochastically time-varying, so that the n × n matrix is conceptually more difficult

to analyze. It is straightforward to verify that F = d1/2
(
ξ̂1, ξ̂2, . . . , ξ̂r̂

)
and G = d−1F ᵀY are the

solutions to this optimization problem, and the estimator given by (11) is then the same as that

given by (9) and (10).

3.3 High-Frequency Estimation of the Number of Factors

To determine the number of factors, we propose the following estimator using a penalty function g:

r̂ = arg min
1≤j≤rmax

(
d−1λj(Σ̂) + j × g(n, d)

)
− 1, (14)

where rmax is some upper bound of r + 1. In theory, the choice of rmax does not play any role. It is

only used to avoid reaching an economically nonsensical choice of r in finite samples. The penalty

function g(n, d) satisfies two criteria. Firstly, the penalty cannot dominate the signal, i.e., the value

of d−1λj(Σ), when 1 ≤ j ≤ r. Since d−1λr(Σ) is Op(1) as d increases, the penalty should shrink to 0.

Secondly, the penalty should dominate the estimation error as well as d−1λr+1(Σ) when r+1 ≤ j ≤ d
to avoid overshooting.

This estimator is similar in spirit to that introduced by Bai and Ng (2002) in the classical setting.

They suggest to estimate r by minimizing the penalized objective function:

r̂ = arg min
1≤j≤rmax

(d× T )−1 ‖Y − F (j)G(j)‖2F + penalty, (15)

where the dependence of F and G on j is highlighted. It turns out, perhaps not surprisingly, that

(d× T )−1 ‖Y − F (j)G(j)‖2F = d−1
d∑

i=j+1

λi(Σ̂), (16)

which is closely related to our proposed objective function. It is, however, easier to use our proposal

as it does not involve estimating the sum of many eigenvalues. The proof is also simpler.

Alternative methods to determine the number of factors include Hallin and Lǐska (2007), Amen-

gual and Watson (2007), Alessi et al. (2010), Kapetanios (2010), and Onatski (2010). Ahn and

Horenstein (2013) propose an estimator by maximizing the ratios of adjacent eigenvalues. Their

approach is convenient in that it does not involve any penalty function. The consistency of their

estimator relies on the random matrix theory established by, e.g., Bai and Yin (1993), so as to estab-

lish a sharp convergence rate for the eigenvalue ratio of the sample covariance matrix. Such a theory

is not available for continuous-time semimartingales to the best of our knowledge. So we propose

an alternative estimator, for which we can establish the desired consistency in the continuous-time

context without using random matrix theory.
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3.4 Consistency of the Estimators

Recall that our asymptotics are based on a dual increasing frequency and dimensionality, while the

number of factors is finite. That is, ∆n → 0, d→∞, and r is fixed (but unknown). We first establish

the consistency of r̂.

Theorem 2. Suppose Assumptions 1, 2, 3 with a = 1, and 4 hold. Suppose that ∆n log d → 0,

g(n, d)→ 0, and g(n, d)
(
(∆n log d)1/2 + d−1md

)−1 →∞, we have P(r̂ = r)→ 1.

A choice of the penalty function could be

g(n, d) = µ
(

(n−1 log d)1/2 + d−1md

)κ
, (17)

where µ and κ are some constants and 0 < κ < 1. While it might be difficult/arbitrary to choose

these tuning parameters in practice, the covariance matrix estimates are not overly sensitive to the

numbers of factors. Also, the scree plot output from PCA offers guidance as to the value of r.

Practically speaking, r is no different from a “tuning parameter.” And it is much easier to interpret

r than µ and κ above. In the later portfolio allocation study, we choose a range of values of r to

compare the covariance matrix estimator with that using observable factors. As long as r is larger

than 3 but not as large as, say, 20, the results do not change much and the interpretation remains

the same. A rather small value of r, all the way to r = 0, results in model misspecification, whereas

a rather large r leads to overfitting.

It is worth mentioning that to identify and estimate the number of factors consistently, the

weaker assumption a = 1 in Assumption 3 is imposed, compared to the stronger assumption a = 1/2

required in Theorem 1, which we need to identify βEβᵀ and Γ.

The next theorem establishes the desired consistency of the covariance matrix estimator.

Theorem 3. Suppose Assumptions 1, 2, 3 with a = 1/2, 4, and 5 hold. Suppose that ∆n log d→ 0.

Suppose further that r̂ → r with probability approaching 1, then we have∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

Moreover, we have ∥∥∥Σ̂S − Σ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.

Compared to the rate of convergence of the regression based estimator in Fan et al. (2015)

where factors are observable, i.e., Op((∆n log d)1/2), the convergence rate of the PCA-based estimator

depends on a new term d−1/2md, due to the presence of unobservable factors, as can be seen from

Theorem 1. We consider the consistency under the entry-wise norm instead of the operator norm,

partially because the eigenvalues of Σ themselves grow at the rate of O(d), so that their estimation
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errors do not shrink to 0, when the dimension d increases exponentially, relative to the sampling

frequency ∆n.

In terms of the portfolio allocation, the precision matrix perhaps plays a more important role

than the covariance matrix. For instance, the minimum variance portfolio is determined by the

inverse of the Σ instead of Σ itself. The estimator we propose is not only positive-definite, but is

also well-conditioned. This is because the minimum eigenvalue of the estimator is bounded from

below with probability approaching 1. The next theorem describes the asymptotic behavior of the

precision matrix estimator under the operator norm.

Theorem 4. Suppose Assumptions 1, 2, 3 with a = 1/2, 4, and 5 hold. Suppose that ∆n log d→ 0.

Suppose further that r̂ → r with probability approaching 1, then we have∥∥∥Γ̂S − Γ
∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

If in addition, λmin(Γ) is bounded away from 0 almost surely, d−1/2m2
d = o(1) and md(∆n log d)1/2 =

o(1), then λmin(Σ̂S) is bounded away from 0 with probability approaching 1, and∥∥∥(Σ̂S)−1 − Σ−1
∥∥∥ = O

(
m3
d

(
(∆n log d)1/2 + d−1/2md

))
.

The convergence rate of the regression based estimator in Fan et al. (2015) with observable factors

is Op(md(∆n log d)1/2). In their paper, the eigenvalues of Γ are bounded from above, whereas we

relax this assumption in this paper, which explains the extra powers of md here. As above, d−1/2md

reflects the loss due to ignorance of the latent factors.

As a by-product, we can also establish the consistency of factors and loadings up to some matrix

transformation.

Theorem 5. Suppose Assumptions 1, 2, 3 with a = 1/2, and 4 hold. Suppose that ∆n log d → 0.

Suppose further that r̂ → r with probability approaching 1, then there exists a r × r matrix H, such

that with probability approaching 1, H is invertible, ‖HHᵀ − Ir‖ = ‖HᵀH − Ir‖ = op(1), and

‖F − βH‖MAX = Op

(
(∆n log d)1/2 + d−1/2md

)
,
∥∥G−H−1X

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
,

where F and G are defined in (12), and X = (∆n
1X,∆

n
2X, . . . ,∆

n
nX) is a r × n matrix.

The presence of the H matrix is due to the indeterminacy of a factor model. Bai and Ng (2013)

impose further assumptions so as to identify the factors. For instance, one set of identification

assumptions may be that the first few observed asset returns are essentially noisy observations of

the factors themselves. For the purpose of covariance matrix estimation, such assumptions are not

needed. It is also worth pointing out that for the estimation of factors, Assumption 5 is not needed.
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4 Monte Carlo Simulations

In order to concentrate on the effect of an increasing dimensionality, without additional complica-

tions, we have established the theoretical asymptotic results in an idealized setting without market

microstructure noise. This setting is realistic and relevant only for returns sampled away from the

highest frequencies. In this section, we examine the effect of subsampling on the performance of our

estimators, making them robust to the presence of both asynchronous observations and microstruc-

ture noise.

We sample paths from a continuous-time r-factor model of d assets specified as follows:

dYi,t =
r∑
j=1

βi,jdXj,t + dZi,t, dXj,t = bjdt+ σj,tdWj,t, dZi,t = γᵀi dBi,t, (18)

where Wj is a standard Brownian motion and Bi is a d-dimensional Brownian motion, for i =

1, 2, . . . , d, and j = 1, 2, . . . , r. They are mutually independent. Xj is the jth unobservable factor.

One of the Xs, say the first, is the market factor, so that its associated βs are positive. The covariance

matrix of Z is a block-diagonal matrix, denoted by Γ, that is, Γil = γᵀi γl. We allow for time-varying

σj,t which evolves according to the following system of equations:

dσ2
j,t = κj(θj − σ2

j,t)dt+ ηjσj,tdW̃j,t, j = 1, 2, . . . , r, (19)

where W̃j is a standard Brownian motion with E[dWj,tdW̃j,t] = ρjdt. We choose d = 500 and

r = 3. In addition, κ = (3, 4, 5), θ = (0.05, 0.04, 0.03), η = (0.3, 0.4, 0.3), ρ = (−0.60,−0.40,−0.25),

and b = (0.05, 0.03, 0.02). In the cross-section, we sample β1 ∼ U [0.25, 1.75], and sample β2, β3 ∼
N (0, 0.52). The variances on the diagonal of Γ are uniformly generated from [0.05, 0.20], with constant

within-block correlations sampled from U [0.10, 0.50] for each block. To generate blocks, we fix the

largest block size at MAX, and randomly generate the sizes of the remaining blocks from a Uniform

distribution [10, MAX], such that the total sizes of all blocks is equal to d. The number of blocks is

thereby random. The cross-sectional βs, and the covariance matrix Γ, including its block structure,

its diagonal variances, and its within-block correlations are randomly generated once and then fixed

for all Monte Carlo repetitions. Their variations do not change the simulation results. We fix MAX

at 15, 25, and 35, respectively, and there are 41, 30, and 23 blocks, accordingly.

To mimic the effect of microstructure noise and asynchronicity, we add a Gaussian noise with

mean zero and variance 0.0012 to the simulated log prices. The data are then censored using Poisson

sampling, where the number of observations for each asset is drawn from a truncated log-normal

distribution. The log-normal distribution logN (µ, σ2) has parameters µ = 2, 500 and σ = 0.8.

The lower and upper truncation boundaries are 500 and 23400, respectively, for data generated

at 1-second frequency. We estimate the covariance matrix based on data subsampled at various

frequencies, from every 5 seconds to 2 observations per day, using the previous-tick approach from a

T = 21-day interval, with each day having 6.5 trading hours. We sample 100 paths.
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Table 1 provides the averages of ‖Σ̂S − Σ‖MAX and ‖(Σ̂S)−1 − Σ−1‖ in various scenarios. We

apply the PCA approach suggested in this paper, and the regression estimator of Fan et al. (2015),

which assumes X to be observable, to the idealized dataset without any noise or asynchronicity. The

results are shown in Columns PCA∗ and REG∗. Columns PCA and REG contain the estimation

results using the polluted data where noise and censoring have been applied. In the last column,

we report the estimated number of factors with the polluted data. We use as tuning parameters

κ = 0.5, rmax = 20, and µ = 0.02 × λmin(d,n)/2(Σ̂). The use of the median eigenvalue λmin(d,n)/2(Σ̂)

helps adjust the level of average eigenvalues for better accuracy.

We find the following. First, the values of ‖Σ̂ − Σ‖MAX in Columns REG and PCA are almost

identical. This is due to the fact that the largest entry-wise errors are likely achieved along the

diagonals, and that the estimates on the diagonal are identical to the sample covariance estimates,

regardless of whether the factors are observable or not. As to the precision matrix under the operator

norm, i.e., ‖(Σ̂S)−1 − Σ−1‖, the differences between the two estimators are noticeable despite being

very small. While the PCA approach uses less information by construction, it can perform as well as

the REG approach. That said, the benefit of using observable factors is apparent from the comparison

between Columns REG∗ and PCA∗ when the sampling frequency is high, as the results based on

the PCA∗ are worse. Second, microstructure effect does negatively affect the estimates when the

data is sampled every few seconds or more frequently. Subsampling does mitigate the effect of

microstructure noise, but it also raises another concern with a relatively increasing dimensionality

– the ratio of the cross-sectional dimension against the number of observations. The sweet spot

in that trade-off appears to be in the range between 15 and 30 minutes given an overall length of

T = 21 days. Third, as the size of the largest blocks md increases, the performance of the estimators

deteriorates, as expected from the theory. Finally, the number of factors is estimated fairly precisely

for most frequencies. Not surprisingly, the estimates are off at both ends of the sampling frequency

(due to insufficient amount of data in one case, and microstructure noise in the other).

5 Empirical Results

5.1 Data

We collect intraday observations of the S&P 500 index constituents from January 2004 to December

2012 from the TAQ database. We follow the usual procedures, see, e.g., Aı̈t-Sahalia and Jacod

(2014), to clean the data and subsample returns of each asset every 15 minutes. The overnight

returns are excluded to avoid dividend issuances and stock splits.

The S&P 500 constituents have obviously been changing over this long period. As a result,

there are in total 736 stocks in our dataset, with 498 - 502 of them present on any given day. We

calculate the covariance matrix for all index constituents that have transactions every day both for
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this month and the next. We do not require stocks to have all 15-minute returns available, as we use

the previous tick method to interpolate the missing observations. As a result, each month we have

over 491 names, and the covariance matrix for these names is positive-definite. Since we remove the

stocks de-listed during the next period, there is potential for some slight survivorship bias. However,

all the strategies we compare are exposed to the same survivorship bias, hence this potential bias

should not affect the comparisons below. Also, survivorship bias in this setup only matters for a

maximum of one month ahead, because the analysis is repeated each month. This is potentially an

important advantage of using high frequency data compared to the long time series needed at low

frequency.

In addition, we collect the Global Industrial Classification Standard (GICS) codes from the

Compustat database. These 8-digit codes are assigned to each company in the S&P 500. The code

is split into 4 groups of 2 digits. Digits 1-2 describe the company’s sector; digits 3-4 describe the

industry group; digits 5-6 describe the industry; digits 7-8 describe the sub-industry. The GICS codes

are used to sort stocks and form blocks of the residual covariance matrices. The GICS codes also

change over time. The time series median of the largest block size is 77 for sector-based classification,

38 for industry group, 24 for industry, and 14 for sub-industry categories.

For comparison purpose, we also make use of observable factors constructed from high-frequency

returns, including the market portfolio, the small-minus-big market capitalization (SMB) portfolio,

and high-minus-low price-earnings ratio (HML) portfolio in the Fama-French 3 factor model, as

well as the daily-rebalanced momentum portfolio formed by sorting stock returns between the past

250 days and 21 days. We construct these factors by adapting the Fama-French procedure to a

high frequency setting (see Aı̈t-Sahalia et al. (2014)). We also collect from TAQ the 9 industry

SDPR ETFs ( Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY),

Consumer Staples (XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK), and

Utilities (XLU)).

5.2 The Number of Factors

Prior to estimating the number of factors, we verify empirically the sparsity and block-diagonal

pattern of the residual covariance matrix using various combinations of factors. In Figures 1 and 2,

we indicate the economically significant entries of the residual covariance estimates for the year 2012,

after removing the part driven by 1, 4, 10, and 13 PCA-based factors, respectively. The criterion we

employ to indicate economic significance is that the correlation is at least 0.15 for at least 1/3 of the

year. These two thresholds as well as the choice of the year 2012 are arbitrary, but varying these

numbers or the subsample do not change the pattern and the message of the plots. We also compare

these plots with those based on observable factors. The benchmark one-factor model we use is the

CAPM. For the 4-factor model, we use the 3 Fama-French portfolios plus the momentum portfolio.
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The 10-factor model is based on the market portfolio and 9 industrial ETFs. The 13-factor model

uses all above observable factors.

We find that the PCA approach provides sharp results in terms of identifying the latent factors.

The residual covariance matrix exhibits a clear block-diagonal pattern after removing as few as 4

latent factors. The residual correlations are likely due to idiosyncrasies within sectors or industrial

groups. This pattern empirically documents the low-rank plus sparsity structure we imposed in

the theoretical analysis. Instead of thresholding all off-diagonal entries as suggested by the strict

factor model, we maintain within-sector or within-industry correlations, and produce more accurate

estimates. As documented in Fan et al. (2015), a similar pattern holds with observable factors, but

more such factors are necessary to obtain the same degree of the sparsity obtained here by the PCA

approach.

We then use the estimator r̂ to determine the number of common factors each month. The time

series plot is shown in Figure 3. The times series is relatively stable, identifying 3 to 5 factors for

most of the sample subperiods. The result agrees with the pattern in the residual sparsity plot, and

is consistent with the scree plot shown in Aı̈t-Sahalia and Xiu (2015) for S&P 100 constituents.

5.3 In-Sample R2 Comparison

We now compare the variation explained by an increasing number of latent factors with the variation

explained by the same number of observable factors. We calculate the in-sample R2 respectively for

each stock and for each month, and plot the time series of their cross-sectional medians in Figure

4. Not surprisingly, the first latent factor agrees with the market portfolio return and explains as

much variation as the market portfolio does. When additional factors are included, both the latent

factors and the observable factors can explain more variation, with the former explaining slightly

more. Both methods end up in large agreement in terms of explained variation, suggesting that

the observable factors identified in the literature are fairly effective at capturing the latent common

factors.

One interesting finding is that the R2s based on high frequency data are significantly higher than

those reported in the literature with daily data, see e.g., Herskovic et al. (2016). This may reflect

the increased signal-to-noise ratio from intraday data sampled at an appropriate frequency.

5.4 Out-of-Sample Portfolio Allocation

We then examine the effectiveness of the covariance estimates in terms of portfolio allocation. We

consider the following constrained portfolio allocation problem:

min
ω
ωᵀΣ̂Sω, subject to ωᵀ1 = 1, ‖ω‖1 ≤ γ, (20)

16



where ‖ω‖1 ≤ γ imposes an exposure constraint. When γ = 1, short-sales are ruled out, i.e., all

portfolio weights are non-negative (since
∑d

i=1 ωi = 1,
∑d

i=1 |ωi| ≤ 1 imposes that ωi ≥ 0 for all

i = 1, . . . , d). When γ is small, the optimal portfolio is sparse, i.e., many weights are zero. When

the γ constraint is not binding, the optimal portfolio coincides with the global minimum variance

portfolio.

For each month from February 2004 to December 2012, we build the optimal portfolio based on

the covariance estimated during the past month.3 This amounts to assuming that Σ̂S
t ≈ Et(Σt+1),

which is a common empirical strategy in practice. We compare the out-of-sample performance of

the portfolio allocation problem (20) with a range of exposure constraints. The results are shown in

Figure 5.

We find that for the purpose of portfolio allocation, PCA performs as well as the regression

method does. The performance of PCA further improves when combined with the sector-based

block-diagonal structure of the residual covariance matrix. The allocation based on the sample

covariance matrix only performs reasonably well when the exposure constraint is very tight. As the

constraint relaxes, more stocks are selected into the portfolio, and the in-sample risk of the portfolio

decreases. However, the risk of the portfolio based on the sample covariance matrix increases out-of-

sample, suggesting that the covariance matrix estimates are ill-conditioned and that the allocation

becomes noisy and unstable. Both PCA and the regression approach produce stable out-of-sample

risk, as the exposure constraint relaxes. For comparison, we also build up an equal-weight portfolio,

which is independent of the exposure constraints and the numbers of factors. Its annualized risk is

17.9%.

Figure 6 further illustrates how the out-of-sample portfolio risk using the PCA approach with the

sector-based block-diagonal structure of the residual covariance matrix varies with different number

of factors for a variety of exposure constraints. When the number of factors is 0, i.e., the estimator

is a block-diagonal thresholded sample covariance matrix, the out-of-sample risk explodes due to the

obvious model misspecification (no factor structure). The risk drops rapidly, as soon as a few factors

are added. Nonetheless, when tens of factors are included, the risk surges again due to outfitting.

The estimator with 500 factors corresponds to the sample covariance matrix estimator (without any

truncation), which performs well only when the exposure constraint is binding.

6 Conclusion

We propose a PCA-based estimator of the large covariance matrix from a continuous-time model

using high frequency returns. The approach is semiparametric, and relies on a latent factor struc-

ture following dynamics represented by arbitrary Itô semimartingales with continuous paths. This

3We estimate the covariance matrix for stocks that are constituents of the index during the past month and the

month ahead. Across all months in our sample, we have over 491 stocks available.
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includes for instance general forms of stochastic volatility. The estimator is positive-definite by con-

struction and well-conditioned. We also provide an estimator of the number of latent factors and

show consistency of these estimators under dual increasing frequency and dimension asymptotics.

Empirically, we document a latent low-rank and sparsity structure in the covariances of the asset

returns. A comparison with observable factors shows that the Fama-French factors, the momentum

factor, and the industrial portfolios together, approximate the span of the latent factors quite well.
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Appendix A Mathematical Proofs

Appendix A.1 Proof of Theorem 1

Proof of Theorem 1. First, we write B = β
√

EU = (b1, b2, . . . ,br) with ‖bj‖s sorted in a descending

order, where U is an orthogonal matrix such that Uᵀ
√

Eβᵀβ
√

EU is a diagonal matrix. Note that{
‖bj‖2 , 1 ≤ j ≤ r

}
are the non-zero eigenvalues of BBᵀ. Therefore by Weyl’s inequalities, we have

|λj(Σ)− ‖bj‖2 | ≤ ‖Γ‖ , 1 ≤ j ≤ r; and |λj(Σ)| ≤ ‖Γ‖ , r + 1 ≤ j ≤ d.

On the other hand, the non-zero eigenvalues of BBᵀ are the eigenvalues of BᵀB, and the eigenvalues

of E =
√

EUUᵀ
√

E are the eigenvalues of UᵀEU . By Weyl’s inequalities and Assumption 4, we have,

for 1 ≤ j ≤ r,∣∣d−1λj (BᵀB)− λj(E)
∣∣ =

∣∣∣d−1λj

(
Uᵀ
√

Eβᵀβ
√

EU
)
− λj(UᵀEU)

∣∣∣ ≤ ‖E‖ ‖U‖2 ∥∥d−1βᵀβ − Ir
∥∥ = o(1).

Therefore, ‖bj‖2 = O(d), and K ′d ≤ λj(Σ) ≤ Kd, for 1 ≤ j ≤ r. Since ‖Γ‖ ≤ ‖Γ‖1 ≤ Kmd and

λj(Σ) ≥ λj(Γ) for 1 ≤ j ≤ d, it follows that K ′ ≤ λj(Σ) ≤ Kmd, for r + 1 ≤ j ≤ d. This implies

that d−1λj(Σ) ≥ d−1λr(Σ) ≥ K ′, for 1 ≤ j ≤ r; d−1λj(Σ) ≤ d−1md, for r + 1 ≤ j ≤ d. Since

d−1/2md = o(1), it follows that d−1md < d−1/2md < K ′. Therefore, we have, as d→∞:

r̄ = arg min
1≤j≤d

(
d−1λj(Σ) + jd−1/2md

)
− 1→ r.

Next, by the Sin theta theorem in Davis and Kahan (1970), we have∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥ ≤ K ‖Γ‖

min
(∣∣∣λj−1(Σ)− ‖bj‖2

∣∣∣ , ∣∣∣λj+1(Σ)− ‖bj‖2
∣∣∣) .

By the triangle inequality, we have∣∣∣λj−1(Σ)− ‖bj‖2
∣∣∣ ≥ ∣∣∣‖bj−1‖2 − ‖bj‖2

∣∣∣− ∣∣∣λj−1(Σ)− ‖bj−1‖2
∣∣∣ ≥ ∣∣∣‖bj−1‖2 − ‖bj‖2

∣∣∣− ‖Γ‖ > Kd,

because for any 1 ≤ j ≤ r, the proof above shows that ‖bj−1‖2−‖bj‖2 = d (λj−1(E)− λj(E)) + o(1).

Similarly,
∣∣∣λj+1(Σ)− ‖bj‖2

∣∣∣ > Kd, when j ≤ r − 1. When j = r, we have ‖br‖2 − λj+1(Σ) ≥
‖br‖2 − ‖Γ‖ > Kd. Therefore, it implies that∥∥∥∥ξj − bj

‖bj‖

∥∥∥∥ = O
(
d−1md

)
, 1 ≤ j ≤ r.

This, along with the triangle inequality, ‖B‖MAX ≤ ‖β‖MAX

∥∥E1/2U
∥∥

1
≤ K, and ‖·‖MAX ≤ ‖·‖,

implies that for 1 ≤ j ≤ r,∥∥ξj∥∥MAX
≤
∥∥∥∥ bj
‖bj‖

∥∥∥∥
MAX

+O
(
d−1md

)
≤ O(d−1/2) +O

(
d−1md

)
.
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Since r̄ = r, for d sufficiently large, by triangle inequalities and that ‖·‖MAX ≤ ‖·‖ again, we have∥∥∥∥∥∥
r∑
j=1

λjξjξ
ᵀ
j − BBᵀ

∥∥∥∥∥∥
MAX

≤
r∑
j=1

‖bj‖2
∥∥∥∥ bj
‖bj‖

∥∥∥∥
MAX

∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥
MAX

+
r∑
j=1

|λj − ‖bj‖2 |
∥∥∥ξjξᵀj∥∥∥

MAX

+

r∑
j=1

‖bj‖2
∥∥ξj∥∥MAX

∥∥∥∥ξj − bj
‖bj‖

∥∥∥∥
MAX

≤Kd−1/2md.

Hence, since Σ =
∑d

j=1 λjξjξ
ᵀ
j , it follows that∥∥∥∥∥∥

d∑
j=r+1

λjξjξ
ᵀ
j − Γ

∥∥∥∥∥∥
MAX

≤ Kd−1/2md,

which concludes the proof.

Appendix A.2 Proof of Theorem 2

Throughout the proofs of Theorems 2 to 5, we will impose the assumption that ‖β‖MAX, ‖Γ‖MAX,

‖E‖MAX, ‖X‖MAX, ‖Z‖MAX, are bounded by K uniformly across time and dimensions. This is due

to Assumption 1, the fact that X and Z are continuous, and the localization argument in Section

4.4.1 of Jacod and Protter (2012).

We need one lemma on the concentration inequalities for continuous Itô semimartingales.

Lemma 1. Suppose Assumptions 1 and 2 hold, then we have

(i) max
1≤l,k≤d

∣∣∣∣∣∣
[T/∆n]∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ T

0
gs,lkds

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
, (A.1)

(ii) max
1≤j≤r,1≤l≤d

∣∣∣∣∣∣
[T/∆n]∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
, (A.2)

(iii) max
1≤j≤r,1≤l≤r

∣∣∣∣∣∣
[T/∆n]∑
i=1

(∆n
i Xj)(∆

n
i Xl)−

∫ T

0
es,jlds

∣∣∣∣∣∣ = Op

(
(∆n log d)1/2

)
. (A.3)

Proof of Lemma 1. The proof of this lemma follows by (i), (iii), (iv) of Lemma 2 in Fan et al.

(2015).

Proof of Theorem 2. We first recall some notation introduced in the main text. Let n = [T/∆n].

Suppose that Y = (∆n
1Y,∆

n
2Y, . . . ,∆

n
nY ) is a d×n matrix, where ∆n

i Y = Yi∆n −Y(i−1)∆n
. Similarly,

X and Z are r×n and d×n matrices, respectively. Therefore, we have Y = βX+Z and Σ̂ = T−1YYᵀ.

Let f(j) = d−1λj(Σ̂) + j × g(n, d). Suppose R = {j|1 ≤ j ≤ kmax, j 6= r}.
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Note that using ‖β‖ ≤ r1/2d1/2 ‖β‖MAX = O(d1/2) and ‖Γ‖∞ ≤ Kmd we have

‖YYᵀ − βXX ᵀβᵀ‖ ≤‖ZX ᵀβᵀ‖+ ‖βXZᵀ‖+ ‖ZZᵀ − Γ‖+ ‖Γ‖

≤Kd1/2 ‖β‖ ‖ZX ᵀ‖MAX + d ‖ZZᵀ − Γ‖MAX + ‖Γ‖∞
=Op

(
d(∆n log d)1/2 +md

)
.

where we use the following bounds, implied by Lemma 1:

‖ZZᵀ − Γ‖MAX = max
1≤k,l≤d

(∣∣∣∣∣
n∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ T

0
gs,lkds

∣∣∣∣∣
)

= Op((∆n log d)1/2), and

‖ZX ᵀ‖MAX = Op((∆n log d)1/2).

Therefore, by Weyl’s inequality we have for 1 ≤ j ≤ r,

|λj(Σ̂)− λj(T−1βXX ᵀβᵀ)| = Op

(
d(∆n log d)1/2 +md

)
.

On the other hand, the non-zero eigenvalues of T−1βXX ᵀβᵀ are identical to the eigenvalues of

T−1
√
XX ᵀβᵀβ

√
XX ᵀ. By Weyl’s inequality again, we have for 1 ≤ j ≤ r,∣∣∣d−1λj

(
T−1
√
XX ᵀβᵀβ

√
XX ᵀ

)
− λj(T−1XX ᵀ)

∣∣∣ ≤ T−1 ‖XX ᵀ‖
∥∥d−1βᵀβ − Ir

∥∥ = op(1),

where we use

‖X‖ =
√
λmax(XX ᵀ) ≤ r1/2 max

1≤l,j≤r

∣∣∣∣∣
n∑
i=1

(∆n
i Xl)(∆

n
i Xj)

∣∣∣∣∣
1/2

= Op(1). (A.4)

Also, for 1 ≤ j ≤ r, by Weyl’s inequality and Lemma 1, we have

|λj(T−1XX ᵀ)− λj(E)| ≤
∥∥T−1XX ᵀ − E

∥∥ = Op

(
(∆n log d)1/2

)
.

Combining the above inequalities, we have for 1 ≤ j ≤ r,

|d−1λj(Σ̂)− λj(E)| ≤ Op
(

(∆n log d)1/2 + d−1md

)
+ op(1).

Therefore, for 1 ≤ j < r, we have

λj+1(E)− op(1) < d−1λj+1(Σ̂) < λj+1(E) + op(1) < λj(E)− op(1) < d−1λj(Σ̂). (A.5)

Next, note that

YYᵀ = β̃XX ᵀβ̃
ᵀ

+ Z
(
In −X ᵀ(XX ᵀ)−1X

)
Zᵀ

where β̃ = β + ZX ᵀ(XX ᵀ)−1. Since rank(β̃XX ᵀβ̃
ᵀ
) = r, and by (4.3.2b) of Theorem 4.3.1 and

(4.3.14) of Corollary 4.3.12 in Horn and Johnson (2013), we have for r + 1 ≤ j ≤ d,

λj(YYᵀ) ≤ λj−r
(
Z
(
In −X ᵀ(XX ᵀ)−1X

)
Zᵀ)+ λr+1(β̃XX ᵀβ̃

ᵀ
) ≤ λj−r(ZZᵀ) ≤ λ1(ZZᵀ).
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Since by Lemma 1 we have

λ1(ZZᵀ) = ‖ZZᵀ‖ ≤ ‖ZZᵀ‖∞ ≤ max
1≤j,l≤d

{d|(ZZᵀ − Γ)jl|+md|Γjl|}

= Op(d(∆n log d)1/2 +md), (A.6)

it thus implies that for r + 1 ≤ j ≤ d, there exists some K > 0, such that

d−1λj(Σ̂) ≤ K(∆n log d)1/2 +Kd−1md.

In sum, for 1 ≤ j ≤ r,

f(j)− f(r + 1) = d−1
(
λj(Σ̂)− λr+1(Σ̂)

)
+ (j − r − 1)g(n, d) > λj(E) + op(1) > K,

for some K > 0. Since g(n, d)
(
(∆n log d)1/2 + d−1md

)−1 →∞, it follows that for r + 1 < j ≤ d,

P (f(j) < f(r + 1)) = P
(

(j − r − 1)g(n, d) < d−1
(
λr+1(Σ̂)− λj(Σ̂)

))
→ 0.

This establishes the desired result.

Appendix A.3 Proof of Theorem 3

First, we can assume r̂ = r. Since it holds with probability approaching 1 as established by Theorem

2, a simple conditioning argument, see, e.g., footnote 5 of Bai (2003), is sufficient to show this is

without loss of rigor. Recall that

Λ = Diag
(
λ̂1, λ̂2, . . . , λ̂r

)
, F = d1/2

(
ξ̂1, ξ̂2, . . . , ξ̂r

)
, and G = d−1F ᵀY.

We write

H = T−1XX ᵀβᵀFΛ−1.

It is easy to verify that

Σ̂F = FΛ, GGᵀ = Td−1 × Λ, F ᵀF = d× Ir, and

Γ̂ = T−1 (Y − FG) (Y − FG)ᵀ = T−1YYᵀ − d−1FΛF ᵀ.

We now need a few more lemmas. The proofs of these lemmas rely on similar arguments to those

developed in Doz et al. (2011) and Fan et al. (2013).

Lemma 2. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have

(i) ‖F − βH‖MAX = Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.7)

(ii)
∥∥H−1

∥∥ = Op(1). (A.8)

(iii)
∥∥G−H−1X

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.9)
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Proof of Lemma 2. (i) By simple calculations, we have

F − βH =T−1 (YYᵀ − βXX ᵀβᵀ)FΛ−1

=T−1
(
βXZᵀFΛ−1 + ZX ᵀβᵀFΛ−1 + (ZZᵀ − Γ)FΛ−1 + ΓFΛ−1

)
. (A.10)

We bound these terms separately. First, we have∥∥(ZZᵀ − Γ)FΛ−1
∥∥

MAX
≤ ‖ZZᵀ − Γ‖MAX ‖F‖1

∥∥Λ−1
∥∥

MAX
.

Moreover, ‖F‖1 ≤ d1/2 ‖F‖F = d, and by (A.5),
∥∥Λ−1

∥∥
MAX

= Op(d
−1), which implies that∥∥(ZZᵀ − Γ)FΛ−1

∥∥
MAX

= Op((∆n log d)1/2).

In addition, since ‖Γ‖∞ ≤ Kmd and ‖F‖MAX ≤ ‖F‖F = d1/2, it follows that∥∥ΓFΛ−1
∥∥

MAX
≤ ‖Γ‖∞ ‖F‖MAX

∥∥Λ−1
∥∥

MAX
= Op(d

−1/2md).

Also, we have∥∥βXZᵀFΛ−1
∥∥

MAX
≤ ‖β‖MAX ‖XZ

ᵀ‖1 ‖F‖1
∥∥Λ−1

∥∥
MAX

= Op((∆n log d)1/2).

where we use the fact that ‖β‖MAX ≤ K and the bound below derived from (A.2):

‖XZᵀ‖1 = max
1≤l≤d

r∑
j=1

∣∣∣∣∣
n∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣ ≤ r max
1≤l≤d,1≤j≤r

∣∣∣∣∣
n∑
i=1

(∆n
i Xj)(∆

n
i Zl)

∣∣∣∣∣ = Op((∆n log d)1/2).

The remainder term can be bounded similarly.

(ii) Since ‖β‖ = O(d1/2) and
∥∥T−1XX ᵀ

∥∥ = Op(1), we have

‖H‖ =
∥∥T−1XX ᵀβᵀFΛ−1

∥∥ ≤ ∥∥T−1XX ᵀ
∥∥ ‖β‖ ‖F‖ ∥∥Λ−1

∥∥ = Op(1).

By triangle inequalities, and that ‖F − βH‖ ≤ (rd)1/2 ‖F − βH‖MAX, we have

‖HᵀH − Ir‖ ≤
∥∥HᵀH − d−1HᵀβᵀβH

∥∥+ d−1 ‖HᵀβᵀβH − dIr‖

≤‖H‖2
∥∥Ir − d−1βᵀβ

∥∥+ d−1 ‖HᵀβᵀβH − F ᵀF‖

≤‖H‖2
∥∥Ir − d−1βᵀβ

∥∥+ d−1 ‖F − βH‖ ‖βH‖+ d−1 ‖F − βH‖ ‖F‖

=op(1).

By Weyl’s inequality again, we have λmin(HᵀH) > 1/2 with probability approaching 1. Therefore,

H is invertible, and
∥∥H−1

∥∥ = Op(1).

(iii) We use the following decomposition:

G−H−1X = d−1F ᵀ (βH − F )H−1X + d−1(F ᵀ −Hᵀβᵀ)Z + d−1HᵀβᵀZ.
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Note that by (A.4), we have ‖X‖ = Op(1). Moreover, since ‖F‖ ≤ ‖F‖F and ‖F − βH‖ ≤
r1/2d1/2 ‖F − βH‖MAX, we have∥∥d−1F ᵀ (βH − F )H−1X

∥∥ ≤ d−1 ‖F‖ ‖F − βH‖
∥∥H−1

∥∥ ‖X‖ = Op

(
(∆n log d)1/2 + d−1/2md

)
.

Similarly, by (A.6) we have

‖Z‖ = Op(d
1/2(∆n log d)1/4 +m

1/2
d ),

which leads to∥∥d−1(F ᵀ −Hᵀβᵀ)Z
∥∥ = Op

((
(∆n log d)1/4 + d−1/2m

1/2
d

)(
(∆n log d)1/2 + d−1/2md

))
.

Moreover, we can apply Lemma 1 to βᵀZ, which is an r × n matrix, so we have

‖βᵀZ‖ =
√
‖βᵀZZᵀβ‖ ≤

√
‖βᵀZZᵀβ‖∞ ≤

√
‖βᵀZZᵀβ − βᵀΓβ‖∞ + ‖Γ‖∞ ‖β‖

2
∞

≤K (∆n log d)1/4 +Km
1/2
d ,

where we use ‖β‖∞ ≤ r ‖β‖MAX. This leads to∥∥d−1HᵀβᵀZ
∥∥ = Op

(
d−1(∆n log d)1/4 + d−1m

1/2
d

)
.

This concludes the proof.

Lemma 3. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥∥Γ̂S − Γ
∥∥∥

MAX
≤
∥∥∥Γ̂− Γ

∥∥∥
MAX

= Op

(
(∆n log d)1/2 + d−1/2md

)
. (A.11)

Proof of Lemma 3. We write G = (g1, g2, . . . , gn), F = (f1, f2, . . . , fd)
ᵀ, β = (β1, β2, . . . , βd)

ᵀ, and

∆̂n
i Zk = ∆n

i Yk − f
ᵀ
k gi. Hence, Γ̂lk = T−1

∑n
i=1(∆̂n

i Zl)(∆̂
n
i Zk).

For 1 ≤ k ≤ d and 1 ≤ i ≤ n, we have

∆n
i Zk − ∆̂n

i Zk =∆n
i Yk − β

ᵀ
k∆

n
i X − (∆n

i Yk − f
ᵀ
k gi) = fᵀk gi − β

ᵀ
k∆

n
i X

=βᵀkH(gi −H−1∆n
i X) + (fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X) + (fᵀk − β
ᵀ
kH)H−1∆n

i X.

Therefore, using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we have

n∑
i=1

(
∆n
i Zk − ∆̂n

i Zk

)2

≤3

n∑
i=1

(
βᵀkH(gi −H−1∆n

i X)
)2

+ 3

n∑
i=1

(
(fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X)
)2

+ 3

n∑
i=1

(
(fᵀk − β

ᵀ
kH)H−1∆n

i X
)2
.

Using vᵀAv ≤ λmax(A)vᵀv repeatedly, if follows that

n∑
i=1

(
βᵀkH(gi −H−1∆n

i X)
)2

=

n∑
i=1

βᵀkH(G−H−1X )eie
ᵀ
i (G−H

−1X )ᵀHᵀβk
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≤λmax

((
G−H−1X

)
(
(
G−H−1X

)ᵀ)
λmax(HHᵀ)βᵀkβk

≤r
∥∥G−H−1X

∥∥2 ‖H‖2 max
1≤l≤r

|βkl|2

Similarly, we can bound the other terms.

n∑
i=1

(
(fᵀk − β

ᵀ
kH)(gi −H−1∆n

i X)
)2 ≤r ∥∥G−H−1X

∥∥2
max
1≤l≤r

(Fkl − (βᵀkH)l)
2,

n∑
i=1

(
(fᵀk − β

ᵀ
kH)H−1∆n

i X
)2 ≤rT ‖E‖ ∥∥H−1

∥∥2
max
1≤l≤r

(Fkl − (βᵀkH)l)
2.

As a result, by Lemma 2, we have

max
1≤k≤d

n∑
i=1

(
∆n
i Zk − ∆̂n

i Zk

)2

≤K
∥∥G−H−1X

∥∥2 ‖H‖2 ‖β‖2MAX +K
∥∥G−H−1X

∥∥2 ‖F − βH‖2MAX

+K ‖E‖
∥∥H−1

∥∥2 ‖F − βH‖2MAX

≤Op
(
(∆n log d) + d−1m2

d

)
By the Cauchy-Schwarz inequality, we have

max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆̂n
i Zl)(∆̂

n
i Zk)−

n∑
i=1

(∆n
i Zl)(∆

n
i Zk)

∣∣∣∣∣
≤ max

1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)(
∆̂n
i Zk −∆n

i Zk

)∣∣∣∣∣+ 2 max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆n
i Zl)

(
∆̂n
i Zk −∆n

i Zk

)∣∣∣∣∣
≤ max

1≤l≤d

n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)2
+ 2

√√√√max
1≤l≤d

n∑
i=1

(∆n
i Zl)

2 max
1≤l≤d

n∑
i=1

(
∆̂n
i Zl −∆n

i Zl

)2

=Op

(
(∆n log d)1/2 + d−1/2md

)
,

Finally, by the triangular inequality,

max
1≤l,k≤d,(l,k)∈S

∣∣∣Γ̂lk − Γlk

∣∣∣ ≤ max
1≤l,k≤d

∣∣∣Γ̂lk − Γlk

∣∣∣ ≤ max
1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆n
i Zl)(∆

n
i Zk)−

∫ T

0
gs,lkds

∣∣∣∣∣
+ max

1≤l,k≤d

∣∣∣∣∣
n∑
i=1

(∆̂n
i Zl)(∆̂

n
i Zk)−

n∑
i=1

(∆n
i Zl)(∆

n
i Zk)

∣∣∣∣∣ ,
which yields the desired result by using (A.1).

Lemma 4. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥T−1FGGᵀF ᵀ − βEβᵀ
∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.
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Proof. Using GGᵀ = Td−1 × Λ, we can write

T−1FGGᵀF ᵀ = d−1FΛF ᵀ = d−1(F − βH + βH)Λ(F − βH + βH)ᵀ

=d−1(F − βH)Λ(F − βH)ᵀ + d−1βHΛ(F − βH)ᵀ + d−1(βHΛ(F − βH)ᵀ)ᵀ + d−1βHΛHᵀβᵀ.

Moreover, we can derive

d−1βHΛHᵀβᵀ = T−1βHGGᵀHᵀβᵀ

=T−1βH(G−H−1X +H−1X )(G−H−1X +H−1X )ᵀHᵀβᵀ

=T−1βH(G−H−1X )(G−H−1X )ᵀHᵀβᵀ + T−1βH(G−H−1X )X ᵀβᵀ

+ T−1(βH(G−H−1X )X ᵀβᵀ)ᵀ + T−1βXX ᵀβᵀ.

Therefore, combining the above equalities and applying the triangular inequality, we obtain∥∥T−1FGGᵀF ᵀ − βEβᵀ
∥∥

MAX
≤d−1 ‖(F − βH)Λ(F − βH)ᵀ‖MAX + 2d−1 ‖βHΛ(F − βH)ᵀ‖MAX

+ T−1
∥∥βH(G−H−1X )(G−H−1X )ᵀHᵀβᵀ

∥∥
MAX

+ 2T−1
∥∥βH(G−H−1X )X ᵀβᵀ

∥∥
MAX

+
∥∥β(T−1XX ᵀ − E)βᵀ

∥∥
MAX

.

Note that by Lemma 2, (A.4), ‖β‖MAX = Op(1), ‖H‖ = Op(1), and ‖Λ‖MAX = Op(1),

d−1 ‖(F − βH)Λ(F − βH)ᵀ‖MAX ≤r
2d−1 ‖F − βH‖2MAX ‖Λ‖MAX

≤Op(∆n log d+ d−1m2
d),

2d−1 ‖βHΛ(F − βH)ᵀ‖MAX ≤2r2d−1 ‖β‖MAX ‖H‖ ‖Λ‖MAX ‖F − βH‖MAX

≤Op
(

(∆n log d)1/2 + d−1/2md

)
,

T−1
∥∥βH(G−H−1X )(G−H−1X )ᵀHᵀβᵀ

∥∥
MAX

≤r4T−1 ‖β‖2MAX ‖H‖
2
∥∥G−H−1X

∥∥2

≤Op(∆n log d+ d−1m2
d),

2T−1
∥∥βH(G−H−1X )X ᵀβᵀ

∥∥
MAX

≤r3 ‖β‖2MAX ‖H‖
∥∥G−H−1X

∥∥ ‖X‖
≤Op

(
(∆n log d)1/2 + d−1/2md

)
,∥∥β(T−1XX ᵀ − E)βᵀ

∥∥
MAX

≤r2 ‖β‖MAX

∥∥T−1XX ᵀ − E
∥∥

MAX

≤Op
(

(∆n log d)1/2
)
.

Combining the above inequalities concludes the proof.

Proof of Theorem 3. Note that

Σ̂S = d−1FΛF ᵀ + Γ̂S = T−1FGGᵀF ᵀ + Γ̂S .

By Lemma 3, we have ∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
(∆n log d)1/2 + d−1/2md

)
.
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By the triangle inequality, we have∥∥∥Σ̂S − Σ
∥∥∥

MAX
≤
∥∥d−1FΛF ᵀ − βEβᵀ

∥∥
MAX

+
∥∥∥Γ̂S − Γ

∥∥∥
MAX

Therefore, the desired result follows from Lemmas 3 and 4.

Appendix A.4 Proof of Theorem 4

Lemma 5. Under Assumptions 1 - 4, d−1/2md = o(1), and ∆n log d = o(1), we have∥∥∥Γ̂S − Γ
∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
. (A.12)

Moreover, if in addition, d−1/2m2
d = o(1) and md(∆n log d)1/2 = o(1) hold, then λmin

(
Γ̂S
)

is bounded

away from 0 with probability approaching 1, and∥∥∥∥(Γ̂S
)−1
− Γ−1

∥∥∥∥ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

Proof of Lemma 5. Note that since Γ̂S − Γ is symmetric,

∥∥∥Γ̂S − Γ
∥∥∥ ≤ ∥∥∥Γ̂S − Γ

∥∥∥
∞

= max
1≤l≤d

d∑
k=1

∣∣∣Γ̂Slk − Γlk

∣∣∣ ≤ md max
1≤l≤d,1≤k≤d

∣∣∣Γ̂Slk − Γlk

∣∣∣
By Lemma 3, we have∥∥∥Γ̂S − Γ

∥∥∥ ≤ md

∥∥∥Γ̂S − Γ
∥∥∥

MAX
= Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

Moreover, since λmin(Γ) > K for some constant K and by Weyl’s inequality, we have λmin(Γ̂S) >

K − op(1). As a result, we have∥∥∥∥(Γ̂S
)−1
− Γ−1

∥∥∥∥ =

∥∥∥∥(Γ̂S
)−1 (

Γ−
(

Γ̂S
))

Γ−1

∥∥∥∥ ≤ λmin(Γ̂S)−1λmin(Γ)−1
∥∥∥Γ− Γ̂S

∥∥∥
≤Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

Proof of Theorem 4. First, by Lemma 5 and the fact that λmin(Σ̂S) ≥ λmin(Γ̂S), we can establish

the first two statements.

To bound
∥∥∥(Σ̂S)−1 − Σ−1

∥∥∥, by the Sherman - Morrison - Woodbury formula, we have

(
Σ̂S
)−1
−
(

Σ̃
)−1

=
(
T−1FGGᵀF ᵀ + Γ̂S

)−1
−
(
T−1βHH−1XX ᵀ(H−1)ᵀHᵀβᵀ + Γ

)−1

=
(

(Γ̂S)−1 − Γ−1
)
−
(

(Γ̂S)−1 − Γ−1
)
F
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
F ᵀ(Γ̂S)−1
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− Γ−1F
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
F ᵀ
(

(Γ̂S)−1 − Γ−1
)

+ Γ−1(βH − F )
(
THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
HᵀβᵀΓ−1

− Γ−1F
(
THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
(F ᵀ −Hᵀβᵀ)Γ−1

+ Γ−1F

((
THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
)
F ᵀΓ−1

=L1 + L2 + L3 + L4 + L5 + L6.

By Lemma 5, we have

‖L1‖ = Op

(
md(∆n log d)1/2 + d−1/2m2

d

)
.

For L2, because ‖F‖ = Op(d
1/2), λmax

(
(Γ̂S)−1

)
≤
(
λmin(Γ̂S)

)−1
≤ K + op(1),

λmin

(
dΛ−1 + F ᵀ(Γ̂S)−1F

)
≥ λmin

(
F ᵀ(Γ̂S)−1F

)
≥ λmin (F ᵀF )λmin

(
(Γ̂S)−1

)
≥ m−1

d d,

and by Lemma 5, we have

‖L2‖ ≤
∥∥∥((Γ̂S)−1 − Γ−1

)∥∥∥ ‖F‖ ∥∥∥∥(dΛ−1 + F ᵀ(Γ̂S)−1F
)−1

∥∥∥∥∥∥∥F ᵀ(Γ̂S)−1
∥∥∥

= Op

(
m2
d(∆n log d)1/2 + d−1/2m3

d

)
.

The same bound holds for ‖L3‖. As for L4, note that ‖β‖ = Op(d
1/2), ‖H‖ = Op(1),

∥∥Γ−1
∥∥ ≤

(λmin(Γ))−1 ≤ K, and ‖βH − F‖ ≤
√
rd ‖βH − F‖MAX = Op(d

1/2(∆n log d)1/2 +md), and that

λmin

(
THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)
≥ λmin

(
HᵀβᵀΓ−1βH

)
≥ λmin(Γ−1)λmin(βᵀβ)λmin(HᵀH)

> Km−1
d d,

hence we have

‖L4‖ ≤
∥∥Γ−1

∥∥ ‖(βH − F )‖
∥∥∥∥(THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
∥∥∥∥ ‖Hᵀβᵀ‖

∥∥Γ−1
∥∥

= Op(md(∆n log d)1/2 + d−1/2m2
d).

The same bound holds for L5. Finally, with respect to L6, we have∥∥∥∥(THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH
)−1
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)−1
∥∥∥∥

≤Kd−2m2
d

∥∥∥(THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH
)
−
(
dΛ−1 + F ᵀ(Γ̂S)−1F

)∥∥∥ .
Moreover, since we have∥∥THᵀ(XX ᵀ)−1H − dΛ−1

∥∥ =
∥∥Λ−1F ᵀ(βH − F )

∥∥ = Op

(
(∆n log d)1/2 + d−1/2md

)
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and ∥∥∥HᵀβᵀΓ−1βH − F ᵀ(Γ̂S)−1F
∥∥∥

≤
∥∥(Hᵀβᵀ − F ᵀ)Γ−1βH

∥∥+
∥∥F ᵀΓ−1(βH − F )

∥∥+
∥∥∥F ᵀ

(
Γ−1 − (Γ̂S)−1

)
F
∥∥∥

=Op

(
dmd(∆n log d)1/2 + d1/2m2

d

)
,

combining these inequalities yields

‖L6‖ = Op

(
m3
d(∆n log d)1/2 + d−1/2m4

d

)
.

On the other hand, using the Sherman - Morrison - Woodbury formula again,∥∥∥Σ̃−1 − Σ−1
∥∥∥ =

∥∥∥(T−1βXX ᵀβᵀ + Γ
)−1 − (βEβᵀ + Γ)−1

∥∥∥
≤
∥∥Γ−1

∥∥2 ‖βH‖2
∥∥∥∥((THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

)−1
−
(
HᵀE−1H +HᵀβᵀΓ−1βH

)−1
)∥∥∥∥

≤Kd
∥∥∥THᵀ (XX ᵀ)−1H +HᵀβᵀΓ−1βH

∥∥∥−1 ∥∥HᵀE−1H +HᵀβᵀΓ−1βH
∥∥−1

∥∥∥T (XX ᵀ)−1 − E−1
∥∥∥

=Op

(
md(∆n log d)1/2

)
.

By the triangle inequality, we obtain∥∥∥(Σ̂S)−1 − Σ−1
∥∥∥ ≤ ∥∥∥(Σ̂S)−1 − Σ̃−1

∥∥∥+
∥∥∥Σ̃−1 − Σ−1

∥∥∥ = Op

(
m3
d(∆n log d)1/2 + d−1/2m4

d

)
.

Appendix A.5 Proof of Theorem 5

Proof of Theorem 5. This follows from Lemma 2.
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‖Σ̂S − Σ‖MAX ‖(Σ̂S)−1 − Σ−1‖ # Factors

MAX Freq REG∗ PCA∗ REG PCA REG∗ PCA∗ REG PCA

5 0.004 0.010 2.063 2.063 0.51 1.42 31.94 31.94 1
15 0.007 0.011 0.785 0.785 0.88 1.55 31.60 31.59 1
30 0.009 0.012 0.404 0.404 1.23 1.72 31.05 31.02 2
60 0.014 0.015 0.229 0.217 1.81 2.03 29.94 29.87 3

15 300 0.031 0.032 0.137 0.112 4.30 4.20 24.58 24.17 3
900 0.054 0.054 0.078 0.070 8.33 8.07 18.04 17.31 3
1800 0.078 0.079 0.084 0.084 13.44 13.18 13.52 12.95 3
3900 0.112 0.113 0.116 0.116 26.22 26.05 21.11 21.19 3
4680 0.124 0.124 0.124 0.125 31.01 30.94 26.69 26.80 3
11700 0.195 0.196 0.196 0.196 116.23 117.10 113.27 112.45 1

5 0.004 0.012 2.063 2.063 0.63 2.38 35.66 35.66 1
15 0.007 0.013 0.785 0.785 1.10 2.51 35.32 35.30 1
30 0.010 0.014 0.403 0.403 1.57 2.66 34.76 34.73 1
60 0.014 0.017 0.247 0.222 2.21 2.89 33.63 33.55 3

25 300 0.032 0.033 0.148 0.118 5.46 5.32 27.76 27.20 3
900 0.055 0.055 0.080 0.071 10.90 10.65 21.15 20.09 3
1800 0.078 0.078 0.084 0.083 18.51 18.20 16.34 15.46 3
3900 0.116 0.116 0.116 0.117 37.71 37.07 31.60 31.60 3
4680 0.128 0.128 0.130 0.131 47.72 47.28 40.93 41.41 3
11700 0.199 0.200 0.200 0.201 315.69 314.05 312.97 307.50 1

5 0.004 0.010 2.064 2.064 0.59 1.71 28.46 28.46 1
15 0.007 0.011 0.785 0.785 1.04 1.80 28.15 28.11 1
30 0.010 0.013 0.404 0.404 1.50 1.97 27.65 27.59 1
60 0.014 0.016 0.227 0.217 2.16 2.28 26.74 26.62 3

35 300 0.031 0.032 0.139 0.111 5.50 5.42 21.34 20.94 3
900 0.053 0.054 0.079 0.070 11.49 11.41 15.12 14.50 3
1800 0.076 0.076 0.082 0.081 20.66 20.48 14.87 14.82 3
3900 0.115 0.116 0.117 0.117 49.08 48.72 43.54 43.61 3
4680 0.124 0.124 0.127 0.127 65.04 65.08 59.80 59.96 3
11700 0.193 0.194 0.195 0.196 2523.60 2422.00 2359.70 2327.80 1

Table 1: Simulation Results

Note: In this table, we report the values of ‖Σ̂S−Σ‖MAX and ‖(Σ̂S)−1−Σ−1‖ for each subsampling frequency
ranging from one observation every 5 seconds to 2 observations per day within a 21-day fixed period, with
the size of the largest block being 15, 25, and 35 respectively. The first column displays the size of the
largest block. The second column displays the sampling frequencies in seconds. Columns REG∗ and PCA∗

report the results of regression and the PCA methods respectively, using synchronous observations without
microstructure noise. Columns REG and the PCA are based on the polluted data. Columns REG∗, REG,
and PCA∗ all assume 3 factors. The results in the PCA column are obtained by estimating the number of
factors first. The last column reports the median estimates of the number of factors using the polluted data.
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Figure 1: The Sparsity Pattern of the Residual Covariance Matrices

Note: The figure displays the significant entries of the residual covariance matrices, relative to 1, 4, 10,

and 13 latent factors. The red (resp. black) squares highlight those stocks that belong to the same sector

(resp. industry group). We highlight 4 sectors on the x-axis, including E (Energy), CS (Consumer Staples),

F (Financials), and U (Utilities).
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Figure 2: The Sparsity Pattern of the Residual Covariance Matrices

Note: The figure displays the significant entries of the residual covariance matrices, relative to 1, 4,

10, and 13 observable factors. The red (resp. black) squares highlight those stocks that belong to the same

sector (resp. industry group). CAPM denotes one factor case using the market portfolio, FF refers to the

two additional Fama-French factors, MoM denotes the momentum factor, whereas the 9IF refers to the 9

industrial ETF factors. We highlight 4 sectors on the x-axis, including E (Energy), CS (Consumer Staples),

F (Financials), and U (Utilities).

38



01/2004 07/2005 01/2007 07/2008 01/2010 07/2011 01/2013
2

3

4

5

6

7

8

9

10

11

Figure 3: Estimates of the Number of Factors

Note: This figure plots the time series of the estimated number of factors using PCA. The tuning parameters

in the penalty function are µ = 0.02× λmin(d,n)/2(Σ̂), κ = 0.5, and rmax = 20.
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Figure 4: In-Sample R2 Comparison

Note: This figure plots the time series of the cross-sectional medians of R2s based on the latent factors

identified from the PCA, as well as those based on the observable factors. The number of factors refers to

the number of latent components from the PCA approach and the number of portfolios used in the regression

approach.
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Figure 5: Out-of-Sample Risk of the Portfolio

Note: This figure compares the time series average of the out-of-sample monthly volatility from 2004

and 2012. The x-axis is the exposure constraint γ in the optimization problem (20). The results are based

on 5 covariance matrix estimators, including the sample covariance matrix (Sample), the PCA approach with

sector-grouped block-diagonal residual covariance (Sector + PCA), PCA with diagonal residual covariance

(Strict + PCA), and their regression counterparts (Sector + REG, Strict + REG). The number of factors

refers to the number of principal components for the PCA approach and the number of portfolios factors for

the regression approach.
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Figure 6: Out-of-Sample Risk of the Portfolio as a Function of the Exposure Constraint and Number

of Factors

Note: This figure reports the time series average of the out-of-sample monthly volatility (z-axis) from

2004 and 2012. The x-axis is the exposure constraint γ in the optimization problem (20), whereas the y-axis is

the number of factors, i.e., the number of principal components used by the PCA approach with sector-grouped

block-diagonal residual covariance (Sector + PCA).
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