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Abstract 

This paper presents semi-closed-form solutions to a wide range of interest rate 

derivatives, such as options on discount bonds and on coupon bonds, options on the short 

rate, options on yield spreads and on a basket of yields. A multi-factor GARCH 

framework of the short rate and its variance components is considered. We define a 

generalized zero-coupon bond and derive the moment generating function (MGF) of the 

discount bond log-price. The solution method relies on Fourier-inverting the MGF to 

compute the cumulative probabilities. The solution is found very accurate and offers 

considerable savings in computation time when compared to Monte Carlo simulation.  
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I. Introduction 

 Since the seminal work in Engle (1982) and Bollerslev (1986), GARCH models 

have been widely used to describe the dynamics of financial time series, especially in 

equity and foreign exchange markets (see, for example, Bollerslev, Chou, and Kroner 

(1992) for a literature review). Recently, a number of GARCH processes have also been 

suggested in the literature to model the dynamics of interest rates (see, among others, Ball 

and Torous (1999) and Heston and Nandi (1999)). This paper develops a three-factor 

GARCH model of short term interest rates and presents semi-closed-form solutions to a 

wide variety of interest rate derivative prices. Our solution method relies on inverting the 

characteristic functions using Fourier transform and derives the corresponding 

cumulative probabilities. When compared to some alternative approaches in the literature, 

our method is found to be both accurate and computationally efficient.  

 Our choice of a three-factor GARCH model for the interest rate processes can be 

justified as follows. Firstly, as concluded in Litterman and Scheinkman (1991), we need 

at least three factors to adequately model the interest rate dynamics. Therefore, our model 

consists of three factors. Secondly, interest rate volatility is surely stochastic and changes 

over time (see Fong and Vasicek (1991), Andersen and Lund (1997), Kalimipalli and 

Susmel (2004), and Trolle and Schwartz (2009) etc.). The stochastic nature of interest 

rate volatility is also evident from taking a look at Tables 1, 2, and 3. In these tables, we 

compute the summary statistics and covariance matrix of the daily U.S. Treasury rates as 

well as their first order differences for a number of maturities over the time period of 

2001 to 2008 (source of data: H.15 release at the U.S. Federal Reserve Board). The tables 

clearly show that interest rate series are heteroskedastic and non-normal. Thus in our 

model we treat interest rate volatility as stochastic.  

 

[Tables 1, 2, and 3 are about here.] 

 

Thirdly, in Table 4 we conduct a principal component analysis (PCA hereafter) of the 

daily variances of our Treasury time series. The first two components can explain 90.10% 

and 9.02% of the movements in daily variances, respectively. As a result, in our model 
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we use two volatility factors (apart from the short rate factor, see Eq. (1) in Section 2 

below), in order to better capture the dynamics of interest rate volatility.   

 

[Table 4 is about here.] 

 

Finally, our use of two volatility factors is similar to the approach taken in Christoffersen, 

Heston, and Jacobs (2009) and Gauthier and Possamai (2009). These authors are 

concerned about equity market instead. Their results suggest that the use of two volatility 

factors can better explain the slope and the level of the “volatility smirk” found in the 

equity option market. 

 A number of authors have also recently adopted some GARCH processes to 

model interest rate processes. For example, see the paper by Cvsa and Ritchken (2001). 

However, our model framework is different from theirs, and more importantly, we are 

able to derive semi-closed-form solutions to interest derivative prices, whereas they rely 

on some numerical methods.  

 The rest of the paper is organized as follows. In Section 2, we present our three-

factor GARCH model of interest rates. In Section 3, we derive the pricing formulas for 

discount bonds, zero-coupon bond options, coupon bond options, short rate options, 

average rate options, yield spread options, and yield basket options, respectively. Section 

4 contains several numerical examples to illustrate the computation of various option 

prices using our approach. Finally, Section 5 concludes. All technical details are in the 

Appendices.  

 

2. Three-Factor GARCH Model for the Short Rate 

 We consider the following three-factor Heston-Nandi GARCH model (2000) 

under the physical probability (P):1 
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1 Note that this setting is also an extension of the credit spread GARCH model proposed in Tahani (2006). 



 3

where }1:{ tzt ≤  and }1:{ twt ≤  are two independent sequences of independent standard 

normal variables; 1+th  and 1+tv  are the conditional variance components of the short rate 

1+tr  known at time t. The parameters )~,~( γϕ  control for the skewness or the asymmetry of 

the distribution of the short rate. The conditional covariance of the short rate and its 

variance components is: 
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Following Fong and Vasicek (1991) and Cvsa and Ritchken (2001), we assume that the 

risk premia are given by 1+thλ  and 1+tvμ , respectively. We can then rewrite Eq. (1) 

under a risk-neutral measure (Q) as: 
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and ),( *
1

*
1 ++ tt wz  are two independent risk-neutral standard normal variables conditional on 

the information available at time t. Figure 1 presents some simulation results of the short 

rate under the three-factor GARCH model above.   

 

[Figure 1 is about here.] 

 

3. Pricing Formulas 

 This section illustrates the valuation of a wide variety of bonds and options such 

as discount bond options, coupon bond options, options on the short rate, options on a 

yield spread and options on a basket of yields. The generalization of the model to the 

multi-factor framework is presented in Appendix F. 
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3.1 Discount bonds 

 The time-t discount bond with maturity date t+n is given under the risk-neutral 

measure Q by (see Appendix A for details): 
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where the functions A, B, C and D are computed recursively using the initial values 

0)0()0()0()0( ==== CDBA  and the recurrence equations presented in Appendix A. 

 

3.2 Discount bond options 

 A call option with maturity date t+n on the discount bond ),( mntntP +++  and 

strike price K has a price given by: 
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where Qt+n+s, { }ms ,0∈ , is the forward measure2 with the following Radon-Nikodym 

derivative: 
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The moment generating function (MGF hereafter) of the logarithm of the zero-coupon 

bond ),( mntntP +++  under the forward measure is: 

  { }( )),(lnexp),,,;( mntntPEsmntMGF
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tzero +++×≡
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Given the expression for the discount bond in Eq. (5) and the Radon-Nikodym derivative 

in Eq. (7), we have: 

                                                 
2 See Geman, El Karoui, and Rochet (1995) for the derivation of the forward measure and its use in option 
pricing. 
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Following Tahani and Li (2011), let us define the generalized zero-coupon as:3 
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The generalized zero-coupon ),( ntt +Π  will prove very useful in the pricing of a 

multitude of derivative securities on interest rates. As previously derived for the discount 

bond formula, it can be shown that (see Appendix B for details): 

( ))()()()(exp),,,,;,( 11 nCvnDhnBrnARCDBAntt ttt +++−=+Π ++       (11) 

where the initial values are CCDDBBAA ==== )0(,)0(,)0(,)0( . The MGF in Eq. (9) 

can therefore be computed using Eq. (11) where:4 
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The probabilities in Eq. (6) for { }ms ,0∈  can now be recovered as inverse Fourier 

transforms of the characteristic function5:   
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The call price is then computed as in Eq. (6). The put price can be computed using the 

call-put parity relationship.6  

 

3.3 Coupon bond options 

 We define the price at time t of an M-coupon bond with maturity date t+m by: 

                                                 
3 The generalized zero-coupon should be understood as ),,,,;,( RCDBAntt +Π . 
4 Note that the discount bond price ),( snttP ++  is equivalent to )1,0,0,0,0;,( sntt ++Π . 
5 The cumulative probabilities obtained by inverse Fourier transforms of the MGFs are computed using the 
Gauss-Laguerre quadrature rule. Please refer to Tahani and Li (2011) for the details. 
6 ),(),(),,,(),,,( mnttPnttKPKmntCallKmntPut zerozero ++−++= . 
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where M is the number of coupons and Miia ≤≤1)(  are the cash flows. Following Munk 

(1999) and Tahani and Li (2011), we define the stochastic duration of the coupon bond 

as the time to maturity of the zero-coupon bond having the same instantaneous variance 

of relative price changes. The price of an option on the coupon bond is therefore 

approximated using the option on the corresponding zero-coupon bond with the same 

stochastic duration. More specifically, the instantaneous variance of the relative price 

changes of the zero-coupon bond ),( qttP +  is defined as:7 
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Similarly, the instantaneous variance of the relative price changes of the coupon bond 

),,( MmttH +  is given by: 
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where ( )),1( M
mQ

t ittPVar ++  is given as in Eq. (14). The value of q that equates the 

variances in Eqs. (14-15), denoted by q  hereafter, is the stochastic duration of the 

coupon bond. Note that q  must be an integer and hence it must be solved for recursively.  

The price of the call option with maturity t+n on the coupon bond ),,( MmntntH +++  

can be approximated by a multiple of the price of the call option on the zero-coupon 

bond ),( qntntP +++ . More formally, we have: 
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+=ζ . The put option can be approximated similarly. 

 
                                                 
7 In our discrete-time framework, we define the relative price change by 1),(
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3.4 Short rate options 

 A call option with maturity date t+n on the short rate with strike K has a price 

equal to: 
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where the probabilities and their corresponding MGFs are derived in Appendix C. 

 

3.5 Average rate Options 

 A call option with maturity date t+n on the average rate, defined as ∑
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where t-m ≤ t ≤ t+n, and a strike K has a price equal to: 
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3.6 Yield spread options 

 The continuously-compounded yield for the period ),( ntt +  is defined as: 

n
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A call option with maturity date t+n and a strike K on a spread between two yields of 

different maturities can be priced as follows: 
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where { }KmntntYmntntYL ≥+++−+++= ),(),( 12 . The details of the derivation 

are given in Appendix E. A special case of this type is the exchange option obtained by 

simply setting K = 0.  

 

3.7 Yield basket options 

 We can generalize the previous calculation to price an option on a basket of 

yields. The call on the basket can be written as: 
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where ljj ≤≤1)(ω  are the basket weights and 
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DCBA ΣΣΣΣ ,,,  and the details of the derivation are provided in Appendix E. 

 

4. Numerical Examples 

 This section presents some numerical examples to assess the accuracy and the 

efficiency of our proposed solution method. The benchmark option prices are given by a 

Monte Carlo simulation based on 105 paths repeated 50 times. The parameter values 

chosen are similar to those parameters in Heston and Nandi (2000) and have been 

adjusted for our model as per the PCA analysis in Table 4.   

 First, we price a three-month at-the-money forward call option on a three-month 

zero-coupon bond with a face value of $100. The strike price K of this call option is 

$98.5229. Table 5 shows how our model price converges to the benchmark price given 
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by the Monte Carlo simulations for different quadrature orders as well as the associated 

standard deviation. Note that an order of 28 is sufficient to obtain a very accurate option 

price. The second example is a three-month call on a six-month zero-coupon bond. The 

strike price of this call option is $96.9252. The third example is a three-month call on a 

one-year discount bond. Here the strike price is $93.6139. Finally, the fourth example 

examines a six-month call option with a strike price of $93.3474 on a one-year zero-

coupon bond. It is shown in the table that a high degree of precision can be achieved at a 

quadrature order of (as low as) 18. 

 

[Table 5 is about here.] 

 

 Next we value some options on coupon bonds as an illustration. The first example 

in Table 6 is a three-month call option on a one-year coupon bond that pays a quarterly 

coupon of $4 and has a stochastic duration of 205 days. The call has a strike price of 

$108.99. The second example is a three-month call on a one-year step-up bond, which 

has a quarterly step-up coupon of $4, $6, $8, and $10, respectively. The stochastic 

duration of the coupon bond is 181 days and the call has a strike price of $120.35. Again, 

our solution method can value the call option in a very accurate and efficient manner. 

Indeed, it takes about a quadrature order of 23 to achieve an accurate price for both calls. 

 

[Table 6 is about here.] 

  

5. Conclusion 

 This paper derives semi-closed-form pricing formulas for various interest rate 

derivatives under a three-factor GARCH model. Our solution method consists of deriving 

the moment generating function of the logarithm of the zero-coupon bond under the 

forward measure and Fourier-inverting the corresponding characteristic function using 

the Gauss-Laguerre quadrature rule. The numerical analysis in this paper shows that our 

approach is very accurate and fast and compares favorably to some alternative methods in 

the literature.  
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 Our valuation approach can be extended to price more complex fixed income 

derivatives, such as credit risk derivatives. Extending our solution method to these 

applications is an interesting venue for our future research. 
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Appendix A: Discount bond formula 
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,0)1(,1)1( == BA  0)1(,0)1( == CD . We now show that ( ))exp()2,( 1+−−≡+ tt
Q
t rrEttP  

is given by Eq. (5): 
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Note that *
1+tz  and *

1+tw  are two independent standard normal variables conditional on 

time t. This shows that that: 
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Let us now compute the following general expectation where η  and ω  are constant:   
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In deriving Eq. (A.3) above, we have used the fact that for a standard normal variable z 

and constants a and b, we have: 
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We assume that the result is now true for a general maturity n and show that it is also true 

for a maturity n + 1: 
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Using the previous result, it is straightforward to show that: 
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The same can be shown for the expectation involving 2+tv . After collecting and 

rearranging the terms, we obtain the recurrence equations below: 
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Appendix B : Generalized zero-coupon 

 Since ( )CvDhBrAtt ttt +++−=Π ++ 11exp),( , the initial values are DBA ,,  and 

C  respectively. We now show that )1,( +Π tt  is given by Eq. (11): 
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Using the derivation of the discount bond pricing formula in Appendix A, we only need 

some substitutions to obtain: 
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Collecting and rearranging the terms yields the result for )1,( +Π tt . We assume that the 

result is now true for a maturity n and show that it is also true for a maturity n + 1: 
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Since this expectation is similar to the ones in Eqs. (A.5) and (B.1), we can show that we 

obtain the same recurrence equations as in Eq. (A.6) with this small adjustment: 

)()1()1( nARnA κ−+=+                (B.3) 

and CCDDBBAA ==== )0(,)0(,)0(,)0( . 

 

Appendix C: Short rate options 

 The call option on the short rate is priced as: 
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where rQ  has the following Radon-Nikodym derivative: 
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The MGF of the short rate at time t+n under the forward measure rQ  is given by: 
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which yields the first part of Eq. (C.1) after the use of inverse Fourier transform to get the 

probability: 
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and its partial derivative can be computed recursively using Eq. (A.6) as: 
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with the following initial values 1,0)0()0()0(,)0( ====−= RCDBA ψ , ,1)0(
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On the other hand, the MGF of the short rate at time t+n under the forward measure ntQ +  

is given by: 
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The probability ( )KrQ nt
nt ≥+

+  is computed in a similar way as in Eq. (C.4). 

 

Appendix D: Average rate options 

 The call option on the average rate is priced as: 



 18

( ) ( )LQnttP
mn

r
KLQrrE

mn

KrrEKmntCall

nt

t

mti
i

Avg
nt

mti
i

nt

ti
i

Q
t

nt

mti
imn

nt

ti
i

Q
tavg

+

−

−=
−+

−=

−+

=

+−+

−=
+

−+

=

×+×
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

⎭
⎬
⎫

⎩
⎨
⎧
−

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−×

⎭
⎬
⎫

⎩
⎨
⎧
−≡

∑
∑∑

∑∑

),(exp1

exp),,,(

1

11

1
1

1

  (D.1) 

where 
⎭
⎬
⎫

⎩
⎨
⎧

−≥= ∑∑
−

−=
+

−+

=
+

1
1

1
1

t

mti
imn

nt

ti
imn rKrL , and AvgQ  has the following Radon-Nikodym 

derivative: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎭
⎬
⎫

⎩
⎨
⎧
−

×
⎭
⎬
⎫

⎩
⎨
⎧
−

≡

∑∑

∑∑
−+

=

−+

=

−+

=

−+

=

11

11

exp

exp

nt

ti
i

nt

ti
i

Q
t

nt

ti
i

nt

ti
iAvg

rrE

rr

dQ
dQ         (D.2) 

The MGF of the average rate under AvgQ  is given by: 
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Note that ),0,0,0,0;,( Rntt +Π  can be computed as: 

( )
⎩
⎨
⎧

====
+++−=+Π ++

0)0(,0)0(,0)0(,0)0(
)()()()(exp),0,0,0,0;,( 11

CDBA
nCvnDhnBrnARntt ttt     (D.4) 

 

and its partial derivative can be computed recursively using Eq. (A.6) as: 

),0,0,0,0;,()()()()(),0,0,0,0;,( Rntt
R
nCv

R
nDh

R
nBr

R
nA

R
Rntt

ttt +Π×⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−=
∂

+Π∂

              (D.5) 

 



 19

where we use the recurrence equations similar to Eq. (C.7), 
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On the other hand, the MGF of the average rate under the forward measure ntQ +  is given 
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Appendix E: Yield spread and yield basket options 

 The call option with maturity date t+n and a strike K on the yield spread is given 

by: 
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The yield spread can be expressed as follows: 
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where ( )
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1221 )()(~
mm

mAmmAmA −
=  and with similar equations for DB ~,~  and C~ . Therefore, 

we need to compute the following expectation: 
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where YQΔ  has the following Radon-Nikodym derivative: 
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The MGF of the yield spread under the forward measure YQΔ  is given by: 
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The MGF of the yield spread under the forward measure ntQ +  is given by: 
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The call option with a maturity date t+n and a strike K on the yield basket is given by: 
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where BasketQ  has the following Radon-Nikodym derivative: 
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where ∑
=

=Σ
l

j
jmA mA
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1
)(ω  and with similar equations for DB ΣΣ ,  and CΣ . Following the 

derivation of the yield spread option pricing formula, we can easily show that the MGF of 

the yield basket under the forward measures BasketQ  and ntQ +  are obtained as: 

{ }

0

1
1

)1,,,,;,(

)1,,,,;,(

),(exp),...,,,;(

=

=

∂
Σ−Σ−Σ−Σ−+Π∂

∂
Σ−Σ−Σ−Σ−+Π∂

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+++≡ ∑

ψψ
ψψψψ

ψ
ψψψψ

ωψψ

CDBA

CDBA

l

j
jj

Q
tl

I
basket

ntt

ntt

mntntYEmmntMGF
Basket

  (E.10) 

and 



 22

{ }

),(
)1,,,,;,(

),(exp),...,,,;(
1

1

nttP
ntt

mntntYEmmntMGF

CDBA

l

j
jj

Q
tl

II
basket

nt

+
Σ−Σ−Σ−Σ−+Π

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+++≡ ∑
=

+

ψψψψ

ωψψ
  (E.11) 

 

Appendix F: Generalization to a multi-factor GARCH 

 Consider the multi-factor GARCH model defined under the risk-neutral measure 

Q as follows: 
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where }1;1:{ *
, tmjz tj ≤≤≤  is a double-indexed sequence of independent standard 

normal variables under Q. Since the derivation of discount bonds and derivatives on 

interest rates depends on the generalized zero-coupon, we will only focus on the 

generalization formula of ),( ntt +Π .  

In the multi-factor setting, the generalized zero-coupon is defined as: 
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We will show that ),( ntt +Π  is given by: 
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where the functions A, Bj and C are defined recursively with initial values of A , jB  and 

C , respectively. If we assume that Eq. (F.3) holds for a maturity n, it can be shown for a 

maturity n+1 that: 
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The expectation above can be computed as follows: 
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Collecting and rearranging the terms, we obtain: 
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Figure 1: Simulation of the Daily Short Rate in the Three-Factor GARCH Model 

Figure 1 presents the simulation of the short rate in the three-factor GARCH model: (a) 

short rate, (b) short rate first-order change, (c) volatility factor h, (d) volatility factor v, 

(e) innovations corresponding to factor h, and (f) innovations corresponding to factor v. 

The parameters used are: r0 = 0.02%, h1 = 9e-7, v1 = 1e-7, κ = 0.01, θ = 2e-4, λ = -3.6,                       

μ = -0.4, β0 = 9e-11, β1 = 4.5, β2 = 9e-11, ϕ~  = 13.6, α0 = 1e-11, α1 = 0.05, α2 = 1e-11, 

and γ~  = 14.4. 
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Table 1: Summary Statistics of the Daily Treasury Rates (10/1/2001 – 9/12/2008)  
 

1-month 3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year
Min 0.26 0.61 0.82 0.88 1.1 1.34 2.08 2.63 3.13
First Quartile 1.23 1.3325 1.56 1.69 2.07 2.46 3.2 3.67 4.07
Median 1.895 1.91 2.1 2.36 3.03 3.33 3.85 4.08 4.37
Third Quartile 3.95 4.01 4.31 4.33 4.36 4.35 4.48 4.59 4.71
Max 5.27 5.19 5.33 5.3 5.29 5.26 5.23 5.29 5.44
Mean 2.553 2.635 2.784 2.909 3.166 3.396 3.822 4.115 4.385
Std. Dev. 1.481 1.498 1.515 1.398 1.182 1.016 0.737 0.584 0.451
Skewness 0.560 0.504 0.429 0.363 0.155 0.038 -0.084 -0.094 0.001
Excess Kurtosis -1.192 -1.297 -1.378 -1.362 -1.326 -1.257 -1.079 -0.850 -0.528  

 
 

Table 2: Summary Statistics of the Daily Treasury Rate First Order Changes (10/1/2001 – 9/12/2008) 
 

1-month 3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year
Min -1.05 -0.64 -0.45 -0.4 -0.28 -0.27 -0.24 -0.21 -0.21
First Quartile -0.02 -0.01 -0.02 -0.02 -0.04 -0.04 -0.04 -0.04 -0.04
Median 0 0 0 0 0 0 0 0 0
Third Quartile 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.03 0.03
Max 0.8 0.61 0.4 0.35 0.33 0.3 0.28 0.28 0.25
Mean -0.001 -0.001 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000
Std. Dev. 0.087 0.058 0.044 0.049 0.065 0.068 0.067 0.065 0.059
Skewness -0.588 -0.646 -0.389 -0.207 0.175 0.205 0.247 0.266 0.303
Excess Kurtosis 29.265 33.458 19.490 7.255 2.015 1.822 1.536 1.353 1.257  

 
 

Table 3: Covariance Matrix of the Daily Variances of the Treasury Rates 
 

1-month 3-month 6-month 1-year 2-year 3-year 5-year 7-year 10-year
1-month 9.58E-04 2.04E-04 2.29E-05 1.46E-05 8.99E-06 8.74E-06 3.98E-06 2.62E-06 1.50E-06
3-month 2.04E-04 1.43E-04 2.43E-05 1.61E-05 6.99E-06 7.20E-06 3.75E-06 2.37E-06 1.21E-06
6-month 2.29E-05 2.43E-05 5.60E-06 4.12E-06 2.25E-06 2.07E-06 1.06E-06 6.46E-07 3.18E-07
1-year 1.46E-05 1.61E-05 4.12E-06 3.86E-06 2.81E-06 2.34E-06 1.20E-06 7.42E-07 3.93E-07
2-year 8.99E-06 6.99E-06 2.25E-06 2.81E-06 3.91E-06 3.06E-06 1.58E-06 9.72E-07 5.30E-07
3-year 8.74E-06 7.20E-06 2.07E-06 2.34E-06 3.06E-06 2.61E-06 1.39E-06 8.67E-07 4.83E-07
5-year 3.98E-06 3.75E-06 1.06E-06 1.20E-06 1.58E-06 1.39E-06 8.34E-07 5.32E-07 3.12E-07
7-year 2.62E-06 2.37E-06 6.46E-07 7.42E-07 9.72E-07 8.67E-07 5.32E-07 3.58E-07 2.15E-07
10-year 1.50E-06 1.21E-06 3.18E-07 3.93E-07 5.30E-07 4.83E-07 3.12E-07 2.15E-07 1.41E-07  
 

 
Table 4: Principal Component Analysis of the Daily Variances of the Treasury Rates 

 
% Variance 90.10% 9.02% 0.72% 0.11% 0.03% 0.02% 0.01% 0.00% 0.00%
1-month 0.6576 -0.5743 0.2848 -0.2604 0.2654 -0.0992 0.0922 0.0097 0.0018
3-month -0.732 -0.3473 0.2964 -0.2721 0.3658 -0.143 0.1645 0.0196 0.0031
6-month 0.1765 0.7216 0.2172 -0.2533 0.4736 -0.2023 0.2654 0.0315 0.0048
1-year 0.0188 -0.1612 -0.7605 0.098 0.239 -0.2718 0.5012 0.0579 0.0103
2-year 0.0073 -0.01 0.4218 0.3579 -0.4628 -0.2609 0.6389 0.0571 0.0105
3-year -0.0096 0.0359 -0.1171 -0.6365 -0.3391 0.5381 0.3965 0.1328 0.018
5-year 0.0123 -0.0379 0.1176 0.5005 0.4272 0.6844 0.2125 0.1927 0.0279
7-year -0.0002 0.0023 -0.0027 -0.0235 -0.0513 -0.1687 -0.1789 0.9397 0.2307
10-year -0.0001 0.0003 0.0004 0.0007 0.0047 0.0177 0.0148 -0.2325 0.9723  
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Table 5: Call Option on Discount Bond in the Three-Factor GARCH Model 
 

10 0.9767 10 1.6043
11 1.0370 11 1.6593
12 1.0883 12 1.6988
13 1.1312 13 1.7263
14 1.1665 14 1.7447
15 1.1950 15 1.7566
16 1.2176 16 1.7640
17 1.2352 17 1.7685
18 1.2487 18 1.7710
19 1.2588 19 1.7725
20 1.2663 20 1.7732
21 1.2717 21 1.7736
22 1.2756 22 1.7738
23 1.2783 23 1.7739
24 1.2802 24 1.7740
25 1.2815 25 1.7740
26 1.2823 26 1.7740
27 1.2829 27 1.7740
28 1.2832 28 1.7740
29 1.2835 29 1.7741
30 1.2837 30 1.7742

1.2831 1.7736
7.46E-04 1.19E-03

Monte Carlo Price
Standard Deviation

3-month Call on a 3-month Discount Bond 3-month Call on a 6-month Discount Bond
  Quadrature Order          Price  Quadrature Order          Price

Monte Carlo Price
Standard Deviation  

 

10 1.8922 10 0.5593
11 1.9334 11 0.6036
12 1.9595 12 0.6440
13 1.9752 13 0.6807
14 1.9843 14 0.7136
15 1.9892 15 0.7428
16 1.9918 16 0.7686
17 1.9930 17 0.7910
18 1.9936 18 0.8103
19 1.9938 19 0.8268
20 1.9939 20 0.8408
21 1.9940 21 0.8525
22 1.9940 22 0.8622
23 1.9940 23 0.8701
24 1.9940 24 0.8766
25 1.9940 25 0.8818
26 1.9940 26 0.8860
27 1.9940 27 0.8893
28 1.9940 28 0.8919
29 1.9941 29 0.8939
30 1.9942 30 0.8955

1.9936 0.8998
1.34E-03 7.29E-04Standard Deviation Standard Deviation

Monte Carlo Price Monte Carlo Price

6-month Call on a 1-year Discount Bond
  Quadrature Order          Price

3-month Call on a 1-year Discount Bond
  Quadrature Order          Price

 
 

Table 5 presents the pricing results for at-the-money forward call options on discount 

bonds in the three-factor GARCH model. The parameters used are: r0 = 0.02%, h1 = 9e-7, 

v1 = 1e-7, κ = 0.01, θ = 2e-4, λ = -3.6, μ = -0.4, β0 = 9e-11, β1 = 4.5, β2 = 9e-11, ϕ~  = 

13.6, α0 = 1e-11, α1 = 0.05, α2 = 1e-11, and γ~  = 14.4. The strike prices are $98.5229, 

$96.9252, $93.6139 and $93.3474, respectively. 
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Table 6: Call Option on Coupon Bond in the Three-Factor GARCH Model 
 

10 1.9541 10 2.0607
11 2.0127 11 2.1289
12 2.0536 12 2.1778
13 2.0810 13 2.2118
14 2.0987 14 2.2345
15 2.1097 15 2.2491
16 2.1162 16 2.2582
17 2.1199 17 2.2636
18 2.1219 18 2.2668
19 2.1230 19 2.2685
20 2.1235 20 2.2694
21 2.1238 21 2.2699
22 2.1239 22 2.2701
23 2.1240 23 2.2703
24 2.1240 24 2.2703
25 2.1240 25 2.2703
26 2.1240 26 2.2703
27 2.1240 27 2.2704
28 2.1240 28 2.2703
29 2.1241 29 2.2704
30 2.1243 30 2.2706

3-month Call on a 1-year Coupon Bond 3-month Call on a 1-year Step-Up Bond
  Quadrature Order          Price  Quadrature Order          Price

 
 

Table 6 presents the valuation results for at-the-money forward call options on coupon 

bonds in the three-factor GARCH model. The parameters are the same as those in Table 

5. The first bond has a quarterly coupon of $4, a strike price of $108.99 and a stochastic 

duration of 205 days. The second bond has a quarterly step-up coupon of $4, $6, $8 and 

$10, respectively, a strike price of $120.35 and a stochastic duration of 181 days. 

 
 


