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1 Introduction

Quantitative research on credit risk has derived much of its intuition from models in the

tradition of Merton (1974) and Leland (1994). In these structural models of credit risk, firms

optimally choose to default when the present value of coupon payments to bond holders is

greater than the present value of future dividends. This optimality condition also provides

testable implications for the relation between firm-level variables and credit spreads. For

instance, leverage should be positively related to credit spreads since higher leverage implies

the firm is closer to the default boundary. However, the empirical evidence is mixed; for

example, Collin-Dufresne, Goldstein, and Martin (2001) show that structural models explain

less than 25 percent of the variation in credit spread changes.1

A key feature of current structural models of default is that they specify the evolution of

the firm’s asset value exogenously. Typically, when choosing their leverage, firms trade off tax

benefits of debt and bankruptcy costs. Given that assets evolve exogenously, the issued debt

is used to fund changes in equity but it does not affect the asset side of the balance sheet.

Empirically, however, firms use debt primarily to finance capital spending. In this paper,

we document the importance of accounting for investment decisions in models of credit risk.

Exercising investment options changes a firm’s asset composition and hence the riskiness of

its assets. In a world with financial market imperfections, default probabilities and hence

credit spreads will reflect the riskiness of firms’ assets. Our results suggest that these effects

are quantitatively significant.

While we build on the recent literature relating firms’ capital structures to their investment

policies (Hennessy and Whited (2005, 2007)), we introduce Epstein-Zin preferences with time

varying macroeconomic risk in consumption and productivity in a cross-sectional production

economy to price risky corporate debt.2 In the model, firms possess the option to expand

capacity. Investment can be financed with retained earnings, equity or debt issuances. In

contrast to corporate models of default, such as Leland (1994), where the tax advantage of

debt leads firms to issue debt, it is the availability of real investment options in our model. We

assume debt takes the form of one period debt and firms choose jointly optimal leverage and

investment to maximize equity value. Importantly, firms can default on their outstanding
1Similarly, Davydenko and Strebulaev (2007) reach a similar conclusion for the level of credit spreads.
2Similar to Bansal and Yaron (2004), we model time varying macroeconomic risk as a mean reverting process

in the first and second moments of consumption growth.
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debt when the option to default is more valuable than paying back bond holders. When

making these dynamics decisions, firms face fix and proportional debt and equity issuances

costs.

Our paper makes three sets of contributions. First, we provide new testable implications

concerning the firm-level determinants of credit spreads. Our models predicts that suitable

empirical proxies for growth options should have considerable explanatory power for credit

spreads and their changes, an implication not shared by standard structural models of credit

risk. Specifically, the market-to-book ratio or investment rate are important determinants of

credit spreads in our model. This is because they capture information about the composition

and riskiness of firms’ assets. While in a world without real and financial imperfections

leverage would perfectly adjust to reflect the riskiness of assets, empirically leverage often

deviates substantially from target leverage (Leary and Roberts (2005), Strebulaev (2007)).

In such a realistic setting, proxies for asset composition should carry explanatory power for

credit spreads beyond leverage. We confirm and quantify this prediction by means of cross-

sectional regressions in our model. As credit spreads reflect default probabilities, an analogous

implication holds for logit regressions of expected default rates.

Second, we demonstrate that the link between firm-level characteristics and credit risk

depends on macroeconomic conditions in a model with investment options. Intuitively, as

growth options pay off in good times, growth firms have more volatile cash flows and are

thus riskier than value firms which derive most of their value from assets in place. For the

same amount of debt, growth firms have higher default rates than value firms in good times.

However, growth firms choose optimally lower leverage than value firms in the model and

the data, rendering the link between leverage and credit spreads uninformative. In contrast,

value firms are more risky than growth firms in bad times because of operating leverage.

Value firms have excess capital and debt and thus higher default rates than growth firms. As

a result, the relation between the market-to-book ratio and credit spreads is positive in booms

and negative in recessions, holding leverage constant. Moreover, the link between leverage

and credit spreads is only strong in bad times. These subtle conditional links therefore make

the unconditional relationship quite uninformative. Consequently, the relationship between

credit spreads and firm-level characteristics depends on the the availability of growth options

as well as macroeconomic conditions. This demonstrates the importance of accounting for the
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endogeneity of both investment and financing when explaining credit spreads. We show that

in such an environment the weak empirical performance of firm-level variables in unconditional

tests obtains naturally.

Third, our model quantitatively rationalizes the empirical term structure of credit spreads

in a production economy. As pointed out by Huang and Huang (2003), standard models of

credit risk, such as Merton (1974) and Leland (1994), are not able to generate a realistic

spread of risky debt relative to safe governments bonds. While, as demonstrated by several

authors (Hackbarth, Miao, and Morellec (2006), Chen, Collin-Dufresne, and Goldstein (2009),

Bhamra, Kuehn, and Strebulaev (2010), Chen (2010)), substantial credit risk premia as com-

pensation for macroeconomic conditions go a long way towards explaining the credit spread

puzzle in endowment economics, production economies place considerably tighter restrictions

on this link. Jermann (1998) and Kogan (2004) point out that explaining risk premia in pro-

duction economies is much more challenging than in an endowment economy since the agent

can use capital to smooth cash flows.

Quantitatively, our model generates a realistic credit spread of 101 basis points for 5 year

debt and 114 basis points for 10 year debt for BBB firms, close to empirical estimates. At

the same time, actual default probabilities are low as in the data. The reason for success is

twofold. First, we assume that capital is firm specific and thus the resale value is zero. In a

model without disinvestment costs, firms would rarely choose to default because firms would

sell capital to pay off their debt. Essentially, the value of the disinvestment option drives out

the value of the default option. Second, we measure credit spreads in the cross section of firms

as in Bhamra, Kuehn, and Strebulaev (2010). The standard approach is to measure credit

spreads when firms issue new debt. In reality, however, firms adjust leverage only infrequently

as shown by Leary and Roberts (2005). Cross-sectional heterogeneity in asset composition

and leverage raise the average credit spread because the value of both the investment and

default option are convex functions of the state variables.

Related Literature

Our paper is at the center of several converging lines of literature. First of all, our objective

is to link structural models of default and financing and the literature on growth options and

firm investment. In this regard, our paper is related to Miao (2005), Sundaresan and Wang
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(2007) and Bolton, Chen, and Wang (2010). Contrary to our work, these papers do not focus

on the pricing of corporate bonds, and do not consider the importance of macroeconomic

conditions.

In this regard, our paper is related to recent work using dynamic models of leverage to

price corporate bonds (Hackbarth, Miao, and Morellec (2006), Chen, Collin-Dufresne, and

Goldstein (2009), Bhamra, Kuehn, and Strebulaev (2010), Chen (2010)). Motivated by the

credit spread puzzle, the observation pointed out by Huang and Huang (2003) that standard

structural models of corporate finance in the tradition of Merton are unable to rationalize the

historical levels of credit spreads, this literature has stressed the importance of accounting for

macroeconomic risk in explaining corporate bond prices. We add to this literature by explicitly

considering the role of investment in determining corporations’ financing needs and policies.

While the extant literature considered endowment economies only, our analysis stresses that

frictions to adjusting firms’ assets are a crucial determinant of default decisions, and therefore

credit spreads.

More broadly, a growing literature attempts to quantitatively understand firm level in-

vestment by linking it to corporate financial policies in settings with financial frictions. While

early influential work (see for instance Gilchrist and Himmelberg (1995) and Gomes (2001))

was motivated by the cash-flow sensitivity of corporate investment and considered reduced

form representations of the costs of external finance, more recently the literature has consid-

ered full fledged capital structure choices, allowing for leverage, default and equity issuance (a

partial list includes Cooley and Quadrini (2001), Moyen (2004), Hennessy and Whited (2005)

and Hennessy and Whited (2007)). These papers suggest that in the presence of financial

frictions, the availability and pricing of external funds is a major determinant of corporate

investment. The novelty in our work is the analysis of the role of macroeconomic risk for

corporations’ investment and financing policies. In particular, while the extant literature has

considered settings without aggregate risk, we stress its importance in generating the observed

levels and dynamics of the costs of debt. Specifically, our model is consistent with the fact

that a large fraction of both level and time-variation of credit spreads is accounted for by risk

premia.

Our work is also related to a growing literature on dynamic quantitative models investi-

gating the implications of firms’ policies on asset returns. A number of papers (a partial list
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includes Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang (2003), Carlson, Fisher,

and Giammarino (2004) and Zhang (2005)) has successfully related anomalies in the cross

section of stock returns such as the value premium to firms’ investment policies. Another

recent line of research has focused on the link between firms’ financing decisions and stock

returns (some recent papers include Garlappi and Yan (2008), Livdan, Sapriza, and Zhang

(2009) and Gomes and Schmid (2009)). By relating risk premia in corporate bond prices to

firms’ investment and financing policies, our work here is complementary. Moreover, from

a methodological point of view, we add a long run risk perspective to the literature on the

cross-section of stock returns by providing a tractable way of modeling firms’ exposure to long

run movements in aggregate consumption growth in the sense of Bansal and Yaron (2004).

More generally, the paper adds to the broad literature on dynamic models of firms’ debt

policies subject to transaction costs along the lines of Fischer, Heinkel, and Zechner (1989),

Leland (1994), Goldstein, Ju, and Leland (2001) and Strebulaev (2007). Here the novelty in

our work is the endogeneity of investment and we provide an analysis of both financial and

real transaction costs.

More recently, Chen and Manso (2010) and Arnold, Wagner, and Westermann (2011) also

explore the effects of growth options on credit risk. A limitation of both models is that firms

have an infinite amount of cash on hand to finance real options. In contrast, firms face an

intratemporal budget constraint in our model which gives rise to a richer set of implications.

2 Model

In this section, we first derive the pricing kernel of the representative agent. We assume the

representative agent has recursive preferences and the conditional first and second moments

of consumption growth are time varying and follow a persistent Markov chain. An important

implication of recursive preferences is that the agent is averse to intertemporal risk coming

from the Markov chain. These assumptions give rise to realistic level and dynamics for the

market price of risk.

In the second subsection, we describe the firm’s problem. Firms choose optimal invest-

ments to maximize their equity value. Investments are financed by retained earnings as well

as equity or debt issuances. Firms can default on their outstanding debt if prospects are

sufficiently bad.
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2.1 Pricing Kernel

The representative agent maximizes recursive utility, Ut, over consumption following Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989), given by

Ut =
{

(1− β)Cρt + β
(
Et[U1−γ

t+1 ]
)ρ/(1−γ)

}1/ρ

(1)

where Ct denotes consumption, β ∈ (0, 1) the rate of time preference, ρ = 1− 1/ψ and ψ the

elasticity of intertemporal substitution (EIS), and γ relative risk aversion (RRA). Implicit in

the utility function (1) is a constant elasticity of substitution (CES) time aggregator and CES

power utility certainty equivalent.

Epstein-Zin preferences provide a separation between the elasticity of intertemporal substi-

tution and relative risk aversion. These two concepts are inversely related when the agent has

power utility. Intuitively, the EIS measures the agents willingness to postpone consumption

over time, a notion well-defined under certainty. Relative risk aversion measures the agents

aversion to atemporal risk across states. Recursive preferences also imply preference for either

early or late resolution of uncertainty which are crucial for the quantitative implications of

this paper.

We assume that aggregate consumption follows a random walk with a time-varying drift

and volatility

Ct+1 = Ct exp{g + µc(st) + σc(st)ηt+1} (2)

where µ(st) and σ(st) depend on the aggregate state of the economy denoted by st and ηt+1

are i.i.d. standard normal innovations. The aggregate state, st, follows a persistent Markov

chain with transition matrix P .

The Epstein-Zin pricing kernel is given by

Mt,t+1 = βθ
(
Ct+1

Ct

)−γ (Zt+1 + 1
Zt

)−(1−θ)
(3)

where Zt denotes the wealth-consumption ratio and θ = 1−γ
1−1/ψ . When θ = 1, the pricing

kernel reduces to the one generated by a representative agent with power utility, implying

that she is indifferent with respect to intertemporal macroeconomic risk. When the EIS is

greater than the inverse of relative risk aversion (ψ > 1/γ), the agent prefers intertemporal

risk due to the Markov chain to be resolved sooner rather than later.
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A economy which is solely driven by i.i.d. shocks, the wealth-consumption ratio is constant.

In our model, however, the first and second moments of consumption growth follow a Markov

chain. Consequently, the wealth-consumption ratio is a function of the state of the economy,

i.e., Zt = Z(st). Based on the Euler equation for the return on wealth, the wealth-consumption

ratio vector Zt solves the system of nonlinear equations defined by

Zθt = Et

[
βθ
(
Ct+1

Ct

)1−γ
(Zt+1 + 1)θ

]
(4)

To compute credit spreads, we define the n-period risk-rate as R(n)
f,t = 1/Et[Mt,t+n].

2.2 Profits and Investment

We begin by considering the problem of a typical value maximizing firm in a perfectly com-

petitive environment. The flow of after tax operating profits, Π, for firm i is described by the

expression

Πi,t = (1− τ)(X1−α
i,t Kα

i,t −Ki,tf) (5)

where Xi,t is a productivity shock and Ki,t denotes the book value of the firm’s assets. We

use τ to denote the corporate tax rate, 0 < α < 1 the capital share of production and f ≥ 0

proportional costs of production.

The i-th firm productivity shock follows a random walk with a time-varying drift and

volatility

Xi,t+1 = Xi,t exp{g + µx(st) + σx(st)εi,t+1} (6)

where µx(st) and σx(st) depend on the aggregate state of the economy and εi,t+1 are trun-

cated standard normal shocks which are uncorrelated with the aggregate shock ηt+1.3 The

assumption that εi,t+1 is firm specific requires that

E[εi,tεj,t] = 0, for i 6= j

Firm are allowed to scale operations by choosing the level of productive capacity Ki,t.

This can be accomplished through investment, Ii,t, which is linked to productive capacity by

the standard capital accumulation equation

Ki,t+1 = (1− δ)Ki,t + Ii,t (7)
3To ensure the existence of a solution to the firm’s problem the shocks must be finite. We accomplish this

by imposing (very large) bounds on the values of ε.
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where δ > 0 denotes the depreciation rate of capital. To have a model of real option, we

assume investment is irreversible

Ii,t ≥ 0 (8)

2.3 Financing

Corporate investment as well as any distributions can be financed with either internal funds

generated by operating profits or net new issues which can take the form of new debt (net of

repayments) or new equity. We assume that debt, Bi,t, takes the form of a one period bond

that pays a coupon ci,t. Thus we allow the firm to refinance the entire value of its outstanding

liabilities in every period. Formally, letting Bi,t denote the book value of outstanding liabilities

for firm i at the beginning of period t we define total debt liabilities as

Li,t = (1 + (1− τ)ci,t)Bi,t (9)

Note that both debt and coupon payments will exhibit potentially significant time variation

and will depend on a number of firm and aggregate variables.

When firms change the amount of debt outstanding, they incur a cost. We define debt

issuance costs in terms of changes in total liabilities, Li,t+1 − Li,t. Firms face fixed and

proportional debt issuance costs denoted by φ0 and φ1 respectively.4 Formally, debt issuance

costs are given by

Φ(Li,t, Li,t+1) = φ0,tI{Li,t+1 6=Li,t} + φ1|Li,t+1 − Li,t| (10)

Firms can also raise external finance by means of seasoned equity offerings. Following the

existing literature, we consider fixed and proportional costs which we denote by λ0 and λ1

respectively.5 Formally, letting Ei,t denote the net payout to equity holders, total issuance

costs are given by the function

Λ(Ei,t) = (λ0,t + λ1|Ei,t|)I{Ei,t<0} (11)

where the indicator function I{Ei,t<0} implies that these costs apply only in the region where

the firm is raising new equity finance when net payout, Ei,t, is negative.

4Since productivity has a time trend, the fixed component is growing over time too. The same is true for
the fixed equity issuance costs.

5See Gomes (2001) and Hennessy and Whited (2007).
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Investment, equity payout, and financing decisions must meet the following identity be-

tween uses and sources of funds

Ei,t = Πi,t + τδKi,t − Ii,t +Bi,t+1 − Li,t − Φ(Li,t, Li,t+1) (12)

where again Ei,t denotes the equity payout. Note that the resource constraint (12) recognizes

the tax shielding effects of both depreciated capital and interest expenditures. Distributions

to shareholders, denoted by Di,t, are then given as equity payout net of issuance costs

Di,t = Ei,t − Λ(Ei,t) (13)

2.4 Valuation

The equity value of the firm, Vi,t, is defined as the discounted sum of all future equity distri-

butions. We assume that equity holders will choose to close the firm and default on their debt

repayments if the prospects for the firm are sufficiently bad, i.e., whenever Vi,t reaches zero.

The complexity of the problem is reflected in the dimensionality of the state space necessary

to construct the equity value of the firm. This includes both aggregate and idiosyncratic com-

ponents of demand, productive capacity, and total debt liabilities, i.e., Vi,t = V (Ki,t, Li,t, Xi,t)

We can now characterize the problem facing equity holders, taking coupon payments as

given. These payments will be determined endogenously below. Shareholders jointly choose

investment (the next period capital stock) and financing (next period total debt commitments)

strategies to maximize the equity value of each firm, which accordingly can then be computed

as the solution to the following dynamic program

Vi,t = max
{

0, max
Ki,t+1,Li,t+1

{Di,t + Et [Mt,t+1Vi,t+1]}
}

(14)

where the expectation in the left hand side is taken by integrating over the conditional dis-

tributions of Xi,t+1. Note that the first maximum captures the possibility of default at the

beginning of the current period, in which case the shareholders will get nothing.6 Finally, aside

from the budget constraint embedded in the definition of Di,t, the firms face the irreversibility

constraint (8), debt (10) and equity issuance costs (11).
6In practice, there can be violations of the absolute priority rule, implying that shareholders in default still

recover value. Garlappi and Yan (2008) analyze the asset pricing implications of such violations.
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2.5 Default and Bond Pricing

We now turn to the determination of the required coupon payments, taking into account the

possibility of default by equity holders. Assuming debt is issued at par, the market value of

new issues must satisfy the following Euler condition

Bi,t+1 = (1 + ci,t+1)Bi,t+1Et
[
Mt,t+1(1− I{Vi,t+1=0})

]
+ Et

[
Mt,t+1Wi,t+1I{Vi,t+1=0)}

]
(15)

where Wi,t+1 denotes the recovery on a bond in default and I{Vit+1=0} is an indicator function

that takes the value of one when the firm defaults and zero when it remains active.

We follow Hennessy and Whited (2007) and specify the deadweight losses at default to

consist of a proportional component. Thus, creditors are assumed to recover a fraction of the

firm’s current assets and profits net of liquidation costs. Formally the default payoff is equal

to

Wi,t = (1− ξ)(Πi,t + τδKi,t + (1− δ)Ki,t) (16)

Since the equity value Vi,t+1 is endogenous and itself a function of the firm’s debt com-

mitments this equation cannot be solved explicitly to determine the value of the coupon

payments, ci,t. However, using the definition of Li,t, we can rewrite the bond pricing equation

as

Bi,t+1 =
1

1−τLi,t+1Et
[
Mt,t+1(1− I{Vi,t+1=0})

]
+ Et

[
Mt,t+1Wi,t+1I{Vi,t+1=0}

]
1 + τ

1−τEt
[
Mt+1(1− I{Vi,t+1=0})

] (17)

Given this expression and the definition of Li,t, we can easily deduce the implied coupon

payment as

ci,t+1 =
1

1− τ

(
Li,t+1

Bi,t+1
− 1
)

(18)

Note that defining Li,t as a state variable and constructing the bond pricing schedule Bi,t+1

according to (17) offers important computational advantages. Because equity and debt values

are mutually dependent (since the default condition affects the bond pricing equation) we

would normally need jointly solve for both the coupon schedule (or bond prices) and equity

values. Instead our approach requires only a simple function evaluation during the value

function iteration. This automatically nests the debt market equilibrium in the calculation of

equity values and greatly reduces computational complexity.
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2.6 Credit Spreads

For tractability reasons, we solve for the optimal amount of one period debt. In the calibration,

we set one period equal to one quarter. In reality, however, firms issue debt with several

years of maturity. To consider the pricing implications for 5 and 10 year debt, we price

hypothetical long horizon debt.7 Assume firm i borrows the amount B(n)
i,t for n-periods.

Under the assumption that debt is issued at par, the n-period bond price must satisfy the

following Euler condition

B
(n)
i,t =

(
1 + c

(n)
i,t

)
B

(n)
i,t Et

[
Mt,t+n(1− I{Vi,t+n=0})

]
+ Et

[
Mt,t+nWi,t+nI{Vi,t+n=0}

]
(19)

where c(n)
i,t denotes the n-period coupon rate.8 The bond pricing equation (19) can be solved

for the arbitrage-free coupon rate c(n)
i,t+1 which is given

1 + c
(n)
i,t =

1− χ(n)
i,t

Et[Mt,t+n]
(

1− q(n)
i,t

) (20)

where

q
(n)
i,t = Et

[
Mt,t+n

Et[Mt,t+n]
I{Vi,t+n=0}

]
χ

(n)
i,t = Et

[
Mt,t+nRi,t+nI{Vi,t+n=0}

]
where q(n)

i,t is the risk-neutral default probability, Ri,t+n = Wi,t+n/B
(n)
i,t is the recovery rate in

the case of default and χ
(n)
i,t its value. Since we solve the model on a grid, the coupon rate

can be easily computed by iterating over the expectations operators without having to rely

on Monte-Carlo simulations as in Bhamra, Kuehn, and Strebulaev (2010).

Since we price zero coupon debt, the coupon rate is also the yield on the outstanding

debt. Consequently, the n-period credit spread is defined as s(n)
i,t = 1 + c

(n)
i,t −R

(n)
f,t . To gain a

better understanding of credit risk, we define the log credit spread as log yield minus the log

risk-free rate which is approximately given by

log s(n)
i,t ≈ q

(n)
i,t − χ

(n)
i,t (21)

This equation shows that credit spreads are zero if default does not occur in expectations,

implying that both q
(n)
i,t and χ

(n)
i,t are zero. On the other hand, the credit spreads increase in

the risk-neutral default probability q(n)
i,t and decrease in the value of the recovery rate χ(n)

i,t .

7A similar exercise is done in Bhamra, Kuehn, and Strebulaev (2010). There the authors assume firms issue
perpetual debt. Yet they also price hypothetical finite maturity debt to be able to compare the model with
the data.

8Here we slightly abuse notation since B
(1)
i,t = Bi,t+1 and c

(1)
i,t = ci,t+1.
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The risk-neutral probability of default can be further decomposed into the actual proba-

bility of default and a risk premium

q
(n)
i,t = p

(n)
i,t + Covt

(
Mt,t+n

Et[Mt,t+n]
, I{Vi,t+n=0}

)
(22)

where the actual default probability is defined as p(n)
i,t = Et[I{Vi,t+n=0}] and the covariance

captures a risk compensation for default risk. Since defaults tend to occur in bad times when

marginal utility is high, the covariance is positive. Consequently, credit spreads are high if

the risk compensation and actual default probabilities are high. Similarly, the value of the

recovery rate can be written as

χ
(n)
i,t =

Et[Ri,t+nI{Vi,t+n=0}]

R
(n)
f,t

+ Covt
(
Mt,t+n, Ri,t+nI{Vi,t+n=0}

)
(23)

The first term is the expected cash flow discounted using the risk-free rate and the second

term, the covariance, is a compensation for risk. Since marginal utility is counter-cyclical in

our model and recovery rates tend to be pro-cyclical, the covariance is negative. Thus, credit

spreads are large if our model endogenously generates a pro-cyclical recovery rate.

3 Empirical Results

In this section, we present the quantitative implications of our model. Since the model does

not entail a closed-form solution, we solve it numerically. In the following, we first explain

our calibration and then we provide numerical results.

3.1 Calibration

In order to solve the model numerically, we calibrate it to quarterly frequency. Our calibration

is summarized in Table 1. For the calibration of the consumption process, we follow Bansal,

Kiku, and Yaron (2007). They assume that the first and second moments of consumption

growth follow two separate processes. For tractability, we model the aggregate Markov chain,

st, to jointly affect the drift and volatility of consumption and to consist of five states. To

calibrate the Markov chain, we follow the procedure suggested by Rouwenhorst (1995). Specif-

ically, given the estimates in Bansal, Kiku, and Yaron (2007), we assume that the Markov

chain has first-order auto-correlation of 0.95. The states for the drift, µ(st) ∈ {µ1, ..., µ5}, are

chosen such that the standard deviation of the innovation to the drift equals 0.0004 quarterly.
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Similarly, the volatility states, σ(st) ∈ {σ1, ..., σ5}, are chosen to have a quarterly mean of

0.0094 and conditional standard deviation of 0.00001 quarterly.

Regarding the preference parameters of the representative agent, we assume relative risk

aversion (γ) of 10, an elasticity of intertemporal substitution (ψ) of 2 and rate of time pref-

erence (β) of 0.995 which are common values in the asset pricing literature to generate a

realistic market price of risk.

At the firm level, we set the capital share of production equal to 0.65 in line with the

evidence in Cooper and Ejarque (2003). Capital depreciates at 3% quarterly rate as in Cooley

and Prescott (1995). Firms face proportional costs of production of 2% similar to Gomes

(2001). Since there are no direct estimates of the conditional first and second moments of the

technology shock, we follow Bansal, Kiku, and Yaron (2007) and scale the drift by 2.3 and

the volatility by 6.6 relative to the respective moments of the consumption process.

Firms can issue debt and equity. We set proportional equity issuance costs at 2% which

is consistent with Gomes (2001) and Hennessy and Whited (2007). Altinkilic and Hansen

(2000) estimate bond issuance costs to be around 1.3%. We thus assume proportional debt

issuance costs of 2%. Andrade and Kaplan (1998) report default costs of about 10%-25% of

asset value and Hennessy and Whited (2007) estimate default losses to be around 10%. In

line with the empirical evidence, we set bankruptcy costs at 20%. The corporate tax rate τ

is 15% as in Bhamra, Kuehn, and Strebulaev (2010).

Most of the following quantitative results are based on simulations. Instead of repeating

the simulation procedure, we summarize it here. We simulate 1,000 economies for 100 years

each consisting of 3,000 firms. We delete the first 20 years of simulated data as burn in period.

Defaulting firms are replaced with new born firms, which start at the steady state level capital

and debt, such that the mass of firms is constant over time.

3.2 Pricing

Before we report quantitative implications for financing policies, we are interested whether

our specification for the consumption process and the pricing of the market return and risk-

free asset are in line with the data. To this end, we report unconditional moments generated

by the consumption and equity value process in Table 2. This table shows cross simulation

averages where E[∆c] denotes mean consumption growth, σ(∆c) consumption growth volatil-
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ity, AC1(∆c) the first-order autocorrelation of consumption growth, E[rf ] mean risk-free rate,

σ(rf ) risk-free rate volatility, E[rm] average market rate, and σ(rm) stock market volatility.

All moments are annualized. The data is taken from Bansal, Kiku, and Yaron (2007).

Our calibration for the Markov model (2) for consumption is largely consistent with the

data. The unconditional mean and volatility of consumption growth match the data well

but realized consumption is not sufficiently persistent. Since the asset pricing implications of

recursive preferences are mainly driven by the persistence of the Markov process, this feature

of the Markov process lowers the market price of risk and explains why the aggregate market

return is lower in the model than in the data. However, the calibration almost matches the

empirical Sharpe ratio. Moreover, given countercyclical volatility in consumption growth, the

market price of risk is time-varying and countercyclical. The average unconditional risk-free

rate generated by the model is similar in the data but it is not volatile enough. In the model,

the risk-free rate changes with the state of the Markov chain and its persistence causes a very

stable risk-free rate over time.

3.3 Corporate Policies

We now illustrate the model’s quantitative implications for optimal firm behavior. In Table

3, we report unconditional moments of optimal corporate policies generated by the model.

This table shows cross simulation averages of the average annual investment to asset ratio

and its volatility, the frequency of equity issuances, average new equity to asset ratio, average

book to market ratio and its volatility, book leverage and market leverage. The data are from

Hennessy and Whited (2007), Davydenko and Strebulaev (2007) and Covas and Den Haan

(2011).

Table 3 illustrates that the corporate financing and investment policies are generally con-

sistent with the data. Based on the calibrated parameter values for depreciation and capital

adjustment costs, the model is able to match the average investment to asset ratio and its

volatility. The magnitude of the equity issuance costs parameter renders a realistic frequency

of equity issuances but the magnitude of equity issuance to assets in place is slightly too large.

The average book to market ratio is related to the curvature in production function as well

as the investment and default option. Without the default option, the market to book ratio

would be lower and closer to the data.
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The most important statistics of this table are book and market leverage. Since one

goal of this paper is to generate a realistic credit spread, it is crucial that the model implied

leverage ratios are compatible with empirical estimates. This is important since credit spreads

are increasing in default risk coming from leverage. Book leverage is defined as the ratio of

the value of outstanding debt relative to the sum of debt and the book value of capital, i.e.

B/(B+K) and market leverage uses a similar definition but replaces the book value of capital

with its market value, i.e., B/(B+V ). Even though book leverage is larger in the model than

in the data, average market leverage is close to empirical estimates for BBB rated firms.

In Table 4, we illustrate firms’ cyclical behavior by means of simple correlations of firm

characteristics with GDP growth. While in our one-factor economy the correlations are, not

surprisingly, a little high, the model broadly qualitatively matches firms’ cyclical behavior

rather well. In line with the data, investment is strongly procyclical. Investment expenditures

raise firms’ needs for external financing, which, given the tax advantage on debt, will come

through a mix of equity and debt issuance. This makes both equity and book leverage

procyclical as well. While firms will also issue equity and additional debt in order to cover

financing shortfalls in downturns, investment opportunities are sufficiently procyclical to be

the dominating effect. On the other hand, market leverage, again in line with the empirical

evidence, is countercyclical in the model. This is because our model almost matches the

volatility of stock returns in the data, as it accounts for time variation in risk premia.

3.3.1 The Cross-Section of Leverage

We now examine the model’s implications for the cross-sectional distribution of leverage across

firms. To this end, we look at the popular regressions used in the empirical capital structure

literature relating corporate leverage to several financial indicators (e.g., Rajan and Zingales

(1995)). Specifically, we estimate the following regression equation in our simulated data set:

Levit = α0 + α1 log(sizeit) + α2Qit + α3
Πit

Kit
,

Table 5 summarizes our findings, which are directly comparable to those in Rajan and

Zingales (1995) and other similar studies. The table confirms the positive relation between

firm size and leverage. An increase in firm size leads to higher levels of corporate leverage.

This positive relation between leverage and firm size is coming from the concavity of the

production function. The decreasing returns to scale assumption implies that large firms
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have more stable cash flows than small firms. Hence, as firms grow they optimally increase

leverage over time. Table 5 also shows that our model is able to reproduce the observed

negative relationships between leverage and either profitability or Q. Since small firms with

volatile cash flows are also highly profitable and growth firms (high Q), the model generates

the empirical observed relationships.

3.4 The Term Structure of Credit Spreads

We now turn to the pricing of corporate bonds in the model. We start by examining the term

structure of credit spreads, and then turn the cross-sectional implications in the next section.

It is well known that the standard corporate bond models of default, such as Merton (1974)

or Leland (1994), fail to explain observed credit spreads given historical default probabilities.

This fact has been first established in Huang and Huang (2003) and is called the credit spread

puzzle. The puzzle is that fairly safe BBB rated firms barely default over a finite time horizon

but at the same time these bonds pay a large compensation for holding default risk in terms

of a credit spread. For instance, the historical default rate of BBB rated firms is around 2%

over a 5 year horizon but the yield of BBB firms relative to AAA rated firms is around 100

basis points. We summarize the empirical evidence in Table 6.

A common approach in the corporate bond pricing literature is to study the corporate

policy of an individual firm at the initial date when the firm issues debt. The reason for this

approach is that in the standard Leland (1994) model firms issue debt only once and thus

in the long run leverage vanishes. In contrast, in our framework firms can rebalance their

outstanding debt every period. Similar to Bhamra, Kuehn, and Strebulaev (2010), we study

credit spreads in the cross section of firms.

To gauge whether our model generates a realistic credit spread, we simulate panels of

firms as explained above. In Table 7, we report average equally-weighted credit spreads and

actual default probabilities for 5 and 10 year debt. For 5 year debt, our model generates a

credit spread of 105 basis points relative to 103 basis points in the data. For 10 year debt,

the model implied credit spread is close to 120 basis points relative to 130 basis points in the

data. At the same time, actual default probabilities are small. Over a five year horizon, on

average 1.49% of firms default and over a 10 year horizon 3.75% of firms. Importantly, the

model implied default rates are smaller than in the data.
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Consequently, our investment based model can generate realistic credit spreads jointly

with default probabilities and market leverage. Three mechanisms drive this result. First,

our model generates investment, financing and most importantly, default policies of firms

that are consistent with the empirical evidence. As we will explore below, this requires a

careful modeling of the costs of investing, as well as of financial transaction costs, such as

equity issuance and debt issuance costs. Second, cross-sectional heterogeneity in asset com-

position and leverage raise the average credit spread because the value of both the investment

and default option are convex functions of the state variables. Third, as default rates are

strongly countercyclical, investors require risk premia on defaultable bonds. Our model with

time-varying macroeconomic risk and recursive preferences generates risk premia and a coun-

tercyclical market price of risk in line with the data, allowing the model to match the term

structure of credit spreads. In the Section 3.6, we analyze the sensitivity of these results to

our modeling assumptions.

To gain a better understanding of the mechanism driving credit spreads, we use the de-

composition provided in Equation (21). Figure 2 displays actual default probabilities, p(n)
i,t ,

as a function of capital (left graphs) and total debt liabilities (right graphs). The two top

graphs show results for τ = 5 year maturity debt and the two bottom graphs for τ = 10 year

maturity debt. For the solid blue line the aggregate Markov chain is one standard deviation

below its mean and for the dashed red line one standard deviation above it. Similarly, Figure

3 displays risk-neutral default probabilities, q(n)
i,t , Figure 4 the value of the recovery rate in

the cause of default, χ(n)
i,t , and Figure 5 credit spreads, s(n)

i,t .

Figures 2 and 3 illustrate that higher capital levels lower default probabilities by increas-

ing collateral. On the other hand, more debt liabilities raise default probabilities, which is

consistent with intuition. Moreover, default probabilities are higher in recessions (blue line)

than in booms (red line) when the drift in productivity is lower and idiosyncratic shocks are

more volatile. Default probabilities also increase over in time booms but decrease over time in

recessions. Figure 5 illustrates that credit spreads fall with capital but rises with debt. More-

over, credit spreads are counter-cyclical and increase over time in booms and recessions. Two

mechanisms drive this result: First, as discussed, default probabilities are countercyclical,

and second, the market price of risk is countercyclical. This is inherent in our specification

of the consumption growth process, namely, volatilities of consumption growth are higher in
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downturns, in line with the empirical evidence in Bansal, Kiku, and Yaron (2007).

3.5 The Cross-Section of Credit Spreads and Default Risk

While Tables 7 shows that our model is quantitatively consistent with the level and the

dynamics of the term structure of credit spreads, our model also has implications for the

cross-sectional determinants of spreads, and similarly, for the cross-sectional determinants of

default probabilities. Tables 8 and 9 summarize these results. These results are related to a

large empirical literature on the determinants of credit spreads and on default prediction and

highlight the role of investment and endogenous asset composition in a model of corporate

bond pricing. We adopt the empirical approach of this line of work by running regressions of

credit spreads and default probabilities on a set of explanatory variables in our simulations.

Specifically, beyond leverage, we use proxies for investment opportunities such as market-to-

book and investment-to-asset ratios as explanatory variables9, as well as size and profitability.

Table 8 reports regression results for credit spreads. The relevant credit spread is the

spread on 5 year corporate bond. Panel A reports results for our benchmark specification.

The first univariate regression of credit spreads on market leverage confirms that in the model,

as expected and in line with the empirical evidence, leverage is an important and significant

determinant of credit spreads. On the other hand, the following regressions suggest that

variables capturing firms’ investment opportunities and behavior carry additional explana-

tory power for spreads beyond leverage. In particular, including market-to-book and the

investment-to-asset ratio in the regressions, results in significant point estimates, and, per-

haps more importantly, increased explanatory power of the regressors as measured by the

R2. This finding is robust to including further variables used in standard capital structure

regressions, namely size and profitability. These variables are significant as well, and not sur-

prisingly, appear with negative coefficients, even controlling for leverage. This suggests that

credit spreads are related to corporations’ investment decisions in a robust way.

On the other hand, the fact that investment proxies enter with a positive sign is more

noteworthy. Broadly, and even controlling for leverage, firms with higher investment oppor-

tunities have higher spreads. Intuitively, firms with a high market-to-book ratio derive a

large fraction of their value from growth options. Our results indicate that asset composition
9We also included asset growth and indicators for distributions as proxies for investment opportunities in

the regressions, with qualitatively similar results.
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therefore matters for corporate bond prices. One way of interpreting this result is to note

a growth option effectively represents represents a levered claim on an asset in place, and

hence is riskier. In our model, this is reflected in the concavity of the production function.

On average, smaller firms with higher growth opportunities will thus have more volatile cash

flows than large firms. Accordingly, firms with high market-to-book correspond to firms with

more growth options and are thus riskier than firms which consist mostly of assets in place,

and this reflected in their credit spreads. On average thus, for the same amount of debt,

growth firms have higher default rates than value firms, and hence higher spreads.

To the extent that credit spreads reflect firms’ asset composition, one would expect that

this link is inherently tied to aggregate macroeconomic conditions. Indeed, aggregate in-

vestment is strongly procyclical, as is market-to-book and related measures of investment

opportunities, while market leverage is countercyclical. Table 4 documents that our model

is consistent with this evidence. Therefore the value and moneyness of growth options is

procyclical, while the value of moneyness of default options is countercyclical. It is there-

fore natural to assume that the determinants of credit spreads are inherently conditional on

macroeconomic conditions. Panels B and C investigate this hypothesis in the context of our

model.

Panel B reports regressions in samples that contained exclusively prolonged expansions,

while panel C reports the corresponding results for samples containing extended recessions.

When economies grow steadily over extended periods of time, investment opportunities abound.

This boosts market-to-book, reflecting growth options getting into the money, which is fol-

lowed by high investment rates. Increasingly volatile cash flows then lead to higher default

probabilities in the future which drive up credit spreads. One would therefore expect the

positive link between proxies for investment opportunities and credit spreads to be particu-

larly pronounced in booms. This intuition is confirmed in panel B which leads to a strong

quantitative prediction of our model. Proxies for investment opportunities are considerably

stronger determinants of credit spreads in long booms than across the cycle. Thus, in good

times, growth options come into the money, increasing implicit leverage of the option and

hence increasing the beta of the firm. Similarly, upon exercise of the growth option, financial

leverage increases due to partial debt financing. This makes the firm riskier, increasing credit

spreads.
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Interestingly, while still positive and significant, the coefficient on leverage in a regressions

is fairly small, implying that the correlation between leverage and credit spreads is fairly

weak. This reflects the inherent endogeneity of growth options and leverage in the model. As

reported in 5 the model, in line with the empirical evidence, generates a negative link between

growth opportunities as measured by market-to-book and leverage, so that growth firms have

low leverage on average. This is particularly so during expansions, when growth firms are

risky and therefore endogenously choose low leverage. The small coefficient above therefore

has a natural interpretation: Asset risk and leverage risk are inversely related in our model,

so that the unconditional link is weak. Unconditional regressions without controlling for the

risk of assets are therefore unlikely to be very informative. Additionally, the negative link

between size and spreads is more pronounced in booms, reflecting higher riskiness of smaller

firms, and between profitability and spreads less so, reflecting less sensitivity of spreads to

external financing.

These effects are reversed in samples containing long recessions. In such samples, proxies

for investment opportunities predict credit spreads negatively, conditional on leverage. This

effect derives from the interplay between investment and default options. In bad times, assets

in place that come with high leverage rather than growth options are risky, reflecting operating

leverage. This makes it more likely for firms which derive most of their value from assets in

place to default in bad times. On the other hand, the default option makes defaulting in

bad times more valuable. Quantitatively, these effects are exacerbated due our assumption

of irreversible investment10. The negative link between profitability and spreads is now more

pronounced, as an additional dollar of internal funds is worth more in bad times. This is

in contrast to the link between size and spreads, which is less pronounced, reflecting fewer

investment opportunities for smaller growth firms, and hence more stable cash flows.

Overall therefore the effect of investment options on credit spreads is thus conditional on

macroeconomic conditions, positive in good times, and negative in bad times. Unconditionally,

in our calibration, the positive effect of investment proxies on spreads dominates. These results

can be understood through the endogenous interaction of asset risk and leverage risk, given

macroeconomic conditions. In good times, growth options come in the money, rendering the

cash flows of growth firms volatile, and more correlated with aggregate growth and hence
10We also solved versions of the model with disinvestment options. Qualitatively, the significance of the

results prevails, as long as there disinvestment is costlier then investment.
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risky. Optimally, such firms choose lower leverage. On the other hand, large firms have fairly

stable cash flows, and therefore choose higher leverage. The resulting effect on spreads is

hence weak. In downturns, growth firms do not invest much and have low leverage, and hence

fairly stable cash flows, exhibiting low risk. On the other hand, large firms would like to

disinvest, but are prevented from doing so, and moreover, have high leverage, and cannot

sell assets to delever. This makes the latter firms very risky, which will be reflected in high

spreads. More broadly, a similar intuition applies to stock returns, and would suggest that

part of the value premium is driven by financial leverage.

Given that credit spreads reflect default probabilities, the previous results suggest that

investment proxies should be useful in predicting default rates. We confirm this intuition

in Table 9, where we report logit regressions of default probabilities on a set of explanatory

variables. This relates to a long empirical literature on default prediction. Consistent with

the results on credit spread determinants, our model also predicts that proxies for investment

opportunities are significant determinants of default probabilities, even when controlling for

leverage. The intuition from above directly applies: Investment opportunities signal future

financing needs, which will be reflected in future default probabilities. Since investment

opportunities depend on macroeconomic conditions, this link will equally be conditional on

these states. In particular, in good times firms deriving a large fraction of their value from

growth opportunities will be particularly exposed to aggregate risk, exacerbating the effect of

growth options on risk. Similarly, the reverse effect holds in bad times.

3.6 Sensitivity Analysis

So far, we have documented that our model generates a term structure of credit spreads in

line with the empirical evidence, and have provided an analysis of the cross-section of credit

spreads in our investment-based setup. While, as demonstrated by several authors (Hack-

barth, Miao, and Morellec (2006), Chen, Collin-Dufresne, and Goldstein (2009), Bhamra,

Kuehn, and Strebulaev (2010), Chen (2010)), substantial credit risk premia as compensation

for macroeconomic conditions go a long way towards explaining this ”credit spread puzzle”

in endowment economics, production economies place considerably tighter restrictions on this

link, as we now explore. In particular, our results suggest that our cross-sectional implications

and the term structure of credit spreads are closely linked.
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3.6.1 Term Structure

Table 7 provides some sensitivity analysis concerning the model implied term structure of

credit spreads. More specifically, it reports the term structure of default probabilities and

credit spreads in our benchmark model (model I) along with three related specifications.

Model II removes any financial transactions costs by setting λ0, λ1, φ0 and φ1 to zero. In

other words, issuing equity and debt are costless. On the other hand, model III removes the

investment irreversibility constraint, that is, making investment completely reversible, but

retains financial transaction costs. Model IV, finally, removes both investment irreversibility

and transaction costs.

Table 7 shows that the results on credit spreads and default probabilities are quite sensitive

to the underlying model of investment and financing. Removing financial transactions costs,

although small in magnitude, reduces the 5 year spread by 35 basis points. Qualitatively,

this result is intuitive: removing equity issuance costs makes it cheaper for firms to roll over

exiting debt by issuing new equity and removing debt adjustment costs makes it cheaper to

delever. One can show, that fixed costs associated with financial transactions are crucial for

this result. However, the magnitudes involved suggest that a careful modeling of financial

costs is essential. Second, investment adjustment costs matter as well. Model III shows that

removing any obstructions to downward adjustment of the capital stock decrease the 5 year

spread by 45 basis points. Qualitatively, this result appears intuitive again. When investment

is reversible firms can delever very effectively by selling off their capita stock, which will

naturally reduce default risk. Finally, model IV shows that removing both disinvestment

and financing obstructions reduce the spread by another 10 basis points. Quantitatively,

these result suggest that disinvestment obstructions have stronger effects on spreads than

refinancing obstructions.

Intuitively, one would guess that removing any disinvestment and refinancing obstructions

would drive credit spreads essentially down to zero. However, removing such obstructions

affects corporate policies in two ways, both reflected in spreads, and that work in opposite

directions. First, anticipating that they will be able to delever quickly, firms will lever up more

in expansions, driving up average leverage ratios, and hence, all else equal, default probabilities

and credit spreads. Indeed, as reported in the table, leverage ratios are increasing through

model specifications. On the other hand, this makes leverage more volatile, and debt issuance
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more procyclical. This in turn reduces the countercyclicality of market leverage and default

probabilities. Such effect will work to reduce credit spreads through the risk premium channel:

default rates become less correlated with consumption growth and the risk premium falls.

In sum, these results suggest that in a production economy two ingredients are necessary

to rationalize the empirical term structure of credit spreads, namely both financial and real

frictions. Financial frictions involve equity and debt issuance and adjustment costs, and

real frictions involve frictions to the downward adjustment of the capital stock. We will now

present evidence that these frictions are also important to generate the cross-sectional patterns

in credit spreads documented above.

3.6.2 Cross Section

In Table 10 we report cross-sectional credit spread regressions as documented above, but now

in models I, II, III and IV. While leverage unconditionally enters positively and significantly,

the interesting result is that in model II the coefficient on book-to-market becomes borderline

insignificant, while in models III and IV it is indistinguishable from zero. Similarly, the

explanatory power of leverage is increasing through models, while the additional explanatory

power of book-to-market vanishes. In other words, in a model without financial transaction

costs and real frictions, leverage becomes a sufficient statistic for credit spreads and proxies

for investment opportunities do not add any explanatory power. The intuition for this result

is quite simple. In the absence of frictions, firms will endogenously adjust leverage just to

the point that asset risk is maximally offset by leverage risk. In other words, a firm with

high asset risk will ’target’ a leverage ratio so low that the asset composition will no longer

affect credit spreads. Hence, such a ’target leverage ratio’ subsumes all the information

about credit spreads contained in asset composition, or vice versa, asset composition will

subsume all the information that is in leverage. As Table 10 documents, this changes in the

presence of frictions. Frictions prevent firms from adjusting to target leverage, so that asset

risk and leverage risk are not completely aligned, and either of them will carry predictive

power for overall firm risk, and hence credit spreads. As the table indicates, the predictive

power is increasing in the degree of frictions, or alternatively, in the degree of deviations from

target leverage. As our earlier discussion suggests, in a production economy, matching the

term structure of credit spreads dictates the magnitude of these frictions, and hence puts
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restrictions on the cross-section of spreads as well.

These results suggest that deviations from target leverage are reflected in credit spreads.

Several authors have pointed out the importance of financial adjustment costs for capital

structure dynamics (Leary and Roberts (2005), Strebulaev (2007)). We exploit the informa-

tion in credit spreads to calibrate the magnitude of these costs. Moreover, our results suggest

that in order to match credit spreads the magnitude of real adjustment costs needs to be

sharply countercyclical. This in turn implies that deviations from target leverage should be

particularly pronounced in downturns. In other words, we would expect that adjustment to

target leverage should be slower in recessions than in expansions. We quantify this intu-

ition by means of target adjustment regression, following Flannery and Rangan (2006). More

specifically, we estimate

Levi,t+1 = (λβ)Xi,t + (1− λ)Levi,t + εt+1

where λ reflects the speed of adjustment to target leverage. Following Flannery and Rangan

(2006) we parameterize target leverage as a function of a number of firm characteristics,

summarized in a vector Xi,t. In our case, we include Tobin’s Q, size and profitability. The

results are reported in table 11. We focus on the dynamics in expansions relative to downturns.

As expected, the regression yields a higher coefficient on lagged leverage in recessions, that

is, a lower λ. Accordingly, in our model the speed of adjustment is lower in recessions that

in expansions. This has a natural interpretation in this context, given by the asymmetry of

the adjustment cost, namely infinite downward adjustment costs. However, these costs were

dictated by the term structure of credit spreads, suggesting that slow adjustment to target in

bad times and a high credit spreads are two sides of the same coin.

3.7 Aggregate Investment and Credit Spreads

A growing body of empirical work indicates that firms’ real investment decisions are af-

fected by the corporate bond market. In particular, there is now substantial evidence that

credit spreads predict aggregate investment growth (Lettau and Ludvigson (2002)). Simi-

larly, Philippon (2009) shows that a bond market based Q explains most of the variation in

aggregate investments whereas an equity market based Q fails.

In this section, we aim to replicate the first finding with our model. In Table 12, we regress
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next quarter’s aggregate investment growth, ∆It+1, on the aggregate credit spread, st,

∆It+1 = α+ βst + εt+1 ε ∼ N (0, σ)

In the data, we use quarterly real private fixed investments and as a measure of the aggregate

default spread we use the difference between the yield of seasoned BBB and AAA rated firms

as reported by Moody’s. The data is at quarterly frequency and covers the period 1955.Q1

to 2009.Q2. We run the same regression in the data and on simulated data. In the model,

aggregate investment is the sum of firm level investment decisions and the aggregate credit

spread is the average equally-weighted credit spread across firms with 10 year maturity.

In Figure 1 we plot both time series. The negative correlation between the credit market

and investments is apparent, meaning that more costly access to debt markets causes a reduc-

tion in real investments. Specifically, the first regression of Table 12 shows that a one percent

increase in the annualized credit spread leads to reduction of 1.7% in investments with an R2

of 7.7%. This estimated sensitivity is both statistically and economically significant. Using

simulated panels of firms, our model can reproduce the sensitivity of investments to the costs

of borrowing. The second regression of Table 12 shows that aggregate investments falls by

1.5% after a one percent increase in the aggregate credit spread which is close to the empirical

estimate.

A common approach in corporate finance as well as macroeconomic models is to ignore the

pricing of aggregate risk. Typically, in these models quantity dynamics are largely unaffected

by movements in risk premia, implying a separation of quantity and prices as in Tallarini

(2000). To demonstrate that such a separation breaks down in the presence of financing fric-

tions, we alternatively price debt when the agent is risk neutral. In this case, the expectations

are not taken under the risk neutral but the actual measure and the bond pricing relation

(19) simplifies to

B
(n)
i,t =

(
1 + c̃

(n)
i,t

)
B

(n)
i,t β

nEt
[
(1− I{Vi,t+n=0})

]
+ βnEt

[
Wi,t+nI{Vi,t+n=0}

]
The risk neutral coupon c̃ only reflects actual default probabilities but no compensation for

bearing default risk. The risk neutral credit spread is the difference between the risk neutral

coupon and the risk-free rate with identical maturities.

The third regression of Table 12 shows that the risk neutral credit spread looses its ability

to forecast future investment growth. This finding implies that it is the risk component in
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credit spreads which drives most of the time variation in aggregate investment growth. We

thus highlight the importance of accounting for macroeconomic risks in jointly explaining

corporate financing and investment decisions.

4 Conclusion

Recent years have seen considerable research on credit risk and corporate bond pricing. In

spite of these efforts, the empirical success of the leading class of corporate bond pricing

models, namely structural models of default, is rather limited. In this paper we argue and

provide quantitative evidence that the empirical performance of structural models could be

significantly improved by accounting for firms’ investment options. While state-of-the-art

structural bond pricing models take the evolution of firms’ assets as exogenously given, recent

empirical evidence suggests tight links between real investment and credit spreads.

Using a tractable model of firms’ investment and financing decisions we show that the link

between leverage and credit spreads is significantly weakened in the presence of investment

options and that variables proxying for such investment options gain explanatory power for

credit spreads. Furthermore, we show that the link between leverage and credit spreads is

likely conditional on investment options and macroeconomic conditions and risk. Intuitively,

while low-leverage growth firms are risky in expansions because of the call feature of their

growth options, high-leverage value firms can reduce their risk given the put features of their

disinvestment options in busts. This leads to a conditionally negative relationship between

leverage and the risk premia embedded in their spreads. Accordingly, unconditional links

between spreads and leverage are quite uninformative. This shows how accounting for the

endogeneity of firms’ assets and their relationship to aggregate risk is crucial for understanding

credit spreads.

We document these patterns in a dynamic model of firm investment and financing with

macroeconomic risk which is quantitatively consistent with the historical evidence on credit

spreads. In particular, the model delivers a realistic term structure of credit spreads with a

118 bp spread for 10 year bonds from BBB firms, while keeping default rates realistically low.

On the other hand, the model rationalizes the recent US experience of clustered defaults.

The quantitative success of the model is mostly driven by two features of our model.

First, we use a flexible setup with Epstein-Zin preferences in conjunction with time varying
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macroeconomic risk in consumption and productivity, which generates sizeable risk premia

in credit spreads. Second, we carefully model financial transactions costs and an asymmetry

between firms’ growth and disinvestment options at the firm level, which makes it harder to

sell capital than to buy. Taken together, these features make it particularly costly to disinvest

in bad times when macroeconomic risk is high, leading to countercyclical default clustering.

Investors with Epstein-Zin preferences want to be compensated for bearing these risks. This

allows our model to generate a high, volatile and sharply countercyclical credit spread, just

as in the data.

From a quantitative perspective, we show that rationalizing the term structure of credit

spreads in a production economy imposes tight restrictions on modeling. We document how

to obtain a realistic term structure of credit spreads in a production economy and point to

the importance of simultaneously accounting for real and financial frictions when explaining

corporate policies. In the presence of these frictions, firms’ leverage will deviate from tar-

get and asset composition becomes an important determinant of the cross-sections of credit

spreads and default risk.

Our results thus suggest that understanding firm-level credit spreads requires account-

ing for firms’ investment options as well as aggregate risk factors, variables that have been

largely ignored in the structural bond pricing literature. In this paper we take a step towards

an integrated framework linking firms’ investment and financing decisions, macroeconomic

conditions and risk to the pricing of corporate bonds.
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Appendix

A Stationary Problem

To save on notation, we drop the index i and ignore the default option in the following.

Because of the homogeneity of the value function and the linearity of the constraints, we can

rescale the value function by Xt

V (Kt, Lt, Xt) = Dt + Et[Mt,t+1V (Kt+1, Lt+1, Xt+1)]

V

(
Kt

Xt
,
Lt
Xt
, 1
)

=
Dt

Xt
+ Et

[
Mt,t+1

Xt+1

Xt
V

(
Kt+1

Xt+1
,
Lt+1

Xt+1
, 1
)]

= dt + βθEt

[
e−γ(g+µc(st)+σc(st)ηt+1)

(
Z(st+1) + 1

Z(st)

)−(1−θ)

× eg+µx(st)+σx(st)εt+1V

(
Kt+1

Xt+1
,
Lt+1

Xt+1
, 1
)]

= dt + βθe−γ(g+µc(st))+
γ2

2 σc(st)2Et

[(
Z(st+1) + 1

Z(st)

)−(1−θ)

× eg+µx(st)+σx(st)εt+1V

(
Kt+1

Xt+1
,
Lt+1

Xt+1
, 1
)]

We define the following stationary variables

kt+1 =
Kt+1

Xt
bt+1 =

bt+1

Xt
lt+1 =

Lt+1

Xt
dt =

Dt

Xt
et =

Et
Xt

it =
It
Xt

The pricing kernel is given by

mt,t+1 = βθe−γ(g+µc(st))+
γ2

2 σc(st)2
(
Z(st+1) + 1

Z(st)

)−(1−θ)

and the stationary value function v(kt, lt, st,∆xt) solves

v(kt, lt, st,∆xt) = dt + Et
[
mt,t+1e

∆xt+1v(kt+1, lt+1, st+1,∆xt+1)
]

where

∆xt+1 = g + µx(st) + σx(st)εt+1

The stationary value function is four dimensional because the Markov state st matters for the

pricing kernel and ∆xt for detrending dividends as shown below.
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The linear constraints in the model can now be expressed in terms of stationary variables

dt = et − Λ(et)

et = πt + τδe−∆xtkt − it + bt+1 − e−∆xt lt − Φ(∆lt+1)

πt = (1− τ)
[(
e−∆xt

)α
kαt − e−∆xtktf

]
Λ(et) = (λ0 + λ1|et|)I{et<0}

Φ(∆lt+1) = φ0I{∆lt+1 6=0} + φ1|∆lt+1|

∆lt+1 = lt+1 − e−∆xt lt

kt+1 = (1− δ)e−∆xtkt + it

The stationary total debt liabilities are

lt = (1 + (1− τ)ct)bt

implying that

ct+1 =
1

1− τ

(
lt+1

bt+1
− 1
)

We can rewrite the bond pricing equation (15) in terms of stationary variables by detrending

it with Xt such that

bt+1 =
Et
[
mt,t+1

(
1

1−τ lt+1I{vt+1>0} + e∆xt+1rt+1I{vt+1=0}

)]
1 + τ

1−τ
(
Et
[
mt,t+1I{vt+1>0}

])
where the stationary recovery value in default is

rt =
Rt
Xt

= (1− ξ)
[
πt + τδe−∆xtkt + (1− δ)e−∆xtkt

]
B Numerical Solution

We solve the model numerically with value function iteration. We create a grid for capital and

debt liabilities, each with 50 points. The choice vector for tomorrow’s capital level and debt

liabilities has 250 elements for each variable. We use two dimensional linear interpolation to

evaluate the value function and bond pricing equation off grid points. The aggregate Markov

chain has 5 states and changes in the technology shock are approximated with 10 elements.
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Figure 1: Investment Growth and Default Risk
This figure displays investment growth and the default spread for the US economy. We use
quarterly real private fixed investments. The default spread is the difference between Moody’s
BBB and AAA. The data spans the period 1955.Q1-2009.Q2.
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Figure 2: Actual Default Probabilities
This figure displays actual default probabilities as a function of capital (left graphs) and total
debt liabilities (right graphs). The two top graphs show results for 5 year maturity debt
and the two bottom graphs for 10 year maturity debt. For the solid blue line the aggregate
Markov chain is one standard deviation below its mean and for the dashed red line one
standard deviation above.
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Figure 3: Risk-Neutral Default Probabilities
This figure displays risk-neutral default probabilities as a function of capital (left graphs) and
total debt liabilities (right graphs). The two top graphs show results for 5 year maturity debt
and the two bottom graphs for 10 year maturity debt. For the solid blue line the aggregate
Markov chain is one standard deviation below its mean and for the dashed red line one
standard deviation above.
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Figure 4: Recovery Rate Value
This figure displays the value of the recovery rate as a function of capital (left graphs) and
total debt liabilities (right graphs). The two top graphs show results for 5 year maturity debt
and the two bottom graphs for 10 year maturity debt. For the solid blue line the aggregate
Markov chain is one standard deviation below its mean and for the dashed red line one
standard deviation above.
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Figure 5: Credit Spreads
This figure displays credit spreads as a function of capital (left graphs) and total debt liabilities
(right graphs). The two top graphs show results for 5 year maturity debt and the two bottom
graphs for 10 year maturity debt. For the solid blue line the aggregate Markov chain is one
standard deviation below its mean and for the dashed red line one standard deviation above.
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Table 1: Calibration
This tables summarizes our calibration used to solve and simulate our model. All values are
quarterly.

Description Parameter Value
Rate of time preference β 0.995
Relative risk aversion γ 10
Elasticity of intertemporal substitution ψ 2
Growth rate of consumption g 0.005
Persistence of Markov chain ρ 0.95
Capital share α 0.65
Depreciation of capital δ 0.03
Proportional costs of production f 0.02
Corporate tax rate τ 0.15
Fixed equity issuance costs λ0 0.01
Proportional equity issuance costs λ1 0.02
Fixed debt issuance costs φ0 0.01
Proportional debt issuance costs φ1 0.02
Bankruptcy costs ξ 0.2
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Table 2: Aggregate Moments
In this table, we report unconditional moments generated by the consumption process and
the firm model. We simulate 1,000 economies for 100 years each consisting of 3,000 firms.
This table shows cross simulation averages where E[∆c] denotes mean consumption growth,
σ(∆c) consumption growth volatility, AC1(∆c) the first-order autocorrelation of consumption
growth, E[rf ] mean risk-free rate, σ(rf ) risk-free rate volatility, E[rm] average market rate,
and σ(rm) stock market volatility. All moments are annualized. The data are from Bansal,
Kiku, and Yaron (2007).

Moment Unit Data Model
E[∆c] % 1.96 1.96
σ(∆c) % 2.21 2.08
AC1(∆c) 0.44 0.28
E[rf ] % 0.76 1.10
σ(rf ) % 1.12 0.52
E[rm] % 8.27 6.84
σ(rm) % 20.10 17.37
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Table 3: Unconditional Firm-Level Moments
In this table, we report unconditional moments generated by the model. We simulate 1,000
economies for 100 years each consisting of 3,000 firms. This table shows cross simulation
averages. The data are from Hennessy and Whited (2007), Davydenko and Strebulaev (2007)
and Covas and Den Haan (2011).

Moment Data Model
Avg. annual investment to asset ratio 0.130 0.093
Volatility of investment to asset ration 0.006 0.028
Frequency of equity issuances 0.099 0.127
Avg. new equity to asset ratio 0.042 0.133
Avg. market to book ratio 1.493 1.845
Volatility of market to book ratio 0.230 0.278
Book leverage 0.587 0.614
Market leverage 0.367 0.352
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Table 4: Firm Behavior over the Business Cycle
This table reports correlation coefficients of key macro and financial variables in the model.
We simulate 1,000 economies for 100 years each consisting of 3,000 firms. For flow variables we
use correlations between growth rates. For leverage we report correlation with end of period
ratios. Empirical sources are the Bureau of Economic Analysis and the Board of Governors
of the Federal Reserve.

Moment Data Model
Investment 0.81 0.87
Equity Issuance 0.10 0.18
Market Leverage -0.11 -0.69
Book Leverage 0.07 0.21
Credit Spread -0.33 -0.54
Default Rate -0.36 -0.83
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Table 5: Cross-Sectional Leverage Regressions
This table reports results from Fama-Macbeth cross-sectional regressions of leverage measures
on various measures of size, Tobin’s Q, and profitability. The leverage measure in the upper
panel is book leverage, and the lower panel reports analogous results for market leverage.
Our size measures are (log) sales and (log) assets, respectively. For this exercise, we simulate
1,000 economies for 100 years each consisting of 3,000 firms. This table shows cross simulation
averages.

Unconditional Boom Recession
Size 1.47 1.65 1.33

(2.29) (2.38) (2.23)
Q -0.95 -1.03 -0.82

(-2.17) (-2.25) (-2.22)
Profitability -0.66 -0.61 -0.76

(-2.28)) (-2.19) (-2.29)
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Table 6: Empirical Default Rates and Credit Spreads
Panel A reports average cumulative issuer-weighted annualized default rates for BBB debt
over 5, 10, and 15 year horizons for US firms as reported by Cantor, Emery, Ou, and Tennant
(2008). The first row shows mean historical default rates for the period 1920–2007 and the
second row for 1970–2007. Panel B reports the difference between average spreads for BBB
and AAA corporate debt, sorted by maturity. Data from Duffee (1998) are for bonds with
no option-like features, taken from the Fixed Income Dataset, University of Houston, for the
period Jan 1973 to March 1995, where maturities from 2 to 7 years are short, 7 to 15 are
medium, and 15 to 30 are long. For Huang and Huang (2003), short denotes a maturity of 4
years and medium of 10 years. The data used in David (2008) are taken from Moody’s and
medium denotes a maturity of 10 years. For Davydenko and Strebulaev (2007), the data are
taken from the National Association of Insurance Companies; short denotes a maturity from
1 to 7 years, medium 7 to 15 years, and long 15 to 30 years.

Panel A: Historical BBB Default Probabilities
Rating Unit Year 5 Year 10 Year 15
1920 – 2007 % 3.142 7.061 10.444
1970 – 2007 % 1.835 4.353 7.601

Panel B: BBB/AAA Spreads
Rating Unit Short Medium Long
Duffee (1998) b.p. 75 70 105
Huang and Huang (2003) b.p. 103 131 –
David (2008) b.p – 96 –
Davydenko and Strebulaev (2007) b.p 77 72 82
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Table 7: Term Structure of Credit Spreads
In this table, we report average 5 and 10 year credit spreads and the corresponding actual
default probabilities, in different model specifications. Model I refers to the benchmark model,
model II features no financial adjustment costs, model III features completely irreversible
investment, and model IV features neither financial nor capital adjustment costs (reversible
investment). For this exercise, we simulate 1,000 economies for 100 years each consisting of
3,000 firms. This table shows cross simulation averages.

Moment Unit Data Model I Model II Model III Model IV
5 year credit spread b.p. 103.00 105.13 71.37 59.25 49.65
5 year default probability % 1.83 1.49 1.06 0.94 0.83
10 year credit spread b.p. 130.00 118.62 85.14 73.51 58.29
10 year default probability % 4.35 3.75 2.81 2.46 2.17
Leverage 0.35 0.38 0.41 0.43
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Table 8: Cross Section of Credit Spreads
The table reports regressions of credit spreads on a set of explanatory variables, in model
simulations. The dependent variable is the 5-year credit spread. The regression results are
obtained from simulations of 1,000 economies for 50 years each consisting of 3,000 firms.
Panel A reports regressions from unconditional simulations, including booms and recessions
as generated by our shock specification. In panel B we consider economies that are in long-
lasting booms, in the sense that they are exposed to above average shock realizations. In
panel C we consider economies that are in long-lasting recessions, in the sense that they are
exposed to below average shock realizations. t-statistics are reported in parentheses.

Panel A: Unconditional
Leverage 1.39 1.66 1.85 1.79 1.88

(2.21) (2.13) (2.26) (2.33) (2.31)
Market-to-Book 0.59 0.36

(2.11) (2.15)
Investment-to-Asset 1.25 1.12

(2.09) (2.18 )
Size -1.12 -1.08

(-2.29) (-2.34 )
Profitability -0.41 -0.27

(-2.15 ) (-2.12)
R2 0.54 0.61 0.60 0.64 0.64

Panel B: Booms
Leverage 0.88 1.42 1.71 1.88 1.43

(2.10) (2.24) (2.17) (2.19) (2.27)
Market-to-Book 0.73 0.61

(2.22) (2.20 )
Investment-to-Asset 1.38 1.21

(2.19) (2.14)
Size -1.42 -1.35

(-2.26) (-2.33)
Profitability -0.29 -0.23

(-2.08 ) (-2.18)
R2 0.53 0.62 0.61 0.66 0.65

Panel C: Recessions
Leverage 1.91 2.02 2.11 1.96 2.07

(2.32) (2.20) (2.28) (2.31) (2.34)
Market-to-Book -0.19 -0.14

(-2.13) (-2.07 )
Investment-to-Asset -0.50 -0.36

(-2.17) (-2.08)
Size -0.98 - 0.93

(-2.25) (-2.16)
Profitability -0.49 -0.43

(-2.24 ) (-2.18)
R2 0.56 0.59 0.59 0.61 0.62
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Table 9: Cross Section of Default Risk
The table reports logit regressions of default probabilities on a set of explanatory variables, in
model simulations. The dependent variable is the 1-year default probability. The regression
results are obtained from simulations of 1,000 economies for 50 years each consisting of 3,000
firms. Panel A reports regressions from unconditional simulations, including booms and
recessions as generated by our shock specification. In panel B we consider economies that are
in long-lasting booms, in the sense that they are exposed to above average shock realizations.
In panel C we consider economies that are in long-lasting recessions, in the sense that they
are exposed to below average shock realizations. t-statistics are reported in parentheses.

Panel A: Unconditional
Leverage 2.13 2. 30 2.44 2.17 2.22

(2.10) (2.21) (2.15) (2.27) (2.23)
Market-to-Book 0.87 0.72

(2.05) (2.11 )
Investment-to-Asset 1.68 1.46

(2.14) (2.09 )
Size -1.51 -1.43

(-2.28)) (-2.25)
Profitability -0.77 -0.53

(-2.17 ) (-2.12)
R2 0.52 0.60 0.62 0.63 0.62

Panel B: Booms
Leverage 1.37 1.94 2.26 2.31 2.09

(2.24) (2.18) (2.31) (2.25) (2.17)
Market-to-Book 1.14 0.92

(2.20) (2.16 )
Investment-to-Asset 1.81 1.58

(2.31) (2.28 )
Size -1.75 -1.63

(-2.36) (-2.32)
Profitability -0.56 -0.49

(-2.11) (-2.19)
R2 0.50 0.59 0.59 0.63 0.62

Panel C: Recessions
Leverage 3.91 4.22 4.37 4.14 4.20

(2.42) (2.35) (2.40) (2.32) (2.36)
Q -0.44 -0.37

(-2.03) (-2.00 )
Investment-to-Asset -0.94 -0.85

(-2.10) (-2.13)
Size -1.43 -1.26

(-2.19) (-2.15 )
Profitability -0.83 -0.73

(-2.28 ) (-2.25)
R2 0.55 0.57 0.57 0.59 0.59
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Table 10: Frictions and the Cross-Section of Credit Spreads
The table reports credit spread regressions in model simulations, in different model specifi-
cations. Model I refers to the benchmark model, model II features no financial adjustment
costs, model III features completely irreversible investment, and model IV features neither
financial nor capital adjustment costs (reversible investment). The dependent variable is the
5-year credit spread. The regression results are obtained from simulations of 1,000 economies
for 50 years each consisting of 3,000 firms. t-statistics are reported in parentheses.

Model I Model II Model III Model IV
Leverage 1.39 1.66 1.64 1.57 1.53 1.88 1.59 1.74

(2.21) (2.13) (2.24) (2.20 ) (2.33) (2.26) (2.42) (2.31)
Book-to-Market 0.59 0.63 0.71 0.65

(2.11) (1.91) (1.67) (1.55)
R2 0.54 0.61 0.56 0.60 0.60 0.60 0.62 0.62
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Table 11: Target Adjustment Regressions
The table reports results of Fama-Macbeth target adjustment regressions of leverage on lagged
leverage and explanatory variables. Following Flannery and Rangan (2005), the regressions
are of the form

Levi,t+1 = (λβ)Xi,t + (1− λ)Levi,t + εt+1

The regression results are obtained from simulations of 1,000 economies for 100 years each
consisting of 3,000 firms. Panel A reports regressions from economies that are in long-lasting
booms. In panel B we consider economies that are in long-lasting recessions. t-statistics are
reported in parentheses.

Panel A: Expansion
Leverage Q Size Profitability
0.78 -0.08 0.03 -0.13
(2.33 ) (-2.15 ) (2.24) (-2.18 )

Panel B: Recession
Leverage Q Size Profitability
0.91 -0.04 0.01 -0.06
( 2.39 ) (-2.26 ) (2.22) (-2.30 )
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Table 12: Aggregate Investment and Credit Spreads
In this table, we regress aggregate investment growth, ∆It+1, on the aggregate credit spread,
st,

∆It+1 = α+ βst + εt+1 ε ∼ N (0, σ)

In the data, we use quarterly real private fixed investments and the aggregate credit spread is
the difference between Moody’s BBB and AAA. The data is at quarterly frequency and covers
the period 1955.Q1 to 2009.Q2. In the model, we simulate 1,000 economies for 100 years each
consisting of 3,000 firms. We run the same regression in the data and on simulated data. The
risk neutral credit spread is the difference between the yield of corporate debt priced under
the actual probability measure and the risk-free rate. We report t-statistics in parentheses
which are based on Newey-West standard errors with 4 lags.

α β R2

Data 0.024 -1.674 0.077
(3.941) (-2.446)

Model 0.067 -1.486 0.058
(4.518) (3.128)

Risk-neutral credit spread 0.097 -0.184 0.008
(3.824) (1.429)
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