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Abstract

This paper presents new models for the dependence structure, or copula, of economic variables,

and asymptotic results for a new simulation-based estimator of these models. The proposed models

are based on a factor structure for the copula and are particularly attractive for high dimensional

applications, involving �fty or more variables. Estimation of this class of models is complicated

by the lack of a closed-form likelihood, but estimation via a simulation-based method using rank

statistics is simple, and we provide asymptotic results that show the consistency and asymptotic

normality of such estimators. We analyze the �nite-sample behavior of these estimators in an

extensive simulation study. We apply the model to a group of 100 daily stock returns and �nd

evidence of statistically signi�cant tail dependence, and that the dependence between these assets

is stronger in crashes than booms.
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1 Introduction

One of the many surprises from the �nancial crisis of late 2007 to 2008 was the extent to which assets

that had previously behaved mostly independently suddenly moved together. This was particularly

prominent in the �nancial sector, where poor models of the dependence between certain asset

returns (such as those on housing, or those related to mortgage defaults) are thought to be one of

the causes of the collapse of the market for CDOs and related securities, see Coval, et al. (2009)

and Zimmer (2010) for example. Many models that were being used to capture the dependence

between a large number of �nancial assets were revealed as being inadequate during the crisis.

However, one of the di¢ culties in analyzing risks across many variables is the relative paucity

of econometric models suitable for the task. Correlation-based models, while suitable when risk

can be assumed to be summarized using the second moment, are often built on an assumption of

multivariate Gaussianity, and face the risk of neglecting dependence between the variables in the

tails, i.e., neglecting the possibility that arbitrarily large crashes may be correlated across assets.

This paper makes two primary contributions. First, we present new models for the dependence

structure, or copula, of economic variables. The models are based on a simple factor structure for

the copula and are particularly attractive for high dimensional applications, involving �fty or more

variables1. These copula models may be combined with existing models for univariate distributions

to construct �exible, tractable joint distributions for large collections of variables. The proposed

copula models permit the researcher to determine the degree of �exibility/parsimony, based on

the number of variables and the amount of data available. For example, by allowing for a fat-

tailed common factor the model captures the possibility of correlated crashes, and by allowing

the common factor to be asymmetrically distributed the model allows for the possibility that the

dependence between the variables is stronger during downturns than during upturns. By allowing

for multiple common factors, it is possible to capture heterogeneous pair-wise dependence within

the overall multivariate copula. High dimension economic applications will often require some

strong simplifying assumptions in order to keep the model tractable, and an important feature of

the class of proposed models is that such assumptions can be made in an easily understandable

manner.
1For related recent work on high dimensional conditional covariance matrix estimation, see Engle and Kelly (2007),

Engle et al. (2008), and Hautsch et al. (2010).
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The second contribution of this paper is a study of the asymptotic properties of a simulation-

based estimator of the parameters of this model. The class of factor copulas that we present does

not generally have a likelihood that is known in closed form, forcing us to consider other estimation

methods. We propose a simulation-based estimation method based on rank dependence measures

that shares features with the simulated method of moments (SMM), and we derive its asymptotic

properties using recent work in empirical copula process theory, see Fermanian, et al. (2004),

Chen and Fan (2006a,b) and Rémillard (2010), combined with existing results on simulation-based

estimation, see Pakes and Pollard (1989) and Newey and McFadden (1994) for example.

We apply examples of our proposed factor copulas to a set of 100 daily stock returns, over

the period 2008�2010. This is one of the highest dimension applications of copula theory in the

econometrics literature. We �nd signi�cant evidence in favor of a fat-tailed common factor for these

stocks (indicative of non-zero tail dependence), implying that the Normal, or Gaussian, copula is

not suitable for these assets. Moreover, we �nd signi�cant evidence that the common factor is

asymmetrically distributed, with crashes being more highly correlated than booms. Our empirical

results suggest that risk management decisions made using the Normal copula may be based on

too benign a view of these assets, and derivative securities based on baskets of these assets, or

related securities such as CDOs, may be mis-priced if based on a Normal copula. The fact that

large negative shocks may originate from a fat-tailed common factor, and thus a¤ect all stocks at

once, makes the diversi�cation bene�ts of investing in these stocks lower than under Normality.

Certain types of factor copulas have already appeared in the literature. The models we consider

are extensions of Hull and White (2004), in that we retain a simple linear, additive factor structure,

but allow for the variables in the structure to have �exibly speci�ed distributions. Other variations

on factor copulas are presented in Andersen, et al. (2004) and van der Voort (2005), who consider

certain non-linear factor structures. The papers to date, however, have not considered estimation

of the unknown parameters of these copulas, instead examining simulation and pricing using these

copulas. Our formal analysis of the estimation of copulas via a SMM-type procedure is new to the

literature, as is our application of this class of models to a large collection of asset returns.

Some methods for modelling high dimension copulas have previously been proposed in the

literature, though few consider dimensions greater than twenty2. The Normal copula, see Li (2000)

2For general reviews of copulas in economics and �nance see Cherubini, et al. (2004), Patton (2009), and Manner

and Reznikova (2010).
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amongst many others, is simple to implement and to understand, but imposes the strong assumption

of zero tail dependence, and symmetric dependence between booms and crashes. The (Student�s)

t copula, and variants of it, are discussed in Demarta and McNeil (2005). An attractive extension

of the t copula, the �grouped t� copula, is proposed in Daul et al. (2003), who show that this

copula can be used in applications of up to 100 variables. This copula allows for heterogeneous

tail dependence between pairs of variables, but imposes that upper and lower tail dependence are

equal (a �nding we strongly reject for equity returns). Archimedean copulas such as the Clayton

or Gumbel allow for tail dependence and particular forms of asymmetry, but usually have only a

one or two parameters to characterize the dependence between all variables, and are thus quite

restrictive when the number of variables is large. In a recent paper McNeil and Ne�lehová (2010)

propose �Liouville�copulas as a more �exible generalization of Archimedean copulas. Multivariate

�vine� copulas are constructed by sequentially applying bivariate copulas to build up a higher

dimension copula, see Aas, et al. (2009), Heinen and Valdesogo (2009) and Min and Czado (2010)

for example. Smith, et al. (2010) extract the copula implied by a multivariate skew t distribution

and use that to model groups of up to 15 variables.

The class of factor copulas we propose has two main advantages relative to existing models.

First, many extensions of the simplest version of this model are possible, permitting the researcher

great �exibility in whichever direction he/she believes is the most important for a given application.

Second, the model is easily interpreted, particularly given economists�familiarity with factor mod-

els3, and any restrictions that are required for tractability are easily understood and explained. The

main drawback of this class of models is that it generally does not have a closed-form likelihood,

however we show how to overcome this via simulation based estimation methods.

The remainder of the paper is structured as follows. Section 2 presents the class of factor copulas

and Section 3 discusses their estimation via an SMM-type method. Section 4 presents a simulation

study of the proposed new methods, and Section 5 presents an application using daily returns

on individual constituents of the S&P 100 equity index over the period 2008-2010. Appendix A

contains all proofs, and Appendix B contains a discussion of the dependence measures used in

estimation.
3See, for example, the recent special issue of the Journal of Econometrics devoted to this topic, edited by Palm

and Urbain (2011).
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2 Factor copulas

For simplicity we will focus on unconditional distributions in the text below, and discuss the

extension to conditional distributions in the next section. Consider a vector of N variables, Y;

with some joint distribution F; marginal distributions Fi; and copula C :

[Y1; :::; YN ]
0 � Y s F = C (F1; :::; FN ) (1)

The copula completely describes the dependence between the variables Y1; :::; YN ; and our task is

to construct useful models for this dependence.

2.1 Description of a simple factor copula model

The class of copulas we consider are those that can be generated by the following simple factor

structure, based on a set of N + 1 latent variables:

Xi = Z + "i, i = 1; 2; :::; N

Z s Fz, "i s iid F", Z??"i 8 i (2)

[X1; :::; XN ]
0 � X s Fx= C (G1; :::; GN )

The copula of the latent variables X is used as the model for the copula of the observable variables

Y:4 An important point about the above construction is that the marginal distributions of Xi may

be di¤erent from those of the original variables Yi; that is, Fi 6= Gi in general. We use the structure

for the vector X only for its copula, and completely discard the resulting marginal distributions.

By doing so, we use equation (2) to construct a model for the copula of Y; and leave the marginal

distributions Fi to be speci�ed and estimated in a separate step.

The copula implied by the above structure is not generally known in closed form. The leading

case where it is known is when Fz and F" are both Gaussian distributions, in which case the variable

X is multivariate Gaussian, implying a Gaussian copula, and with an equicorrelation dependence

structure (with correlation between any pair of variables equal to �2z=
�
�2z + �

2
"

�
). For other choices

of Fz and F" the joint distribution of X; and more importantly the copula of X; is not known in
4This method for constructing a copula model resembles the use of mixture models, e.g. the Normal-inverse

Gaussian or generalized hyperbolic distributions, where the distribution of interest is obtained by considering a

function of a collection of latent variables, see Barndor¤-Nielsen (1978, 1997), Barndor¤-Nielsen and Shephard (2009),

McNeil, et al. (2005).
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closed form. It is clear from the structure above that the copula will exhibit �equidependence�,

in that each pair of variables will have the same bivariate copula as any other pair. A similar

assumption for correlations is made in Engle and Kelly (2007).

It is simple to simulate from Fz and F" for many classes of distributions, and from simulated data

we can extract properties of the copula, such as rank correlation, other measures of concordance

such as Kendall�s tau, and upper and lower tail dependence and quantile dependence. These

simulated moments can then be used in simulated method of moments (SMM) estimation of the

unknown parameters. We describe how to implement this estimation procedure in Section 3. Note

that by focussing on �pure�dependence measures, see Nelsen (2006, Chapter 5) for discussion, we

can extract copula information from the simulations of X without being a¤ected at all by the

marginal distributions (Gi) of X:

To illustrate the �exibility of this simple class of copulas, Figure 1 presents 1000 random draws

from bivariate distributions constructed using four di¤erent factor copulas. In all cases the marginal

distributions, Fi; are set to N (0; 1) ; and the variance of the latent variables in the factor copula

are set to �2z = �
2
" = 1; so that the common factor (Z) accounts for one-half of the variance of each

Xi:We set F" = N (0; 1) ; and generate the four factor copulas by considering four di¤erent choices

for Fz: The �rst is N (0; 1) ; implying that the copula is Normal. The second sets Fz = t (4) ;

generating a symmetric copula with tail dependence. The third and fourth factor copulas use

Hansen�s (1994) skewed t distribution, with degrees of freedom and asymmetry parameters set to

either (1;�0:5) ; corresponding to a skewed Normal distribution, or to (4;�0:5) ; corresponding to

a skewed t (4) distribution. When the degrees of freedom parameter is in�nite (as in the Normal

or skewed Normal case), Figure 1 shows that tail events tend to be uncorrelated across the two

variables, while when the degrees of freedom is set to 4, we observe several draws in the joint upper

and lower tails. When the skewness parameter is negative, as in the lower two panels of Figure 1,

we observe stronger clustering of observations in the joint negative quadrant compared with the

joint positive quadrant.

An alternative way to illustrate the di¤erences in the dependence implied by these four models

is to use a measure known as �quantile dependence�. This measure captures the probability of

observing a draw in the q-tail of one variable given that such an observation has been observed for
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the other variable. It is de�ned as:

� q �

8<: 1
q Pr [U1 � q; U2 � q] ; q 2 (0; 0:5]
1
1�q Pr [U1 > q;U2 > q] ; q 2 (0:5; 1)

(3)

where Ui � Gi (Xi) s Unif (0; 1) are the probability integral transforms of the simulated Xi

variables. As q ! 0 (q ! 1) this measure converges to lower (upper) tail dependence, and for

values of q �near�zero or one we obtain an estimate of the dependence �near�the joint tails of the

distribution.

Figure 2 presents the quantile dependence functions for these four copulas. For the symmetric

copulas (Normal, and t-Normal factor copula) this function is symmetric about q = 0:5; while for

the others it is not. The two copulas with a fat-tailed common factor exhibit quantile dependence

that increases near the tails: in those cases an extreme observation is more likely to have come from

the fat-tailed common factor (Z) than from the thin-tailed idiosyncratic variable ("i) ; and thus

an extreme value for one variable makes an extreme value for the other variable more likely. The

Skew t(4)-Normal factor copula illustrates the �exibility of this simple class of models, generating

low upper quantile dependence but high lower quantile dependence, a feature that may be useful

when modelling asset returns.

Figure 3 illustrates the di¤erences between these copulas using a truly multivariate approach:

Conditional on observing k out of 100 stocks crashing, we present the expected number of the

remaining (100� k) stocks that will crash. For this illustration we de�ne a �crash�as a realization

in the lower 1/66 tail.5 The upper panel shows that as we condition on more variables crashing,

the expected number of other variables that will crash initially increases, and peaks at around

k = 30: At that point, a Skew t(4)-Normal factor copula predicts that around another 35 variables

will crash, while under the Normal copula we expect only around 12 more variables to crash. As

we condition on even more variables crashing the plot converges to zero, which is a function of

the fact that as we condition on having observed more crashes, there are fewer variables left to

crash. The lower panel of Figure 3 shows that the expected proportion of remaining stocks that

will crash generally increases all the way to k = 99:6 For comparison, this �gure also plots the

5This is motivated as a once-in-a-quarter event for daily asset returns. Results for once-in-a-month (1/22) and

once-in-a-year (1/252) events are broadly similar.
6For the Normal copula this is not the case, however this is perhaps due to simulation error: even with the 10

million simulations used to obtain this �gure, joint 1/66 tail crashes are so rare under a Normal copula that there is
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results for a positively skewed Skew t(4)-Normal factor copula, where booms are more correlated

than crashes. This �gure illustrates some of the features of dependence that are unique to high

dimension applications, and further motivates our proposal for a class of �exible, parsimonious

models for such applications.

[ INSERT FIGURES 1, 2 AND 3 ABOUT HERE ]

2.2 Extensions of the model

The structure of this model immediately suggests three directions for extensions. The �rst is to

allow for weights on the common factor that di¤er across variables. That is, let

Xi = �iZ + "i, i = 1; 2; :::; N (4)

with the rest of the model left unchanged. This might be called the �single factor, �exible weights�

factor copula. In this case the implied copula is no longer equidependent: a given pair of variables

may have weaker or stronger dependence than some other pair. This extension introduces N �

1 additional parameters to this model, increasing its �exibility to model heterogeneous pairs of

variables, at the cost of a more di¢ cult estimation problem. An intermediate model may be

considered, in which sub-sets of variables are assumed to have the same weight on the common

factor, similar in spirit to the �grouped t�copula of Daul, et al. (2003). This might be reasonable

for �nancial applications with variables grouped ex ante using industry classi�cations, for example.

A second extension to consider is a multi-factor version of the model, where the dependence

between the variables is assumed to come from a J-factor model, with possibly correlated factors:

Xi =
JX
j=1

�ijZj + "i

"i s iid F", Zj??"i 8 i; j (5)

[Z1; :::; ZJ ]
0 � Z s Fz= Cz (Gz1 ; :::; GzJ )

In the most general case we allow Z to have the copula CZ ; to allow dependence between the

common factors. An empirically useful simpli�cation of this model is to impose that the common

factors are independent, and thus remove the need to specify and estimate CZ . A further simpli�-

cation of this factor model may be to assume that each common factor has a weight equal to one or

a fair degree of simulation error in this plot for k � 80:
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zero, with the weights speci�ed in advance by grouping variables, for example by grouping stocks

by industry.

A third extension is to consider allowing for time variation in the factor copula. The factor

copula models discussed above are similar in spirit to Bollerslev (1990), in that we (implicitly,

so far) allow for time-varying marginal distributions, but impose that the copula is constant. The

resulting multivariate density model will be time-varying but the dependence between the variables

is assumed constant. In generalizing to allow for time-varying dependence, we are guided by recent

work on high dimensional time-varying correlation matrices, see Engle and Kelly (2007) and Engle,

et al. (2008), who propose methods that are feasible given the amount of data that is typically

available in practice. A natural analog of the model by Engle and Kelly (2007) for our application

is one where we impose a simple one-factor, unit-weight, structure, but allow the variance of the

common factor, �2z; to vary through time, for example:

�2z;t = ! + ��
2
z;t�1 + � � h (Y1;t�1; :::; YN;t�1) (6)

where h (�) is some function of the lagged values of the observable data, in the spirit of Patton

(2006). In such a model, the all pair-wise dependence functions are identical at a given point in

time, but these functions change through time, with higher values of �2z corresponding to times of

higher dependence.

3 Simulation-based estimation of copula models

In this section we propose estimation of parametric copula models via a simulated method of

moments (SMM) type approach. The method we consider is not strictly SMM, as the �moments�

we consider are functions of rank statistics, however the results we obtain resemble those for SMM

and so we use this moniker for simplicity. Our results combine well-known results for estimation

involving non-smooth objective functions, see Pakes and Pollard (1989), McFadden (1989), and

Newey and McFadden (1994) for example, and recent results from empirical process theory for

copulas. To the best of our knowledge, simulation-based estimation of copula models has not

previously been considered in the literature.

We consider the same class of data generating processes (DGPs) as Chen and Fan (2006b) and

Rémillard (2010). This class allows each variable to have time-varying conditional mean and con-

ditional variance, each governed by parametric models, with some unknown marginal distribution.
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We estimate the marginal distributions using the empirical distribution function (EDF). The con-

ditional copula of the data is assumed to belong to a parametric family, and is assumed constant;

the extension to allow for time-varying conditional copulas requires a quite di¤erent asymptotic

approach, and we do not pursue that here. The DGP we consider is:

Yt = �t (�0) + �t (�0)�t (7)

where Yt � [Y1t; : : : ; YNt]
0

�t (�) � [�1t (�) ; : : : ; �Nt (�)]
0

�t (�) � diag f�1t (�) ; : : : ; �Nt (�)g

�t � [�1t; : : : ; �Nt]
0 � iid F� = C (F1; : : : ; FN ;�0)

where �t and �t are Ft�1-measurable and independent of �t. Ft�1 is the sigma-�eld containing

information generated by fYt�1;Yt�2; : : :g. The r�1 vector of parameters governing the dynamics

of the variables, �0; is assumed to be
p
T -consistently estimable. If �0 is known, or if �t and �t are

known constant, then the model becomes one for iid data. Our task is to estimate the p�1 vector of

copula parameters, �0 2 �; based on the standardized residual
n
�̂t � ��1t

�
�̂
� h
Yt � �t

�
�̂
�ioT

t=1

and simulations from the copula model (for example, the factor copula model in equation 2).

3.1 De�nition of the SMM estimator

We will consider simulation from some parametric joint distribution, Fx (�) ; with marginal distri-

butions Gi (�) ; and copula C (�) : The case where it is possible to simulate directly from C (�) is

nested in this scenario by allowing Gi to be the Unif (0; 1) cdf.7 We use only �pure�dependence

measures as moments since those are a¤ected not by changes in the marginal distributions of simu-

lated data (X). For example, moments like means and variances, are pure functions of the marginal

distributions (Gi) and thus contain no information on the copula. Dependence measures like rank

correlation, Kendall�s tau, and quantile dependence are pure functions of the copula and are unaf-

fected by the marginal distributions, see Nelsen (2006) for example. Spearman�s rank correlation

7 In that case there would be no need to consider the estimation of Gi using the EDF, and some of the steps

below would simplify. The EDF is still required for the standardized residuals and thus this case still requires the

consideration of rank statistics. We focus on the more general case that it is only possible to simulate from Fx as

that is the case we face when estimating factor copula models of the form proposed in Section 2.
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and quantile dependence for the pair
�
�it; �jt

�
are de�ned as:

�ij � 12E
�
Fi (�i)Fj

�
�j
��
� 3 = 12

Z Z
uvdCij (u; v)� 3 (8)

� ijq �

8<:
P(Fi(�i)�q;Fj(�j)�q)

q =
Cij(q;q)

q ; q 2 (0; 0:5]
P(Fi(�i)>q;Fj(�j)>q)

1�q =
1�2q+Cij(q;q)

1�q ; q 2 (0:5; 1)
(9)

where Cij is the copula of
�
�i; �j

�
: The sample counterparts based on the estimated standardized

residuals are de�ned as:

�̂ij � 12

T

TX
t=1

F̂i (�̂it) F̂j
�
�̂jt
�
� 3 (10)

�̂ ijq �

8<:
1
Tq

PT
t=1 1

n
F̂i (�̂it) � q; F̂j

�
�̂jt
�
� q
o
; q 2 (0; 0:5]

1
T (1�q)

PT
t=1 1

n
F̂i (�̂it) > q; F̂j

�
�̂jt
�
> q
o
; q 2 (0:5; 1)

(11)

where F̂i (y) � 1

T + 1

TX
t=1

1 f�̂it � yg (12)

We will denote the counterparts based on simulated data as ~�ij (�) and ~� ijq (�) :

Let ~mS (�) be a (m� 1) vector of dependence measures computed using S simulations from

Fx (�), fXsgSs=1 ; and let m̂T be the corresponding vector of dependence measures computed using

the the standardized residuals f�̂tgTt=1. These vectors can also contain linear combinations of de-

pendence measures, a feature that is useful when considering estimation of high-dimension models.8

De�ne the di¤erence between these as

gT;S (�) � m̂T � ~mS (�) (13)

Our SMM estimator is based on searching across � 2 � to make this di¤erence as small as possible.

The estimator is de�ned as:

�̂T;S � argmin
�2�

QT;S (�) (14)

where QT;S (�) � g0T;S (�) ŴTgT;S (�)

and ŴT is some positive de�nite weight matrix, which may depend on the data. As usual, for

identi�cation we require at least as many moment conditions as there are free parameters (i.e.,

8For example, in our empirical application with an equi-dependence copula model, we use the average of all

pair-wise rank correlation coe¢ cients, and the average of all pair-wise quantile dependence coe¢ cients with q 2

f0:05; 0:10; 0:90; 0:95g :
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m � p). In the subsections below we establish the consistency and asymptotic normality of this

estimator, provide a consistent estimator of its asymptotic covariance matrix, and obtain a test

based on over-identifying restrictions.

3.2 Consistency of the SMM estimator

The estimation problem here di¤ers in two important ways from standard GMM or M-estimation:

Firstly, the objective function, QT;S (�) is not continuous in � as we use simulations to obtain

~mS (�) : This problem would vanish if, for the copula model being considered, we knew the mapping

from � to the dependence measure(s) in closed form. The second di¤erence is that a law of large

numbers is not available to show the pointwise convergence of gT;S (�) ; as the functions m̂T and

~mS (�) both involve empirical distribution functions. We use recent developments in empirical

process theory to overcome this di¢ culty.

We now list some assumptions that are required for our results to hold.

Assumption 1

(i) The distributions F� and Fx are continuous.

(ii) Every bivariate marginal copula Cij of C has continuous partial derivatives with respect to ui

and uj.

If the data Yt are iid; e.g. if �t and �t are known constant in (7) or if �0 is known, then As-

sumption 1 is su¢ cient to prove Proposition 1 below, but if standardized residuals are used in the es-

timation of the copula then more assumptions are necessary in order to control the estimation error

coming from the models for the conditional means and conditional variances. We combine assump-

tions A1�A6 in Rémillard (2010) in the following assumption. Firstly, de�ne 
0t = �
�1
t

�
�̂
�
_�t

�
�̂
�

and 
1kt = �
�1
t

�
�̂
�
_�kt

�
�̂
�
where _�t (�) =

@�t(�)
@�0

; _�kt (�) =
@[�t(�)]k-th column

@�0
; k = 1; : : : ; N: De-

�ne dt as

dt = �t � �̂t �
 

0t +

NX
k=1

�kt
1kt

!�
�̂� �0

�
where �kt is k-th row of �t and both 
0t and 
1kt are Ft�1-measurable.
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Assumption 2

(i) 1
T

TP
t=1

0t

p! �0 and 1
T

TP
t=1

1kt

p! �1k where �0 and �1k are deterministic for k = 1; : : : ; N:

(ii) 1
T

TP
t=1
E (k
0tk) ; 1T

TP
t=1
E
�
k
0tk2

�
; 1T

TP
t=1
E (k
1ktk) ; and 1

T

TP
t=1
E
�
k
1ktk2

�
are bounded for

k = 1; : : : ; N:

(iii) There exists a sequence of positive terms rt > 0 so that
P
t�1 rt < 1 and such that the

sequence max1�t�T kdtk =rt is tight.

(iv) max1�t�T k
0tk =
p
T = op (1) and max1�t�T �kt k
1ktk =

p
T = op (1) for k = 1; : : : ; N:

(v)
�
�T ;

p
T
�
�̂� �0

��
weakly converges to a continuous Gaussian process in [0; 1]N�Rr, where

�T is the empirical copula process of uniform random variables:

�T =
1p
T

TP
t=1

�
NQ
k=1

1 (Ukt � uk)� C (u)
�

(vi) @F�
@�k

and �k
@F�
@�k

are bounded and continuous on �RN = [�1;+1]N for k = 1; : : : ; N:

With these two assumptions we can show that sample rank dependence and quantile dependence

converge in probability to their population counterparts, see Lemma 1 in Appendix A. When applied

to simulated data this convergence holds pointwise for any �: Thus gT;S (�) converges in probability

to the population moment functions de�ned as follows:

gT;S (�) � m̂T � ~mS (�)
p! g0 (�) �m (�0)�m (�) ; for 8� 2 � as T; S !1 (15)

We de�ne the population objective function as

Q0 (�) = g0 (�)
0W0g0 (�) (16)

where W0 is the probability limit of ŴT . The convergence of gT;S (�) and ŴT implies that

QT;S (�)
p! Q0 (�) for 8� 2 � as T; S !1

For consistency of our estimator we need, as usual, uniform convergence of QT;S (�) ; but as this

function is not continuous in � and a law of large numbers is not available, the standard approach

based on an uniform law of large numbers is not available. We instead use results on the stochastic

equicontinuity of gT;S (�) ; based on Andrews (1994) and Newey and McFadden (1994).
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Assumption 3

(i) g0 (�) 6= 0 for � 6= �0

(ii) � is compact.

(iii) Every bivariate marginal copula Cij of C is continuous in �:

(iv) 9 � > 0 and B̂S = Op (1) such that for all �1;�2 2 �;

kgT;S (�1)� gT;S (�2)k = k ~mS (�1)� ~mS (�2)k � B̂S k�1 � �2k� :

Assumption 3(iv) is called a global �in probability�Lipschitz condition in Newey (1991), and

is a su¢ cient condition for stochastic equicontinuity of gT;S (�) : This condition is di¢ cult to check

in our framework, as ~mS (�) depends only implicitly on �; through the simulated data on which

the sample moments are computed, and so we leave this as a high level assumption.

Proposition 1 Suppose that Assumptions 1, 2 and 3 hold. Then �̂T;S
p! �0 as T; S !1

All proofs are presented in Appendix A. A key di¤erence between this result and the correspond-

ing result for a standard SMM application is that we require S ! 1 as T ! 1 for consistency.

In standard SMM applications, see Gouriéroux and Monfort (1996a) for example, consistency is

often obtained with �nite S: The presence of EDFs inside our �moment�conditions compels us to

require S !1 for consistency.

3.3 Asymptotic Normality of the SMM estimator

As QT;S (�) is non-di¤erentiable the standard approach based on a Taylor expansion is not available,

however the asymptotic normality of our estimator can still be established with some further

assumptions:

Assumption 4

(i) �0 is an interior point of �

(ii) ŴT is Op (1) and converges in probability to W0; a positive de�nite matrix.

(iii) g0 (�) is di¤erentiable at �0 with derivative G0 such that G00W0G0 is nonsingular.

13



(iv) gT;S
�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
� inf�2� gT;S (�)0 ŴTgT;S (�) + op

�
T�1

�
The �rst two assumptions above are standard, and the fourth assumption is standard in

simulation-based estimation problems, see Newey and McFadden (1994) for example. The third

assumption requires the population objective function, g0; to be di¤erentiable even though its �nite-

sample counterpart is not, which is common in simulation-based estimation. The nonsingularity of

G00W0G0 is su¢ cient for local identi�cation of the parameters of this model at �0; see Hall (2005)

and Rothenberg (1971). With these assumptions in hand we obtain the following result.

Proposition 2 Suppose that Assumptions 1, 2, 3 and 4 hold. Then if T=S ! 0 as T; S !1;
p
T
�
�̂T;S � �0

�
d! N (0;
0) as T; S !1 (17)

where 
0 = (G00W0G0)
�1G00W0�0W0G0 (G

0
0W0G0)

�1 ; and �0 � avar [m̂T ] :

The asymptotic variance of SMM estimator �̂T;S has the same �sandwich�form as that of the

usual GMM estimator, and as usual it simpli�es to 
0 =
�
G00�

�1
0 G0

��1
if W0 is the e¢ cient weight

matrix, ��10 : Chen and Fan (2006b) and Rémillard (2010) show that estimation error from �̂ does

not enter the asymptotic distribution of the copula parameter estimator for maximum likelihood

or (analytical) moment-based estimators, and the above proposition shows that this also holds for

SMM-type estimators proposed here.

The proof of the above proposition uses recent results for empirical copula processes presented

in Fermanian, et al. (2004) and Rémillard (2010) to establish the asymptotic normality of the

sample dependence measures, m̂T ; and requires us to establish the stochastic equicontinuity of

the moment functions, vT;S (�) =
p
T [gT;S (�)� g0 (�)] : These are shown in Lemmas 5 and 6 in

Appendix A. Establishing the stochastic equicontinuity of vT;S (�) imposes the constraint that the

number of simulations grows faster than the sample size, i.e., T=S ! 0: This is in contrast with

standard SMM applications, see Gouriéroux and Monfort (1996a) for example, where asymptotic

normality is obtained with �nite S (at a cost of in�ated asymptotic variance), and e¢ ciency is

obtained if
p
T=S ! 0 as T; S !1.

3.4 Consistent estimation of the asymptotic variance

The asymptotic variance of our estimator has the same form as in standard GMM applications,

however the components �0 and G0 require more care in their estimation than in standard appli-

14



cations. We suggest using an iid bootstrap to estimate �0 :

1. Estimate parameters � for conditional mean and conditional variance using the given sample

fYtgTt=1, and obtain the standardized residuals f�̂tg
T
t=1 :

2. Using f�̂tgTt=1 ; compute the sample moments and denote as m̂T .

3. Sample with replacement from the standardized residuals f�̂tgTt=1 to obtain a bootstrap sam-

ple,
n
�̂
(b)
t

oT
t=1
. Repeat this step B times.

4. Using
n
�̂
(b)
t

oT
t=1
; b = 1; :::; B; compute the sample moments and denote as m̂(b)

T ; b = 1; :::; B.

5. Calculate the sample covariance matrix of m̂(b)
T across the bootstrap replications, and scale

it by the sample size:

�̂T;B =
T

B

BX
b=1

�
m̂
(b)
T � m̂T

��
m̂
(b)
T � m̂T

�0
(18)

For the estimation G0; we suggest a numerical derivative of gT;S (�) at �̂T;S , however the fact

that gT;S is non-di¤erentiable means that care is needed in choosing the step size for the numerical

derivative. In particular, as in Newey and McFadden (1994), Proposition 3 below shows that we

need to let the step size go to zero, as usual, but slower than 1=
p
T : Let ek denote the k-th unit

vector whose dimension is the same as that of �, and let "T denote the step size. A two-sided

numerical derivative estimator ĜT;S of G has k-th column

ĜT;S;k =
gT;S

�
�̂T;S+ek"T

�
� gT;S

�
�̂T;S�ek"T

�
2"T

; k = 1; 2; :::; p (19)

Combine these two estimators with ŴT to form the estimator:


̂T;S;B =
�
Ĝ0T;SŴT ĜT;S

��1
Ĝ0T;SŴT �̂T;BŴT ĜT;S

�
Ĝ0T;SŴT ĜT;S

��1
(20)

Proposition 3 Suppose that all assumptions of Proposition 2 are satis�ed, and that "T ! 0,

"T
p
T !1; B !1 as T !1. Then �̂T;B

p! �0; ĜT;S
p! G0 and 
̂T;S;B

p! 
0:
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3.5 A test of overidentifying restrictions

If the number of moments used in estimation is greater than the number copula parameters, then,

as in standard GMM and SMM applications, it is possible to conduct a simple test of the over-

identifying restrictions. When the e¢ cient weight matrix is used in estimation, the asymptotic

distribution of this test statistic is the usual chi-squared, however the method of proof is di¤erent

as we again need to deal with the lack of di¤erentiability of the objective function. We also consider

the distribution of this test statistic for general weight matrices.

Proposition 4 Suppose that all assumptions of Proposition 2 are satis�ed and that the number of

moments (m) is greater than the number of copula parameters (p) : Then

JT;S � TgT;S

�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
d! u0A00A0u

where u � N (0; I)

and A0 � W
1=2
0 �

1=2
0 R0, R0 � I � ��1=20 G0 (G

0
0W0G0)

�1G00W0�
1=2
0 : If ŴT = �̂�1T;B; then JT;S

d!

�2m�p as usual.

As in standard applications, the above test statistic simpli�es to TQT;S
�
�̂T;S

�
if the e¢ cient

weight matrix (�̂�1T;B) is used. When any other weight matrix is used, the JT;S statistic has a

sample-speci�c limiting distribution, and critical values in such cases can be obtained via a simple

simulation:

1. Compute R̂ using ĜT;S , ŴT , and �̂T;B:

2. Simulate u(k) s iid N (0; I), for k = 1; 2; :::;K, where K is large.

3. For each simulation, compute J (k)T = u(k)0R̂0�
1=20
T;BŴT�

1=2
T;BR̂u

(k)

4. The sample (1� �) quantile of
n
J
(k)
T

oK
k=1

is the critical value for this test statistic.

The need for simulations to obtain critical values from the limiting distribution is non-standard

but is not uncommon; this arises in many other testing problems, see Wolak (1989), White (2000),

Andrews (2001) for examples. Given that u(k) is a simple standard Normal, and that no optimiza-

tion is required in this simulation, and that the matrix R̂ need only be computed once, obtaining

critical values for this test is simple and fast.
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4 Simulation study

In this section we present a study of the �nite sample properties of the simulated method of moments

(SMM) estimator of the parameters of various factor copulas. In the one case where a likelihood for

the copula model is available in closed form we contrast the properties of the SMM estimator with

those of the maximum likelihood estimator. We initially consider three di¤erent factor copulas, all

of them of the form:

Xi = Z + "i; i = 1; 2; :::; N

Z s Skew t
�
0; �2z; �z; �z

�
(21)

"i s iid N (0; 1) , and "i??Z 8 i

[X1; :::; XN ]
0 s Fx= C (Gx; :::; Gx)

For the simulation study we set �2z = 1; implying that the common factor (Z) accounts for one-half

of the variance of each Xi: The �skewed t�distribution we use is that of Hansen (1994). In the

�rst case we set �z ! 1 and �z = 0, which implies that the resulting factor copula is simply the

Gaussian copula, with equicorrelation parameter � = 0:5: In this case we can estimate the model

by SMM and also by GMM and MLE, and we use this case to study the loss of e¢ ciency in moving

from MLE to GMM to SMM. In the second case we set �z = 0 and �z = 4; yielding a symmetric

factor copula that generates tail dependence. In the third case we set �z = �0:5 and �z = 4 yielding

a factor copula that generates tail dependence as well as �asymmetric dependence�, in that the

lower tails of the copula are more dependent than the upper tails. We estimate the inverse degrees

of freedom parameter, ��1z ; so that its parameter space is [0; 0:5) rather than (2;1]:

As an extension of this initial speci�cation, we also consider a model where we allow for devia-

tions from equidependence by letting each Xi have a di¤erent coe¢ cient on Z:

Xi = �iZ + "i (22)

and for identi�cation in this case we set �2z = 1: For N = 3 we set [�1; �2; �3] = [0:5; 1; 1:5] : For

N = 10 we set [�1; �2; :::; �10] = [0:25; 0:50; :::; 2:5]; which corresponds to pair-wise rank correlations

ranging from approximately 0.1 to 0.8. Motivated by our empirical application below, for the

N = 100 case we consider a �block equidependence�model, where we assume that the 100 variables

can be grouped ex ante into 10 groups, and that all variables within each group have the same �i:

We use the same set of values for �i as in the N = 10 case.
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We consider two di¤erent scenarios for the marginal distributions of the variables of interest.

In the �rst case we assume that the data are iid with standard Normal marginal distributions,

meaning that the only parameters that need to be estimated are those of the factor copula. This

simpli�ed case is contrasted with a second scenario where the marginal distributions of the variables

are assumed to follow an AR(1)-GARCH(1,1) process:

Yit = �0 + �1Yi;t�1 + �it�it, t = 1; 2; :::; T

�2it = ! + ��2i;t�1 + ��
2
i;t�1�

2
i;t�1 (23)

�t � [�1t; :::; �Nt] s iid F� = C (�;�; :::;�)

where � is the standard Normal distribution function andC is the factor copula implied by equation

(21). We set the parameters of the marginal distributions as [�0; �1; !; �; �] = [0:01; 0:05; 0:05; 0:85; 0:10] ;

which broadly matches the values of these parameters when estimated using daily equity return

data. In this scenario the parameters of the marginal distribution are estimated in a separate �rst

stage, following which the estimated standardized residuals are obtained:

�̂it =
Yit � �̂0 � �̂1Yi;t�1

�̂it
: (24)

These residuals are used in a second stage to estimate the factor copula parameters. In all cases we

consider a time series of length T = 1000, corresponding to approximately 4 years of daily return

data, and we use S = 25 � T simulations in the computation of the dependence measures to be

matched in the SMM optimization. We repeat each scenario 100 times. In all results below we use

the identity weight matrix for estimation; corresponding results based on the e¢ cient weight matrix

are available in an online appendix to this paper9. In Appendix B we describe the dependence

measures we use for the estimation of these models.

Table 1 reveals that for all three dimensions (N = 3; 10 and 100) and for all three copula

models the estimated parameters are centered on the true values, with the average estimated bias

being small relative to the standard deviation, and with the median of the simulated distribution

centered on the true values. The measures of estimator accuracy (the standard deviation and the

90-10 percentile di¤erence) reveal that adding more parameters to the model, ceteris paribus, leads

to greater estimation error; the �2z parameter, for example, is more accurately estimated when it is

9The results based on the e¢ cient weight matrix are generally comparable to those based on the identity weight

matrix, however the coverage rates are worse than those based on the identity weight matrix.
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the only unknown parameter compared with when it is one of three unknown parameters. Looking

across the dimension size, we see that the copula model parameters are almost always more precisely

estimated as the dimension grows. This is intuitive, given the �equidependence�nature of all three

models: increasing the dimension of the model does not increase the number of parameters to be

estimated but it does increase the amount of information available on the unknown parameters.

Comparing the SMM estimator with the ML estimator, which is only feasible for the Normal

copula (as the other two factor copulas do not have a copula likelihood in closed form) we see

that the SMM estimator performs quite well. As predicted by theory, the ML estimator is always

more e¢ cient than the SMM estimator, however the loss in e¢ ciency is moderate, ranging from

around 25% for N = 3 to around 10% for N = 100: This provides some con�dence that our move

to SMM, prompted by the lack of a closed-form likelihood, does not come at a cost of a large loss

in e¢ ciency. Comparing the SMM estimator to the GMM estimator provides us with a measure

of the loss in accuracy of from having to estimate the population moment function via simulation.

We �nd that this loss is at most 3% and in some cases (N = 100) is slightly negative. Thus little

is lost from using SMM rather than GMM.

The simulation results in Table 2, where the copula parameters are estimated after the esti-

mation of AR(1)-GARCH(1,1) models for the marginal distributions in a separate �rst stage, are

very similar to the case when no marginal distribution parameters are required to be estimated,

consistent with Proposition 2. Thus this somewhat surprising asymptotic result is also relevant in

�nite samples.

Table 3 shows results for the block equidependence model for the N = 100 case with AR-

GARCH marginal distributions,10 which can be compared to the results in the lower panel of Table

2. This table shows that the parameters of these models are well estimated using the proposed

dependence measures described in Appendix B. The accuracy of the �shape�parameters, ��1z and

�z; is slightly lower in the more general model, consistent with the estimation error from having

to estimate ten factor loadings (�i) being greater than from having to estimate just a single other

parameter
�
�2z
�
; however this loss is not great.

[ INSERT TABLES 1, 2 AND 3 ABOUT HERE ]

In Tables 4 and 5 we present the �nite-sample coverage probabilities of 95% con�dence inter-

10The results for iid data and N = 100, and the results for N = 3 and 10, are available in the web appendix.
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vals based on the asymptotic Normality result from Proposition 2 and the asymptotic covariance

matrix estimator presented in Proposition 3. As shown in that proposition, a critical input to the

asymptotic covariance matrix estimator is the step size used in computing the numerical derivative

matrix ĜT;S : This step size, "T ; must go to zero, but at a slower rate than
p
T : Ignoring constants,

our simulation sample size of T = 1000 suggests setting "T > 0:001; which is much larger than

standard step sizes used in computing numerical derivatives.11 We study the impact of the choice

of step size by considering a range of values from 0.0001 to 0.1. Table 4 shows that when the step

size is set to 0.01, 0.03 or 0.1 the �nite-sample coverage rates are close to their nominal levels.

However if the step size is chosen too small (0.003 or smaller) then the coverage rates are much

lower than nominal levels. For example, setting "T = 0:0001 (which is still 16 times larger than

the default setting in Matlab) we �nd coverage rates as low as 38% for a nominal 95% con�dence

interval. Thus this table shows that the asymptotic theory provides a reliable means for obtaining

con�dence intervals, so long as care is taken not to set the step size too small.

[ INSERT TABLES 4 AND 5 ABOUT HERE ]

Finally in Table 6 we present the results of a study of the rejection rates for the test of over-

identifying restrictions presented in Proposition 4. Given that we consider W = I in this table,

the test statistic has a non-standard distribution, and we use K = 10; 000 simulations to obtain

critical values. In this case, the limiting distribution also depends on Ĝ; and based on the results in

Tables 4 and 5 we compute Ĝ using a step size of "T = 0:1: Table 6 reveals that the rejection rates

are close to their nominal levels, for both the equidependence models and the �di¤erent loading�

models (which is a block equidependence model for the N = 100 case).

[ INSERT TABLE 6 ABOUT HERE ]

5 High-dimension copula models for equity returns

In this section we apply our proposed factor copulas to modeling the dependence between a large

collection of U.S. equity returns. We study all 100 stocks that were constituents of the S&P 100

index as at December 2010. The sample period is April 2008 to December 2010, a total of T = 696

11For example, the default in many functions Matlab is a step size of "1=3 � 6 � 10�6 � 1=(165; 000), where

" = 2:22� 10�16 is machine epsilon. This choice is optimal in certain applications, see Judd (1998) for example.
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trade days. The starting point for our sample period was determined by the date of the latest

addition to the S&P 100 index (Philip Morris Inc.), which has had no additions or deletions since

April 2008. The stocks in our study are listed in Table 7, along with their 3-digit SIC codes, which

we will use in part of our analysis below.

Table 8 presents some summary statistics of the data used in this analysis. The top panel

presents sample moments of the daily returns for each stock, showing that the average daily return

across all stocks for this sample period is 0.04%, corresponding to 10.08% annualized. The average

volatility is 2.87% daily, which corresponds to 45.56% annually. The average individual skewness

coe¢ cient is positive, although the 25th percentile of the cross-sectional distribution of this statistic

is negative, indicating cross-sectional heterogeneity in the distribution of daily returns. This is also

true in terms of kurtosis, which ranges from 7.60 to 11.45 from the 25th to the 75th percentile

of the cross-sectional distribution. In the second panel of Table 8 we present information on

the parameters of the AR(1)-EGARCH(1,1) models that are used to �lter each of the individual

return series12. Estimates of the parameters of these models are consistent with those reported in

numerous other studies, with a small negative AR(1) coe¢ cient found for most but not all stocks,

and with EGARCH parameters strongly indicative of persistence in volatility. The asymmetry

parameter, �; in this model is negative for all but three of the 100 stocks in our sample, supporting

the wide-spread �nding of a �leverage e¤ect�in the conditional volatility of equity returns.

In the lower panel of Table 8 we present summary statistics for four measures of dependence

between pairs of AR-EGARCH �ltered stock returns: linear correlation, rank correlation, average

upper and lower 1% tail dependence (equal to (�0:99 + �0:01) =2), and the di¤erence in upper and

lower 10% tail dependence (equal to �0:90 � �0:10). The two correlation statistics measure the sign

and strength of dependence across the entire support, the third statistic measures the strength

of dependence in the tails, and the fourth statistic is a measure of the asymmetry of dependence

in the tails. The two correlation measures are similar, and are 0.42 and 0.44 on average. Across

all possible pairs of assets (there are 4950 distinct pairs from the 100 stocks in our sample) the

rank correlation varies from 0.30 to 0.50 from the 25th and 75th percentiles of the cross-sectional

distribution, indicating the presence of mild heterogeneity in the correlation coe¢ cients. The 1%

12We considered GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), and GJR-GARCH (Glosten, et al., 1993)

models for the conditional variance of these returns, and for almost all stocks the EGARCH model was preferred

according to the BIC.
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tail dependence measure is 0.07 on average, and varies from 0.00 to 0.07 across the inter-quartile

range. The di¤erence in the 10% tail dependence measures is negative on average, and indeed

is negative for over 75% of the pairs of stocks, indicating asymmetric dependence between these

stocks.

[ INSERT TABLES 7 AND 8 ABOUT HERE]

We next present the �rst empirical results of this paper: the estimated parameters of seven

di¤erent models for the copula of the three sets of stock returns. The models considered are the

Normal copula, the Student�s t copula, both with equicorrelation imposed for comparability, the

Clayton copula, and four factor copulas, described by the distributions assumed for the common

factor and the idiosyncractic shock: t-Normal, t-t, Skew t-Normal, Skew t-t. All models are esti-

mated using the SMM-type method proposed in Section 3 using �ve dependence measures: rank

correlation, and the 0:05; 0:10; 0:90; 0:95 quantile dependence measures, averaged across pairs of

assets, see Appendix B for details. The identity weight matrix is used in all cases. The value of the

SMM objective function at the estimated parameters is presented for each model, along with the

p-value from a test of the over-identifying restrictions based on Proposition 4. We use Proposition

3 to compute the standard errors, with B = 1000 bootstraps used to estimate �T;S ; and "T = 0:1

used as the step size to compute Ĝ:

Table 9 reveals that the variance of the common factor, �2z; is estimated by all models to be

around 0:9, implying an average correlation coe¢ cient of around 0.47. The estimated degrees

of freedom parameter is around 15, and the standard error on this estimate indicates that this

parameter is signi�cantly greater than zero at the 10% level for all models, and at the 5% level for

some models, indicating that allowing the common factor to have fat tails signi�cantly improves the

�t of the model13. Other papers have considered equicorrelation models for the dependence between

large collections of stocks, see Engle and Kelly (2009) for example, but empirically showing the

importance of allowing the implied common factor to have fat tails, and thus the assets to exhibit

non-zero tail dependence, is novel. The most general models we consider, the Skew t-Normal and
13Note that the case of zero tail dependence corresponds to ��1z = 0; which is on the boundary of the parameter

space for this parameter, implying that a standard t test is strictly not applicable. In such cases the squared t statistic

no longer has an asymptotic �21 distribution under the null, rather it is distributed as an equal-weighted mixture of

a �21 and �
2
0; see Gourieroux and Monfort (1996b, Ch 21). The 90% and 95% critical values for this distribution are

1.64 and 2.71 (compared with 2.71 and 3.84 for the �21 distribution), which correspond to t-statistics of 1.28 and 1.65.
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Skew t-t factor copulas, reveal another important feature about the implied common factor: it is

asymmetrically distributed, with large crashes being more likely than large booms. The asymmetry

parameter, �z; is estimated at -0.19, with a standard error of 0.06, which is statistically signi�cantly

di¤erent from zero at all usual levels, indicating strong evidence that these assets are more strongly

correlated during market downturns than during market upturns.

[ INSERT TABLE 9 ABOUT HERE ]

Figure 4 presents the quantile dependence function from the estimated Normal copula and the

estimated Skew t-t factor copula, along with the quantile dependence averaged across all pairs of

stocks. In the lower tail we see that both copula models slightly over-estimate the probability of

extreme joint crashes, while the Skew t-t factor copula provides a reasonable �t for less extreme

crashes. In the upper tail we see that the Skew t-t factor copula provides a very good �t, while the

Normal copula over-estimates the dependence in this tail.

Figure 5 exploits the high dimensional nature of our analysis, and plots the expected proportion

of �crashes� in the remaining (100� k) stocks, conditional on observing a crash in k stocks. We

show this for a �crash�de�ned as a once-in-a-month (1/22, around 4.6%) event and as a once-in-

a-quarter (1/66, around 1.5%) event. For once-in-a-month crashes, the observed proportions track

the Skew t-t factor copula well for k up to around 25 crashes, and then tracks the Normal copula

for k up to around 60. When we condition on many, stocks having crashed, however, the data

indicates stronger tail dependence than either of these models. It should be noted, however, that

the empirical plot is estimated with increasing error as we condition on more and more crashes (i.e.,

when we move further into the joint tail). For once-in-a-quarter crashes, displayed in the lower

panel of Figure 5, the empirical plot tracks that for the Normal copula well for k up to around 30,

but for k = 35 the empirical plot jumps and follows the Skew t-t factor copula. Thus it appears

that the Normal copula may be adequate for modeling moderate tail events, but a copula with

greater tail dependence (such as the Skew t-t factor copula) is needed for more extreme tail events.

[ INSERT FIGURES 4 AND 5 ABOUT HERE ]

The last two columns of Table 9 report the value of the objective function (QSMM ) and the

p-value from a test of the over-identifying restrictions. The QSMM values reveal that the Skew

t-Normal and Skew t-t factor copula models out-perform all the other models, and reinforce the
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above conclusion that allowing for a skewed common factor is important for this collection of assets.

The p-values, however, are less than 0.05 for all models, indicating that none of them pass this

test of goodness-of-�t. One possible source of these rejections is the assumption of equidependence,

which was shown in the summary statistics in Table 8 to be questionable for this large set of stock

returns.

In response to this, we next consider a model that allows for heterogeneous dependence between

pairs of stocks using the �block equidependence�model discussed above. We use the �rst digit of

Standard Industrial Classi�cation (SIC) for each stock to group them into seven groups, see Table

10. All stocks in the same SIC group are assumed to have the same factor loading, but stocks

in di¤erent groups may have di¤erent factor loadings. This greatly increases the �exibility of the

model, but without generating too many additional parameters to estimate.

The results of this model are presented in Table 11. Similar to the equidependence models, the

estimated degrees of freedom parameter, �z of factor copulas is estimated around 15 (ranging from

8 to around 20) and is signi�cant at the 10% level in all cases. The asymmetry parameter, �z; is

estimated at -0.17 with a standard error of 0.06, again strongly suggesting that the common factor

has a left-skewed distribution. The parameters of seven di¤erent factor loadings range from 0.87 to

1.03, capturing the heterogeneity in the pair-wise dependence between these stocks. The p-value

from a test that all of these loadings are equal (and thus that an equidependence assumption is

adequate) is presented in the third last row, and is strongly rejected for all models. Thus allowing

for block equidependence is a useful extension of this model. The SMM objective function again

suggests that the Skew t-t factor copula model provides the best �t, however the test of the over-

identifying restrictions yields a p-value of just over 0.05, indicating that this model is borderline

rejected by the data. This perhaps suggests that an even greater degree of heterogeneity is needed

to describe the dependence structure of these assets.

[ INSERT TABLES 10 AND 11 ABOUT HERE ]

6 Conclusion

This paper presents new models for the dependence structure, or copula, of economic variables

based on a simple factor structure for the copula. These models are particularly attractive for high

dimensional applications, involving �fty or more variables, as they allow the researcher to increase
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or decrease the �exibility of the model according the amount of data available and the dimension of

the problem, and, importantly, to do so in a manner that is easily interpreted and explained. For

example, allowing for a fat-tailed common factor the model captures the possibility of correlated

crashes, and allowing the common factor to be asymmetrically distributed the model captures the

possibility that the dependence between the variables is stronger during downturns than during

upturns.

The class of factor copulas presented in this paper does not generally have a closed-form likeli-

hood, and we present simulation based methods for the estimation of such models. These methods

are simple to implement, and we derive the asymptotic properties of the resulting estimators using

recent work in empirical process theory, see Fermanian, et al. (2004) and Rémillard (2010), com-

bined with existing results on simulation-based estimation, see Newey and McFadden (1994) for

example. Using a set of realistic simulation designs we show that the proposed estimator performs

well in �nite samples. We apply our various factor copulas to a set of 100 daily stock returns, over

the period 2008�2010, and �nd signi�cant evidence in favor of a fat-tailed common factor for these

stocks, indicative of positive tail dependence, and very strong evidence of a left-skewed common

factor, which is indicative of these stocks having stronger dependence during crashes than during

booms.

Appendix A: Proofs

In order to prove Proposition 1, we use the following four lemmas. First, we recall the de�nition

of stochastic equicontinuity.

De�nition 1 (Andrews (1994)) The sequence of functions fhT (�) : T � 1g is stochastically equicon-

tinuous if 8 " > 0 and � > 0;9 � > 0 such that

limT!1P

"
sup

k�1��2k<�
khT (�1)� hT (�2)k > �

#
< "

Lemma 1 Under Assumptions 1 and 2,

(i) 1
T

PT
t=1 F̂i (�̂it) F̂j

�
�̂jt
� p!

R R
uvdC�i;�j (u; v;�0) as T !1

(ii) 1
T

PT
t=1 1

n
F̂i (�̂it) � q; F̂j

�
�̂jt
�
� q
o

p! C�i;�j (q; q;�0) as T !1
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(iii) 1
S

PS
s=1 Ĝi (xis (�)) Ĝj (xjs (�))

p!
R R

uvdC�i;�j (u; v;�) for 8 �2 � as S !1

(iv) 1
S

PS
s=1 1

n
Ĝi (xis (�)) � q; Ĝj (xjs (�)) � q

o
p! C�i;�j (q; q;�) for 8 �2 � as S !1

Proof of Lemma 1. Under Assumption 1, parts (iii) and (iv) of Lemma 1 can be proven

by Theorem 3 and Theorem 6 of Fermanian, et al. (2004). Under Assumption 2, Corollary 1 of

Rémillard (2010) proves that the empirical copula process constructed by the standardized residuals

�̂t weakly converges to the limit of that constructed by the innovations �t, which combined with

Theorem 3 and Theorem 6 of Fermanian, et al. (2004) yields parts (i) and (ii) above.

Lemma 2 (Lemma 2.8 of Newey and McFadden (1994)) Suppose � is compact and g0 (�) is

continuous. Then sup�2� kgT;S (�)� g0 (�)k
p! 0 as T; S !1 if and only if gT;S (�)

p! g0 (�) for

any � 2 � as T; S !1 and gT;S (�) is stochastically equicontinuous.

Lemma 2 states that su¢ cient and necessary conditions of uniform convergence is pointwise

convergence and stochastic equicontinuity. The following lemma shows that uniform converge of

the moment functions gT;S (�) implies uniform convergence of the objective function QT;S (�) :

Lemma 3 If sup�2� kgT;S (�)� g0 (�)k
p! 0 as T; S ! 1; then sup�2� jQT;S (�)�Q0 (�)j

p! 0

as T; S !1:

Proof of Lemma 3. By the triangle inequality and Cauchy-Schwarz inequality

jQT;S (�)�Q0 (�)j �
���[gT;S (�)� g0 (�)]0 ŴT [gT;S (�)� g0 (�)]

���+ ���g0 (�)0 �ŴT + Ŵ
0
T

�
[gT;S (�)� g0 (�)]

���
+
���g0 (�)0 �ŴT �W

�
g0 (�)

���
� kgT;S (�)� g0 (�)k2




ŴT




+ 2 kg0 (�)k kgT;S (�)� g0 (�)k


ŴT





+ kg0 (�)k2




ŴT �W





Then note that g0 (�) is bounded, ŴT is Op (1) and converges to W by assumption 4(ii), and

sup�2� kgT;S (�)� g0 (�)k = op (1) is given. So

sup
�2�

jQT;S (�)�Q0 (�)j �
�
sup
�2�

kgT;S (�)� g0 (�)k
�2
Op (1)

+2O (1) sup
�2�

kgT;S (�)� g0 (�)kOp (1) +O (1) op (1)

= op (1)Op (1) + 2O (1) op (1)Op (1) +O (1) op (1)

= op (1)
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Lemma 4 (Theorem 2.1 of Newey and McFadden (1994)) Suppose that (i) Q0 (�) is uniquely

minimized at �0; (ii) � is compact; (iii) Q0 (�) is continuous (iv) sup�2�
���Q̂T (�)�Q0 (�)��� p! 0.

Then �̂
p! �0

Proof of Proposition 1. We prove this proposition by checking the conditions of Lemma 4.

(i) Q0 (�) is uniquely minimized at �0 by Assumption 3(i) and positive de�nite W:

(ii) � is compact by Assumption 3(ii).

(iii) Q0 (�) consists of linear combinations of rank correlations and quantile dependence mea-

sures that are functions of pair-wise copula functions. Therefore, Q0 (�) is continuous by Assump-

tion 3(iii).

(iv) Pointwise convergence of gT;S (�) to g0 (�) is shown by Lemma 1. Assumption 3(iv) is a

su¢ cient condition for the stochastic equicontinuity of gT;S by Lemma 2.9 of Newey and McFadden

(1994). Thus gT;S uniformly converges in probability to g0 by Lemma 2. This implies that QT;S

uniformly converges in probability to Q0 by Lemma 3.

The proof of Proposition 2 uses the following three lemmas.

Lemma 5 Let the dependence measures of interest include rank correlation and quantile depen-

dence measures, and possibly linear combinations thereof. Then under Assumptions 1 and 2,

p
T (m̂T �m (�0))

d! N (0;�0) (25)

Proof of Lemma 5. Follows from Theorem 3 and Theorem 6 of Fermanian, et al. (2004)

and Corollary 1, Proposition 2 and Proposition 4 of Rémillard (2010).

We use Theorem 7.2 of Newey & McFadden (1994) to establish the asymptotic normality of our

estimator, and this relies on showing the stochastic equicontinuity of vT;S (�) de�ned below.

Lemma 6 Suppose that Assumptions 1, 2, and 3 hold, and further assume that T=S ! 0 as

T; S !1. Then vT;S (�) =
p
T [gT;S (�)� g0 (�)] is stochastically equicontinuous.
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Proof of Lemma 6. What we need to show is 9 � such that as T; S !1

sup
k�1��2k<�

jvT;S (�1)� vT;S (�2)j = op (1) for 8�1;�2 2 �

Without loss of generality, we assume that vT;S (�) depends on just one quantile dependence.

First note that

vT;S (�1)� vT;S (�2) �
p
T (gT;S (�1)� g0 (�1)� gT;S (�2) + g0 (�2))

�
p
T (m̂T � ~mS (�1)� (m (�0)�m (�1))� (m̂T � ~mS (�2)) + (m (�0)�m (�2)))

=
p
T (m (�1)� ~mS (�1)� (m (�2)� ~mS (�2)))

so

sup
k�1��2k<�

jvT;S (�1)� vT;S (�2)j

= sup
k�1��2k<�

p
T

������ P (F1 (�1) < q; F2 (�2) < q;�1)� 1
S

PS
s=1 1

n
Ĝ1 (x1s (�1)) < q; Ĝ2 (x2s (�1)) < q

o
�P (F1 (�1) < q; F2 (�2) < q;�2) + 1

S

PS
s=1 1

n
Ĝ1 (x1s (�2)) < q; Ĝ2 (x2s (�2)) < q

o
������

� sup
k�1��2k<�

(
p
T

�����P (F1 (�1) < q; F2 (�2) < q;�1)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�1)) < q; Ĝ2 (x2s (�1)) < q

o�����
+
p
T

�����P (F1 (�1) < q; F2 (�2) < q;�2)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�2)) < q; Ĝ2 (x2s (�2)) < q

o�����
)

� sup
�12�

p
T

�����P (F1 (�1) < q; F2 (�2) < q;�1)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�1)) < q; Ĝ2 (x2s (�1)) < q

o�����
+ sup
�22�

p
T

�����P (F1 (�1) < q; F2 (�2) < q;�2)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�2)) < q; Ĝ2 (x2s (�2)) < q

o�����
In the proof of Proposition 1, we showed the uniform convergence of gT;S (�) to g0 (�), and so

sup
�2�

�����P (F1 (�1) < q; F2 (�2) < q;�)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�)) < q; Ĝ2 (x2s (�)) < q

o����� p! 0

and it is
p
S-consistent by Lemma 5. Since T=S ! 0, we have

sup
�2�

p
T

�����P (F1 (�1) < q; F2 (�2) < q;�)� 1

S

SX
s=1

1
n
Ĝ1 (x1s (�)) < q; Ĝ2 (x2s (�)) < q

o����� = op (1)
Therefore,

sup
k�1��2k<�

jvT;S (�1)� vT;S (�2)j = op (1) as T; S !1
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Lemma 7 (Theorem 7.2 of Newey & McFadden (1994)) Suppose that gT;S
�
�̂
�0
ŴgT;S

�
�̂
�
�

inf�2� gT;S (�)
0 ŴgT;S (�) + op

�
T�1

�
; �̂

p! �0 and Ŵ
p! W0;W0 is positive semi-de�nite, where

there is g0 (�) such that (i) g0 (�0) = 0;(ii) g0 (�) is di¤erentiable at �0 with derivative G0 such that

G00W0G0 is nonsingular,(iii) �0 is an interior point of �;(iv)
p
TgT;S (�0)

d! N (0;�0) ;(v) 9� such

that supk���0k��
p
T kgT;S (�)� gT;S (�0)� g0 (�)k =

h
1 +

p
T k� � �0k

i
p! 0:Then

p
T
�
�̂ � �0

�
d!

N
�
0; (G00W0G0)

�1G00W0�0W0G0 (G
0
0W0G0)

�1
�
:

Proof of Proposition 2. We prove this proposition by checking conditions of Lemma 7.

(i) g0 (�0) = 0 by construction of g0 (�) =m (�0)�m (�)

(ii) g0 (�) is di¤erentiable at �0 with derivative G0 such that G00W0G0 is nonsingular by As-

sumption 4(iii).

(iii) �0 is an interior point of � by Assumption 4(i).

(iv) For simplicity, we use only one sample quantile dependence for this proof.

p
TgT;S (�0) =

1p
T

TX
i=1

241nF̂1 (�̂1i) < q; F̂2 (�̂2i) < qo� 1

S

SX
j=1

1
n
Ĝ1 (~x1j (�0)) < q; Ĝ2 (~x2j (�0)) < q

o35
=

1p
T

TX
i=1

24 1nF̂1 (�̂1i) < q; F̂2 (�̂2i) < qo� P (F1 (X1) < q; F2 (X2) < q;�0)+
P (F1 (X1) < q; F2 (X2) < q;�0)� 1

S

PS
j=1 1

n
Ĝ1 (~x1j (�0)) < q; Ĝ2 (~x2j (�0)) < q

o
35

=
1p
T

TX
i=1

h
1
n
F̂1 (�̂1i) < q; F̂2 (�̂2i) < q

o
� P (F1 (X1) < q; F2 (X2) < q;�0)

i
�
p
T
1

S

SX
j=1

h
1
n
Ĝ1 (~x1j (�0)) < q; Ĝ2 (~x2j (�0)) < q

o
� P (F1 (X1) < q; F2 (X2) < q;�0)

i

=
1p
T

TX
i=1

h
1
n
F̂1 (�̂1i) < q; F̂2 (�̂2i) < q

o
� P (F1 (X1) < q; F2 (X2) < q;�0)

i
| {z }

d!N(0;�1) by Lemma 5

�
p
Tp
S|{z}

=o(1)

1p
S

SX
j=1

h
1
n
Ĝ1 (~x1j (�0)) < q; Ĝ2 (~x2j (�0)) < q

o
� P (F1 (X1) < q; F2 (X2) < q;�0)

i
| {z }

=Op(1) by Lemma 5

The similar proofs for other quantile dependence measures, rank correlations and linear combina-

tions of these measures give the desired results. Thus,

p
TgT;S (�0)

d! N (0;�0)
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(v) We already established the stochastic equicontinuity of vT;S (�) =
p
T
�
gT;S (�)� g0 (�)

�
by Lemma 6; i.e. for 8" > 0, � > 0;9� such that

limT!1P

"
sup

k���0k<�
kvT;S (�)� vT;S (�0)k > �

#

= limT!1P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 > �

#
< "

and

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pT k� � �0ki � pT 

gT;S (�)� gT;S (�0)� g0 (�)



limT!1P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 = h1 +pT k� � �0ki > �

#

� limT!1P

"
sup

k���0k<�

p
T


gT;S (�)� gT;S (�0)� g0 (�)

 > �

#
< "

Proof of Proposition 3. First, we prove the consistency of the numerical derivatives Ĝ T;S :

This part of the proof is similar to that of Theorem 7.4 in Newey and McFadden (1994). We will

consider one-sided derivatives �rst, with the same arguments applying to two-sided derivatives. We

know that



�̂T;S � �0


 = Op �T�1=2� by the conclusion of Proposition 2. Also, by assumption we

have "T ! 0 and "T
p
T !1, so


�̂T;S+ek"T � �0


 � 


�̂T;S � �0


+ kek"T k = Op �T�1=2�+O ("T ) = Op ("T )

(Recall that ek is the kth unit vector.) In the proof of Proposition 2, it is shown that 9� such that

sup
k���0k��

p
T kgT;S (�)� gT;S (�0)� g0 (�)k =

h
1 +

p
T k� � �0k

i
= op (1)

Substituting �̂T;S+ek"T for �; then for T; S large, it follows that

p
T



gT;S ��̂T;S+ek"T�� gT;S (�0)� g0 ��̂T;S+ek"T�


 = h1 +pT 


�̂T;S+ek"T � �0


i � op (1)

so



gT;S ��̂T;S+ek"T�� gT;S (�0)� g0 ��̂T;S+ek"T�


 �

26641 +pT


�̂T;S+ek"T � �0


| {z }
=Op("T )

3775 op� 1p
T

�

=
p
TOp ("T ) op

�
1p
T

�
= Op ("T ) op (1)

= op ("T ) (26)
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On the other hand, since g0 (�) is di¤erentiable at �0 with derivative G0 by Assumption 4(iii), a

Taylor expansion of g0
�
�̂T;S+ek"T

�
around �0 is

g0

�
�̂T;S+ek"T

�
= g0 (�0) +G0 �

�
�̂T;S+ek"T � �0

�
+ o

�


�̂T;S+ek"T � �0


�
with g0 (�0) = 0 by Assumption 3(i). Then divide by "T ;

g0

�
�̂T;S+ek"T

�
="T = G0 �

�
�̂T;S+ek"T � �0

�
="T + o

�
"�1T




�̂T;S+ek"T � �0


�
so g0

�
�̂T;S+ek"T

�
="T �G0ek = G0 �

�
�̂T;S � �0

�
="T + o

�
"�1T




�̂T;S+ek"T � �0


�
The triangle inequality implies that


g0 ��̂T;S+ek"T� ="T �G0ek


 �




G0 � ��̂T;S � �0� ="T


+ o�"�1T 


�̂T;S+ek"T � �0


�
=

1p
T"T




G0 � pT ��̂T;S � �0�


+ "�1T 


�̂T;S+ek"T � �0


 o (1)
= o (1)Op (1) + "

�1
T Op ("T ) o (1) (27)

= op (1)

Combining the inequalities in equations (26) and (27) gives0@gT;S
�
�̂T;S+ek"T

�
� gT;S (�0)

"T
�G0ek

1A =

0@gT;S
�
�̂T;S+ek"T

�
� gT;S (�0)� g0

�
�̂T;S+ek"T

�
"T

1A
+
�
g0

�
�̂T;S+ek"T

�
="T �G0ek

�







gT;S

�
�̂T;S+ek"T

�
� gT;S (�0)

"T
�G0ek







 �








gT;S

�
�̂T;S+ek"T

�
� gT;S (�0)� g0

�
�̂T;S+ek"T

�
"T








+



g0 ��̂T;S+ek"T� ="T �G0ek




� op (1)

Then,

gT;S

�
�̂T;S+ek"T

�
� gT;S (�0)

"T

p! G0ek

and the same arguments can be applied to the two-sided derivative:

gT;S

�
�̂T;S+ek"T

�
� gT;S

�
�̂T;S�ek"T

�
2"T

p! G0ek

This holds for each column k = 1; 2:::; p: Thus ĜT;S
p! G0:
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Next, we show the consistency of �̂T;B: If �t and �t are known constant, or if �0 is known,

then the result follows from Theorems 5 and 6 of Fermanian, et al. (2004). When �0 is estimated,

the result is obtained by combining the results in Fermanian, et al. with those of Rémillard

(2010): For simplicity, assume that only one dependence measure is used. Let �̂ ij and �̂
(b)
ij be the

sample quantile dependence constructed from the standardized residuals
n
�̂it; �̂

j
t

oT
t=1

and from the

bootstrap counterpart
n
�̂
(b)i
t ; �̂

(b)j
t

oT
t=1
: Also, de�ne the corresponding estimates, �� ij and ��

(b)
ij ; using

the true innovations
n
�it; �

j
t

oT
t=1

and the bootstrapped true innovations
n
�
(b)i
t ; �

(b)j
t

oT
t=1

(where the

same bootstrap time indices are used for both
n
�̂
(b)i
t ; �̂

(b)j
t

oT
t=1

and
n
�
(b)i
t ; �

(b)j
t

oT
t=1
). De�ne true �

as �0: Theorem 5 of Fermanian et al. (2004) shows that

p
T (�� ij � �0) =

p
T
�
��
(b)
ij � �� ij

�
+ op (1)

Corollary 1 and Proposition 4 of Rémillard (2010) shows, under Assumption 2, that

p
T (�̂ ij � �� ij) = op (1)

and
p
T
�
�̂
(b)
ij � ��

(b)
ij

�
= op (1)

Combining those three equations, we obtain

p
T
�
�̂ ij � �0

�
=
p
T
�
�̂
(b)
ij � �̂

ij
�
+ op (1) , as T;B !1

and so equation (18) is a consistent estimator of �0:

Proof of Proposition 4. A Taylor expansion of g0
�
�̂T;S

�
around �0 yields

p
Tg0

�
�̂T;S

�
=
p
Tg0 (�0) +G0 �

p
T
�
�̂T;S��0

�
+ o

�p
T



�̂T;S��0


�

and since g0 (�0) = 0 and
p
T



�̂T;S��0


 = Op (1)

p
Tg0

�
�̂T;S

�
= G0 �

p
T
�
�̂T;S��0

�
+ op (1) (28)

Then consider the following expansion of gT;S
�
�̂T;S

�
around �0

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
(29)

where the remaining term is captured by RT;S
�
�̂T;S

�
: Combining equations (28) and (29) we

obtain

p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
=
�
ĜT;S �G0

�
�
p
T
�
�̂T;S��0

�
+RT;S

�
�̂T;S

�
+ op (1)
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Lemma 6 shows the stochastic equicontinuity of vT;S (�) ; which implies (see proof of Proposition

2) that
p
T
h
gT;S

�
�̂T;S

�
� gT;S (�0)� g0

�
�̂T;S

�i
= op (1)

By Proposition 3, ĜT;S � G0 = op (1) ; which implies RT;S
�
�̂T;S

�
= op (1) : Thus, we obtain the

expansion of gT;S
�
�̂T;S

�
around �0 :

p
TgT;S

�
�̂T;S

�
=
p
TgT;S (�0) + ĜT;S �

p
T
�
�̂T;S��0

�
+ op (1) (30)

The remainder of the proof is the same as in standard GMM applications: From the proof of

Proposition 2, we have
p
TgT;S (�0)

d! N (0;�0) and rewrite this as ���1=20

p
TgT;S (�0) � uT;S

d!

u �N (0; I) ; and from Proposition 2, we have
p
T
�
�̂T;S��0

�
= (G00W0G0)

�1G00W0�
1=2
0 uT;S +

op (1) : By these two equation and Proposition 3, equation (30) becomes

p
TgT;S

�
�̂T;S

�
= ��̂1=2T;BuT;S + ĜT;S

�
Ĝ0T;SŴT Ĝ

��1
Ĝ0T;SŴT�

1=2
T;BuT;S + op (1)

= ��̂1=2T;BR̂uT;S + op (1)

where R̂ �
�
I � �̂�1=2T;B ĜT;S

�
Ĝ0T;SŴT Ĝ

��1
Ĝ0T;SŴT�

1=2
T;B

�
: The test statistic is

TgT;S

�
�̂T;S

�0
ŴTgT;S

�
�̂T;S

�
= u0T;SR̂

0�̂
1=20
T;BŴT �̂

1=2
T;BR̂uT;S + op (1)

= u0R0�
1=20
0 W0�

1=2
0 R0u+ op (1)

where R0 �
�
I � ��1=20 G0 (G

0
0W0G0)

�1G00W0�
1=2
0

�
:When ŴT = �̂

�1
T;B; R̂ is symmetric and idem-

potent with rank
�
R̂
�
= tr

�
R̂
�
= m � p; and the test statistic converges to a �2m�p random

variable, as usual. In general, the asymptotic distribution is a sample-dependent combination of m

independent standard Normal variables, namely that of u0R0�
1=20
0 W0�

1=2
0 R0u where u �N (0; I) :

Appendix B: Choice of dependence measures for estimation

To implement the SMM estimator of these copula models we must �rst choose which dependence

measures to use in the SMM estimation. We draw on �pure� measures of dependence, in the

sense that they are solely a¤ected by changes in the copula, and not by changes in the marginal

distributions. For examples of such measures, see Joe (1997, Chapter 2) or Nelsen (2006, Chapter

5). Our preliminary studies of estimation accuracy and identi�cation lead us to use pair-wise rank
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correlation and quantile dependence, see equations (10) and (11), with q = [0:01; 0:10; 0:90; 0:99] ;

giving us �ve dependence measures for each pair of variables14. Let �ij denote one of the dependence

measures (i.e., rank correlation or quantile dependence at di¤erent levels of q) between variables i

and j; and de�ne the �pair-wise dependence matrix�:

D =

26666664
1 �12 � � � �1N

�12 1 � � � �2N
...

...
. . .

...

�1N �2N � � � 1

37777775 (31)

Where applicable, we exploit the (block) equidependence feature of the models in de�ning

the �moments� to match. For the initial set of simulation results and for the �rst model in the

empirical section, the model implies equidependence, and we use as �moments� the average of

these �ve dependence measures across all pairs, reducing the number of moments to match from

5N (N � 1) =2 to just 5:

�� � 2

N (N � 1)

N�1X
i=1

NX
j=i+1

�̂ij (32)

For a model with di¤erent loadings on the common factor (as in equation 22) equidependence

does not hold. Yet the common factor aspect of the model implies that there are O (N) ; not

O
�
N2
�
, parameters driving the pair-wise dependence matrices. In light of this, we use the N � 1

vector
�
��1; :::; ��N

�0
; where

��i �
1

N

nX
j=1

�̂ij

and so ��i is the average of all pair-wise dependence measures that involve variable i: This yields a

total of 5N moments for estimation.

For the block-equidependence version of this model (used for the N = 100 case in the simulation,

and in the second set of models for the empirical section), we exploit the fact that (i) all variables in

the same group exhibit equidependence, and (ii) any pair of variables (i; j) in groups (r; s) has the

same dependence as any other pair (i0; j0) in the same two groups (r; s) : This allows us to average

all intra- and inter-group dependence measures. Consider the following general design, where we

have N variables, m groups, and k = N=m variables per group. Then decompose the (N �N)
14The selection of an �optimal�set of dependence measures is an interesting problem, and is left for future research.

For related work in GMM applications see Hansen (1985), Andrews (1999) and Hall (2005).
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matrix D into sub-matrices according to the groups:

D
(N�N)

=

26666664
D11 D12 � � � D1m

D12 D22 � � � D2m
...

...
. . .

...

D1m D2m � � � Dmm

37777775 , where each Dij is (k � k) (33)

Then create a matrix of average values from each of these matrices, taking into account the fact

that the diagonal blocks are symmetric:

D�
(m�m)

=

26666664
��11 ��12 � � � ��1m

��12 ��22 � � � ��2m
...

...
. . .

...

��1m ��2m � � � ��mm

37777775 (34)

where ��ss � 2

k (k � 1)
XX

�̂ij , avg of all upper triangle values in Dss

��rs =
1

k2

XX
�̂ij , avg of all elements in matrix Drs; r 6= s

Finally, similar to the previous model, create the vector of average measures
�
��
�
1; :::;

��
�
m

�
; where

��
�
i �

1

m

mX
j=1

��ij (35)

This gives as a total of m moments for each dependence measure, so 5m in total.
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Table 1: Simulation results for iid data

Normal
MLE GMM SMM t (4)-Normal Skew t (4;�0:5)-Normal

�2z �2z �2z �2z ��1z �2z ��1z �z

True value 1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50

N = 3

Bias 0.0170 -0.0120 -0.0128 0.0418 -0.0052 0.0790 -0.0044 -0.0191
Std 0.0808 0.0997 0.1028 0.2220 0.0694 0.3167 0.0679 0.1219
Median 1.0125 0.9863 0.9952 1.0097 0.2527 1.0055 0.2411 -0.5108
90% 1.1184 1.1137 1.1158 1.2600 0.3177 1.3520 0.3327 -0.3713
10% 0.9196 0.8615 0.8502 0.8345 0.1611 0.8437 0.1779 -0.6886
90-10 Di¤ 0.1988 0.2521 0.2657 0.4255 0.1566 0.5083 0.1548 0.3173

N = 10

Bias 0.0151 -0.0044 -0.0055 0.0027 -0.0056 0.0558 0.0012 -0.0052
Std 0.0565 0.0668 0.0687 0.1068 0.0403 0.1969 0.0486 0.0659
Median 1.0154 0.9900 0.9968 0.9999 0.2391 1.0235 0.2469 -0.5030
90% 1.0871 1.0720 1.0724 1.1374 0.2973 1.2919 0.3112 -0.4191
10% 0.9452 0.9158 0.8967 0.8828 0.1947 0.8826 0.1943 -0.5935
90-10 Di¤ 0.1419 0.1563 0.1757 0.2546 0.1026 0.4093 0.1169 0.1744

N = 100

Bias 0.0183 -0.0033 -0.0046 -0.0002 -0.0045 0.0419 -0.0014 -0.0033
Std 0.0508 0.0566 0.0560 0.0987 0.0346 0.1604 0.0407 0.0531
Median 1.0150 0.9962 0.9970 0.9893 0.2450 1.0225 0.2496 -0.5058
90% 1.0875 1.0693 1.0725 1.1187 0.2911 1.1983 0.2964 -0.4370
10% 0.9560 0.9268 0.9314 0.8936 0.1985 0.8872 0.2006 -0.5656
90-10 Di¤ 0.1315 0.1425 0.1411 0.2251 0.0927 0.3111 0.0958 0.1287

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula. The
Normal copula is estimated by ML, GMM and SMM, and the other two copulas are estimated by
SMM. The marginal distributions of the data are assumed to be iid: These copulas are considered
for problems of dimension N = 3; 10 and 100, and in all cases the sample size is T = 1000
and the number of simulations used is S = 25 � T: The �rst row of each panel presents the
average di¤erence between the estimated parameter and its true value. The second row presents
the standard deviation in the estimated parameters. The third, fourth and �fth rows present
the 50th, 90th and 10th percentiles of the distribution of estimated parameters, and the �nal row
presents the di¤erence between the 90th and 10th percentiles.
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Table 2: Simulation results for AR-GARCH data

Normal
MLE GMM SMM t (4)-Normal Skew t (4;�0:5)-Normal

�2z �2z �2z �2z ��1z �2z ��1z �z

True value 1.00 1.00 1.00 1.00 0.25 1.00 0.25 -0.50

N = 3

Bias 0.0141 -0.0143 -0.0164 0.0504 -0.0048 0.0607 -0.0077 -0.0201
Std 0.0803 0.1014 0.1033 0.2640 0.0715 0.3066 0.0675 0.1206
Median 1.0095 0.9880 0.9949 1.0023 0.2500 1.0021 0.2392 -0.5123
90% 1.1180 1.1103 1.1062 1.2450 0.3244 1.3369 0.3383 -0.3934
10% 0.9172 0.8552 0.8434 0.8413 0.1609 0.8363 0.1631 -0.6616
90-10 Di¤ 0.2008 0.2551 0.2628 0.4037 0.1635 0.5005 0.1751 0.2682

N = 10

Bias 0.0113 -0.0099 -0.0119 0.0007 -0.0102 0.0403 -0.0027 -0.0056
Std 0.0559 0.0651 0.0666 0.1162 0.0446 0.1804 0.0488 0.0658
Median 1.0125 0.9874 0.9898 0.9928 0.2399 1.0108 0.2469 -0.5054
90% 1.0789 1.0644 1.0706 1.1514 0.2923 1.2351 0.3135 -0.4212
10% 0.9406 0.9027 0.8946 0.8834 0.1892 0.8676 0.1908 -0.5874
90-10 Di¤ 0.1383 0.1617 0.1761 0.2680 0.1031 0.3676 0.1228 0.1662

N = 100

Bias 0.0167 -0.0068 -0.0080 -0.0031 -0.0101 0.0185 -0.0053 -0.0001
Std 0.0500 0.0554 0.0546 0.1078 0.0390 0.1411 0.0376 0.0535
Median 1.0164 0.9912 0.9956 0.9945 0.2409 1.0093 0.2449 -0.4997
90% 1.0805 1.0625 1.0696 1.1073 0.2880 1.1595 0.2894 -0.4325
10% 0.9534 0.9235 0.9279 0.8921 0.1904 0.8848 0.1992 -0.5623
90-10 Di¤ 0.1270 0.1390 0.1418 0.2153 0.0975 0.2747 0.0902 0.1298

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula. The
Normal copula is estimated by ML, GMM, and SMM, and the other two copulas are estimated by
SMM. The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1) processes,
as described in Section 4. Problems of dimension N = 3; 10 and 100 are considered, the sample
size is T = 1000 and the number of simulations used is S = 25 � T: The �rst row of each panel
presents the average di¤erence between the estimated parameter and its true value. The second
row presents the standard deviation in the estimated parameters. The third, fourth and �fth rows
present the 50th, 90th and 10th percentiles of the distribution of estimated parameters, and the �nal
row presents the di¤erence between the 90th and 10th percentiles.
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Table 3: Simulation results for di¤erent weights factor copula model with N=100

��1z �z �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

True value 0.25 -0.5 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Normal

Bias - - -0 .0014 -0 .0032 -0 .0041 -0 .0065 -0 .0079 -0 .0115 -0 .0157 -0 .0095 -0 .0145 -0 .0180

Std - - 0 .0128 0.0191 0.0253 0.0327 0.0392 0.0503 0.0689 0.0846 0.1046 0.1276

Median - - 0 .2489 0.4967 0.7429 0.9956 1.2420 1.4849 1.7274 1.9893 2.2225 2.4891

90% - - 0 .2648 0.5193 0.7816 1.0317 1.2974 1.5569 1.8179 2.0957 2.3617 2.6325

10% - - 0 .2303 0.4710 0.7165 0.9500 1.1958 1.4266 1.6482 1.8852 2.0996 2.3244

90-10 di¤ - - 0 .0345 0.0483 0.0651 0.0818 0.1016 0.1303 0.1697 0.2106 0.2621 0.3081

t(4)-Normal

Bias -0 .0071 - 0 .0006 0.0015 0.0043 0.0008 0.0021 0.0011 -0.0019 0.0025 -0 .0053 0.0010

Std 0.0419 - 0.0234 0.0470 0.0688 0.0881 0.1203 0.1538 0.1830 0.2172 0.2627 0.3543

Median 0.2415 - 0.2496 0.5003 0.7455 0.9865 1.2376 1.4801 1.7200 1.9824 2.2214 2.4582

90% 0.2879 - 0.2689 0.5341 0.7974 1.0634 1.3231 1.5825 1.8605 2.1269 2.4095 2.6790

10% 0.1967 - 0.2271 0.4648 0.7008 0.9332 1.1646 1.3961 1.6302 1.8657 2.0608 2.2919

90-10 di¤ 0.0913 - 0.0419 0.0693 0.0966 0.1302 0.1585 0.1864 0.2302 0.2612 0.3487 0.3871

Skew t(4,-0.5)-Normal

Bias -0 .0123 0.0030 0.0003 -0 .0021 -0.0032 -0 .0104 -0 .0084 -0 .0166 -0 .0224 -0 .0263 -0 .0319 -0 .0406

Std 0.0420 0.0439 0.0209 0.0365 0.0497 0.0668 0.0919 0.1094 0.1254 0.1505 0.1782 0.1936

Median 0.2402 -0 .4993 0.2483 0.4897 0.7384 0.9785 1.2262 1.4674 1.7105 1.9591 2.1938 2.4394

90% 0.2958 -0 .4412 0.2739 0.5465 0.8045 1.0892 1.3631 1.6260 1.9128 2.1543 2.4671 2.6959

10% 0.1809 -0 .5484 0.2237 0.4552 0.6915 0.9054 1.1309 1.3490 1.5822 1.7916 2.0024 2.2518

90-10 di¤ 0.1149 0.1072 0.0502 0.0912 0.1130 0.1838 0.2322 0.2770 0.3306 0.3628 0.4646 0.4440

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas:
the Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula.
We equally divide the N = 100 variables into ten groups and assume that all variables in the
same group have the same loading on the common factor. The marginal distributions of the data
are assumed to follow AR(1)-GARCH(1,1) processes, as described in Section 4. The sample size is
T = 1000 and the number of simulations used is S = 25�T: The �rst row of each panel presents the
average di¤erence between the estimated parameter and its true value. The second row presents the
standard deviation in the estimated parameters. The third, fourth and �fth rows present the 50th,
90th and 10th percentiles of the distribution of estimated parameters, and the �nal row presents
the di¤erence between the 90th and 10th percentiles.
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Table 4: Simulation results on coverage rates

t(4)- Skew t(4,�0.5)- t(4)- Skew t(4,�0.5)-
Normal Normal Normal Normal Normal Normal

�2z �2z ��1z �2z ��1z �z �2z �2z ��1z �2z ��1z �z

iid data, N = 3 AR-GARCH data, N = 3
"T
0.1 91 93 93 96 98 95 89 94 94 95 95 95
0.03 91 93 93 94 94 94 90 92 93 95 94 94
0.01 91 93 93 95 93 94 88 92 92 94 96 95
0.003 87 87 89 93 88 93 85 90 88 92 90 93
0.001 83 77 87 81 87 93 83 76 85 80 89 90
0.0003 64 51 75 64 81 67 58 58 72 59 73 80
0.0001 39 39 63 43 67 45 38 38 54 43 64 55

iid data, N = 10 AR-GARCH data, N = 10
"T
0.1 89 93 97 96 96 98 87 91 96 96 98 97
0.03 88 93 97 96 95 98 87 91 95 96 95 97
0.01 87 93 96 96 94 97 87 91 95 96 94 97
0.003 87 93 95 95 93 93 87 91 95 95 92 95
0.001 87 91 94 91 88 96 87 93 93 93 90 95
0.0003 86 87 90 81 82 88 86 84 88 85 86 92
0.0001 74 72 82 67 74 86 71 70 82 75 78 88

iid data, N = 100 AR-GARCH data, N = 100
"T
0.1 95 97 96 97 94 87 95 96 93 97 95 89
0.03 95 96 94 97 94 90 95 95 92 95 95 90
0.01 95 96 95 97 94 90 95 94 92 95 94 91
0.003 95 96 95 96 94 90 94 94 94 94 94 91
0.001 94 96 91 93 91 91 94 94 91 94 91 92
0.0003 90 94 90 93 88 93 92 95 91 93 89 93
0.0001 87 91 90 88 84 92 84 88 86 91 86 94

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula, all
estimated by SMM. The marginal distributions of the data are assumed to either be iid (left pan-
els) or to follow AR(1)-GARCH(1,1) processes, as described in Section 4 (right panels). Problems
of dimension N = 3; 10 and 100 are considered, the sample size is T = 1000 and the number of
simulations used is S = 25�T: The rows of each panel contain the step size, "T ; used in computing
the matrix of numerical derivatives, ĜT;S : The numbers in the table present the percentage of sim-
ulations for which the 95% con�dence interval based on the estimated covariance matrix contained
the true parameter.
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Table 5: Coverage rate for di¤erent weights factor copula model with N=100
AR-GARCH data

��1z �z �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

Normal
"T
0.1 - - 96 91 92 91 95 95 92 93 95 91
0.03 - - 96 91 92 92 95 95 92 93 95 91
0.01 - - 97 91 92 92 95 94 92 92 94 91
0.003 - - 97 91 91 92 95 95 91 92 94 91
0.001 - - 96 90 91 92 95 96 91 93 92 93
0.0003 - - 97 90 95 94 96 95 91 93 93 93
0.0001 - - 95 93 96 93 90 93 89 93 87 87

t(4)-Normal
"T
0.1 94 - 94 94 98 96 93 93 95 94 91 90
0.03 93 - 94 94 98 96 93 93 95 94 92 92
0.01 92 - 93 93 98 96 93 93 95 94 92 91
0.003 92 - 92 92 97 95 93 93 93 93 91 92
0.001 91 - 93 93 95 95 93 93 94 93 93 91
0.0003 89 - 96 91 96 94 93 92 93 94 89 91
0.0001 84 - 96 92 88 89 88 91 89 89 93 82

Skew t(4,-0.5)-Normal
"T
0.1 96 94 95 95 98 94 92 88 93 88 91 92
0.03 94 93 94 95 97 93 91 87 91 88 90 92
0.01 93 93 94 95 97 92 91 87 93 88 91 92
0.003 93 94 94 93 96 93 91 87 90 89 92 92
0.001 94 93 94 95 97 92 90 87 88 89 90 89
0.0003 88 89 96 95 98 90 87 84 84 82 82 84
0.0001 75 86 93 91 94 84 78 73 78 70 72 75

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas: the
Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula. We
equally divide the N = 100 variables into ten groups and assume that all variables in the same
group have the same loading on the common factor. The marginal distributions of the data are
assumed to follow AR(1)-GARCH(1,1) processes, as described in Section 4. The sample size is
T = 1000 and the number of simulations used is S = 25 � T: The rows of each panel contain the
step size, "T ; used in computing the matrix of numerical derivatives, ĜT;S : The numbers in the
table present the percentage of simulations for which the 95% con�dence interval based on the
estimated covariance matrix contained the true parameter.
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Table 6: Rejection frequencies for the test of overidentifying restrictions

t(4)- Skew t(4,-0.5)- t(4)- Skew t(4,�0.5)-
Normal Normal Normal Normal Normal Normal

Equidependence, N=3 Di¤erent loadings, N=3

90% 95 90 93 92 92 96
95% 97 96 98 95 96 99
99% 100 100 100 99 100 99

Equidependence, N=10 Di¤erent loadings, N=10

90% 93 89 90 96 93 96
95% 98 94 95 98 96 98
99% 99 98 99 99 99 99

Equidependence, N=100 Di¤erent loadings, N=100

90% 92 90 96 92 85 94
95% 96 92 97 96 92 95
99% 100 98 100 100 98 98

Notes: This table presents the results from 100 simulations of three di¤erent factor copulas, the
Normal copula, the t(4)-Normal factor copula and the Skew t(4;�0:5)-Normal factor copula, all es-
timated by SMM. The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1)
processes, as described in Section 4. Problems of dimension N = 3; 10 and 100 are considered, the
sample size is T = 1000 and the number of simulations used is S = 25 � T: The step size used to
compute the numerical derivative matrix, Ĝ, needed for the critical value, is 0:1: The rows of each
panel contain the con�dence level for the test of over-identifying restrictions (0.9, 0.95 or 0.99),
and the numbers in the table present the percentage of simulations for which the test statistic was
smaller than its computed critical value.

44



Table 7: Stocks used in the empirical analysis

Ticker Name SIC Ticker Name SIC Ticker Name SIC
AA Alcoa 333 EXC Exelon 493 NKE Nike 302
AAPL Apple 357 F Ford 371 NOV National Oilwell 353
ABT Abbott Lab. 283 FCX Freeport 104 NSC Norfolk Sth 671
AEP American Elec 491 FDX Fedex 451 NWSA News Corp 271
ALL Allstate Corp 633 GD GeneralDynam 373 NYX NYSE Euronxt 623
AMGN Amgen Inc. 283 GE General Elec 351 ORCL Oracle 737
AMZN Amazon.com 737 GILD GileadScience 283 OXY OccidentalPetrol 131
AVP Avon 284 GOOG Google Inc 737 PEP Pepsi 208
AXP American Ex 671 GS GoldmanSachs 621 PFE P�zer 283
BA Boeing 372 HAL Halliburton 138 PG Procter&Gamble 284
BAC Bank of Am 602 HD Home Depot 525 QCOM Qualcomm Inc 366
BAX Baxter 384 HNZ Heinz 203 RF Regions Fin 602
BHI Baker Hughes 138 HON Honeywell 372 RTN Raytheon 381
BK Bank of NY 602 HPQ HP 357 S Sprint 481
BMY Bristol-Myers 283 IBM IBM 357 SLB Schlumberger 138
BRK Berkshire Hath 633 INTC Intel 367 SLE Sara Lee Corp. 203
C Citi Group 602 JNJ Johnson&J. 283 SO Southern Co. 491
CAT Caterpillar 353 JPM JP Morgan 672 T AT&T 481
CL Colgate 284 KFT Kraft 209 TGT Target 533
CMCSA Comcast 484 KO Coca Cola 208 TWX Time Warner 737
COF Capital One 614 LMT Lock�dMartn 376 TXN Texas Inst 367
COP Conocophillips 291 LOW Lowe�s 521 UNH UnitedHealth 632
COST Costco 533 MA Master card 615 UPS United Parcel 451
CPB Campbell 203 MCD MaDonald 581 USB US Bancorp 602
CSCO Cisco 367 MDT Medtronic 384 UTX United Tech 372
CVS CVS 591 MET Metlife Inc. 671 VZ Verizon 481
CVX Chevron 291 MMM 3M 384 WAG Walgreen 591
DD DuPont 289 MO Altria Group 211 WFC Wells Fargo 602
DELL Dell 357 PM Philip Morris 211 WMB Williams 492
DIS Walt Disney 799 MON Monsanto 287 WMT WalMart 533
DOW Dow Chem 282 MRK Merck 283 WY Weyerhauser 241
DVN Devon Energy 131 MS MorganStanley 671 XOM Exxon 291
EMC EMC 357 MSFT Microsoft 737 XRX Xerox 357
ETR ENTERGY 491

Notes: This table presents the ticker symbols, names and 3-digit SIC codes of the 100 stocks
used in the empirical analysis of this paper.
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Table 8: Summary statistics

Cross-sectional distribution

Mean 5% 25% Median 75% 95%

Mean 0.0004 -0.0003 0.0001 0.0003 0.0006 0.0013
Std dev 0.0287 0.0153 0.0203 0.0250 0.0341 0.0532
Skewness 0.3458 -0.4496 -0.0206 0.3382 0.6841 1.2389
Kurtosis 11.3839 5.9073 7.5957 9.1653 11.4489 19.5939

�0 0.0004 -0.0007 0.0000 0.0003 0.0007 0.0016
�1 -0.0439 -0.1206 -0.0717 -0.0468 -0.0135 0.0310
! -0.1421 -0.2949 -0.1608 -0.1061 -0.0669 -0.0296
� 0.9812 0.9622 0.9779 0.9855 0.9905 0.9957
� 0.1642 0.0298 0.1203 0.1580 0.2067 0.3148
� -0.0828 -0.1536 -0.1051 -0.0833 -0.0588 -0.0291

� 0.4238 0.2760 0.3528 0.4160 0.4805 0.6036
�s 0.4418 0.2967 0.3742 0.4330 0.5000 0.6171
(�0:99 + �0:01) =2 0.0678 0.0000 0.0000 0.0718 0.0718 0.2155
(�0:90 � �0:10) -0.0839 -0.1868 -0.1293 -0.0862 -0.0431 0.0287

Notes: This table presents some summary statistics of the daily equity returns data used in the
empirical analysis. The top panel presents simple unconditional moments of the daily return series.
The second panel presents summaries of the estimated AR(1)-EGARCH(1,1) models estimated on
these returns. The lower panel presents linear correlation, rank correlation, average 1% upper and
lower tail dependence, and the di¤erence between the 10% tail dependence measures, computed
using the standardized residuals from the estimated AR-EGARCH model. The columns present
the mean and quantiles from the cross-sectional distribution of the measures listed in the rows.
The top two panels present summaries across the N = 100 marginal distributions, while the lower
panel presents a summary across the N (N � 1) =2 = 4950 distinct pairs of stocks.
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Table 9: Estimation results for daily returns on S&P 100 stocks

�2z ��1z �z QSMM p-val

Est Std Err Est Std Err Est Std Err

N = 100

Normal 0.9237 0.0582 - - - - 0.0081 0.0000
Student�s t 0.8592 0.0550 0.0610 0.0288 - - 0.0051 0.0025
Claytony 0.6333 0.0302 - - - - 0.0474 0.0000
t(�)-Normal 0.8875 0.0528 0.0469 0.0302 - - 0.0069 0.0005
Skew t(�)-Normal 0.9158 0.0555 0.0420 0.0343 -0.1978 0.0631 0.0008 0.0004
t(�)-t(�) 0.8666 0.0557 0.0772 0.0471 - - 0.0072 0.0004
Skew t(�)-t(�) 0.8904 0.0572 0.0827 0.0522 -0.1813 0.0577 0.0007 0.0008

Notes: This table presents estimation results for various copula models applied to 100 daily
stock returns over the period April 2008 to December 2010. Estimates and asymptotic standard
errors for the copula model parameters are presented, as well as the value of the SMM objective
function at the estimated parameters and the p-value of the overidentifying restriction test. yNote
that the parameter of the Clayton copula is not �2z but we report it in this column for simplicity.

Table 10: Seven groups according to the �rst digit of SIC code

First digit of SIC code Industry Number of Stocks
1 Mining, Construction, etc 6
2 Manufacturing: Food, Tobacco, Apprel, Furniture, etc 26
3 Manufacturing: Electronic, Machinery, Metal, etc 25
4 Transportation, Communications, Gas, etc 11
5 Wholesale and Retail Trade 8
6 Finance, Insurance, Real Estate, etc 18
7 Services 6

Total 100

Notes: The Standard Industrial Classi�cation (SIC) is a United States government system for
classifying industries. We use �rst digit of the SIC to classify our 100 stocks to seven industries.
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Figure 1: Scatter plots from four bivariate distributions, all with N(0,1) margins and linear corre-
lation of 0.5, constructed using four di¤erent factor copulas.
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Figure 2: Quantile dependence implied by four factor copulas, all with linear correlation of 0.5.
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Figure 3: Conditional on observing k out of 100 stocks crashing, this �gure presents the expected
number (upper panel) and proportion (lower panel) of the remaining (100-k) stocks that will crash.
�Crash�events are de�ned as returns in the lower 1/66 tail.
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Figure 4: Sample quantile dependence for 100 daily stock returns, along with the �tted quantile
dependence from a Normal copula and from a Skew t-t factor copula, for the lower and upper tails.
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Figure 5: Conditional on observing k out of 100 stocks crashing, this �gure presents the expected
proportion of the remaining (100-k) stocks that will crash. �Crash� events are de�ned as returns
in the lower 1/22 (upper panel) and 1/66 (lower panel) tail. Note that the horizontal axes in these
two panels are di¤erent, due to limited information in the joint tails.
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