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Abstract: Fixed-path methods (FPMs) were introduced to manage situa-
tions where several individuals jointly operate a single technology (see [4]). In

the production context, they consist in allocating marginal increments of out-

put according to a proportions vector which changes along an arbitrary path.

While very appealing from an incentives viewpoint under diminishing marginal

returns, the asymmetry of these methods lacks solid economic interpretation.

We provide such an interpretation by considering a situation where the tech-

nology to be shared results from the aggregation of private production processes.

We propose a group-strategyproof mechanism under which no single agent wishes

to secede from the partnership: the inverse marginal product proportions mechanism.

It is the only FPM satisfying autarkic individual rationality ; its path is uniquely

determined by the technological contributions of the agents.

Keywords: Autarky, incentive compatibility, cooperative production, surplus

sharing, serial rule, path methods.

JEL classi�cation numbers: C72, D23, D62, D71.
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1 Introduction

When several producers of a private good jointly supply input to a single pro-

duction technology, the classical question of how to share the proceeds from their

cooperation arises (see [7], [14], [18]). In this regard, Recent work by Friedman

(see [4], [5]) introduces the interesting class of �xed-path methods (hereafter

FPMs). These methods share total output by allocating marginal increments

according to proportions given along an arbitrary path.

Speci�cally, if F is the commonly owned one-input/one-output production

function, one must determine the division of total output, F (
P

i xi), among

the individuals for every contribution vector (x1; :::; xn). An FPM is parame-

trized by a continuous increasing path �(t) of non-negative coordinates, whereP
i �i(t) = t. Imagine a production process taking place continuously through

time. Each �i(t) corresponds to the rate at which individual i supplies input

over time, and the slope of the path at time t determines the proportions of the

marginal product allocated to each agent (at time t). When the contribution of

an individual i meets his supply level, xi, that individual stops supplying input

and leaves the production process with the output share she has secured so far.

The sharing process resumes with the remaining agents sharing the left-over

technology among themselves, and ends when the supply level of all individuals

is met.

While FPMs are appealing because of their very strong incentives properties

when the production technology exhibits diminishing marginal returns, little

economic justi�cation is given for their asymmetry. In particular, existing work

makes no recommendation as to which path to choose. We provide such a

recommendation for the case where agents are endowed with a private produc-

tion technology and decide to combine their production possibilities in order to

bene�t from enhanced productivity. We show that under diminishing marginal

returns there exists a unique FPM ensuring that no agent wishes to secede from

the cooperative and utilize her private technology on her own. Alternatively, we

show that sharing a technology using an FPM amounts to attributing to each

agent a (virtual) private production technology; this decomposition is uniquely

de�ned by the path underlying the given FPM.
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1.1 The partnership problem

As mentioned above, our interpretation of FPMs relies on juxtaposing the single

technology model with a situation where several producers of a common private

good decide to pool their private production possibilities. In addition to techno-

logical contributions, each producer makes input (or labor) contributions to the

cooperative. We assume that input is fully observable and transferable across

technologies.

In a stylized version of the problem, each agent makes her privately owned

machine (her technology) available to all the group-members and can supply

labor to any machine. Practical examples include farmers pooling their land in

a cooperative; here, land is technology and input can be labor or seeds to be

planted. Examples of such cooperatives can also be found in the �shing sector

([17]) and in the plywood industry ([2]). A similar situation arises whenever

a group of experts (e.g. lawyers, physicians, �nancial advisors, car salesmen,

etc.) who can rank their clients in decreasing order of pro�tability decide to

engage in a partnership; each agent�s client base then amounts to a decreasing-

returns technology. By pooling their clienteles, agents can reallocate their time

or resources (the input) across the total pool of clients.

We assume that individual technologies are known to the planner and exhibit

diminishing marginal returns. However, information about the leisure/consumption

trade-o¤ of the agents is private, potentially leaving room for misrepresentation.

The �rst requirement is that production possibilities and input contributions be

pooled e¢ ciently. Under diminishing marginal returns, there is a unique e¢ -

cient way to reallocate a given amount of input across the various technologies.1

Thus, the autarkic use of the production possibilities, where agent i only sup-

plies input to her own technology, can be Pareto-improved. The aggregate pro-

duction function (of the individual technologies) summarizes these production

opportunities.

While production e¢ ciency is easily obtained, allocative e¢ ciency cannot be

achieved, precisely because the preferences of the agents are private information

(see [8]). In particular, it follows that a standard market mechanism� which

computes the competitive wage and the equilibrium amounts of labor and con-

sumption for each agent� is manipulable; it would be in some agents� best

interest to arti�cially restrict her labor-supply schedule in order to command a

1For instance, if machine 1 is always more productive than the others, productive e¢ ciency
requires that agents 2; :::; n work on machine 1 instead of their own.
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higher wage.2

In what follows we insist on strategyproofness while relaxing full e¢ ciency in

favor of the milder requirement of voluntary participation, i.e., every participant

should be at least as well o¤ under the pooling method as she would be by using

her own technology by herself; we refer to this condition as autarkic individual rationality

(or AIR), a term introduced by Saijo ([13]) in the public good context.

We describe below a simple, group-strategyproof mechanism satisfying AIR

to manage a partnership: the inverse marginal product proportions mechanism

(or IMPP).3 The main contribution of the paper (i.e., the interpretation of the

asymmetry of FPMs mentioned in the beginning of the introduction) will arise

upon noticing that the IMPP mechanism is the only FPM satisfying AIR.

1.2 The IMPP mechanism

For the sake of exposition, we describe the IMPP mechanism in the case of three

agents (farmers) pooling their private capital (land). In Figure 1 are depicted

the marginal product curves of each farmer�s own land (MP1, MP2, andMP3).

We assume for clarity that each agent�s utility is quasilinear in the amount of

pro�t, yi, she receives: ui(xi; yi) = yi�vi(xi), where vi(xi) is agent i�s disutility
of supplying xi units of labor expressed in monetary terms.4

IMPP works as follows. Consider a dynamic production process where labor

is allocated to land so that marginal product is equalized across �elds at all

times (but decreases over time). In the �rst stage, each agent works on her own

land and reaps the fruit of her labor, like in autarky, until one agent decides

to stop working. That agent then "leaves" the procedure with the output she

has secured thus far, but her unused land is now available for agents 2 and 3 to

utilize in addition to their own. In our example, agent 1 leaves the procedure

after supplying x1 units of labor: the intersection of her marginal disutility of

e¤ort (v01) with the marginal product of her own land (MP1) occurs "�rst", i.e.

for a higher marginal product level than the other agents (�1 > �2, �3).

With agent 1 gone, her left-over capital is divided between agents 2 and 3 in

proportion to the inverse marginal product of lands 2 and 3, respectively. For

2A larger-scale manipulation of the sort contributed to the collapse of the California energy
market in 2001. Manipulation was successful even when as many as two hundred electricity
providers were involved! See [12]. We thank Simon Grant for this observation.

3The mechanism we propose is actually Nash-implementable with unique equilibrium. In
this model the corresponding direct revelation mechanism is then group-strategyproof; see
Section 2 for a discussion of other, weaker interpretations of incentive compatibility.

4Our results hold on more general preference domains.
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any marginal product level, � < �1, compare the amounts of labor which can be

assigned to �elds 2 and 3 before reaching the marginal product �. Suppose, as in

Figure 2, that twice as much labor can be supplied to �eld 2 as can be supplied

to �eld 3: 2� and �, respectively. In a sense, �eld 2 is twice as productive as

�eld 3. Accordingly, agent 2 will be allowed to supply twice as much labor as

agent 3 to �eld 1 at the margin� 2
3� and

1
3�, respectively� and receive the

corresponding marginal increment of output.

The procedure is carried out until another agent decides to stop working (in

our example, agent 2 departs after having supplied x2 units of labor, see Figure

3) and the remaining agent (agent 3) can then freely operate all three �elds at

will.

Clearly IMPP satis�es AIR: agent 1 is indi¤erent between autarky and taking

part in the partnership while agents 2 and 3 e¤ectively see their production

possibilities enhanced by the "departure" of agent 1. In addition, the mechanism

is strategy-proof: just like in an ascending-price auction, it is a strictly dominant

strategy for each agent to "drop out" when the (common) marginal product

equals her (private) marginal disutility of e¤ort.

1.3 IMPP and the commons problem

Upon noticing that the production possibilities of the cooperative are summa-

rized by the aggregate production function, as stated in Section 1.1, it becomes

clear that the IMPP mechanism can be applied to situations where a group of

users jointly operate a single facility exhibiting diminishing marginal returns:

the familiar commons problem.

If agents have equal rights to the facility, by assigning to each of them virtual

property rights to "1=nth of the facility" and by applying IMPP one obtains the

output-sharing version of the well-known serial mechanism discussed in [11].

Thus, much better incentives are achieved than under, say, average- or marginal-

product pricing5 .

Similarly, if agents do not have equal access to the common facility for ex-

ogenous reasons (e.g. social status), these di¤erences can be taken into account

by assigning unequal virtual production functions before applying IMPP. The

corresponding sharing rule allocates marginal increments of input, and their

corresponding increments of output, along a path in the input space of the

5We refer the reader to [11] for a discussion of the serial cost-sharing rule in comparison
to average- and marginal-cost pricing.
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agents. The slope of this path describes each individual�s relative access to the

facility. After an agent�s supply of input is met, the procedure carries on along

the projection of the path onto the space of the remaining "active" agents. In

other words, the active agents split the increments of input which would have

been assigned to inactive agents (i.e. their "rights to using the facility") in the

relative proportions granted by the original path. Such procedures are precisely

the FPMs mentioned earlier and are presented formally in Section 3.

1.4 Organization of the article

After a brief review of some related literature, the remainder of the paper is

organized in reverse order relative to the introduction. We �rst de�ne FPMs in

a single technology model (Section 3). We then show the close relationship be-

tween FPMs and the IMPP mechanism (Section 4). Finally, we recall the strong

incentives properties of FPMs and discuss the appeal of the IMPP mechanism

as a reasonable compromise between simplicity and responsiveness to capital

contributions (Section 5). Most proofs can be found in the Appendix.

2 Relation to the literature

This work contributes to the large literature exploring the trade-o¤ between e¢ -

ciency and incentive compatibility in the production and distribution of private

goods.

Our main result (Theorem 1) can be viewed as a follow-up on work by Fried-

man ([4], [5]). The FPMs mentioned in the introduction are the output-sharing

version of the mechanisms introduced in [4] as non-anonymous generalizations of

the Moulin and Shenker serial cost-sharing mechanism. Theorem 1 establishes

that to each partnership problem (i.e. any pro�le of technological contributions)

corresponds a unique FPM sharing the aggregate production function while sat-

isfying AIR. Conversely, we show (Theorem 2) that to each FPM corresponds

a unique (virtual) decomposition of the common facility into individual tech-

nological contributions; the FPM is then the IMPP mechanism applied to this

very decomposition. We thus establish a bijection between the class of FPM to

manage a commonly owned facility and possible distributions of property rights

to the facility. This result provides economic justi�cation for the non-anonymity

of FPMs.

Many rules outside of the class of FPMs meet our high standards of incentive
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compatibility; their more complex path structure is similar to the �path func-

tions� of Sprumont ([16]) (see Remark 2). This contrasts with Moulin ([10])

where it is shown in the discrete framework that FPMs� and the corresponding

IMPP mechanisms� are in fact characterized by an incentive compatibility re-

quirement fairly close to ours (see our discussion at the end of Section 3). This

discrepancy illustrates a subtle di¤erence between the discrete and continuous

versions of the model and is worthy of future research.

Recent related literature on the common production of private goods con-

siders weaker interpretations of incentive compatibility (see, e.g., [1], [15]). For

instance, Corchón and Puy establish in [1] that any continuous sharing rule

admits a Pareto-e¢ cient allocation which can be Nash-implemented. Yet, any

game implementing such an outcome must have several, non-welfare-equivalent

Nash equilibria at some pro�les. Our incentives compatibility criterion insists

on the uniqueness of the Nash equilibrium, a much more demanding requirement

than the above kind of Nash-implementability.

3 The single technology model

Let N = f1; :::; ng be the set of agents. Let F : R+ ! R+ be a production

function which is increasing, strictly concave such that F (0) = 0. We denote

by F the class of such functions. Each agent i provides a non-negative amount

xi of input to the common technology, and receive a non-negative quantity

yi of output such that
P

i yi = F (
P

i xi). We write x = (x1; :::; xn) and for

any i 2 N , (x0i; x�i) is the vector of inputs where the ith entry of x has been

replaced by x0i 2 R+. A bundle is an element zi = (xi; yi) 2 R+ � R+; we
de�ne an allocation, z, to be a list of n bundles, one for each agent. We denote

by ZF =
n
z 2 (R+ � R+)N j

P
i yi � F (

P
i xi)

o
the set of feasible allocations

under F .

Each agent i can supply up toMi units of input (withMi possibly very large).

Her preferences over bundles are de�ned on R+ � R+; they are continuous,
convex, strictly increasing in yi, strictly decreasing in xi and representable by a

utility function ui. While all our results are purely ordinal, we will use utility

representations rather than the more cumbersome binary relation notation. We

adopt the convention ui(xi; yi) = �1 if xi > Mi. We denote by U the class

of preferences. A preference pro�le (or utility pro�le) is a list of n preferences,

u = (u1; :::; un) 2 UN , one per agent. For any j 2 N , we will sometimes abuse
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notations and write u = (uj ; u�j).

De�nition 1 An F -sharing method (or F -sharing rule) is a di¤erentiable map-
ping,

� : RN+ ! RN+
x 7! (�1(x); :::; �n(x)) s.t.

P
i2N �i(x) = F

�P
i2N xi

�
;

which satis�es the following monotonicity property: @�i
@xi

> 0 for all i 2 N .
We denote by SF the class of F -sharing rules.

Monotonicity is a normatively appealing requirement. It states that an agent

should receive strictly more output as her input contribution increases: it gives

agents an incentive to supply input. Also, from the point of view of fairness, it

implies that every agent will receive a positive fraction of the output resulting

from her input contribution.

For any preference pro�le u 2 UN and any F -sharing method � 2 SF , we
denote by G(�;u) the game in which each agent�s strategy space is R+ and agent
i�s payo¤ is ui(xi; �i(x)) when xj is the strategy played by each agent j 2 N .

We now de�ne what we mean by "sharing a technology along a path". A

path is a mapping

� : [0;
P

j2N Mj ]! �j2N [0;Mj ]

t 7! (�1(t); :::; �n(t))

such that for all i 2 N the following two properties hold:

(a) �i is non-decreasing and therefore di¤erentiable almost everywhere on R+
with respect to the Lebesgue measure,

(b)
P

j �j(t) = t for any t 2
h
0;
P

jMj

i
.

We denote by P the class of paths.
Fix � 2 P. For any i 2 N , de�ne the mapping �i as follows:

�i : [0;Mi]! R+
xi 7! min ftj�i(t) � xig.

(1)

One interpretation is that if t denotes time, �i(xi) is the moment at which the

ith coordinate along the path, �i(t), reaches the value xi. Note that if �i is
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increasing, its inverse exists and �i � ��1i . If not, �i has a countable number of

"jumps" correspondings to regions where �i is �at.

Given a path � 2 P, we de�ne the �xed-path method generated by �, denoted
��, as follows. Let x 2 �i[0;Mi], without loss we relabel the agents such that

�1(x1) � �2(x2) � ::: � �n(xn); i.e. such that the coordinates of x are met

along � in the natural order. Let t � 0 be such that �(t) � x, i.e. such that

no agent�s supply level has yet been met. �� recommends that the marginal

product F 0(t) be split between the agents according to the vector of proportions�
�01(t); :::; �

0
n(t)

�
(recall that

P
i �

0
i(t) = 1 almost everywhere). Once the input

supply of the �rst agent is met along the path (�i(t) � xi), we freeze her output

share and continue the sharing procedure with the remaining �active�agents.

The subprocedure shares the remainder of F along the projection of � on the

subspace
�
s 2 Rn+js1 = x1

	
until agent 2�s supply is met. And so on. We next

give a formal de�nition.

De�nition 2 The �xed-path method generated by �, denoted ��, is the F -

sharing rule de�ned by:

��1 (x) =
R �1(x1)
0

F 0(t)d�1(t)

��2 (x) =
R �1(x1)
0

F 0(t)d�2(t) +
R �2(x2)
�1(x1)

F 0
�
x1 +

P
i�2 �i(t)

�
d�2(t)

...

��n(x) =
R �1(x1)
0

F 0(t)d�n(t) + :::+
R �n(xn)
�n�1(xn�1)

F 0
�Pn�1

i=1 xi + �n(t)
�
d�n(t)

(2)

for any x 2 �i[0;Mi].

A more compact notation is used by Friedman ([4], [5]): for any i 2 N ,

��i (x) =

Z 1

0

F 0 (j�(t) ^ xj) d(�i(t) ^ xi)

where j � j returns the sum of the coordinates of a vector and ^ is the compo-
nentwise minimum of two vectors.

It follows easily from the monotonicity of F and the �j�s that �
� is monotonic

(@�
�
i

@xi
> 0 for all i); hence, �� 2 SF . Moreover, one can check (or see [4], Lemma

1) that ��i is strictly concave in xi.

We next give two examples of �xed-path methods:

Example 1: Incremental sharing. (n = 2) This method gives agent 1 full ac-

cess to F ; once she is served, agent 2 can use F (x1+�) at will. The corresponding
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path is

�I : t 7!
(
(t; 0) if t �M1 < +1
(M1; t�M1) if M1 � t �M1 +M2

i.e., �I is a parametrization of the horizontal axis up to x1 = M1. Output is

awarded as follows: (
��

I

1 (x) = F (x1)

��
I

2 (x) = F (x1 + x2)� F (x1)

Example 2: Weighted serial rule. AssumeM1 =M2 = +16 . Let �1; :::; �n >

0 with
P

i �i = 1, and consider the path �
S : t 7! (�1t; :::; �nt) . Let x 2 RN+

and assume without loss that x1
�1
� x2

�2
� ::: � xn

�n
. Expression (2) then yields:

��
S

i (x) =
�i
�i
F (xi)�

i�1X
k=1

�i�k
�k�k+1

F (xk) for all i = 1; :::; n,

where �k =
Pn

j=k �j , and x
k = x1 + ::: + xk�1 +

�k

�k
xk. As a particular case,

the usual serial rule assigns identical weight to each agent.

4 Pooling private technologies

We now give an interpretation of FPMs by establishing that sharing a single

production technology according to an FPM amounts to attributing property

rights on (possibly virtual) private technologies. Consider a situation where

each agent privately owns a technology, fi 2 F , which she decides to contribute
to a cooperative along with an input level xi 2 [0;Mi]. One can think of the

individual technologies as being machines (or capital) and of input as being

labor time. Labor is observable and transferable, meaning that agents are able

to work on machines other than their own. The manager of the partnership (the

planner) allocates the labor time of the workers across the various machines; e.g.,

if x1 = 3, agent 1 may be asked to spend, say, two units of input on machine 1

and one unit on machine 4. The resulting total output is distributed between

the agents according to their labor (the xi�s) and capital (the fi�s) contributions.

Technologies are known to the planner, but the preferences of the agents are

private information.

6Although M1 and M2 were originally de�ned as real numbers, the de�nition of the
weighted serial rule readily extends to the case where they are in�nite.
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De�ne F � to be the aggregated production function resulting from the e¢ -

cient usage of the combined individual technologies:

8t 2 R+ F �(t) = max
(x1; :::; xn) 2 �i2N [0;Mi]P

i xi = t

nX
i=1

fi(xi). (3)

Notice that because the fi�s belong to F , F � must also belong to F . We call
f = (f1; :::; fn) 2 FN the technology pro�le (or capital pro�le).

Thus, the pooling framework is tantamount to the previous context of shar-

ing a single technology. Here, however, autarkic individual rationality is a con-

cern: no agent should be better o¤ by using her private technology on her own.

This voluntary participation requirement will end up determining uniquely the

�xed-path method to use.

De�nition 3 (AIR) An f -sharing method is an F �-sharing rule � such that
for any preference pro�le u and any Nash equilibrium x� of G(�;u) the following

holds:

ui (x
�
i ; �i(x

�)) � sai(ui) � max fui(xi; yi)jyi � fi(xi)g 8i 2 N . (4)

We say � shares f (or satis�es AIR with respect to f) and we denote by Sf the
class of f-sharing methods.

De�nition 4 Let �� be the mapping assigning to each t � 0 the unique solution
vector of (3); �� is a path7 . The inverse marginal product proportions (IMPP) mechanism

is the FPM generated by ��.

The following theorem motivates the use of the IMPP mechanism.

Theorem 1 The IMPP mechanism is the unique FPM satisfying AIR with

respect to f .

The following comments concerning �� will prove useful. Because �� is the

unique solution of expression (3), it follows that

F �0(t) = f 0i(�
�
i (t)) (5)

7Note that concavity of the fi�s is necessary to ensure the uniqueness and monotonicity of
the solution vector as well as its continuity with respect to t.
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whenever ��i (t) > 0 (technology i is in use). I.e., ��i (t) is the level of input

that can be assigned to technology i before its productivity falls below F �0(t).

Hence, for a given t > 0, the larger ��i (t), the more productive technology i is.

We now give some intuition as to why ��
�
not only satis�es AIR but also

improves upon autarky. As long as all agents are active (t � minj ��j (xj)), ��
�

shares the marginal product F �0(t) according to the vector of ratios
�
��01 (t); :::; �

�0
n (t)

�
.

Hence, assuming for clarity that ��1(x1) is the smallest of the �
�
j (xj)�s, then

��
�

1 (x) =

Z ��1(x1)

0

F �0(t)��01 (t)dt = f1(x1)

and agent 1 receives her stand-alone level of output. Now, for ��1(x1) � t �
minj 6=1 �

�
j (xj), �

�� shares the marginal output F �0(t) between agents 2,...,n ac-

cording to the ratios
�
��02 (t); :::; �

�0
n (t)

�
� 1P

j>1 �
�0
j (t)

. Clearly, for any i 6= 1,
��0i (t)P
j>1 �

�0
j (t)

� ��0i (t) and agent i receives no less (typically more) than her stand-

alone share of output. And so on. Improvement upon autarky obtains by

integration. In words, when an agent leaves the procedure what is left of her

technology is shared between the remaining agents in proportion to their tech-

nological contributions to F �. A formal proof of Theorem 1 can be found in

Appendix A.1.

Remark 1 Among the rules generated by path structures as in [16], all those
(and only those) whose main path is �� are f-sharing methods, but their subpaths

may be arbitrary.

Theorem 1 has an interesting converse interpretation. Given a production

function F �; to any path �� corresponds a unique decomposition of F � into a

"virtual" production pro�le, f , such that ��
�
is the unique FPM sharing f .

Theorem 2 For any F � 2 F and any �� 2 P, there exists a unique technology
pro�le f decomposing F � in the sense of (3) such that ��

�
shares f . For any

i 2 N , fi is given by
fi(xi) =

Z xi

0

F �0(��i (t))dt

for all 0 � xi �Mi; where �
�
i is de�ned relative to �

�
i as in expression (1).

Proof. Immediate from Theorem 1. Let F � 2 F , �� 2 P and f 2 FN

decomposing F � in the sense of (3) such that ��
�
shares f . For any i 2 N ,
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expression (5) holds almost everywhere. I.e.,

f 0i(t) = F �0(��i (t)) almost everywhere.

The result follows from integrating between 0 and xi (recall fi(0) = 0).

To illustrate Theorem 2, we provide the virtual production pro�les corre-

sponding to examples of Section 3.

Example 1. ��
I

gives priority to agent 1. It is equivalent to sharing the

production pro�le where agent 2�s technology is useless compared to that of

agent 1 on [0,M1 +M2].

Example 2. Agents contribute to F � in proportion to the �i�s: fi(t) =

�iF
�( t�i ).

Theorems 1 and 2 together establish an interesting bijection between the

family of FPMs and the possible distribution of property rights on F �.

5 Discussion

The family of �xed-path methods (FPMs) was introduced in [4] as a non-

anonymous generalization of the serial rule retaining its strong incentives prop-

erties:

Theorem 3 (Friedman) Let � be an FPM, the following statements are true:
i) G(�;u) has a unique Nash equilibrium,

ii) every Nash equilibrium of G(�;u) is strong.

Proof. It is shown in [4] that for any production function F 2 F , any path
� 2 P and any preference pro�le u 2 UN , the game induced by �� satis�es a
more demanding equilibrium property called O-solvability.

It follows from a standard result of the implementation literature (see The-

orem 7.2.3 in [3]) that the associated direct revelation mechanism is group-

strategyproof.

Remark 2 While Moulin and Shenker ([11]) established that the serial rule
could be characterized by the equilibrium properties of Theorem 3 along with

Anonymity (xi = xj =) �i(x) = �j(x)), these properties do not characterize

the class of FPMs when we relax Anonymity.

Proof. For instance, assume n = 3, F 2 F and let � 2 P. Consider an F -
sharing rule � which coincides with �� until one of the agents is served, say

14



agent i, but then shares the remainder of F between the remaining two agents

along a strictly increasing subpath,  (i; xi), which depends on the identity of

the �rst-served agent and her input supply level. Note that unlike for an FPM,

 (i; xi) may di¤er from the projection of � onto the plane
�
s 2 Rn+jsi = xi

	
for

some pair (i; xi). It is clear that agent i has the same unique dominant strategy

under � and under ��. A straightforward application of Theorem 3 yields that

the remaining agents also have a unique dominant strategy regardless of  . Yet,

� is not an FPM. These path structures are called path functions in [16], though

his use of path functions is ultimately quite di¤erent from ours.8 Characterizing

the class of strategy-proof mechanisms is still a very large open question and is

beyond the scope of this paper. We refer the reader to a companion paper ([9])

for a two-agent characterization result.

In the discrete version of our model, Moulin ([10]) establishes that "incre-

mental sharing rules" (the discrete equivalent of FPMs) are characterized by

similar strategic properties for any number of agents. Interestingly, the contin-

uous framework allows for a much richer class of incentive compatible rules.

We show on a straightforward example why some more complex rules do not

meet our incentive compatibility requirement in the discrete setting. Consider

a technology given by the discrete increments @F : 4; 2; 1; 0 (i.e. F (1) = 4,

F (2) = 4 + 2,...) to be shared between 3 agents, each of whom can supply 0 or

1 unit of input. Suppose that the path structure used to share F gives priority

to agent 1 and then gives precedence to agent 2 over agent 3 if x1 = 1, but

precedence to agent 3 over agent 2 if x1 = 0. If preferences are such that agent

1 is indi¤erent between bundles (1,4) and (0,0), and if agent 2 prefers (1,2) to

(0,0), then agent 1 can help out agent 3 by deciding not to work, thus giving

her access to the bundle (1,4) instead of (1,1).

The above rule is immune to coalitional deviations in a weak sense: at least

one agent in the deviating coalition does not strictly bene�t (agent 1). Yet, not

every Nash equilibrium of the supply game is strong due to agent 1�s indi¤erence

between two bundles. Such indi¤erences are ruled out by the speci�cations of

the continuous model.

As made clear in the previous section, the IMPP mechanism is essentially an

FPM and, as such, meets high standards of incentive compatibility. Yet, sharing

8Note that when n = 2, the type of methods just described cannot be distinguished from
FPMs.
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rules outside the class of FPMs� like the ones generated by the path functions

in [16]� also meets these standards, along with AIR. However, the speci�cation

of path functions can potentially be quite complex, requiring the speci�cation of

a subpath  (i; xi) for each agent i at every level of input xi, whereas the unique

FPM satisfying AIR is entirely determined by the capital pro�le (f1; :::; fn).

Admittedly, not all path functions need to be complex. Consider the rule

coinciding with ��
�
until the departure of agent 1 (subject to the usual relabeling

of agents) and then giving full priority to agent 2, then to agent 3; or the

one sharing the remainder of the technology, G(�) = F (� � x1 � �2(�1(x1)) �
�3(�1(x1))), according to the (two-agent) Moulin and Shenker serial rule. From

Remark 1, both these simple rules satisfy AIR. Yet, they are not responsive to

capital contributions from the agents; in particular, they do not provide any

incentives for the agents to supply capital, fi , to the partnership. On the other

hand, the IMPP mechanism rewards agents in proportion to the productivity

of the technology contributed and thus encourages the supply of capital.

We contend that the IMPP mechanism is a reasonable compromise between

simplicity and responsiveness to technological contributions, which are two ap-

pealing features for any practical pro�t-sharing mechanism in producer coopera-

tives or professional partnerships. In law �rms, for instance, Gilson and Mnookin

([6], p. 370) express the di¢ culty of designing satisfactory productivity-based

methods due to the fact that partners often negotiate their pro�t share by

threatening to leave the partnership with their own client base (a maneuver

called �grabbing�):

Because the ability to leave with the �rm�clients is critical

to the strength of a lawyer�s threat, [. . . ] lawyers have an important

incentive to make sure that clients in fact remain theirs, and not the

�rm�s [. . . ].

We feel that the IMPP mechanism answers this calling for an incentive com-

patible mechanism which combines aspects of common ownership with the re-

quirement that private property rights be respected.
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A Proofs

A.1 Proof of Theorem 1

Before proving Theorem 1, we present a lemma establishing that, under any

FPM, ��, any positive level of output, xi, can be guaranteed at equilibrium by

some preference u�i for agent i. Its proof can be found in Appendix A.2.

Lemma 1 Let � 2 P, i 2 N . For any xi > 0, there exists a preference u�i 2 U
such that the following holds:

8u�i 2 UNni x�i = xi;

where x� denotes the unique Nash equilibrium of G(��;u�i ; u�i).

Now to the proof of Theorem 1. We �rst show that the IMPP mechanisms

(i.e., ��
�
) satis�es AIR with respect to f . Fix any supply vector (x1; :::; xn),

and suppose, without loss of generality that ��1(x1) � ��2(x2) � ::: � ��n(xn). It

will su¢ ce to show that the IMPP mechanism awards at least fi(xi) to each

agent i.

As it turns out, agent 1 receives exactly her stand-alone level of output:

��
�

1 (x) =

Z ��1(x1)

0

F �0(t)��01 (t)dt = f1(x1):

Agent 2 receives at least her stand-alone level of output:

��
�

2 (x) =

Z ��1(x1)

0

F �0(t)��02 (t)dt+

Z ��2(x2)

��1(x1)

F �0(t)
��02 (t)P
j�2 �

�0
j (t)

dt (6)

�
Z ��2(x2)

0

F �0(t)��02 (t)dt = f2(x2): (7)

Similarly, ��
�

3 (x) � f3(x3), and so on.

Now for the other direction. Let � 2 P such that �� shares f . For the rest

of the proof we will write F instead of F � as no confusion is possible.

Fix x 2 �i[0;Mi] such that �
�
i (xi) = ��j (xj) for all i; j 2 N ; i.e. x is a point

on the graph of ��. From Lemma 1, there exists a preference pro�le u 2 UN such
that x is the unique Nash equilibrium of G(��;u). It follows that �� satis�es
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AIR with respect to f only if for any i 2 N and any xi > 0 the following holds:Z �i(xi)

0

F 0(t)d�i(t) �
Z xi

0

f 0i(t)dt:

The calculations of the integral on the left-hand side amounts to considering

only the values of t where �i is increasing (outside of these regions d�i(t) equals

zero). On this restricted domain, �i � ��1i . Hence, it follows from (5):

Z �i(xi)

0

F 0(t)d�i(t) =

Z xi

0

F 0(�i(t))dt

Similarly, the change of variable t! ��i (t) applied to the term on the right-hand

side yields:Z xi

0

f 0i(t)dt =

Z ��i (xi)

0

f 0i(�
�
i (t))d�i(t) =

Z ��i (xi)

0

F �0(t)d��i (t):

Therefore, Z xi

0

F 0(�i(t))dt �
Z xi

0

F 0(��i (t))dt (8)

for all i 2 N and all xi > 0.

Let i 2 N and de�ne Hi(xi) =
R xi
0
F 0(�i(t))dt for any xi � 0; Hi is strictly

increasing and strictly concave. Hence,

Hi(xi) � Hi(�i � ��i (xi)) +H 0
i(�i � ��i (xi)) � (xi � �i � ��i (xi))

i.e. Hi(xi) � Hi(�i � ��i (xi)) + F 0(��i (xi)) � (xi � �i � ��i (xi)) (9)

with equality if and only if xi = �i � ��i (xi). It follows from equations (8) and

(9) that

R xi
0
F 0(��i (t))dt �

R �i���i (xi)
0

F 0(�i(t))dt+ F
0(��i (xi)) � (xi � �i � ��i (xi))

()
R xi
0
F 0(��i (t))dt �

R ��i (xi)
0

F 0(t)d�i(t) + F
0(��i (xi)) � (xi � �i � ��i (xi))

()
R xi
0
F 0(��i (t))dt � �

R ��i (xi)
0

�i(t)F
00(t)dt+ F 0(��i (xi)) � xi

the last expression is obtained by integrating by parts. Rearranging yields:Z ��i (xi)

0

�i(t)F
00(t)dt � F 0(��i (xi)) � xi �

Z xi

0

F 0(��i (t))dt.
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Recall that ��i (xi) = ��j (xj) for all i 2 N ; and write z = ��i (xi) for any i.

Summing up over all i 2 N and using the fact that
P

i �i(t) = t for any t � 0
and

P
i xi =

P
i �

�
i (z) = z, we get:

R z
0
tF 00(t)dt � F 0(z) � z �

Pn
i=1

R ��i (z)
0

F 0(��i (t))dt

()
R z
0
tF 00(t)dt � F 0(z) � z �

Pn
i=1

R z
0
F 0(t)d��i (t)

From
P

i �
�
i (t) = t and integrating by parts again, this yields an equality. There-

fore, equation (8) must be an equality for all i 2 N . The choice of j and xj
being arbitrary, it follows that �i(xi) = ��i (xi) for all xi 2 [0;Mi] and for all

i 2 N . That is to say that �i � ��i for all i 2 N , proving the theorem.

A.2 Proof of Lemma 1

Notation: We �x a production function F 2 F , a path � 2 P and a preference
pro�le u 2 UN . As no confusion may arise, we shall write � instead of ��.
We denote by F 0� (resp. F

0
+) the left (resp. right) derivative of F . Similarly,

@�

@� (resp.
@+

@� ) is the left-derivative (resp. right-derivative) operator. Also, we

write:

(i) �(x1; :::; xn) = (�1(x1); �2(x2); :::; �n(xn)) for any x 2 �i2N [0;Mi],

(ii) (t1; t2; :::; ti�1; ti �(n�i)) is the vector of RN+ with the last (n�i) coordinates
equal to ti,

(iii) for any (t1; :::; tn) 2 RN+ , �(t1; :::; tn) = (�1(t1); �2(t2); :::; �n(tn)) with a

slight abuse of notation.

Let i 2 N and xi > 0. Consider a preference (utility) u�i which is quasi-linear

with respect to yi such that its indi¤erence curves are piecewise linear with a

single kink at (xi; yi) for any yi 2 R. Set the slope of these indi¤erence curves
to be no greater than F 0�(�i(xi)) before xi and no smaller than F

0
+(xi) after xi;

where �before xi�(resp. �after xi�) stands for �at any point of R+�R with �rst
coordinate smaller (resp. greater) than xi�.

We show below that the former quantity is the smallest variation in output

that agent i can obtain via � by deviating in�nitesimally from xi: it corresponds

to the case where she is the �rst one served along the path (i.e., the agent with

smallest �j(xj)). On the other hand, F 0+(xi) is the largest variation in output

obtainable via � at xi by deviating marginally from xi; it corresponds to the

case where she receives all the output up to F (xi) (�j(xj) = 0 for all j 6= i).
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Indeed, let x�i 2 RNni+ ; then, from the de�nition of �, and keeping in mind

that j�j returns the sum of the coordinates of a vector and ^ is the componentwise
minimum of two vectors,

@�

@� �i(�; x�i) = F 0_ (j(�; x�i) ^ � (�i(�) � n) j) and @+

@� �i(�; x�i) = F 0+ (j(�; x�i) ^ � (�i(�) � n) j) .

As the ith component of both vectors x and �(�i(xi) � n) is equal to xi, the
concavity of F yields F 0+ (jx ^ � (�i(xi) � n) j) � F 0+(xi). Moreover, the concavity

of F also yields F 0� (jx ^ � (�i(xi) � n) j) � F 0� (j� (�i(xi) � n) j); notice that this
last term equals F 0�(�i(xi)). It follows from these two facts that:

@�

@�
�i(�; x�i)

����
�=xi

� F 0�(�i(xi)) and
@+

@�
�i(�; x�i)

����
�=xi

� F 0+(xi)

Hence, for any x�i 2 RNni+ , the slope of �i(�; x�i) at � = xi lies between

F 0�(�i(xi)) and F
0
+(xi). It follows from the strict concavity of �i(�; x�i) that xi

maximizes u�i (�; �i(�; x�i)) on R
Nni
+ for any x�i 2 RNni+ , completing the proof

of the lemma.
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