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Abstract

In this paper we consider the nonparametric estimation for a density and hazard rate function

for right censored α-mixing survival time data using kernel smoothing techniques. Since survival

times are positive with potentially a high concentration at zero, one has to take into account the

bias problems when the functions are estimated in the boundary region. In this paper, gamma

kernel estimators of the density and the hazard rate function are proposed. The estimators

use adaptive weights depending on the point in which we estimate the function, and they are

robust to the boundary bias problem. For both estimators, the mean squared error properties,

including the rate of convergence, the almost sure consistency and the asymptotic normality are

investigated. The results of a simulation demonstrate the excellent performance of the proposed

estimators.
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1 Introduction

Survival times from clinical trials are often dependent and censored due to the nature of the

experiment. To ensure consistent estimation, this has to be taken into account when the marginal

density of the survival data is fitted nonparametrically. An additional problem arises when there

is a high concentration of durations near zero. See for example Jones (1993) for some solutions to

this boundary problem in the context of uncensored and independent data. This paper makes use

of the gamma kernel to estimate nonparametrically the marginal density and the hazard function

of positive dependent survival data that suffer from right censoring. Both estimators are robust

with respect to boundary problems.

We start by introducing some notations and by reviewing the relevant literature. Let T1, . . . , Tn

(survival times) and C1, . . . , Cn (censoring times) be two nonnegative random sequences with dis-

tribution functions F and G, respectively. We assume that the censoring times Ci are i.i.d. and

independent of the the survival times Ti. We consider right censoring, that is instead of observing

Ti, we observe the pair (Xi, δi), where Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci) where I(·) is the

indicator function. Furthermore, we suppose that the survival times Ti are α-mixing. Recall the

definition of α-mixing. Let Fk
i (T ) be the σ-field of events generated by {Tj , i ≤ j ≤ k}.

Definition 1. Let {Ti, i ≥ 1} be a sequence of random variable. Given a positive integer n, set

α(n) = sup
k

|P (A ∩ B) − P (A)P (B)|, A ∈ Fk
1 (T ) and B ∈ Fk+n(T ).

The sequence is α-mixing if the mixing coefficient α(n) → 0 as n → 0.

The α-mixing condition, also called strong mixing, is the weakest among mixing conditions known

in the literature. Many stochastic process satisfy the α-mixing condition, see for example Doukhan

(1994).

In the case of censoring, it is well known that the empirical distribution is not a consistent esti-

mator for the distribution function F . Therefore, Kaplan and Meier (1958) proposed a consistent

estimator, hereafter denoted the KM estimator, for the distribution function F which is defined as

follows:
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Γn(x) =



























1 −
∏

i:1≤i≤n,X(i)≤x

(

n − i

n − i + 1

)δ(i)

if x < X(n)

1 Otherwise.

X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics of X1, X2 · · · , Xn and δ(i) is the concomitant of

X(i). For independent survival times Breslow and Crowley (1974) state the weak convergence of

the KM estimator. Lo and Singh (1985) expressed the KM estimator as an i.i.d. mean process with

a remainder of negligible order. Wang (1987) established the uniform weak convergence of KM

estimator Stute and Wang (1993) proved the convergence in mean and almost surely of
∫

ϕdΓn for

any function ϕ that is F -integrable.

When the survival times are dependent, the behavior of the KM estimator has been studied by

many authors. In fact, the consistency, the asymptotic normality and the the limiting variance

of the KM estimator are developed by Ying and Wei (1994) for φ-mixing survival time, Cai and

Roussas (1998) when the survival time exhibit some particular dependence mode, called positive or

negative association, Leonenko and Sakhno (2001) for long-range dependent survival and censoring

times and, Cai (2001) for α-mixing survival and censoring times. Cai (1998a) represents the KM

estimator as the mean of random variables with a remainder of order O(n−1/2(log n)λ)(λ > 0), and

states the asymptotic normality in α-mixing context. In this paper, this approximation is used to

derive some properties for the gamma kernel density and the hazard rate function estimators.

This paper concentrates on the estimation of the density and the hazard function. Based on the

smooth kernel technique, the standard kernel estimator for the density function f is defined as

follows:

f̂a(x) =
1

a

∫

K

(

x − t

a

)

d Γn(t) =
1

a

n
∑

i=1

K

(

x − Xi

a

)

ωi (1)

and the hazard rate estimator is:

ĥa(x) =
1

a

n
∑

i=1

K

(

x − X(i)

a

)

qi. (2)

where a is the bandwidth parameter depending on the sample size, K is a symmetric density

function, the weight ω1 = Γn(X(1)) and ωi = Γn(X(i)) − Γn(X(i−1)) for i = 2, ..., n and qi =
δ(i)

n−i+1 .

For simplicity we omit the support of the integral which is [0, τ ], where τ = sup{t ≥ 0, H(t) < 1}
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and H is the distribution function of Xi which is given by:

H(t) = 1 − (1 − F (t))(1 − G(t)), for t ≥ 0.

The consistency of these estimators is well documented for independent and dependent survival

data. When the survival data are i.i.d., Tanner and Wong (1983) derive the mean and the variance

and establish the asymptotic normality of the standard kernel estimator for the hazard rate function.

Mielniczuk (1986) studies the consistency of the kernel estimator for the density function. Lo, Mack,

and Wang (1989) derive the mean integrated squared error, consistency and asymptotic normality

of the standard kernel estimator for the density and the hazard rate functions. When the survival

times are α-mixing, Cai (1998b) derives the consistency including its rate and the asymptotic

normality of the standard kernel estimator of the density and the hazard rate function. Liebscher

(2002) improves the rate of convergence in Cai (1998b) for the standard kernel estimators.

The above results ignore the boundary bias problem. Several techniques are proposed to remove

this problem in the uncensored case. For example Schuster (1985) develops the reflection method.

Müller (1991), Lejeune and Sarda (1992), Jones (1993) and Jones and Foster (1996) use boundary

kernels in the boundary region and the standard kernel away from the boundary. Marron and

Ruppert (1994) propose to transform the data before using the standard kernel, Chen (2000) and

Scaillet (2004) consider asymmetric kernels. These methods can be adapted to the censored data

case, which is the subject of this paper.

The rest of the paper is organized as follows. In Section 2, we present the gamma kernel esti-

mator for the density and hazard rate functions. The mean integrated square error, the asymptotic

normality and the strong consistency are proved for the two estimators in Section 3. Section 4

provides Monte Carlo results concerning the finite sample properties of the estimators for various

distributions and parameter values. Section 5 concludes. The proofs are given in the appendix.

2 Gamma kernel estimator

For positive data, a natural way to overcome the boundary bias problem when estimating a density

nonparametrically is to consider kernels with positive support. For instance, this idea is developed

for i.i.d. data by Chen (2000) which proposes a gamma kernel and Scaillet (2004) which proposes

the inverse gaussian and reciprocal inverse gaussian kernel. A crucial aspect if we want to use the
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gamma density as a kernel is the choice of its parameters. A simple choice is a gamma density with

shape-parameter x/b + 1 and scale-parameter b, for some positive b and with x the position where

the density or hazard rate function is evaluated. With these parameters x is the mode, though not

the mean, of the kernel. To improve the properties of the estimator, Chen (2000) proposes to take

as a kernel, a gamma density with scale b and shape

ρb(x) =



















x/b if x ≥ 2b

1
4(x/b)2 + 1 if x ∈ [0, 2b).

(3)

Note that outside the boundary region x is the mean of the gamma kernel and its mode is x−b. The

shape x/b can not be used inside the boundary region since the gamma kernel becomes unbounded.

This is the reason why the shape 1
4(x/b)2 + 1 is used here. Other choices for the shape in the

boundary region may be investigated. In this paper, we consider the gamma kernel, so that K is

defined by

K(x, b)(t) =
tρ(x)−1 exp(−t/b)

bρ(x)Γ(ρ(x)))
. (4)

The shape of the gamma kernel and the amount of smoothing vary according to the position where

the density is estimated. In fact, the further we move away from the boundary the more symmetric

the kernel becomes. This is a crucial difference with the Gaussian or other fixed symmetric kernel

estimators. The support of the gamma kernel matches the support of the probability density

function to be estimated, and therefore no weight is lost when the density is estimated at the

boundary region. For uncensored and independent data, Chen (2000) shows that the gamma kernel

density estimator is free of boundary bias, always non-negative and achieves the optimal rate of

convergence for the mean integrated squared error within the class of non-negative kernel density

estimators. Furthermore, the variance reduces as the position where the smoothing is made moves

away from the boundary. Bouezmarni and Scaillet (2003) state the uniform weak consistency for

the gamma kernel estimator on each compact set in the positive real line when f is continuous on

its support and the weak convergence in terms of mean integrated absolute error. For unbounded

densities at the origin, they prove that it converges in probability to infinity at the origin where

the density is unbounded. For positive uncensored and α-mixing data, Bouezmarni and Rombouts

(2006) derive the mean integrated squared error, almost sure convergence and asymptotic normality

of the gamma kernel estimator for the density function.
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For censored and dependent data, we propose the gamma kernel estimator for the density

defined as:

f̂b(x) =

∫

K(x, b)(t) dΓn(t) =
n
∑

i=1

K(x, b)(Xi)ωi (5)

and the gamma kernel estimator for the hazard rate function

ĥb(x) =

∫

K(x, b)(t) d∆̃n(t) =
n
∑

i=1

K(x, b)(X(i)) qi (6)

where b is the bandwidth parameter depending on n and the weights ωi and qi defined in the

introduction. Figure 1 illustrates the gamma kernel and the standard kernel estimators for the

density and hazard rate functions. The first data serie(the two upper panels) considers exponential

dependent survival times with uniform censuring times. The second dataset (the two lower panels)

are weibull dependent survival times with weibull censoring times. The degree of censoring is 25%

and the sample size is 250. We come back to these two models in Section 4 where we study the

finite sample properties of the estimators. To compare, we also added the standard kernel estimator

on each graph. We observe that for this standard kernel estimator there are severe problems at the

boundary for both the density and the hazard function.

3 Convergence properties

In this section, we show the asymptotic properties of the gamma kernel estimator for both the

density and hazard rate function when the data are right censored and α−mixing, which satisfy

the following conditions.

Condition 1.

(C1) The survival time {Tj ; j ≥ 1} is a stationary α−mixing sequence of random variables.

(C2) The censoring time {Cj ; j ≥ 1} is a i.i.d. random variable and independent of {Tj ; j ≥ 1}.

(C3) α(n) = O(n−β) for some β > 3.

Condition C2 can be relaxed to be also a stationary α−mixing sequence. To be concise, we denote

by L either the density function f or the hazard rate function h. L̂b either the gamma density

estimator f̂b or the gamma hazard rate estimator ĥb. The following Theorem deals with the mean

integrated square error of the two estimators.
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Figure 1: True density and hazard functions (solid line), gamma kernel density and hazard rate

estimates (dashed line) and the standard kernel density and hazard rate estimates (dotted line).
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Theorem 1. (mean integrated square error of L̂b)

L is twice continuously differentiable. Assume that b = O(n−2/5).Then, under condition 1, we have

IE

(
∫

(L̂b(x) − L(x)2 dx

)

= b2B + n−1b−1/2V + o(b) + o(n−1b−1/2) (7)

where

B =
1

4

∫

x2L′′2(x) dx and V =
1

2
√

π

∫

x−1/2L(x)

1 − V1(x)
dx (8)

and V1(x) = G(x) for the density function and V1(x) = H(x) for the hazard rate function. The

optimal bandwidth which minimizes the asymptotic mean integrated squared error is given by

b∗ =

(

V

4B

)2/5

n−2/5. (9)

This leads to the optimal mean integrated squared error:

IE
(

(L̂b(x) − L(x)2 dx
)

∼ 5

44/5
V 4/5B1/5 n−4/5. (10)

Theorem 1 states that the gamma kernel estimators are free of boundary bias and attains the

optimal rate of convergence in term of mean integrated squared error as in the uncensored case.

The theorem provides the optimal theoretical choice of the bandwidth parameter. In practice, we

can replace f in formula (9) by the gamma density with estimated parameters.

The asymptotic distribution of the estimators is needed for goodness of fit tests and for con-

fidence intervals. In the next theorem we state the asymptotic normality of the gamma kernel

estimators.

Proposition 1. (asymptotic normality of L̂b)

Under the conditions of Theorem 1, for all x such that f(x) > 0, we have for all x ≤ τ

(

n1/2b1/4 L̂b(x) − E(L̂b(x))
√

V ∗(x)

)

→ N(0, 1) (11)

where

V ∗(x) =



















1
2
√

π
x−1/2L(x)
1−V1(x) if x/b → ∞

Γ(2κ+1)b−1/2

21+2κΓ2(κ+1)
L(x)

1−V1(x) if x/b → κ

(12)
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The results in Proposition 1 can not be used for goodness of fit or to construct the confidence

intervals since the variances in the denominator depend on unknown functions f and h. However

we can replace these functions by their estimates knowing that they almost surely convergence.

The following proposition states the almost sure convergence of the gamma kernel estimator for

the density function and the hazard rate function.

Proposition 2. (almost sure convergence of L̂b)

Let f be a continuous density. Assume that the condition 1 is satisfied and b = O(n−2/5). Then,

for all x ≤ τ we have

L̂b(x) −→ L(x), almost surely.

4 Finite sample properties

This section studies the finite sample performance of the gamma kernel estimator for the density

and hazard rate function. We consider a simple underlying dynamic model for the survival times

given by

yt = φ yt−1 + ǫt, t = 1, ..., n (13)

ǫt ∼ N(0, 1) and n = 125, 250, 500, 1000. The survival time is given by Ti = F−1(Φ(yt/σ)) where

σ2 = 1/(1−φ2). For exponential survival time, model A hereafter, the censoring times are generated

from a uniform distribution [0, c] with c such that pc + exp(−c) = 1. For Weibull survival time

with scale parameter γ = 2 and shape parameter α = 0.25, model B hereafter, the censoring

times are generated from weibull distribution with shape parameter γ∗ = 2 and scale parameter

α∗ =
(

1−p
2p

)2
. Note that the choice of the parameters of the censoring distribution is to ensure

the degree of censuring to be equal to p. In the simulations, we fix φ = 0.85 which obviously

ensures a stationary and α-mixing Ti sequence and several values of p values. For a graphical

representation of the two models we refer to Figure 1 in Section 2. Note that for model B, the

cumulative distribution of the censoring times increases when the degree of censoring p increases.

This implies, from equation (10), that the mean integrated squared error of the gamma kernel

estimators increases.
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To evaluate the performance of the gamma kernel estimators we compare with the local linear

estimator of Jones (1993) adapted for the right censoring dependent case. The local linear estima-

tors are defined as in (1) and (2) with the kernel Kl defined in the following way. For non-negative

integer s and Epanechnikov kernel K, define

Kl(x, h, t) =
a2(x, h) − a1(x, h)t

a0(x, h)a2(x, h) − a2
1(x, h)

K(t) (14)

where

as(x, h) =

∫ x/h

−1
tsK(t)dt. (15)

Note that Kl(x, h, t) = K(t) for x > h. This type of kernel does not guarantee positive density and

hazard estimates in the boundary region when the underlying functions are small in this region.

Thanks to the high data concentration in the boundary region for the above two data generating

processes this drawback is avoided.

We measure the performance of the estimators by analysing the mean and the standard error

of the L2 =
∫ τ
0 (L̂ − L)2 norm, where L denotes either the density or the hazard rate function.

Note that τ is fixed for the Weibull model and changes according to the censoring degree for the

exponential model, as explained in the introduction. The selected bandwidth parameters in each

replication minimize the L2 error.

Table 1 considers the mean of L2 errors based on 1000 replications related to the estimation

of the density function. We draw attention to the four following points. Firstly, when the sample

size increases, the mean integrated square error error for the two estimators decreases. This is true

for both models and all degrees of censoring. For example in model A, 15% of censoring and the

gamma kernel estimator, the mean error decreases from 0.021 to 0.016 when the sample size goes

from 125 to 250. For 50% of censoring, this decrease is only minor, that is from 0.033 to 0.031. In

fact, for the 50% of censoring the rate at which the mean error decreases is much smaller. Secondly,

Except for model A and 50% of censoring, the gamma kernel estimator outperforms strongly the

local linear kernel estimator. This excellent performance does not fade away when the sample size

increases. Thirdly, For model B, when the degree of censoring increases the mean integrated square

error increases as expected. Note that this comparison can not be made for model A, since the

support of the integral varies with the degree of censoring. Lastly, Due to the unboundedness of

the density function the estimation of the density becomes more complex for model B compared
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to model A, and therefore the mean error values for the former model are higher. Though, this is

also due to the fact that the performance measures is not relative.

Table 2 presents the standard deviations of the L2 errors for the estimation of the density

function. As expected, for both models and both estimators the variance decreases with the sample

size, no matter the degree of censoring. Generally speaking for model B, the variance increases

with the degree of censoring but at a lower rate for higher sample sizes. Another point to remark

is that for model A, the variance of the gamma kernel estimator is smaller than the variance of the

local linear estimator for p=0.1, 0.15 and 0.25, but not for p=0.5. However, for model B the local

linear estimator is dominated in terms of variance by gamma kernel estimator in all situations.

Table 3 considers the mean of L2 errors based on 1000 replications related to the estimation of

the hazard function. The results are similar to those of the density function except for two points.

Firstly, the gamma kernel estimator is better in terms of mean integrated squared error than the

local linear even for model A with 50% degree of censoring. Secondly, we observe in a few cases a

small decrease of mean integrated squared error when the degree of censoring increases. However

given their variance , this decrease is insignificant.

Table 4 reports the he standard deviations of the L2 errors for the estimation of the hazard

function. For model B, the results are similar as for the density function. For model A, neither of

the two estimators dominates.

5 Conclusion

This paper makes use of the gamma kernel to estimate nonparametrically the marginal density and

the hazard function of positive dependent survival data that are subject to right censoring. Both

estimators are robust with respect to boundary problems. We derive the mean integrated square

error, the asymptotic normality and the strong consistency for the two estimators. The Monte

Carlo results concerning the finite sample properties of the estimators for various distributions and

parameter values show the excellent performance of the gamma kernel estimators.
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Table 1: Mean of L2 error for the density function estimators.

n = 125 n = 250 n = 500 n = 1000

Model % cens G LL G LL G LL G LL

A 10 0.0232 0.0367 0.0200 0.0337 0.0195 0.0354 0.0189 0.0338

15 0.0206 0.0276 0.0161 0.0240 0.0135 0.0206 0.0129 0.0201

25 0.0207 0.0235 0.0159 0.0207 0.0139 0.0196 0.0126 0.0182

50 0.0325 0.0207 0.0312 0.0207 0.0311 0.0205 0.0313 0.0191

B 10 0.6244 0.9267 0.4864 0.7701 0.4287 0.7015 0.3729 0.6088

15 0.6325 0.9653 0.5267 0.8575 0.4972 0.8216 0.4564 0.7418

25 0.7362 1.2079 0.6624 1.1211 0.6505 1.0607 0.6397 0.9623

50 1.4847 2.4885 1.4734 2.4249 1.4375 2.4192 1.4345 2.4108

G: gamma estimator. LL: local linear estimator. Model A: exponential survival times with uniform

censoring times. Model B: Weibull survival times with Weibull censoring times. The results are based

on 1000 replications.

Table 2: Standard deviation (× 10−2) of L2 error for the density function estimators.

n = 125 n = 250 n = 500 n = 1000

Model % cens G LL G LL G LL G LL

A 10 0.8632 1.2417 0.6567 1.0479 0.4928 0.8287 0.40343 0.5769

15 1.0671 1.3481 0.7302 1.2045 0.5717 1.0251 0.49302 0.9489

25 1.2461 1.2163 0.8024 1.0710 0.5804 1.0084 0.48691 0.9281

50 0.9808 0.2543 0.8592 0.2273 0.7848 0.2018 0.77904 0.1038

B 10 37.040 64.085 31.545 55.920 27.511 46.876 21.890 36.691

15 36.852 63.788 32.338 55.812 29.253 49.038 23.316 39.119

25 41.464 68.596 34.847 56.553 31.519 49.160 26.343 43.567

50 47.238 80.309 32.229 61.358 27.544 50.776 23.381 43.883

G: gamma estimator. LL: local linear estimator. Model A: exponential survival times with uniform

censoring times. Model B: Weibull survival times with Weibull censoring times. The results are based

on 1000 replications.
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Table 3: Mean of L2 error for the hazard rate function estimators.

n = 125 n = 250 n = 500 n = 1000

Model % cens G LL G LL G LL G LL

A 10 0.2259 0.3312 0.1427 0.2571 0.0924 0.2056 0.0547 0.1635

15 0.2746 0.3662 0.1558 0.2509 0.0984 0.1786 0.0550 0.1233

25 0.1533 0.2071 0.0716 0.1236 0.0400 0.0934 0.0192 0.0731

50 0.0242 0.0413 0.0088 0.0243 0.0040 0.0184 0.0015 0.0149

B 10 2.1053 3.5894 1.4103 2.5668 0.8283 1.6377 0.5044 1.0716

15 2.0669 3.5694 1.3631 2.5854 0.8349 1.7069 0.5435 1.1670

25 2.0670 3.6824 1.4007 2.7779 0.9066 1.9292 0.6104 1.3632

50 2.3336 3.7729 1.8069 3.3357 1.4996 3.0553 1.1281 2.5462

G: gamma estimator. LL: local linear estimator. Model A: exponential survival times with uniform

censoring times. Model B: Weibull survival times with Weibull censoring times. The results are based

on 1000 replications.

Table 4: Standard deviation of L2 error for the hazard rate function estimators.

n = 125 n = 250 n = 500 n = 1000

Model % cens G LL G LL G LL G LL

A 10 0.1408 0.1082 0.1047 0.0887 0.0764 0.0731 0.0491 0.0541

15 0.2057 0.1673 0.1364 0.1259 0.1010 0.1106 0.0706 0.0829

25 0.1959 0.1748 0.1094 0.1061 0.0667 0.0704 0.0348 0.0398

50 0.0517 0.0507 0.0265 0.0274 0.0129 0.0153 0.0056 0.0096

B 10 1.408 1.9243 1.0770 1.6290 0.5891 0.9443 0.3147 0.4828

15 1.3112 1.8304 0.9431 1.5248 0.5679 0.9390 0.3478 0.5296

25 1.2356 1.6136 0.8459 1.4410 0.5409 0.9406 0.3821 0.6097

50 0.9440 1.1802 0.6833 1.0439 0.6357 1.1174 0.5383 1.0419

G: gamma estimator. LL: local linear estimator. Model A: exponential survival times with uniform

censoring times. Model B: Weibull survival times with Weibull censoring times. The results are based

on 1000 replications.

13



Appendix

We start with some notations which will be useful for the proofs in this section.

Let

g(t) =

∫ t

0
(1 − H(s))−2 dH∗(s),

where

H∗(t) = P (X1 ≤ t, δi = 1) =

∫ t

0
(1 − G(s))dF (s)

which is the distribution of the uncensored observations.

For positive real numbers z and x, and δ = 0 or 1, let

ξ(z, δ, t) = −g(z ∧ t) + (1 − H)−1I(z ≤ t, δ = 1)

Note that

E(ξ(Xi, δ, t)) = 0

and

Cov(ξ(Xi, δ, t), ξ(Xi, δ, s)) = g(s ∧ t).

The following lemma plays an important role in the demonstrations.

Lemma 1. Cai (1998a) Under condition 1, for an = (log log n/n)1/2 and t ≤ τ

sup
t≥0

|Ȳn(t) − H̄(t)| = O(an) (16)

and

sup
t≥0

|H̄∗
n(t) − H∗(t)| a.s.

= O(an) a.s. (17)

where Ȳn(t) = 1
n

∑n
i=1 I(Xi ≥ t) and H∗

n is the empirical estimator of H∗, namely

H∗
n(t) =

1

n

n
∑

i=1

I(Xi ≤ t, δi = 1).

Also

Γn(t) − F (t) = F̄ (t)(∆̃n(t) − ∆(t)) + O(a2
n), (18)

and

∆̃n(t) − ∆(t) =
1

n

n
∑

i=1

ξi(Xi, δi, t) + Un(t) + O(a2
n), (19)

where

Un(t) =

∫ t

0

(

1

Ȳn(s)
− 1

H̄(s)
d(H∗

n(s) − H∗(s))

)

.
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Proof of Theorem 1

We start with the expectation of the gamma kernel estimator. We suppose that the bandwidth

parameter is small enough. From Chen (2000), we can show that for x > 2b

K(ρ(x), b)(t) ≡ Kx,b(t) ≤
1√
2π

(x − b)−1/2b−1/2. (20)

Also
∫

dKx,b(t) = O(b−1). (21)

We establish the bias for x > 2b. Using inequalities (20) and (18) and integration by parts

E(f̂b(x)) = E

(
∫

Kx,b(t)dΓn(t)

)

= −E

(
∫

Γn(t)dKx,b(t)

)

= −
∫

FdKx,b(t) + E

(
∫

F̄ (t)(∆̃n(t) − ∆n(t))dKx,b(t)

)

+ O(a2
nb−1/2)

=

∫

Kx,b(t)f(t) dt + E

(
∫

F̄ (t)(∆̃n(t) − ∆n(t))dKx,b(t)

)

+ O(a2
nb−1/2)

=

∫

Kx,b(t)f(t) dt + E

(
∫

F̄ (t)Un(t)dKx,b(t)

)

+ O(a2
nb−1/2)

= f(x) + I + II + O(a2
nb−1/2) (22)

From Chen (2000),

I ≡
∫

Kx,b(t)f(t) dt − f(x)



















ξb(x)f ′(x)b + o(b) if x ∈ [0, 2b)

1
2xf ′′(x)b + o(b) if x ≥ 2b.

(23)

where ξb(x) = (1 − x){ρ(x) − x/b}/{1 + bρ(x) − x}. Now we show that II = O(a2
nb−1/2).

In fact,

∫

F̄ (t)Un(t)dKx,b(t) =

∫

f(t)Un(t)Kx,b(t) −
∫

F̄ (t)Kx,b(t)dUn(t)

= II ′ + II ′′

On the one hand From Cai (1998b), |Un(t)| a.s.
= O(n−1/2(log(n))−λ) for some λ > 0,. Therefore

II ′
a.s.
= O(n−1/2(log(n))−λ) = o(n−1/2b−1/4)

15



On the another hand, using (16), (17) and (20)

II ′′ =

∫

F̄ (t)Kx,b(t)

(

H̄(s) − Ȳn(s)

Ȳn(s)H̄(s)
d(H∗

n(s) − H∗(s))

)

a.s.
= O(a2

nb−1/2).

Using second condition on the bandwidth parameter we have O(a2
nb−1/2) = o(n−1/2b−1/4). Now,

for the boundary region x ≤ 2b, we follow the same arguments but now instead of using inequality

(20), we use inequality (21). Hence, the bias of the gamma kernel estimator is

E(f̂b(x) − f(x)) =



















ξb(x)f ′(x)b + o(b) + o(n−1/2b−1/2) if x ∈ [0, 2b)

1
2xf ′′(x)b + o(b) + o(n−1/2b−1/4) if x ≥ 2b.

(24)

The integrated squared bias is

∫

(E(f̂b(x) − f(x)))2 = b2

∫

1

4
(xf ′′(x))2dx + o(b2) + o(n−1b−1/2). (25)

Next calculate the variance of the gamma kernel estimator. Using equations (19) and (18), the

gamma kernel estimator for density function can rewrite as follows:

f̂b(x) = β(x) + σn(x) + rn(x) + O(2nb−1/2),

where

β(x) =

∫

fKx,b(t)dt,

σn(x) =
1

n

n
∑

i=1

∫

F̄ (t)ξi(Xi, δi, t)dKx,b(t)

and

rn(x) = −
(
∫

F̄ (t)Un(t)dKx,b(t)

)

.

We start with the variance of σn(x), since the others terms are negligible of the variance of f̂b(x).

V ar(σn(x)) = n−2
n
∑

i=1

∫ ∫

F̄ (t)F̄ (s)cov(ξi(Xi, δi, t), ξi(Xi, δi, s))dk(t)dk(s)

= n−1

∫ ∫

F̄ (s)F̄ (t)g(t ∧ s)dk(t)dk(s).

16



Using integration by parts, the first integral is

∫

F̄ (t)g(t ∧ s)dk(t) =

∫ s

0
F̄ (t)g(t)dk(t) +

∫ τ

s
F̄ (t)g(s)dk(t)

= −
∫ s

0
(F̄ (t)g(t))′k(t)dt + [F̄ (t)g(t)k(t)]s0

+ −g(s)

∫ τ

s
F̄ (t)′k(t)dt + g(s)[F̄ (t)k(t)]τs

= −
∫ s

0
(F̄ (t)g(t))′k(t)dt − g(s)

∫ τ

s
F̄ (t)′k(t)dt

Then

nV ar(σn(x)) = −
∫

F̄ (s)

∫ s

0
(F̄ (t)g(t))′k(t)dtdk(s) −

∫

F̄ (s)g(s)

∫ τ

s
F̄ (t)′k(t)dk(s)dt

= −
∫

(F̄ (t)g(t))′k(t)

∫ τ

t
F̄ (s)dk(s)dt −

∫

F̄ (t)′k(t)

∫ t

0
F̄ (s)g(s)dk(s)dt

= −
∫

F̄ (t)g′(t)k(t)

∫ τ

t
F̄ (s)dk(s)dt −

∫

F̄ ′(t)g(t)k(t)

∫ τ

t
F̄ (s)dk(s)dt

−
∫

F̄ (t)′k(t)

∫ t

0
F̄ (s)g(s)dk(s)dt

= I + II + III.

By integration by parts, we can see that

I =

∫

F̄ 2(t)g′(t)k2(t)dt + O(1),

II =

∫

F̄ ′(t)F̄ (t)g(t)k2(t)dt + O(1),

and

III = −
∫

F̄ ′(t)F̄ (t)g(t)k2(t)dt + O(1),

Therefore and using the fact that

g′(t) = f(t)/[Ḡ(t)F̄ (t)2]

we get

nV ar(σn(x)) =

∫

F̄ 2(t)g′(t)k2(t)dt + O(1)

=

∫

f(t)/[Ḡ(t)]k2(t)dt

= Bb(x)IE(f(ηx)Ḡ−1(ηx))

17



where ηx is a gamma(2x/b + 1, b/2) random variable and

Bb(x) =
b−1Γ(2x/b + 1)

22x/b+1Γ2(x/b + 1)

From Chen (2000), for a small value of b,

Bb(x) ∼



















Γ(2κ+1)
21+2κΓ2(κ+1)

b−1 if x/b → κ

1√
2π

b−1/2x−1/2 if x/b → ∞

Thefore

nV ar(σn(x)) ∼



















Γ(2κ+1)
21+2κΓ2(κ+1)

b−1f(x)/Ḡ(x) + o(b−1) if x/b → κ

1√
2π

b−1/2x−1/2f(x)/Ḡ(x) + o(b−1/2) if x/b → ∞

To prove Theorem 1, we need the following lemma.

Lemma 2. Under condition 1, we have, away from zero

n1/2b1/4|f̂b(x) − E(f̂b(x)) − (f̂∗
b (x) − E(f̂∗

b (x)))| a.s.
= O(b1/4(log log n)1/2) +

log log n

n1/2b1/4
(26)

and at the boundary region we have

n1/2b1/4|f̂b(x) − E(f̂b(x)) − (f̂∗
b (x) − E(f̂∗

b (x)))| a.s.
= O(b1/4(log log n)1/2) +

log log n

n1/2b1/4
(27)

where

f̂∗
b (x) =

∫

1

Ḡ(t)
K(x, b)(t)dH∗

n(t)

Proof of Lemma 2

We prove the lemma only for x away from zero, we follow the almost the same steps for the boundary

region. From Lemma 1, (20) and using integration by part, we get

f̂b(x) − E(f̂b(x))
a.s.
= −

∫

F̄ (t)(∆n(t) − ∆(t))dk(x, b)(t) + O(a2
nb−1/2)

a.s.
=

∫

F̄ (t)k(x, b)(t) d(∆n(t) − ∆(t)) + O(an) + O(a2
nb−1/2)

a.s.
= (f̂∗

b (x) − E(f̂∗
b (x))) + en(x) + O(an) + O(a2

nb−1/2)

18



where

en(x) =

∫

H̄(t) − Ȳn(t)

Ȳn(t)Ḡ(t)
k(x, b)(t)dH∗

n(t).

Using 16, 17 and 20, we have

|en(x)| ≤ sup
t

|H̄(t) − Ȳn(t)|
∫

k(x, b)(t)

Ȳn(t)Ḡ(t)
dH∗

n(t) (28)

a.s.
= O(an)

∫

k(x, b)(t)dH∗
n(t) (29)

a.s.
= O(an) + O(a2

nb−1/2) (30)

which implies that n1/2b1/4|en(x)| = O(b1/4(log log(n))1/2) + O(n−1/2b−1/4 log log(n))

Proof of Proposition 1

From Lemma 2 and using Theorem 2 in Bouezmarni and Rombouts (2006) which states the asymp-

totic normality of gamma kernel estimator of the density function under α-mixing condition. Con-

cerning the hazard rate function, note that the asymptotic normality of gamma kernel estimator

of the hazard rate function under α-mixing condition is straightforward from Bouezmarni and

Rombouts (2006).

Proof of Proposition 2

We begin with the classical composition

|f̂(x) − f(x)| ≤ |f̂(x) − E(f̂(x))| + |E(f̂(x)) − f(x)| (31)

From (22) and condition on the bandwidth parameter that,

|E(f̂(x)) − f(x)| =

∣

∣

∣

∣

∫

Kx,b(t)f(t) dt − f(x)

∣

∣

∣

∣

+ o(1) (32)

and by continuity the first term converges to zero.

For the variation term we use lemma 2 and the almost convergence of the variation term of gamma

kernel estimator for dependent uncensored data established by Bouezmarni and Rombouts (2006)
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