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Abstract

I solve the life-cycle portfolio allocation problem of a disappointment averse (DA)
agent with labor income risk. DA preferences overweight disappointing outcomes and are
consistent with behavior highlighted by the Allais paradox. I show that unlike constant
relative risk aversion (CRRA) investors, DA investors drastically cut their allocation to
stocks when they retire. This result is consistent with empirical evidence on portfolio
shares and with the allocation rules of target-date retirement funds. I also show that
sufficiently disappointment averse agents abstain from stocks after retirement, which is
consistent with the observed low rates of stock market participation among retirees. I
further show that when crashes are possible, agents with low levels of wealth invest little
(or nothing) in the stock market.
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1 Introduction

The aversion to risky assets such as stocks affects the asset income available to the elderly
and their ability to support themselves (Hurd (2002)). A recent survey documents that the
asset income for those aged 65 and above was less than 13% of their total income.1 The low
asset income reflects the lower stock market participation rates. The fraction of households
participating in the stock market decreases from the highs of 60% (for ages 45 to 54) to about
40% (for ages 65 to 74) around retirement.2 The proportion of financial assets invested in
equity drops by about half between the ages of 60 to 70.3 Studies using proprietary 401(K)
data also find that the stock share of the portfolio drops in old age.4 Life-cycle or target-date
funds also suggest a decline in asset holdings around retirement. They are one of the mandated
default investment options5 in retirement accounts. They exhibit increasing conservativeness
by reducing the risky asset holdings6 around retirement (Figure 1.1). These funds represented
holdings of $256 billion as of 2009.7

Despite the evidence in the data and the advice of financial planners, the decline in risky
asset holdings around retirement is puzzling from the perspective of a standard life-cycle
model with constant relative risk aversion (CRRA) or Epstein and Zin (EZ) preferences.
The theoretical models based on CRRA preferences and idiosyncratic non-tradable labor in-
come generate post-retirement portfolio shares in stocks close to that before the retirement
(Cocco, Gomes, and Maenhout (2005)). The uncertainty in human capital decreases as the
agent approaches retirement and reduces to a sure non-tradable bond (the pension income) at
retirement. The drop in uncertainty balanced by the drop in the size of the human capital sets
the optimal risky investment close to that before the retirement. The presence of correlation
between labor income and risky returns, however, creates an even more puzzling outcome. The
positive correlation between labor income and stock market returns implies that the human
capital is more stock-like before than after retirement.8 Thus agents should optimally invest
more in the stock market after they retire, contrary to the empirical evidence.

I use disappointment aversion (DA) preferences to explain the puzzling portfolio allocations
around retirement and in old age. DA preferences, proposed by Gul (1991), incorporate
expected utility as a special case and are consistent with Allais paradox-type non-expected

1See Purcell (2009). Asset income is primarily interest and dividends but also includes rents and royalties.
2See Bucks, Kennickell, Mach, and Moore (2009).
3See Ameriks and Zeldes (2002) for estimates based on the Survey of Consumer Finances, and Guiso,

Haliassos, and Jappelli (2002) for international evidence.
4Agnew, Balduzzi, and Sunden (2003) and Holden, VanDerhei, and Quick (2000).
5Department of Labor website lists the default investment alternatives.
6The stock allocation drops by almost 1.5% per year after age 40, and accelerates to 2% per year at age 60

and 4% at age 65. These calculations are based on asset allocations for vanguard target-date funds in Viceira
(2009).

7Investment Company Institute 2010 Fact Book (http://www.icifactbook.org/).
8See Gomes and Michaelides (2005) for an analysis based on Epstein-Zin preferences.
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Figure 1.1: The asset allocation is based on data for the Vanguard target date fund presented
in Table 2a in Viceira (2009).

utility behavior. DA preferences are a single-parameter extension of expected utility theory.
To understand why the Allais paradox is related to the decline in risky asset holdings, consider
the following example adapted from Gul (1991). Agents are first offered a choice between
Lottery 1A, which pays a guaranteed $200, and Lottery 1B which offers an 80% chance of
winning $300 and a 20% chance of winning $0. When faced with this choice, most people
prefer Lottery 1A over Lottery 1B. Agents are then offered a second choice between Lottery
2A, a 50% chance of winning $200 and a 50% chance of winning $0, and Lottery 2B, a 40%
chance of winning $300 and a 60% chance of winning $0. When faced with this choice, most
people prefer Lottery 2B. Formally,

Choice 1 ⇒ u($200) > 0.8u($300) + 0.2u($0) (1.1)

Choice 2 ⇒ 0.5u($200) + 0.5u($0) < 0.4u($300) + 0.6u($0) (1.2)

If agents’ preferences are from the expected utility class, choosing Lottery 1A over Lottery
1B is inconsistent with choosing Lottery 2B over Lottery 2A. These choices imply violation
of the independence axiom.9 The choices reflect an affinity toward a sure outcome if it is one

9The independence axiom states that if an agent is indifferent between lottery A and lottery B, then the
agent also is indifferent between a convex combination of A and C and the same combination of B and C;
that is if, A ∼ B, then αA + (1 − α)C ∼ αB + (1 − α)C ∀ α ∈ [0, 1]. The same applies for weakly (�) and
strictly preferred relations(�). For DA preferences, the ordering after the convex combination still holds if the
disappointing and the elating outcomes of lotteries A and B do not cross over after they are combined with
lottery C. To demonstrate why agents’ choices violate the independence axiom, the following steps reconstruct
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of the alternatives and a choice for the risky but attractive gamble if the alternate choice is
also risky.

This example mirrors the situation households face around retirement. The agents choose
to allocate savings between the risk-free asset and the risky asset, along with making a con-
sumption decision. The background risk limits the alternative choices available to the house-
hold. The non-tradable certain retirement income results in a choice akin to the first choice
in the Allais paradox (Eq. 1.1). The affinity toward the sure alternative reduces the agent’s
appetite for risk after retirement. This increased risk aversion results in a drop of savings
in risky assets and possible non-participation in the stock market. The risky labor income
before retirement leaves the agent with a risky gamble even if he were not to invest any of the
savings in stocks. The choice the agent faces in this scenario is similar to the second choice in
the Allais paradox (Eq. 1.2). The agent faced with a risky alternative gamble prefers to take
advantage of the risky but attractive stock returns. This results in higher share of savings
invested in stocks before the retirement. Hence DA preferences naturally lead to a decline
in the share of savings in risky assets around retirement when uncertainty about background
risk gets resolved.

The life-cycle model with DA preferences has four interesting implications. First, I show
that disappointment aversion provides a preference based explanation for the drop in the
risky share of savings after retirement. As the Allais paradox example highlights, the drop
in background risk around retirement generates greater aversion to risk and hence a drop in
portfolio weights. Second, I show that sufficiently disappointment averse agents withdraw
from the stock market altogether after retirement. I further show that the excess return
distribution approximately characterizes the critical threshold of disappointment aversion,
above which agents do not invest in the stock market at all. The discrete and positive risk
price for the first unit of risk under DA preferences drives this non-participation. Third, I
show that the perceived correlation between the labor income and the stock returns is higher
than that under the data-generating distribution. The perceived increase in correlation raises
the hedging motive.

Fourth, I show that the DA agent saves more for the retirement. He anticipates the need
for higher savings to support consumption after retirement. The higher savings rate is a
reflection of the conservative investment strategy in retirement that, on average, produces
lower asset income. The agent driven by the consumption-smoothing motive thus saves more

the second set of gambles from the first one under the assumption that the independence axiom holds:

Choice 1: u($200) > 0.8u($300) + 0.2u($0)
0.5u($200) > 0.4u($300) + 0.1u($0)

⇒ 0.5u($200) + 0.5u($0) > 0.4u($300) + 0.6u($0),

where u(·) can be any of the utility functions from the expected utility theories. These steps show that if
agents choose Lottery 1A in the first gamble, they should always choose Lottery 2A in the second gamble.
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before retirement. The consumption stream is also less smooth due to a disparate attitude
toward risky investment before and after retirement. The agent draws down on the wealth
faster, as he does not take advantage of the attractive premium on risky returns. This lowers
consumption after retirement, unlike the consumption pattern for an agent with the CRRA
preferences.

In light of the 2007-8 financial crisis, considering how stock market crashes affect agents’
optimal allocations is also interesting. As Rietz (1988), Barro (2006), and Gabaix (2008)
among others, emphasize, such crashes have potentially important implications for asset prices.
I study the implications of crashes in the life-cycle model for an agent with DA preferences. I
show that when crashes are possible, DA agents with low levels of wealth stay out of the stock
market. The optimal investment rules before retirement generate stock-allocation profiles that
are increasing in wealth.

The paper closest to mine is Ang, Bekaert, and Liu (2005). They show that stock market
nonparticipation is a possible optimal outcome when agents are sufficiently disappointment
averse. In contrast to Ang, Bekaert, and Liu (2005), who consider the terminal utility problem
and focus on the participation decision, I study the life-cycle asset allocation decisions of DA
agents who earn non-tradeable labor income and derive utility from intermediate consumption.

The thesis is organized as follows. Section 2 discusses the background to the study. Sec-
tion 3 contrasts the risk-reward attitude under DA and CRRA preferences. Section 4 describes
the life-cycle model and the solution method. Section 5 details the model parameters used
in calibrations. Section 6 examines optimal allocation decisions in the benchmark case with
uncorrelated background risk. Section 7 includes various extensions of the model. Section 8
concludes.

2 Background

DA preferences have also been used in an equilibrium consumption asset pricing framework.
Epstein and Zin (1991) and Epstein and Zin (2001) embed DA preferences among other
alternative preferences in a recursive infinite horizon model. Bekaert, Hodrick, and Marshall
(1997) find a better match for asset-return predictability in a consumption-based asset pricing
model with DA preferences. Campanale, Castro, and Clementi (2010) match unconditional
asset returns in a general equilibrium production economy with DA preferences and convex
adjustment costs. Routledge and Zin (2010) propose generalized disappointment aversion
(GDA), which is a one parameter extension of DA preferences. They obtain a large equity
premium and a low-volatility risk-free rate that is pro-cyclical in an endowment economy.

I obtain conservative investment strategies as a result of the drop in labor uncertainty. The
agents may also exhibit aversion to risky investments after retirement due to the inflexibility in
labor supply. Bodie, Merton, and Samuelson (1992) study the flexibility in labor supply and
find additional flexibility to choose labor supply induces the agent to take on greater financial

5



risk.10 Farhi and Panageas (2007) explore the effects of irreversible retirement choice along
with the option to retire early. The irreversibility generates the inflexibility in labor supply
after retirement. They show that the retirement optionality in general increases the investment
in stocks prior to retirement and especially for those with high levels of wealth.

Yogo (2009) and Pang and Warshawsky (2010), among others, numerically solve for the
effects of health risks on portfolio choice. They find that health risk lowers risk taking. The
empirical evidence, however, is mixed. Love and Smith (2009) find little or no causal effect
for health on portfolio choice after accounting for the unobserved heterogeneity (2%-3% at
most for married households). Edwards (2008) finds that the households’ adjustment of their
portfolios in response to self-perceived health risk may explain only 20% of the age-related
decline in financial risk taking after retirement. Berkowitz and Qiu (2006) find that health
shocks indirectly affect portfolio choice by lowering financial wealth. They find that the
relation between health and portfolio choice disappears after controlling for differences in the
financial wealth of the sick and the healthy households.

The other appealing model for preferences is habits. Gomes and Michaelides (2003) explore
ratio and additive habit models. Polkovnichenko (2007) studies the additive habit model. The
additive habit model results in a drop in the portfolio allocation as the agents age, because
the old maintain their consumption levels and hence their habit levels as they decumulate the
assets. The agent at old age follows a conservative investment strategy to ensure his habit
level is maintained. The consumption pattern, however, does not yield a sharp drop-off as
observed with DA preferences. Polkovnichenko (2007) finds that the consumption pattern is
not substantially different from that under the CRRA preference model, although in some
cases, consumption increases slightly after retirement. He also notes that the model implies a
high level of wealth accumulation. Gomes and Michaelides (2003) study the ratio habit model
in detail. The authors find that this preference model generates more conservative portfolios
than the CRRA model. However, these preferences also generate speedy wealth accumulation.
They note that this feature impedes the model’s fit for generating the low market participation
in the presence of fixed costs. The age effects on the portfolio shares are similar to those for
the CRRA model.

The literature on portfolio allocation is extensive. Campbell, Cocco, Gomes, and Maen-
hout (1999), Cocco, Gomes, and Maenhout (2005), Bertaut and Haliassos (1997), and Heaton
and Lucas (1997, 2000b), among others, explore the effects of background risk for explain-
ing the heterogeneity in portfolio allocation. The low correlation of labor income with stock
returns implies that despite the riskiness of the labor income, the capitalized labor mimics a
risk-free asset more than a risky stock index. This feature of labor income yields optimal stock
investments that are large at a young age and drop with age as the capitalized value of la-
bor drops. Benzoni, Collin-Dufresne, and Goldstein (2007) obtain low stock investments at a
young age in an environment in which labor income is co-integrated with the market dividends.

10See Gomes, Kotlikoff, and Viceira (2008) for a calibrated life-cycle model.
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Gomes and Michaelides (2005) introduce one-time entry costs proportional to the permanent
income of the agent in an Epstein-Zin preference model to explain the low stock market par-
ticipation of the young agents. Yao and Zhang (2005), Flavin and Yamashita (2002), and
Cocco (2005) model portfolio choice in the presence of housing. They find that the price risk
associated with housing crowds out stock holdings for the homeowners.

Disappointment Aversion and CRRA Preferences
Disappointment aversion is an axiomatic model of preferences by Gul (1991) that accom-

modates Allais paradox-type behavior. These preferences generate proportionately greater
aversion to small gambles. The preference model achieves this by overweighting the outcomes
below the certainty equivalent of the gamble. For example, consider the simple static gamble
on wealth W . The certainty equivalent of this gamble μda is given by Eq. 2.1:

μ1−γ
da = E

[
W 1−γ

]− θE
[(

μ1−γ
da − W 1−γ

)
I(W < μda)

]
(2.1)

μ1−γ
crra = E

[
W 1−γ

]
. (2.2)

The parameter θ controls disappointment aversion (I(·) is an indicator function). If θ is
set to zero, the preference model reduces to that of constant relative risk aversion (CRRA,
with relative risk aversion γ). The positive values for θ imply overweighting of disappointing
outcomes. The disappointing outcomes are, however, the ones below the certainty equivalent
of the gamble itself. Thus the outcomes that are overweighted and the certainty equivalent
μda are implicitly determined and dependent on the nature of the gamble. I also define the
disappointment probability, Φ(W < μda) = E [I(W < μda)], as the probability that the gamble
outcomes will be disappointing.

The log-normal gamble illustrates the changes in the risk-reward attitude of an agent
with the DA preferences as the size of the gamble changes. The gamble on wealth W (ε)
is given by ln(W (ε)) = k + σε, where ε is a standard normal random variable. I compare
the risk premia for the DA and the CRRA preferences. CRRA preferences exhibit only
second-order risk aversion. The risk premium is proportional to the variance of the gamble
RP crra = ln(E(W )/μcrra) = γσ2/2. The incremental premium or the incremental reward per
unit rise in the risk is thus proportional to the size or the standard deviation of the gamble
d(RP crra)/dσ = γσ. Thus the incremental reward the agent demands is negligible for small
gambles. In addition to second-order aversion to risk, DA preferences also exhibit first-order
risk aversion. The risk premium includes terms proportional to both the standard deviation
and the variance of the gamble. Thus the incremental premium for small-size gambles can be
substantial depending on the value for parameter θ.11 I plot examples in Figures 2.1 and 2.2
for DA (θ = 1 and γ = 5) and CRRA preferences (γ = 5).

11The limit value of incremental premium is θ/(θ + 2) for an equally probable two outcome gamble {1 −
σ, 1 + σ} as σ → 0+.
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Figure 2.1: The risk premium for log-normal gamble as a function of the variance of the
gamble for (1) DA preferences and (2) CRRA preferences. The plot also includes the ratio of
risk premia for the two preferences.
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The risk premium is linearly increasing in variance for the CRRA preference model, reflect-
ing second-order risk aversion (Fig. 2.1). However, the risk premium for the DA preference
increases at more than linear trend in variance. The incremental risk premium for the DA
preference (Fig. 2.2) is not negligible for small gambles and in fact has a positive intercept of
about a third for θ = 1. This non-negligible incremental premium for small gambles generates
greater aversion to small size gambles and thus a plausible model consistent with the first
choice in the Allais paradox (Eq. 1.1). The first choice is between a sure payoff and a well
rewarded gamble. The large incremental premium for the first unit of risk, however, implies
that the agent demands a significant reward to accept even a small size risky choice. The
incremental premia for the two preferences (with same γ) asymptote to each other as the size
of the gamble gets larger. This helps explain the second choice in the Allais paradox, which
is suggestive of lower aversion to risk unlike the first choice.

For low levels of background risk, DA preferences also generate increasing preference for
gambles that pay a premium as the background risk increases.12 This increasing relationship is
due to the endogenous dependence of the certainty equivalent that determines the disappoint-
ing and elating outcomes. I illustrate this phenomenon in a one period terminal consumption
problem. The investor has savings worth At dollars that he optimally splits between a risky
asset and a risk-free asset at time t. Further, the investor also receives a non-tradable positive
labor income Yt+1 at time t + 1. The investor consumes all of the terminal wealth Wt+1 at
time t + 1 and has no date t consumption:

Wt+1 = AtRp,t+1 + Yt+1

Rp,t+1 = (Rt+1 − Rf )xt + Rf

ln(Rt+1) = ln(R) + εr,t+1

εr,t+1 ∼ N(−σ2
r/2, σ2

r).

The risky return Rt+1 has a log-normal distribution with mean R. The risk-free rate is Rf .
The portfolio weights are constrained such that, 0 ≤ xt ≤ 1. I consider a mean-preserving
spread on the background risk. I set the expected value of labor income at Y and vary the
standard deviation, σy, of log-labor income. I set the correlation between the stock returns
and the labor income to zero:

Yt+1 = Y exp(εy,t+1)

εy,t+1 ∼ N(−σ2
y/2, σ2

y).

12Safra and Segal (2008) show that calibration result of Rabin (2000) may not hold for non-expected utilities
under some conditions in the presence of background risk. Chapman and Polkovnichenko (2008), however,
obtain a set of reasonable conditions under which an individual may reject a small bet and take on a large bet
even in the presence of background risk for non-expected rank-dependent utility.
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Figure 2.3: Optimal portfolio weights as the standard deviation of labor income increases. The
expected value of the labor income is unchanged. The parameters are (1) equity premium
at 6%, (2) risk-free rate at 2%, (3) standard deviation of stock returns at 18%, and (4) the
correlation between returns and labor income is zero. The left panel is for DA preference with
γ = 5 and θ = 1. The right panel is for CRRA preference with γ = 5. The graphs in each
panel are for different ratios of the expected labor income to savings. The three values for the
ratio are, 0.1, 1, and 25.

The agent’s objective is to maximize the certainty equivalent (CE) by choosing the optimal
portfolio weights. I compute the optimal portfolio weight x∗

t as a function of σy. I repeat the
certainty equivalent for CRRA (μcrra,t) and DA (μda,t) preferences below:

μ1−γ
da,t = Et

[
W 1−γ

t+1

]− θEt

[(
μ1−γ

da,t − W 1−γ
t+1

)
I(Wt+1 < μt,da)

]
μ1−γ

crra,t = Et

[
W 1−γ

t+1

]
.

I plot the optimal stock share of savings against the standard deviation of the log-labor
income in Figure 2.3. The optimal stock share of savings is increasing for DA preferences as
the background risk increases. However, the investment strategy turns conservative once the
non-tradable income is sufficiently risky. The portfolio weight, on the contrary, is decreasing
over the entire range for the CRRA preferences13.

13This result is true under most conditions for power utility and preferences of HARA class (Campbell and
Viceira (2002)). One sufficient condition is that the relative risk aversion be greater than the reciprocal of the
elasticity of consumption (terminal wealth, Wt+1) with respect to financial wealth.
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The source of the non-monotonic investment strategy under DA preferences is the perceived
premium of the risky asset. The certainty equivalent under DA preferences can be interpreted
in terms of that under the CRRA preferences, where the gamble outcomes are drawn from a
distorted probability distribution (Eqs. 2.3 and 2.4). This distorted probability distribution
(p̂(Wt+1)) increases the likelihood of outcomes below the certainty equivalent of the gamble:

μ1−γ
da,t =

E
[
W 1−γ

t+1 (1 + θI(Wt+1 < μda,t))
]

1 + θΦ(Wt+1 < μda,t)
(2.3)

μ1−γ
da,t =

∑
Wt+1

p̂(Wt+1)W
1−γ
t+1 (2.4)

p̂(Wt+1) =
1 + θI(Wt+1 < μda,t)

1 + θ
∑

Wt+1
p̂(Wt+1)I(Wt+1 < μda,t)

× p(Wt+1).

I obtain an approximate formula for the portfolio weights in Eq. 2.5 using log-linearization.
The derivation is in Appendix H. The σ represents the standard deviation and the hat
(ˆ ) represents the quantities under the distorted distribution. ρ̂ represents the elasticity of
terminal wealth with respect to the financial wealth under the distorted distribution.

x∗
t ≈ 1

ρ̂

(
ˆrt+1 − rf + σ̂2

r,t/2

γσ̂2
r,t

)
+

(
1 − 1

ρ̂

)
σ̂y,r,t

σ̂2
r,t

, where ρ̂ < 1 (2.5)

The log-linearized formula for the optimal portfolio weight is similar to the one for CRRA
preferences except that all quantities are computed under the distorted distribution. The
increasing elasticity of terminal consumption with respect to financial wealth reduces the
portfolio weights for CRRA preferences (unless the correlation between the risky return and
the labor income is negative). This effect is also present under the DA preferences. However,

overweighting disappointing outcomes generates perceived risky return premium ( ˆrt+1 − rf +
σ̂2

r,t/2 ) that varies with the background risk.
Figure 2.4 plots the two quantities. The elasticity of terminal consumption with respect

to financial wealth (ρ̂) is monotonically increasing, which effectively increases the riskiness
of stock investments. However, the increase in perceived premium with the increasing back-
ground risk makes the risky investment attractive. The perceived premium does degrade
beyond a level of riskiness of the non-tradable income. These two opposing forces yield an
initial affinity toward the risky asset and an aversion to the same once the background risk is
sufficiently high. The variation in disappointment probability has a pattern that is a mirror
image of the perceived premium.

The low perceived premium for small background risk generates investment behavior akin
to the first choice in the Allais paradox. The small perceived premium implies aversion to risky
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Figure 2.4: Bottom panel: disappointment probability, Middle panel: perceived return pre-
mium, and Top panel: the elasticity of terminal wealth with respect to the financial wealth,
as the background risk increases. These graphs are for the case in which the expected labor
income and the savings are equal.

assets and the agent prefers a conservative portfolio. The increase in background risk lowers
the aversion to risk, and the agent is willing to take gambles that are rewarded in expectation,
a behavior similar to the second choice in the Allais paradox. However, increased elasticity of
terminal consumption with respect to financial wealth and lower perceived premium together
reduce the longing for risky investments as the background riskiness continues to increase.
This behavior is similar to that of an agent with CRRA preferences.

The effects of changing background risk on the perceived standard deviation of the risky
returns are negligible. The perceived correlation between labor income and returns is negligibly
positive, although no correlation exists under the data generating distribution.

3 Model

3.1 Wealth and Asset Returns

The savings At are transformed into future tradable wealth according to Eq. 3.1. The benefit
of saving is the portfolio return Rp,t+1, which depends on the chosen portfolio weight xt and
the stochastic excess return Re,t+1 on the risky asset, and a known risk-free return Rf . The
term Wt that I refer to as the tradable wealth is also known as cash-on-hand in the life-cycle
portfolio allocation literature (following Deaton (1991)). Also, I refer to savings At = (Wt−Ct)
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as the financial wealth, as it is the wealth available for investing in financial instruments. Ct is
the consumption at time t. In addition to returns on savings, the agent also receives exogenous
non-tradable labor income Yt+1 in every period:

Wt+1 = AtRp,t+1 + Yt+1, Where, At = Wt − Ct (3.1)

Rp,t+1 = Re,t+1xt + Rf

Re,t+1 = Rt+1 − Rf .

The agent is constrained from borrowing or selling the risky assets short. I place two
constraints on the risky asset weight. The first constraint of positive weight on the risky asset
ensures that the agent does not short the risky asset and invest the proceeds at the risk-free
rate. The other constraint that the weight be less than one ensures that the agent does not
borrow at the risk-free rate to invest in the risky asset:

Ct < Wt, xt ≥ 0, xt ≤ 1. (3.2)

The risky asset at the agent’s disposal is a value-weighted market index (henceforth also
referred to as stock). The raw returns on the market index follow a log-normal distribution
with a standard deviation of σr and an expected rate of return R per period (Eq. 3.3). The
risk-free asset (henceforth also referred to as bond) return is equivalent to a treasury bill
return. I assume that the investor faces a constant investment opportunity set:

ln(Rt) = ln(R) + ηt Where ηt ∼ N(−σ2
r/2, σ2

r). (3.3)

I consider the cases in which labor income may or may not be correlated with the stock
returns.

3.2 Labor Income

The labor income has a deterministic component lt ≡ l(t, Zt), dependent on the age and other
personal characteristics Zt. Eq. 3.4 describes the labor income process until retirement.

Yt = exp(lt + νt + εt) ∀ t ≤ K (3.4)

νt = νt−1 + ut Where ut ∼ N(0, σ2
u) εt ∼ N(0, σ2

ε ).

In addition to the deterministic trend lt, labor income is also determined by a permanent
component νt driven by the shocks ut and an idiosyncratic component εt. The two shocks
distributed as N(0, σ2

u) and N(0, σ2
ε ) are uncorrelated. The permanent component νt is mod-

eled as a unit root process following Carroll (1997) and Gourinchas and Parker (2002). The
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transitory shock εt when combined across the agents (say a cohort) averages to zero in the
cross-section, as it is uncorrelated across the agents. Further, the transitory shock is also
uncorrelated with the random component of the stock returns ηt. However, I decompose the
permanent shock ut into aggregate component ζt and an idiosyncratic shock ωt uncorrelated
across agents, ut = ζt + ωt. I consider the possibility of correlation between the permanent
income shock ut and the unexpected return shock ηt via the correlation between ζt and ηt:

ut = ζt + ωt. (3.5)

The above decomposition implies that the unexpected component of aggregate labor in-
come is a random walk and conforms to the assumptions in Jagannathan and Wang (1996)
and Fama and Schwert (1977).

The retirement income is a fixed fraction of the permanent income in the last working
period before retirement. This specification avoids an additional state variable and simplifies
the solution to the model. I do not model the flexibility in labor supply.14

ln(Yt) = ln(λ) + lK + νK ; ∀K + 1 ≤ t ≤ T (3.6)

⇒ Yt = λ exp(lK + νK), K = the last period agent works

3.3 Preferences

The preference specification follows Epstein and Zin (2001). I set the reciprocal of the second-
order risk aversion parameter15 equal to the elasticity of intertemporal substitution. The
preference over the temporal and intertemporal gambles is summarized by the value function
J , which depends on time t, agent’s wealth Wt, and the level of his/her permanent income νt:

Jt(Wt, νt)
1−γ

1 − γ
= max

Ct,xt

C1−γ
t

1 − γ
+ ptβ

μt(Jt+1(Wt+1, νt+1))
1−γ

1 − γ
(3.7a)

μ1−γ
t = Et

[
Jt+1(Wt+1, νt+1)

1−γ
]

(3.7b)

−θ Et
Jt+1<μt

[
μ1−γ

t − Jt+1(Wt+1, νt+1)
1−γ
]
.

At time t, the investor faces the trade-off between current consumption Ct and the utility
gain from savings At as measured by the future value function Jt+1. DA preferences summa-
rize the investor’s attitude towards uncertainty in Jt+1 via the implicit formula Eq. 3.7b. The

14 See Bodie, Merton, and Samuelson (1992), Gomes, Kotlikoff, and Viceira (2008), Chan and Viceira
(2000), and Farhi and Panageas (2007) and references therein for models with flexible labor supply:

15In the absence of disappointment aversion, γ produces only second-order risk aversion.
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certainty equivalent (CE), μt, of the future value function gamble incorporates overweighting16

the outcomes that are below the certainty equivalent, yielding an implicit equation. β cap-
tures the time rate of preference. γ captures the reciprocal of the elasticity of intertemporal
substitution as well as most of the risk attitudes due to second-order risk aversion for atem-
poral gambles. pt represents the probability of surviving to the next period, t+1, conditional
on having survived up to period t. pt captures the mortality risk by changing the time rate
of preference and thus effectively changes the planning horizon.

3.4 Solution Technique

The household’s problem, summarized in Eqn. 3.7a, contains three state variables, the time
t, wealth Wt, permanent income νt, and two control variables Ct and xt. I scale the variables
by the permanent income and define

W ν
t = Wte

−νt , Cν
t = Cte

−νt , Y ν
t = Yte

−νt = egt+εt .

The scaling reduces the number of state variables to two, W ν
t and t, and the control

variables are reduced to a function of only these two variables; that is, Cν
t ≡ Cν

t (W ν
t , t) and

xt ≡ xt(W
ν
t , t). The budget equation with these scaled variables is

W ν
t+1 = (W ν

t − Cν
t ) [Re,t+1xt + Rf ] exp(−ut+1) + Y ν

t+1.

The value function with the scaled variables is17

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(exp(ut+1)J
ν
t+1(W

ν
t+1))

1−γ

1 − γ
.

The constraints are also rescaled to Cν
t ≤ W ν

t and 1 ≥ xν
t ≥ 0. The rescaling significantly

reduces the computational time. I recover the original unscaled variables in the simulations
by keeping track of the permanent level and multiplying the scaled variables by exp(νt).

The first-order conditions for the household’s problem are similar to those in the CRRA
case aside from the distribution used for computing expectations. The expectation in the case
of DA preferences is computed under the distorted data-generating process. The distortion
overweights disappointing outcomes, that is, the outcomes below the certainty equivalent.

Eqn. 3.8 characterizes the optimal portfolio weight x∗
t at time t. The term multiplying

16I only consider cases with θ ≥ 0. DA agents are risk averse in the sense of weakly not preferring the
mean-preserving spreads iff θ ≥ 0 and γ > 0 (Gul (1991)).

17The certainty equivalent under the DA preferences is scalable.
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R∗
e,t+1 is proportional to the marginal utility of savings for the chosen portfolio weight.18

0 = Et

[[
eut+1Cν,∗

t+1

]−γ
[Re,t+1]

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

(3.8)

0 = Êt

[[
eut+1Cν,∗

t+1

]−γ
R∗

e,t+1

]
The optimal portfolio weight sets the marginal valuation orthogonal to the excess returns,
thus leaving no room for welfare improvement by simply reallocating the stock portion with
risk-free holdings or vice versa:

(Cν,∗
t )

−γ
= ptβ

Et

[[
eut+1Cν,∗

t+1

]−γ
R∗

p,t+1

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

[
1 + θEt

[
I(eut+1Jν

t+1 < μt)
]] (3.9)

(Cν,∗
t )

−γ
= ptβ × Êt

[[
eut+1Cν,∗

t+1

]−γ
R∗

p,t+1

]
.

Eqn. 3.9 states the first-order condition for the optimal consumption. In case the borrowing
constraint is active and the agent does not save for the future, the consumption equals wealth,
that is, Cν

t = W ν
t . I derive the first order conditions in Appendix B.

The optimization program ends at age 100. The agent consumes all the remaining wealth
at age 100 and has no savings. I numerically solve for the optimal policy rules for all other
periods. I use the endogenous grid method of Carroll (2006), which involves using a grid on
savings instead of a grid on wealth. I compute the integrals in the form of expectations using
draws from the distribution of returns and the labor income. I use the equi-distributed Sobol
sequences (Judd (1998)) to generate these draws19. Appendix A further details the numerical
method.

4 Calibration

4.1 Preference Parameters and Mortality

I set the value of DA parameter θ to 1 and γ to 5. Ang, Bekaert, and Liu (2005), in a
portfolio-allocation model in a multiperiod setting without intermediate consumption or non-
tradable income, consider θ ranging from 0.18 to 2 and γ from 2 to 5. Choi, Fisman, Gale,

18The envelope condition helps substitute the marginal utility of savings with the future consumption. The
following may help explain the way portfolio weight affects the expectation: for every choice of portfolio weight
xt, the budget equation yields a distribution of wealth at time t + 1 that maps to the optimal consumption at
time t + 1 and a certainty equivalent μ∗

t and thus obtains all quantities in the expectation.
19This is a quasi-Monte Carlo method (Judd (1998)) and I based the choice on the convergence merits of

the quasi-Monte Carlo methods. I also computed the policy rules using the pseudo-random number generator
and did not find any significant difference.
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and Kariv (2007) find experimental evidence for DA preferences in a laboratory setting, but
estimate parameters based on static gamble payoffs only. Their estimates for θ range from 0
to 1.8. 20

The CRRA preference model is nested within the DA model, which allows me to compare
the optimal consumption and portfolio allocation plans generated by the two preference mod-
els. For comparison purposes, I set the relative risk aversion γ for the CRRA preferences at 9.
These two preferences are not equivalent, as the CRRA model implies little risk aversion over
small gambles unless γ is extremely high. However, a high γ implies unrealistic risk aversion
over large gambles. I compare the risk premia implied by DA and CRRA preferences for a
simple log-normal gamble. I choose the parameter γ for the CRRA preference so that the
risk premia the two preferences imply (the parameters for DA preference are set at θ = 1 and
γ = 5) for simple log-normal gamble match approximately. I base this match on the size of
the gamble the agent faces early in the young adult life.21 See Appendix C for details.

The agent faces mortality risk from age 66 till age 100 and dies with probability 1 at age
100. I obtain the estimates for pt from National Center for Health Statistics, (2003)22. The
adult age starts at 20 for agents without college degrees and at age 22 for those with college
degrees. The agents retire at age 65 irrespective of their educational attainment.

4.2 Labor Income and Asset Returns

The estimates for the labor income process in Eqn. 3.4 are from Cocco, Gomes, and Maen-
hout (2005). They use PSID data to obtain these estimates. I treat the labor income as
exogenous. The labor income besides the reported income also includes unemployment com-
pensation, workers compensation, social security, supplemental social security, other welfare,
child support, and total transfers. The labor income combines these items for both the head
of the household and the spouse. Cocco, Gomes, and Maenhout (2005) provide estimates23

for three groups according to their educational attainment (Figure 4.1): (1) no high-school
(2) high-school graduates (but no college degree), and (3) college degree. The labor income

20These values are the 5th and the 95th percentiles.
21I first compute the actual volatility of the log of the value function gambles under DA preferences from

simulation. I use this volatility to choose the γ parameter for CRRA preference such that the agent demands
the same risk premium under the two preferences for a simple log-normal gamble with the same volatility. I
further constrain myself to choosing a whole number for the γ parameter.

22Link: ftp://ftp.cdc.gov/pub/Health Statistics/NCHS/Publications/NVSR/54 14/. pt is the probability
of surviving to period t + 1, conditional on having survived up to period t. The link above provides the
mortality probabilities 1 − pt.

23Their estimation controls for fixed household effect, marital status, and household size. The estimation,
however, lacks controls for occupation, as the unemployed and those not participating in the labor force
are categorized together in PSID dataset (1975 onwards). Thus, including occupation controls will have an
undesirable consequence of modeling unemployment, a significant source of risk, as a switch in occupation.
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Figure 4.1: Labor income implied by the profile lt over the life for different education groups.
Source: Cocco, Gomes, and Maenhout (2005).

profiles are different across these education groups.24 I fit a third order polynomial to the
estimated profile for numerical implementation.

The estimates for the replacement ratio λ (ratio of retirement income to permanent income
before retirement)25 and the idiosyncratic and the permanent shocks26 for the three groups
are in Table 4.1. Purcell (2009) notes that social security and pension income comprised 60%
of the income for the elderly above the age of 65 in 2008. The contribution of social security
and pension income was as high as 93% for the bottom quartile of the elderly. The estimates
for the variance of idiosyncratic shocks vary widely across studies, the lowest being 0.15 for
college graduates and 0.18 for non-college graduates.27 I compute the optimal portfolio rules
and the consumption policies using both the low estimates and the estimates in Table 4.1.
The differences in estimates do not change any of the conclusions.

Campbell, Cocco, Gomes, and Maenhout (1999) estimate the correlation between the per-

24The difference in income-age profiles by educational attainment is consistent with the evidence in Attanasio
(1995) and Hubbard, Skinner, and Zeldes (1995).

25λ is estimated as the ratio of the average labor income for retirees in an education group to the average
labor income in the last working period before retirement.

26The procedure is similar to variance decomposition method in Carroll and Samwick (1997).
27Kolusheva (2009) combines the high-school and non-high-school graduates. The estimates are based on

data from PSID for the period 1977 to 2005. She also obtains similar age-labor income profile over the life
and similar replacement ratios.
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No High School High School College
σε 0.3250 0.2717 0.2417
σu 0.1025 0.1030 0.1300
λ 0.8898 0.6821 0.9388

Table 4.1: The standard deviation of idiosyncratic and permanent shocks for the labor income
process from the variance estimates in Cocco, Gomes, and Maenhout (2005). The authors note
that the variance estimates are statistically significant at a less than 1% significance level. The
last row includes the replacement ratio for the three education groups.

manent component of labor income and the returns.28 They set the correlation between
the idiosyncratic component and the returns to zero. Their estimates imply a correlation
of 0.15 between the permanent component and the returns for the high-school graduates.
Heaton and Lucas (2000a) and Davis and Willen (2002) do not separate the permanent and
idiosyncratic components. Their estimates range from -0.07 to 0.14 and -0.25 to 0.30, respec-
tively. Viceira (2001) explores the correlation between the permanent component and the
returns over the range of 0 to 0.25. I consider the cases with and without the correlation
between the permanent component and the returns.

Barro and Ursua (2008) estimate the asset returns based on data going as far back as 1870.
They estimate the yearly real returns on U.S. stocks at 8.27%, with a standard deviation of
18.66% and the real t-bill returns at 1.99%. I set the real rate of return for the risk-free asset
at 2% and equity premium at 6%. I set the standard deviation of stock returns at 18%.29

5 Benchmark Case

I analyze the case for high-school graduates and keep the correlation between stock returns
and either of the labor income shocks at zero. Table 5.1 lists parameters for this case.

5.1 Policy rules and simulated portfolio shares

The optimal policy rules for the share of savings to invest in risky assets around retirement are
in Figure 5.1. The rules are a function of the scaled tradable wealth or cash-on-hand (scaled by

28Campbell, Cocco, Gomes, and Maenhout (1999) estimate the correlation between the aggregate compo-
nent part of the permanent shocks and the returns (ρζη, in Eqn. 3.5). The values are between 0.33 to 0.52,
with the higher value for the higher-education group of college graduates. These values suggest a correlation
of 0.15 between the permanent shock and the returns.

29The real returns on the assets are lower after considering holding costs and taxes.
Jagannathan, McGrattan, and Scherbina (2000) argue that the equity premium is much lower than 6%
due to diversification costs, taxes, and liquidity premium for bills.
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γ 5 or 9
θ 1 and 0
β 0.96
Age at the last non-retirement income, K 65

Correlation of labor income shocks with stock returns, 0
Std. deviation of transitory labor shocks, σε 0.27
Std. deviation of permanent labor shocks, σν 0.10
Std. deviation of log stock returns, σr 0.18
Average excess returns, (R − Rf) 6%
Risk free rate, (Rf − 1) 2%

Table 5.1: Parameter values for the benchmark case.

permanent income). I obtain a pattern of decreasing allocation to stocks with the increasing
cash-on-hand. The decrease in the risky allocation is due to the decrease in the capitalized
non-tradable labor income or the retirement income (post-retirement) relative to the tradable
wealth. Retirement income is certain, resulting in a substitute non-tradable risk-free asset in
the agent’s portfolio. Agents with both DA and CRRA preferences offset this implicit risk-free
position by investing more in stocks. However, the borrowing constraints are binding at low
enough levels of tradable wealth. The constraints prevent the agent from investing more than
his savings in the risky assets, which limits the portfolio share to at most 100%. The increase
in the tradable wealth lowers the relative share of the implicit non-tradable risk-free asset,
resulting in an increasingly conservative portfolio. The conservativness with the decreasing
share of the implicit risk-free asset gives rise to the declining pattern in Figure 5.1. The
portfolio rules asymptote to the all-tradable-wealth case as the tradable wealth increases.

Figure 5.1 shows the investment policy rules turn increasingly conservative for both prefer-
ences as the agent gets older. The conservativeness is attributable to the drop in the capitalized
value of the future retirement income as the investor ages. The drop in capitalized retirement
income results in a decreasing share of this implicit risk-free asset in the total wealth for a
given level of the tradable wealth. Thus the optimal portfolio for a given tradable wealth
grows conservative with age.

The most dramatic difference between the policy rules for the two preferences is around
retirement, when the policy rule for DA preferences becomes incredibly conservative whereas
the policy rule under CRRA preferences changes very little. The source of this disparity is
in the resolution of uncertainty about the post-retirement income and the overweighting of
disappointing states associated with the DA preferences. Age 65 is the last period the agent
spends in the labor market and he enters this period with the realization of the permanent
income for the period, which also sets his retirement income (retirement income is a fraction
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Figure 5.1: The optimal portfolio policy rules as a function of wealth scaled by the permanent
income around retirement and late old age for DA and CRRA preferences.

of the permanent income in the last working period before retirement). Thus the portfolio
allocation from age 65 and onwards is predicated on no remaining risk in the non-tradable
income going forward. This drop in uncertainty is sizeable, as it resolves the uncertainty on the
entire stream of retirement income, which has a large present value. The future value function
without any uncertainty (setting stock investments are zero), a sure alternative, is also one of
the choices the agent faces while choosing his optimal risky investment. The decision problem
the agent faces is akin to the first choice in the Allais paradox, where the agent prefers the
sure alternative over the risky gamble. The drop in non-tradable risk exogenously sets the
alternative choices available to the agent. The agent demands a larger premium for holding
the same level of risk, just as in the first choice of the Allais paradox. Since the risk premium
on the risky asset is fixed whereas the agent’s tolerance for risk has fallen, he optimally lowers
his portfolio risk by reducing the fraction of his wealth invested in the risky asset.

Large relative size (or the total wealth share) of the implicit risk-free capitalized retirement
income mitigates the drive to lower stock allocation. The agent offsets this large implicit
risk-free position by investing more in stocks. Thus although the exogenous drop in non-
tradable income uncertainty drives the dramatic drop in the risky allocation, the varying
importance of non-tradable capitalized retirement income compared to the tradable wealth
gives the downward-sloping shape to the portfolio rule (Figure 5.1). I address the lingering
question of whether the DA preference model can drive down the risky allocation to zero in
Section 6.2.
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Figure 5.4: The cross-sectional averages of the portfolio weights, disappointment probability
and the distorted stock return premium at all ages through life for DA agent.

I plot the mean stock allocation at every age as the fraction of savings (hence conditional
on positive savings) invested in stock over the life of the agent in Figure 5.2. I obtain these
values via simulation of 10,000 identical individuals that start off their lives at age 20.30 The
overly conservative approach toward stock investing around retirement is noticeable in the
form of a significant drop in the mean portfolio allocation at age 65. The average portfolio
allocation to stocks for the two preferences track each other closely until early adult life. This
match in portfolio allocation is reflective of the choice of γ parameter for the CRRA preference
such that the demanded risk premia match given the uncertainty at young adult age. The
volatility of the value function gambles the investor faces under the two preferences are the
same over the young adult age (Figure 5.3). The drop in the capitalized value of the future
labor income drives the drop in the stock allocation as the agents age. This conservative
approach with the increasing age and the lower residual risk due to fewer remaining uncertain
labor flows reduce the volatility of the log of the gambles. The drop in the uncertainty of the
scaled gambles drives the two preferences apart as the agent navigates mid-adult life. The
substantial drop in uncertainty around retirement amplifies this wedge in the risk attitudes
and results in a drop in stock allocation for the DA agent.

The simplified representation of retirement with an abrupt drop in uncertainty causes the
sharp decline in stock investments around retirement. The differences in retirement age across
the agents and progressive decline in income uncertainty can help match the observed gradual

30The agents begin with wealth, W20 set at exp(l20) and the permanent level of income at zero; that is,
νt = 0. The conclusions are unchanged and the profiles hardly change if I instead draw the initial wealth
from the distribution of the labor income at age 20; that is, W20 = el20+ν20+ε20 , where ν20 ∼ N(0, σ2

u) and
ε20 ∼ N(0, σ2

ε ).
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Figure 5.5: Three different measures of age effects on stock investments over life from
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fraction of population with positive equity holdings, and (3) equity as a fraction of savings
conditional on positive equity holdings. The plots are for the age dummies from a probit
regression that includes time dummies (but excludes cohort dummies). The data are from
1989, 1992, 1995, and 1998 SCFs.

drop in the portfolio share of stocks in the data (Figure 5.5). I pursue the case of declining
uncertainty prior to retirement in Section 6.3.

The increase in the stock investment in old age as the agent nears age 100 is characteristic
of a majority of life-cycle models without bequest or some other form of risk (e.g. health risk)
in old age. Two opposing effects determine the stock investment in old age. The first effect
is mortality. The agent, anticipating certain mortality at age 100 and increased impatience
due to uncertain mortality, decumulates savings. The drop in savings, the tradable wealth,
increases the relative share of non-tradable but risk-free retirement income in the total wealth.
This effect encourages the agent to invest in stocks. The second effect is the drop in capitalized
labor income due to fewer remaining periods (age 100 is the last period) as the agent transits
through old age. This second effect discourages stock investments. The first effect dominates
and props up the stock share of savings for most of the remaining life. The second effect
dominates for a few short periods before age 100.

The drive to decumulate the savings is also seen in the consumption policy rules in old age
(Figure 5.6). The consumption policy rules are concave in tradable wealth and the pattern
indicates the agent aggressively decumulates savings in retirement. The agent faces increasing
mortality risk as the conditional probability of survival to the next period pt continues to
drop. This drop in survival probability makes the agent increasingly impatient. Thus the
consumption level for a given amount of tradable wealth rises as the agent approaches age
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Figure 5.6: The optimal consumption policy rules as a function of wealth scaled by the perma-
nent income around retirement and late old age for DA and CRRA preferences. Consumption
on y-axis is scaled by the permanent income.

100, which we see in the fanning out pattern of the consumption policy rules in old age. The
consumption policy rules also suggest the DA agent decumulates savings faster than the agent
with the CRRA preference. This is due to the lower expected benefit from savings as the
optimal stock allocation for the DA agent is lower, thereby leading to a greater incentive to
decumulate rather than save.

The consumption rules for both the CRRA and DA preferences move out in early adult
life as the permanent income rises with age and peaks in the mid- to late thirties due to the
hump shape in earnings.31 I include the consumption policy rules in early and mid-adult life
in Figure I.2 in the appendix. Cocco, Gomes, and Maenhout (2005) find a small drop in the
stock allocation in early young age for CRRA preferences. The portfolio policy rules reveal an
analogous pattern. The policy rules are conservative in early young age and turn aggressive
until the mid- to late thirties. The authors note that this pattern is due to the hump shape
in the earnings profile (Figure 4.1). The capitalized value of the labor income or the human
capital keeps rising in early young age and peaks around the mid- to late thirties.32 The
portfolio rules in early and mid-adult life are in Figure I.1 in the appendix.

31The consumption rules are almost identical over the downward-sloping part of the earning profile. The
earning profile drops but the attractive risk premium also encourages the agent to save. The effective outcome
in late mid-adult life is dependent on the parameter choice.

32I recover the slight hump-shaped pattern in Cocco, Gomes, and Maenhout (2005), with the parameters
therein for the CRRA preferences.
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Figure 5.7: The cross-sectional mean of consumption-wealth ratio at every age over the life of
the agents with CRRA and DA preferences.

5.2 Savings and consumption from simulations

I compare the consumption and savings decisions for the two preferences using consumption-
wealth ratios. The cross-sectional averages of the ratios at every age over the life are in
Figure 5.7. The consumption-wealth ratio refers to ratio of consumption to tradable wealth
throughout the article.

The agent with DA preference saves more until retirement but decumulates wealth faster
after retirement. The DA agent expects lower earnings from investments in old age due to
lower stock allocations after retirement. Thus he must save more for retirement and hence
accumulates greater wealth until retirement. The lower stock investments until retirement also
drive the greater accumulation. The DA agent’s conservative investing strategy implies that
he must save more in order to smooth consumption. This greater savings rate produces greater
accumulated wealth for the DA agent prior to retirement. The decumulation in retirement is
due to mortality risk as noted above. However, the faster rate for the DA agent is the result
of the agent’s low stock allocation in retirement. The lower expected income from savings
encourages the DA agent to dissave faster. The plot of the cross-sectional averages of savings
at every age over life (Figure 5.8) reflects the pattern observed in the consumption-wealth
ratio.

I plot the cross-sectional average consumption at all ages in Figure 5.9. The consump-
tion profile for the DA agent is uneven compared to the agent with the CRRA prefer-
ence. This uneven pattern is another manifestation of the DA agent’s drive to use sav-
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Figure 5.8: The cross-sectional mean savings at every age over the life of the agents with
CRRA and DA preferences.

ings and risk-free asset rather than the attractive stock investment to smooth consumption.
The peak in consumption at retirement is consistent with the observed drop in consump-
tion after retirement in the data. Ameriks, Caplin, and Leahy (2007), Attanasio (1999),
Bernheim, Skinner, and Weinberg (2001), Hurd and Rohwedder (2005) among others consider
agents’ aparent inability to use savings to smooth out the effects of the predictable drop in
income around retirement to be a puzzle. Since reducing stock allocation and investing more
in the risk-free asset is a less efficient (though optimal for the DA agent) way to smooth con-
sumption, the DA agent requires greater savings to achieve any given level of consumption
smoothing. This higher ”cost” of smoothing and aversion to risky investments post retirement
leads to the more uneven pattern we see for the DA agent compared with the CRRA agent.

I also compare the risk attitudes under the two preferences by comparing the constant
consumption stream the two agents will willingly accept in place of the labor income and the
stock return gamble. The DA agent’s greater aversion to risk due to inherent extra weight on
disappointing states suggests he would be indifferent at a low level of constant consumption
stream. In fact, the DA agent will trade away the gamble for a constant consumption stream
that is 15% below that for the CRRA agent (Table 5.2). I detail the method used to compute
the constant consumption equivalent in Appendix G.
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Figure 5.9: The cross-sectional mean consumption at every age over the life of the agents with
CRRA and DA preferences.

ΔPeak Accumulated Savings 14%
ΔEquivalent Constant Consumption -15%

Table 5.2: Comparison of savings and welfare for the CRRA and DA preferences. The change
in savings and the equivalent constant consumption stream is relative to the CRRA preference.
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Figure 6.1: The cross-sectional average of the fraction of savings invested in risky assets at
all ages over the life of the agents with CRRA and DA preferences. The plots are for the
correlation between the permanent income and the returns set at 0.15 and zero.

6 Model Extensions

6.1 Labor Income Correlated with Stock Market Returns

Cocco, Gomes, and Maenhout (2005) find that correlated labor income helps explain lower
stock investments in early young life. They also find that the differences in the correlation
of income generate significant heterogeneity in stock allocation. Benzoni, Collin-Dufresne,
and Goldstein (2007) explore a setup in which the aggregate component of labor income
is co-integrated with the dividend on the market index, and find that the young agents do
not participate in the stock market. I consider the effect of correlation between the labor
income and returns on the optimal stock allocation strategy for the DA preferences. I follow
Campbell, Cocco, Gomes, and Maenhout (1999) and set the correlation between the perma-
nent component of labor income and the stock returns at 0.15. The idiosyncratic shocks to
income are uncorrelated with the returns.

Figure 6.1 plots the cross-sectional averages of stock allocation conditional on positive
savings at all ages throughout life. The correlation reduces the resemblance of human capital
to a risk-free asset. Increased hedging demands reduce the portfolio allocation for both the DA
and the CRRA agent. The drop in the uncertainty around retirement, however, has the same
effect for the DA agent. The stock allocation is substantially curtailed once the uncertainty
surrounding the non-tradable income is resolved. The agent with the CRRA preferences,
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however, finds the stocks attractive once labor income correlated with the stocks reduces to a
non-tradable bond. The hedging demands cease to exist after retirement.

The average stock allocation after retirement is higher than in the case with no-correlation
for both the DA and CRRA preferences. This is due to lower savings when the income is
correlated with stock returns. The correlated labor income lowers the benefit to savings,
and thus the accumulated saving at retirement is lower. However, the lower level of tradable
wealth translates into higher share of the capitalized retirement income (which is risk-free
after retirement) in the total wealth. This rise in the relative share of the implicit risk-free
asset in the total wealth drives the investor more towards stocks. This effect is present both
for the DA and the CRRA preferences. Still, the DA agent substantially reduces the stock
investments once the uncertainty in the background risk vanishes.

The incentive to increase stock share of savings after retirement also exists in other mod-
els of life-cycle portfolio allocation. Gomes and Michaelides (2005) explore a life-cycle model
with entry costs, bequests, and Epstein-Zin preferences in the presence of correlated income.
Gomes and Michaelides (2003) present results for correlated income with ratio habit prefer-
ences. The drop in hedging demands and the lower savings for the case of correlated labor
income result in the increase of stock share of savings around retirement in these settings as
well.

6.2 Heterogeneity in Disappointment Aversion

The households exhibit considerable heterogeneity in their portfolio allocation (Curcuru,
Heaton, Lucas, and Moore (2004)). The most notable variation is their choice to partici-
pate in the stock market. The 2007 Survey of Consumer Finances finds that either directly
or indirectly, only 51% of the U.S. population participates in the stock market. The hetero-
geneity is either sourced through the differences in environment or the preferences. I examine
the effects of variation in disappointment aversion on the optimal portfolio allocation.

I consider the benchmark case of zero correlation between the labor income and stock
returns and examine the effects of changing the degree of disappointment aversion (θ). I
consider three cases, θ = {0.5, 1, 1.5}, which are within the range of estimates observed
in experiments (Choi, Fisman, Gale, and Kariv (2007)). The cross-sectional averages of the
optimal stock allocations are in Figure 6.2.

An increase in θ increases the weight on the disappointing states and thus lowers the risky
asset allocation. Table 6.1 summarizes the drop in stock allocation and increasing aversion to
risk. The increase in θ from 0.5 to 1.5 drops the stock allocation by about half during mid-
adult life and until retirement. The stock investments are, however, substantial at a young
age although somewhat lower for higher θ. The driver behind the stock investments at young
age is the large outstanding labor stock that resembles a risk-free asset more than a stock
index. This large stock along with the attractive risk premium, continues to encourage high
stock investment at young age.
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Figure 6.2: The cross-sectional average of the fraction of savings invested in risky assets at all
ages over the life of the agents. The plots are for DA preferences with different values for θ.

θ 0.5 1.5 1.0
ΔPeak accumulated savings -6% 1% Baseline
ΔAverage post-retirement savings 9% -6% Baseline
ΔAverage pre-retirement savings -12% 5% Baseline
ΔEquivalent constant consumption 21% -13% Baseline
Average stock fraction over age 36 - 50 68% 36% 47%
Average stock fraction over age 51 - 65 48% 26% 33%

Table 6.1: Comparison of savings, welfare, and the stock share in the portfolio for varying dis-
appointment aversion (θ). The difference in savings and the equivalent constant consumption
stream is relative to the DA preference with θ = 0.
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The overall lower stock allocation with the increasing θ forces the agent to use the risk-
free returns to smooth consumption. The lower return on risk-free asset (relative to average
returns on stock) implies that the agent must use a higher level of savings to achieve the same
degree of consumption smoothing. I tabulate the comparison relative to the benchmark case
of θ = 1 in Table 6.1. The peak accumulated savings are higher by 1% for θ = 1.5 and lower
by 6% for θ = 0.5. The average savings before retirement follow a similar pattern although
this pattern flips after the retirement. The agent facing mortality risk decumulates savings.
The lower stock investments due to higherθ reduce the expected benefits from savings and
thus inducing the agent to decumulate the savings even faster. The stock investments are not
only lower for θ = 1.5 but drop to zero after retirement. The stronger first-order risk aversion
ramps up the aversion to small gambles to such an extent that even the risk reward trade-off
of an 18% standard deviation and a 6% risk-premium is not attractive enough and the agent
refrains from investing in stocks. In fact, as long as the average excess stock returns are
positive, an agent with θ greater than an approximate threshold θ̂∗ does not participate in the
stock market after retirement. The approximate threshold depends solely on the parameters
of the return distribution. The proof is in Appendix E.

θ̂∗ = − Et [Re,t+1]

Et [Re,t+1|Re,t+1 < 0] × Φ(Re,t+1 < 0)

Ang, Bekaert, and Liu (2005) obtain the same threshold for non-participation in a one-
period model without the non-tradable wealth. The threshold however, approximately, char-
acterizes non-participation after retirement for the life-cycle problem.

The above described effect of θ on savings behavior is also mirrored in the consumption-
wealth ratio. Figure 6.3 plots the average of the consumption to wealth ratios from simulations
at every age over the life. The increase in θ increases the savings until retirement and hence
a lower consumption-wealth ratio. The increasing consumption-wealth ratio after retirement
with the increasing θ echoes the more rapid decumulation pattern of savings in retirement.
The plots for simulated savings and consumption are in figures I.4 and I.3 in the appendix.

Heterogeneity in disappointment aversion leads to heterogeneity in savings for retirement
and stock investments before and after retirement. A value of θ above the threshold generates
non-participation in the stock markets in old age. This result is in contrast to CRRA pref-
erences, which produce at least some investment in stocks since the premium on risky assets
is positive. The other explanations for the drop in risky holdings in old age are based on
the changes in environment with age or a preference for bequest. The bequest motive deters
the agent from exhausting all of his savings and thus restrains the agent from increasing his
stock share of his savings. Health risks are another reason to be cautious with investments
in old age (Yogo (2009) and references therein). Love and Smith (2009) use the Health and
Retirement Study to address the causal effect of health on portfolio choice. They find that
after controlling for unobserved heterogeneity, health does not significantly affect portfolio
choice among single households. There is, however, a small (2-3 percentage points) effect for
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Figure 6.3: The cross-sectional average of the consumption-wealth ratio at all ages over the
life of the agents. The plots are for DA preferences with differing values for θ.

married households and for those in the lowest health categories. The lower flexibility of labor
supply in old age is also another rationale for conservative investment.

6.3 Tapered Drop in Income Uncertainty

The benchmark case represents retirement as an abrupt drop in uncertainty. This drop in
uncertainty is associated with a sharp decline in stock investments around retirement. I
consider a variation of the benchmark case that can help match the observed gradual drop in
the portfolio share of stocks in the data. I consider a progressive decline in income uncertainty
as the agent nears retirement.

I taper down the size of labor income shocks over the ages 61 through 65. The agent retires
at age 65. The magnitude of the shocks at age 61,62,63,64, and 65 relative to the magnitude
at age 60 are 85%, 65%, 45%, 25%, and 5%, respectively. The consumption profile remains
qualitatively similar to that in the benchmark case. I plot the cross-sectional averages of
risky allocations at every age over the life in Figure 6.4. The plot includes results for both
the benchmark case and the one with the tapered down labor income risk. The shrinking
uncertainty is associated with the gradually diminishing stock investment as the agent nears
retirement. Thus in contrast to the benchmark labor income process a declining uncertainty
prior to retirement produces a better match to the observed drop in portfolio allocation around
the age of retirement.
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Figure 6.4: The cross-sectional average of the fraction of savings invested in risky assets at
all ages over the life of the agents. The plots are for DA preferences with the same preference
parameters but differing pattern of labor income risk over the age of 61 through 65.

6.4 Defined Contribution

I consider the effects of changes in labor income process on the portfolio allocation. In par-
ticular I analyze the portfolio allocation in the absence of pension, social security or other
non-tradable source of income in retirement. The labor income through working-life is the
same as that in the bechmark case. The agent, however, does not receive any retirement
income. These modifications create a simplified representation of labor income under defined
contribution.

I plot the cross sectional averages of stock allocation conditional on positive savings in
Figure 6.5. In contrast to the case with risk-free retirement income the agents reduce stock
allocation more rapidly as they approach retirement. The retirement income creates a non-
tradable risk-free holding. In the absence of this implicit risk-free asset the agents rapidly
lower the risky holdings as the human capital declines.

The risky share of the savings after retirement is almost the same as that prior to retire-
ment for CRRA preferences. The risky share is slightly higher prior to retirement due to
remaining human capital that is more akin to a risk-free asset than the stock index. The
risky share, however, significantly drops around retirement for DA preferences. The agent
may completely withdraw from the stock market if he is sufficiently disappointment averse.
The portfolio weights after retirement are similar to the ones under the complete-market case.
Thus the agent with the CRRA preferences and finite relative risk aversion does not completely
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Figure 6.5: The cross-sectional average of the fraction of savings invested in risky assets at all
ages over the life of the agents. The plots are for DA preferences with different values for θ,
including θ = 0 case which corresponds to CRRA preference.

withdraw from the stock market33.
The drop in stock investment around retirement for DA preferences is moderate compared

to the benchmark case. The retirement income in the benchmark case is a fraction of the
permanent income prior to the retirement. The unceratinty resolved around retirement sig-
nificantly affects the welfare after retirement. However in the present case the agent does not
receive any retirement income. Thus, as the risky labor income vanishes, limited uncertainty
resolved around retirement results in a smaller drop in the risky asset holdings. θ̂∗, the approx-
imation for the critical disappointment aversion parameter in retirement for the benchmark
case, θ∗, is in fact accurate in the present case. The agents with the disappointment aversion
parameter θ ≥ θ∗ choose not to participate in the stock market in retirement. The critical
value solely depends on the distribution of excess returns (see Appendix F).

θ∗ = − Et [Re,t+1]

Et [Re,t+1|Re,t+1 < 0] × Φ(Re,t+1 < 0)

I plot the cross-sectional averages of consumption at every age over the life in Figure
6.6. The consumption for the DA agent peaks at retirement, whereas it continues to rise
into the retirement for the CRRA agent. Thus the consumption profile qualitatively still
remains the same as that in the benchmark case, but the retirement consumption puzzle is

33Presuming positive equity premium.
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Figure 6.6: The cross-sectional mean of the consumption at every age over the life of the
agents. The plots are for CRRA and DA preferences with varying values for θ.

stronger for the CRRA agent. The consumption profiles are, however, smoother compared
to the benchmark case. This is due to the absent non-tradable risk-free retirement income.
The retirement income in the benchmark case in part ensures furture consumption and hence
the agent rapidly draws down on the savings creating an uneven profile. In the absence of a
certain source of income the agent consumes the savings less rapidly.

6.5 Stock Crashes and Depressions

Lynch and Tan (2004) explore the effects of the pro-cyclical variation in labor income growth
and the counter-cyclical variation in income volatility on stock investments for agents with
CRRA preferences. They find that this variation helps explain the low stock investments of
the young and especially those with little wealth. In the following, I explore the effects of
increased labor growth uncertainty in the troughs of the business cycle using stock market
crashes and disastrous draws for the permanent income.

Barro and Ursua (2009) estimate the probabilities of stock market crashes and macroe-
conomic depressions. They find that the stock-market crashes occur more often than the
depressions. The crashes have an associated probability of 22% for a minor depression and a
3% probability of a major depression34. Storesletten, Telmer, and Yaron (2004), using PSID

34The minor depressions are multiyear declines of consumption or GDP of 10% or more in magnitude. The
declines of 25% or more in consumption or GDP constitute major depressions. Stock market crashes are
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Correlation of labor income shocks with stock returns, 0.15
Probability of Depression, 3.8%
Size of permanent shock in depression, −2 × σu

Probability of stock crash, 5.8%
Size of crash, -41%

Table 6.2: The parameter values for the case with stock market crashes and macroeconomic
depressions. The values in the table are the additional parameters or the parameters that are
different from the benchmark case in Table 5.1.

data, find that the standard deviation of the shock to permanent log labor income increases
by about 75% as the economy rides over the peak to the trough35. I model the effect of de-
pression on labor income as a large negative permanent income shock. I set the magnitude of
the shock to be twice the standard deviation of the shock in normal times, −2×σu. Following
Barro and Ursua (2009), I set the depression probability at 3.8% . However, I restrict focus
solely on the U.S. stock market crashes to obtain an estimate of the crash probability and the
size of the crash. I list the crashes and returns in Table I.1 in the appendix. The restriction
to the U.S. markets yields a lower estimate for the probability of crash at 5.8% and the size
of the crash at 41%. I list the parameters in Table 6.2.

The optimal stock investment rules as a function of the scaled tradable wealth before re-
tirement are in Figure 6.7. The portfolio rules indicate the agents do not invest any of their
savings in stocks at low levels of tradable wealth. The greater resemblence of the capitalized la-
bor income to the stock index than to the risk-free asset is the reason for the aversion to stocks.
The permanent component of labor income has a correlation of 0.15 with stock returns in the
absence of disasters. Labor income subject to disastrous shocks that correlate with crashes
in the stock market further reduce the attractiveness of stock investments. The proportion of
labor income in total wealth is higher at low levels of tradable wealth. Precautionary needs
restrict the agent from investing in stocks at low levels of wealth. Risky investments rise with
wealth and asymptote to the all-tradable-wealth solution. The all-tradable-wealth solution
for CRRA preferences is a positive investment in stocks given the positive premium on stocks.
The optimal investment in stocks for DA preferences, however, asymptote toward zero invest-
ment. The difference in investment strategy persists into retirement. The optimal decision
under the DA preference is not to participate in the stock market at all. CRRA preferences,
however, yield positive investment in stocks. The optimal investment is in fact higher than
the all-tradable-wealth solution when labor income is not negligible compared to the tradable
wealth.

The above differences between the DA and the CRRA preferences map into the simulated

characterized by multi-year real returns of -25% or less.
35The standard deviation increases from 0.12 to 0.21.
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Figure 6.7: The stock investment rules as a function of wealth scaled by the permanent income
before retirement for DA and CRRA preferences.
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Figure 6.8: The cross-sectional average of the fraction of savings invested in stocks at all ages
over the life of the agent with DA preferences. The fractions are computed conditional on
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Figure 6.9: The cross-sectional average of the fraction of savings invested in stocks at all ages
over the life of the agents with CRRA preferences. The fractions are computed conditional
on positive savings.

stock investments over life in figures 6.8 and 6.9. Low financial wealth at young age restrict
stock investments due to precautionary reasons as stocks and the capitalized labor appear
quite similar. Accumulated savings, however, increase the investment in stocks in mid-adult
life. Still, CRRA and DA preferences generate very different investment strategies after re-
tirement. Agents with CRRA preferences favor stock participation on account of the positive
risk premium. The DA agent, given the risk of disastrous stock returns, prefers to stay out
of the market. Thus DA preferences in the presence of market crashes and disastrous shocks
to permanent income help match lower investments in stocks at young and old age at the
same time. Differences in retirement age across agents in the economy can help reconcile the
discrete drop in average risky allocation suggested by the simulation with the gradual drop
observed in the data.

6.6 Bequest

I expand upon the benchmark case by adding the bequest motive to the preferences36. In
the absence of a bequest motive the agents prefer to run down the assets due to uncertain
mortality and higher risky allocation in the old age for the benchmark labor income process.
The bequest motive involves preferences over the gambles in the event of death and the

36See Nardi (2004) for evidence on the motive to bequeath wealth.
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utility gained from passing the savings to future generations. I use the following preference
formulation that includes bequest.

Jt(Wt, νt)
1−γ

1 − γ
= max

Ct,xt

C1−γ
t

1 − γ
+ ptβ

μt(Jt+1(Wt+1, νt+1))
1−γ

1 − γ
(6.1a)

+(1 − pt)βb
μb,t(Wt+1/b)

1−γ

1 − γ

μ1−γ
t = Et

[
Jt+1(Wt+1, νt+1)

1−γ
]

(6.1b)

−θ Et
Jt+1<μt

[
μ1−γ

t − Jt+1(Wt+1, νt+1)
1−γ
]

μ1−γ
b,t = Et

[
(Wt+1/b)

1−γ
]

(6.1c)

−θ Et
Wt+1

b
<μb,t

[
μ1−γ

b,t − (Wt+1/b)
1−γ
]
.

The agent lives until age 100 and the terminal valuation due solely to bequest is encoded
as,

JT+1(Wt, νt)
1−γ

1 − γ
= b

(WT+1/b)
1−γ

1 − γ
.

The intensity of bequest motive is parametrized in b. I retain all other parameters from
the benchmark case. Gomes and Michaelides (2005) find that a value of 2.5 for the bequest
motive, b with Epstein-Zin (EZ) preference specification is a better match for the wealth
distribution. However, EZ preferences generate high savings and risky allocation over the
old age. The DA preferences, on account of lower risky allocation in old age, generate lower
savings in old age. Hence, I use a higher value for the bequest motive so that the accumulated
savings may better match the wealth distribution observed in the data.

I plot the average portfolio allocation at every age in Figure 6.11, average savings in Figure
6.10 and average consumption in Figure 6.12. The agent, instead of running down the savings
in old age for his own consumption, now trades-off against the motive to leave inheritance to
heirs. The bequest motive also raises the savings over the working life. The overall effect of
the preference to bequeath wealth to future generations is to increase savings. The effect is
prominently observable in old age (Figure 6.10). The increasing chances of mortality with age
strengthen the motive to bequeath wealth. This increasing intensity of bequest results in a
sharp rise in savings relative to the capitalized retirement income (not included).

The relatively higher proportion of the tradable wealth or the savings with the increasing
age induces the agent to choose lower risky allocation in old age (Figure 6.11). The other
features of stock investments in the benchmark case including the decline in stock investments
around retirement are unchanged in the presence of bequest motive. The consumption profile
qualitatively remains unchanged as well. The lower average benefits to savings in old age still
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Figure 6.10: The cross-sectional mean savings at every age over the life of the agents with
CRRA and DA preferences.

result in a consumption drop and an uneven profile around retirement for DA preferences.
The consumption profile for the CRRA preference, on the other hand, is still smooth without
a decline in the consumption around retirement.

7 Conclusion

This article provides a preference based explanation for the conservative investment strategy
around retirement and of the elderly. Disappointment Aversion (DA) preferences motivated
by the Allais paradox generate aversion to risky investments when the background uncertainty
is below a threshold level. The background risk limits the alternative gambles available to
the agent. The absence of background risk after retirement provides a sure alternative to the
risky stock investment. The agent’s behavior, consistent with the Allais paradox, is to choose
a low risk portfolio and hence a lower stock allocation after retirement. The optimal choice
when the agent is sufficiently disappointment averse is to not take up any risky investments at
all. The preferences also imply greater savings for retirement and a drop-off in consumption
post-retirement. DA preferences also generate an increased perceived correlation between the
labor income and the stock returns.

DA preferences in the presence of disastrous returns and disastrous shocks to permanent
labor income yield stock investment rules that are increasing in the wealth of the agent.
Overweighting of the disappointing states and the disastrous permanent shocks to income
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imply that the agent’s human capital is more akin to a stock than a risk-free asset. Young
agents with little savings and borrowing constraints choose not to increase investment in a
correlated asset. DA preferences combined with environment of disastrous shocks yield a drop
in risky investment at young age and a drop in investment after retirement without resorting
to bequest motive or health risks.
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A Numerical Method

I restate the problem. The optimization program for any period t is given by,

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(exp(ut+1)J
ν
t+1(W

ν
t+1))

1−γ

1 − γ
.

The wealth evolves according to W ν
t+1 = (W ν

t −Cν
t ) [Re,t+1xt + Rf ] e

−ut+1 + Y ν
t+1, with the

constraints that Cν
t ≤ W ν

t and 1 ≥ xt ≥ 0. The certainty equivalent μt is,

μ1−γ
t = Et

[[
eut+1Jν

t+1(W
ν
t+1)

]1−γ
]

−θ Et
eut+1Jν

t+1<μt

[
μ1−γ

t − [eut+1Jν
t+1(W

ν
t+1)

]1−γ
]
.

The terminal valuation is Jν
T (W ν

T ) = W ν
T . The agent consumes all the wealth W ν

T at time
T . Thus Cν

T = W ν
T and the agent has no savings (Aν

T = W ν
T − Cν

T ), and hence the portfolio
problem for the terminal period (choosing optimal xT ) does not exist. I numerically solve for
the optimal policy rules for all other periods. I use the endogenous grid method by Carroll
(2006). Consider the period T − 1. The certainty equivalent μT−1 is,

μ1−γ
T−1 = ET−1

[
[euT W ν

T ]1−γ]
−θ ET−1

euT W ν
T <μT−1

[
μ1−γ

T−1 − [euT W ν
T ]1−γ] .

The budget equation is W ν
T = (W ν

T−1 − Cν
T−1) [Re,T xT−1 + Rf ] e

−uT + Y ν
T , which I rewrite

as W ν
T = Aν

T−1 [Re,T xT−1 + Rf ] e
−uT +Y ν

T . I choose a grid on the savings Aν
T−1. I solve for the

optimal xT−1 that maximizes μT−1 for a given value of savings Aν
T−1.

I describe the approach for computing μT−1 for a chosen xT−1 and Aν
T−1. The gamble the

investor faces is G = euT W ν
T .

W ν
T = Aν

T−1 [Re,TxT−1 + Rf ] e
−uT + Y ν

T

Re,T = RT − Rf

Y ν
T = exp(gT + εT ) εT ∼ N(0, σ2

ε ) and uT ∼ N(0, σ2
u)

RT = R exp(ηT ) ηT ∼ N(μr, σ
2
r), with μr = −σ2

r/2

⇒ W ν
T ≡ W ν

T (uT , εT , ηT )

G = euT W ν
T

⇒ G ≡ G(uT , εT , ηT )
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The gamble G is dependent on the three shocks: permanent labor income shock uT ,
idiosyncratic labor income shock εT , and return shock ηT . I approximate the continuous
distribution of these shocks by a finite number of draws. I use the equi-distributed Sobol
sequences (Judd (1998)) to generate these draws. I choose equi-distributed sequences over
pseudo-random number generator sequences to achieve faster convergence of the computed
integrals37. This method reduces the problem to computing, μ, where μ is the fixed zero of
f(μ) ≡ μ1−γ +θ E

G<μ
[μ1−γ − G1−γ ]−E [G1−γ ]. I use bisection algorithm to obtain the μ.38 This

provides a method to compute μT−1(A
ν
T−1, xT−1) for a given portfolio weight and saving. I

choose a search method to find the maximum of μT−1(xT−1) as a function of the weight xT−1

in place of first order condition to obtain the optimal portfolio weight, x∗
T−1(A

ν
T−1). The

reason for the choice is that the first order condition requires computation of μT−1 and also
the computation of an additional integral in the form of expectation, which increases the
computational cost. I use the golden section search with parabolic interpolation39 to search
for the optimal portfolio weight x∗

T−1(A
ν
T−1) with the bounds 0 ≤ xT−1 ≤ 1.

I use the above method to compute the optimal portfolio weight x∗
T−1(A

ν
T−1) at every

grid point of the savings. The optimal portfolio weight at zero saving is not defined and the
certainty equivalent μT−1 is a constant for zero saving as it solely depends on the exogenous
labor income gamble. I use the first order condition in Appendix B to compute the optimal
consumption, Cν,∗

T−1(A
ν
T−1). These values for given savings map to a specific value of wealth.

Thus, Cν,∗
T−1(W

ν
T−1) = Cν,∗

T−1(A
ν
T−1) + Aν

T−1 and x∗
T−1(W

ν
T−1) = x∗

T−1(A
ν
T−1) provide the con-

sumption and portfolio policy rules over a grid of wealth points.40 The optimal consumption
for zero saving is equal to wealth and the portfolio weight not defined.

The above method for computing the optimal portfolio weight and the optimal consump-
tion is applicable for any time period t. However, other time periods require interpolation
of consumption policy rules Cν,∗

t+1(W
ν
t+1) and the valuation Jν

t+1(W
ν
t+1). I collect the optimal

consumption values and the valuations for time period t + 1 at all wealth grid points and use
the linear interpolation to compute values at intermediate wealth points.

37I performed computations using 100×103 draws with both sequences and found no difference in the policy
rules.

38The function, f is monotonic in μ since f ′/(1 − γ) > 0. Thus the problem f(μ) = 0 is amenable to a
bisection algorithm. The two end points of the search are, [Gmin, Gmax]. Note that, f(Gmin)× f(Gmax) < 0,
thus the solution to f(μ) = 0, lies in [Gmin, Gmax]. The starting guess I use, however, is not (Gmin +Gmax)/2.
The starting guess is E

[
G1−γ

]1/(1−γ), which is the certainty equivalent for the case of θ = 0 or the CRRA
preference, with same γ.

39This method is fast if the solution is interior, but quite slow for the corner solutions.
40I also verify that the value function V ν

T−1(W
ν
T−1) = Jν

T−1(W
ν
T−1)1−γ

1−γ , decreases by either increasing or
decreasing the consumption level around Cν,∗

T−1(W
ν
T−1).
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B Optimal Consumption and Portfolio weights

The value function with the scaled variables is,

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(exp(ut+1)J
ν
t+1(W

ν
t+1))

1−γ

1 − γ
.

Where, the scaled variables are,

W ν
t = Wt exp(−νt), Cν

t = Ct exp(−νt), Y ν
t = Yt exp(−νt) = exp(gt + εt).

The budget equation with the scaled variables is,

W ν
t+1 = (W ν

t − Cν
t ) [Re,t+1xt + Rf ] exp(−ut+1) + Y ν

t+1.

2.1 Period T-1

The value function for the last but one period T − 1 is,

Jν
T−1(W

ν
T−1)

1−γ

1 − γ
= max

Cν
t ,xt

(
Cν

T−1

)1−γ

1 − γ
+ pT−1β

μT−1(e
uT Jν

T (W ν
T ))1−γ

1 − γ
.

The terminal valuation is Jν
T (W ν

T ) = W ν
T . The budget equation is,

W ν
T = (W ν

T−1 − Cν
T−1) [Re,T xT−1 + Rf ] e

−uT + Y ν
T ,

and the constraints are Cν
T−1 ≤ W ν

T−1 and 1 ≥ xT−1 ≥ 0.
The certainty equivalent μT−1 is,

μ1−γ
T−1 = ET−1

[
[euT Jν

T (W ν
T )]1−γ]

−θ ET−1
euT Jν

T <μT−1

[
μ1−γ

T−1 − [euT Jν
T (W ν

T )]1−γ] .
2.1.1 Optimal Portfolio Weight

I differentiate certainty equivalent μT−1 with respect to xT−1 and obtain the following41.

41The integrand is zero over at the boundary and hence no need to compute the differential of the boundary.
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μ−γ
T−1

∂μT−1

∂xT−1

= ET−1

[
[euT Jν

T (W ν
T )]−γ

[
euT

∂Jν
T

∂W ν
T

∂W ν
T

∂xT−1

]]

−θ ET−1
euT Jν

T <μT−1

[
μ−γ

T−1

∂μT−1

∂xT−1

− [euT Jν
T (W ν

T )]−γ

[
euT

∂Jν
T

∂W ν
T

∂W ν
T

∂xT−1

]]

μ−γ
T−1

∂μT−1

∂xT−1
=

ET−1

[
[euT Jν

T (W ν
T )]−γ

[
euT

∂Jν
T

∂W ν
T

∂W ν
T

∂xT−1

]
(1 + θI(euT Jν

T < μT−1))
]

[1 + θET−1 [I(euT Jν
T < μT−1)]]

The partial derivatives for the last period are (1)
∂Jν

T

∂W ν
T

=
∂(W ν

T )
∂W ν

T
= 1 where Jν

T (W ν
T ) = W ν

T

and (2)
∂W ν

T

∂xT−1
= Aν

T−1Re,T e−uT where Aν
T−1 = W ν

T−1−Cν
T−1. However at the optimal portfolio

weights, ∂μT−1

∂xT−1

∣∣∣
xT−1=x∗

T−1

= 0. Thus the first order condition for the last period reduces to

Eqn. B.1.

0 = ET−1

[
[euT W ν

T ] [Re,T ]
(
1 + θI(euT W ν

T < μ∗
T−1)

)]
(B.1)

2.1.2 Optimal Consumption

The first order condition for the optimal consumption in the last but one period is,

0 =
(
Cν

T−1

)−γ
+ pT−1β

(
μ∗

T−1

)−γ ∂μT−1

∂Cν
T−1(

Cν,∗
T−1

)−γ
= −pT−1β × (μ∗

T−1

)−γ ∂μ∗
T−1

∂Cν
T−1

∣∣∣∣
Cν

T−1=Cν,∗
T−1

The differential of the certainty equivalent with respect to the consumption involves similar
steps as in the sub-section above.

μ−γ
T−1

∂μT−1

∂Cν
T−1

=
ET−1

[
[euT Jν

T (W ν
T )]−γ

[
euT

∂Jν
T

∂W ν
T

∂W ν
T

∂Cν
T−1

]
(1 + θI(euT Jν

T < μT−1))
]

[1 + θET−1 [I(euT Jν
T < μT−1)]]

The two partial derivatives in the expectation are,
∂Jν

T

∂W ν
T

=
∂(W ν

T )
∂W ν

T
= 1 and

∂W ν
T

∂Cν
T−1

=

−e−uT Rp,T . I substitute for these two partials and obtain the optimal consumption in pe-
riod T − 1 to be,

(
Cν,∗

T−1

)−γ
= pT−1β × ET−1

[
[euT W ν

T ]−γ Rp,T

(
1 + θI(euT W ν

T < μ∗
T−1)

)][
1 + θET−1

[
I(euT W ν

T < μ∗
T−1)

]] .
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2.2 Any other time period

The value function for any period other than T − 1 is,

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(e
ut+1Jν

t+1(W
ν
t+1))

1−γ

1 − γ
.

The budget equation is,
W ν

t+1 = (W ν
t − Cν

t ) [Re,t+1xt + Rf ] e
−ut+1 + Y ν

t+1,
and the constraints are Cν

t ≤ W ν
t and 1 ≥ xt ≥ 0.

The certainty equivalent μt is,

μ1−γ
t = Et

[[
eut+1Jν

t+1(W
ν
t+1)

]1−γ
]

−θ Et
eut+1Jν

t+1<μt

[
μ1−γ

t − [eut+1Jν
t+1(W

ν
t+1)

]1−γ
]
.

2.2.1 Optimal Portfolio Weight

I differentiate certainty equivalent μt with respect to xt and obtain the following. The steps
are similar to those for period T − 1.

μ−γ
t

∂μt

∂xt

=
Et

[[
eut+1Jν

t+1(W
ν
t+1)

]−γ
[
eut+1

∂Jν
t+1

∂W ν
t+1

∂W ν
t+1

∂xt

] (
1 + θI(eut+1Jν

t+1 < μt)
)]

[
1 + θEt

[
I(eut+1Jν

t+1 < μt)
]]

One of the partials is,
∂W ν

t+1

∂xt
= (W ν

t − Cν
t )Re,t+1e

−ut+1, which I rewrite as, eut+1
∂W ν

t+1

∂xt
=

Aν
t Re,t+1, where Aν

t = (W ν
t − Cν

t ). Thus the first order condition for the optimal portfolio

weight ∂μt

∂xt

∣∣∣
xt=x∗

t

= 0 reduces to,

0 = Et

[[
eut+1Jν

t+1(W
ν
t+1)

]−γ
[

∂Jν
t+1

∂W ν
t+1

Re,t+1

] (
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

. (B.2)

Now, I compute the remaining partial in the integral. Given that Jν
t+1 is ,

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(e
ut+1Jν

t+1(W
ν
t+1))

1−γ

1 − γ
.

The differential ignoring the maximization with respect to consumption is,

(Jν
t )−γ ∂Jν

t

∂W ν
t

= ptβ (μ∗
t )

−γ ∂μ∗
t

∂W ν
t

.
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But, note that,

∂μt

∂W ν
t

=
∂μt

∂Aν
t

∂Aν
t

∂W ν
t

=
∂μt

∂Aν
t

∂(W ν
t − Cν

t )

∂W ν
t

=
∂μt

∂Aν
t

,

and also,

∂μt

∂Cν
t

=
∂μt

∂Aν
t

∂Aν
t

∂Cν
t

=
∂μt

∂Aν
t

∂(W ν
t − Cν

t )

∂Cν
t

= − ∂μt

∂Aν
t

.

Hence,
∂μ∗

t

∂W ν
t

= − ∂μ∗
t

∂Cν
t
. I substitute this relation in the equation with the differential

∂Jν
t /∂W ν

t and obtain,

(Jν
t )−γ ∂Jν

t

∂W ν
t

= −ptβ (μ∗
t )

−γ ∂μ∗
t

∂Cν
t

.

However Jν
t is based on the maximization over consumption and portfolio weight. The

first order condition for the consumption optimization is,

(Cν,∗
t )

−γ
= −ptβ × (μ∗

t )
−γ ∂μ∗

t

∂Cν
t

.

Combining the above two equations amounts to the envelope condition and I obtain the
formula for ∂Jν

t /∂W ν
t , which is,

∂Jν
t

∂W ν
t

=

(
Cν,∗

t

Jν
t

)−γ

. (B.3)

I substitute this envelope condition result by incrementing the time forward in Eqn. B.2
and obtain the following first order condition for the optimal portfolio weights.

0 = Et

[[
eut+1Cν,∗

t+1

]−γ
[Re,t+1]

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

2.2.2 Optimal Consumption

As noted above the first order condition for the optimal consumption is given by,

(Cν,∗
t )

−γ
= −ptβ × (μ∗

t )
−γ ∂μ∗

t

∂Cν
t

.

The differential with respect to the consumption can be transformed into the differential
with respect to the savings as shown below,

∂μt

∂Cν
t

=
∂μt

∂Aν
t

∂Aν
t

∂Cν
t

=
∂μt

∂Aν
t

∂(W ν
t − Cν

t )

∂Cν
t

= − ∂μt

∂Aν
t

.
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Thus, rewriting the first order condition for optimal consumption I obtain,

(Cν,∗
t )

−γ
= ptβ × (μ∗

t )
−γ ∂μ∗

t

∂Aν
t

.

I follow steps similar to those for the optimal portfolio weights and obtain the differential
of the certainty equivalent with respect to savings to be,

(μ∗
t )

−γ ∂μ∗
t

∂Aν
t

=
Et

[[
eut+1Cν,∗

t+1

]−γ
R∗

p,t+1

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

[
1 + θEt

[
I(eut+1Jν

t+1 < μ∗
t )
]] .

Thus the first order condition for the optimal consumption is,

(Cν,∗
t )

−γ
= ptβ ×

Et

[[
eut+1Cν,∗

t+1

]−γ
R∗

p,t+1

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

[
1 + θEt

[
I(eut+1Jν

t+1 < μ∗
t )
]] .

C Matching the DA and CRRA Parameters

I compare the attitudes towards risk of the agents with the disappointment averse and CRRA
preferences using the risk premiums for a simple log-normal gamble on wealth (or consump-
tion). The parameters for DA preference are set at γda = 5 and θ = 1. I plot the uncertainty
of the future gambles again in Figure C.1 for convenience. The standard deviation of the log of
the future gamble facing the investor at young age is between 10% and 11% for the benchmark
case. I choose the value for γcrra for CRRA preferences that best matches the risk premium
and marginal incremental premium at this standard deviation for a simple log-normal gamble.
This method yields the match of γcrra = 8 for the risk parameters of CRRA preferences. The
match based simply on the risk premium results in γcrra = 9. I illustrate the matching method
based on risk premium and the incremental premium below.

The log-normal gamble on wealth, W (ε) is given by ln(W (ε)) = k + σε, where ε is a
standard normal random variable. The expected outcome from the gamble on the wealth is,
ln(E(W )) = k + σ2

2
. I consider the log of the ratio of the certainty equivalent, (the least

certain-value gamble that the agent will be willing to trade for the uncertain gamble) to
the expected wealth outcome as a measure of the risk premium the agent demands to hold
the gamble42. The certainty equivalent under the power utility preference, μcrra is given by

ln(μcrra) = k + (1−γcrra)σ2

2
, where γcrra measures the relative risk aversion. The risk premium

ln(E(W )/μcrra) is RP crra = γcrraσ
2/2. The risk premium is proportional to the variance of

the gamble. The incremental premium or the incremental reward per unit rise in the risk is
proportional to the size or the standard deviation of the gamble d(RP crra)/dσ = γcrraσ. The
certainty equivalent for the disappointment averse preferences is given by,

42The idea is the same as that in Backus, Routledge, and Zin (2004).
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Figure C.1: The future gamble outcomes at time t with optimal portfolio weight x∗
t+1 and

consumption C∗,ν
t+1 are given by eut+1Jν

t+1(W
∗,ν
t+1). The plot is the cross-sectional average of the

standard deviation of the log of this future gamble facing the investor. The plot is for the
benchmark case of no correlation between the labor income and portfolio returns. Further,
the average is conditional on positive savings.
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μ1−γ
da = E

[
W 1−γ

]− θ E
W<μda

[
μ1−γ

da − W 1−γ
]
.

Although no explicit formula is available an implicit formula for μda exists. I numerically
compute the certainty equivalent μda and the risk premium RP da = ln(E(W )/μda) using this
implicit formula (Eqn. C.1).

μ1−γ
da = exp

(
(1 − γda)k +

(1 − γda)
2σ2

2

)

+θ

[
exp

(
(1 − γda)k +

(1 − γda)
2σ2

2

)
Φ

(
ln μda − k − (1 − γda)σ

2

σ

)

−μ1−γ
da Φ

(
ln μda − k

σ

)]
(C.1)

I numerically compute the certainty equivalent μda and the risk premium RP da using this
implicit formula. The risk premium is defined as, RP da = ln(E(W )/μda). I set the constant
k at 0.01. The constant, however, is inconsequential for the risk premium as the certainty
equivalents for both the preferences are scalable by the constant multiplying the gamble.

Let a = RP da
∣∣
γ=5,θ=1

, b = d(RP da)
dσ

∣∣∣
γ=5,θ=1

. The same for the CRRA preferences is,

RP crra = γcrraσ
2/2 and d(RP crra)

dσ
= γcrraσ. I find find the γ∗

crra such that,

γ∗
crra = arg min

γcrra

(RP crra − a)2 +

(
d(RP crra)

dσ
− b

)2

.

γ∗
crra = arg min

γcrra

(
γcrraσ

2

2
− a

)2

+ (γcrraσ − b)2

The matched γ∗
crra at σ = 0.10 is 7.87. Fig. C.2 plots the best fit γ∗

crra at different values
of the standard deviation of the log-gamble.

D Primer on First Order Risk Aversion

The first order risk aversion refers to the risk premium being proportional to first order terms
that characterize the gamble. Consider a small equally probable two outcome gamble, with
the outcomes, 1 − σ and 1 + σ. The expected value of the outcome is 1. I compute the
approximate values for the certainty equivalent (CE) of gamble under both the preferences.
Let γ represent the relative risk aversion and θ the disappointment aversion parameter. Eqn.
D.2 and D.1 are the exact formulas for the certainty equivalent under the two preferences.
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Figure C.2: The optimal γ∗
crra for CRRA preferences that matches the risk reward attitude

of DA preferences with γ = 5 and θ = 1. The fit is based on the risk premium and the
incremental premium for a given standard deviation of the log gamble.

The DA preferences overweight the disappointing outcomes. For this simple two state gamble
the (1 − σ) outcome is the disappointing outcome.

μpow =
[
0.5 × (1 − σ)1−γ + 0.5 × (1 + σ)1−γ

]1/1−γ
(D.1)

μda =

[
0.5(1 + θ)

1 + 0.5θ
× (1 − σ)1−γ +

0.5

1 + 0.5θ
× (1 + σ)1−γ

]1/1−γ

(D.2)

μpow ≈ 1 − γσ2

2
(D.3)

μda ≈ 1 − θ

θ + 2
σ − 4γ

θ + 1

(θ + 2)2

σ2

2
(D.4)

The approximate expressions for the certainty equivalents, Eqn. D.3 and D.4, indicate that
the premium for the power utility preferences is proportional to the variance of the gamble
whereas the same for the disappointment averse preferences also includes a term proportional
to the standard deviation of the gamble.

When the gamble is small the variance is negligible and the the second order terms are too
small to have any sizeable contribution to the risk premium. However, the DA preferences
also include terms proportional to the standard deviation of the gamble indicating significant
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aversion to small gambles as long as the disappointment aversion parameter is not close to
zero.
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E Critical DA parameter for Non-Participation in Re-

tirement

The retirement income is not stochastic once the agent enters the last period, age 65, he/she
spends in the labor market. The retirement income is in fact a constant fraction of the
permanent income in the last period the agent participates in the labor market.

ln(Yt) = ln(λ) + gK + νK ; ∀K + 1 ≤ t ≤ T

⇒ Yt = λegK+νK

K = 65, the last period agent works

The the retirement income scaled by the permanent income is in fact, Y ν
t+1 = Yt+1e

−νK =
λegK = Yλ,gK

. The budget equation is,

W ν
t+1 = (W ν

t − Cν
t ) [Re,t+1xt + Rf ] e

−ut+1 + Y ν
t+1.

In retirement, however, as the income is certain the permanent shocks are zero, i.e. ut+1 =
0. Thus the budget equation simplifies to,

W νK
t+1 = (W νK

t − CνK
t ) [Re,t+1x

νk
t + Rf ] e

0 + Y ν
t+1

W νK
t+1 = AνK

t [Re,t+1x
νk
t + Rf ] + Yλ,gK

. (E.1)

Where, AνK
t = W νK

t − CνK
t are the savings. The value function with the scaled variables

is,

Jν
t (W ν

t )1−γ

1 − γ
= max

Cν
t ,xt

(Cν
t )1−γ

1 − γ
+ ptβ

μt(e
ut+1Jν

t+1(W
ν
t+1))

1−γ

1 − γ
.

However, as the permanent shocks are set to zero (ut+1 = 0), the value function in retire-
ment is,

JνK
t (W νK

t )1−γ

1 − γ
= max

Cν
t ,xt

(CνK
t )1−γ

1 − γ
+ ptβ

μt(J
νK
t+1(W

νK
t+1))

1−γ

1 − γ
.

I approximate JνK
t (W νK

t ) around xt = 0 using Taylor expansion and obtain,

JνK
t+1(W

νK
t+1) ≈ a + bAνK

t Re,t+1xt. (E.2)
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Where the constants are, a = JνK
t+1(W

νK
t+1)

∣∣
Re,t+1xt=0

and b =
(
JνK

t+1

)′∣∣∣
Re,t+1xt=0

. Note that

b > 0 since the marginal utility of wealth is positive. Also, note that the certainty equivalent
of the future gamble facing the agent at zero portfolio weight is a constant and equal to
a. This result however does not depend on the approximation. The future wealth at zero
portfolio weight is a constant, W νK

t+1

∣∣
xt=0

= AνK
t Rf + Yλ,gK

= constant. The future value
function dependent on the wealth at zero portfolio weight is in fact the first term in the
approximation, JνK

t+1(W
νK
t+1)

∣∣
xt=0

= JνK
t+1(W

νK
t+1)

∣∣
Re,t+1xt=0

= a. Since the future value function

is a sure thing and not a gamble the certainty equivalent is in fact equal to this sure outcome.
Thus the certainty equivalent at zero portfolio weight is, μt(J

νK
t+1(W

νK
t+1))

∣∣
xt=0

= a. This is

same result if the approximation Eqn. E.2 for JνK
t+1(W

νK
t+1) was used instead. I apply this result

and the approximation Eqn. E.2 to the inequality JνK
t+1 < μt and simplify the inequality.

JνK
t+1 < μt

a + bAνK
t Re,t+1xt � μt

lim
xt→0+

a + bAνK
t Re,t+1xt � lim

xt→0+
μt (E.3)

a + bAνK
t Re,t+1xt � a

lim
xt→0+

Re,t+1xt � 0

Re,t+1 � 0

Thus I obtain the result that the inequality, JνK
t+1 < μt as the portfolio weight tends to zero

is approximately the same as Re,t+1 < 0. Also, note that the policy rule for the next period’s
consumption, CνK ,∗

t+1 , dependent on the next period’s wealth, W νK
t+1, reduces to a constant

number if the date t portfolio weight xt is zero. Thus I obtain, limx
νK
t →0+ Cν,∗

t+1(W
νK
t+1) = c =

constant. I collect all the results above and apply them to the first order condition for optimal
portfolio weight in retirement. The differential of the certainty equivalent with respect to the
portfolio weight is,

μ−γ
t

∂μt

∂xt
=

Et

[[
eut+1Cν,∗

t+1

]−γ
[Re,t+1]

(
1 + θI(eut+1Jν

t+1 < μ∗
t )
)]

[
1 + θEt

[
I(eut+1Jν

t+1 < μ∗
t )
]]

μ−γ
t

∂μt

∂xt
=

Et

[[
Cν,∗

t+1

]−γ
[Re,t+1]

(
1 + θI(Jν

t+1 < μ∗
t )
)]

[
1 + θEt

[
I(Jν

t+1 < μ∗
t )
]] (E.4)

The second equality follows from the fact that the permanent shock in zero as the income
is certain in retirement. I take the right limit as the portfolio weight tends to zero.
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lim
xt→0+

μ−γ
t

∂μt

∂xt

≈ Et [c−γ [Re,t+1] (1 + θI(Re,t+1 < 0))]

[1 + θEt [I(Re,t+1 < 0)]]

lim
xt→0+

(μt

c

)−γ ∂μt

∂xt
≈ Et [[Re,t+1] (1 + θI(Re,t+1 < 0))]

[1 + θEt [I(Re,t+1 < 0)]]

lim
xt→0+

∂μt

∂xt
� 0 ∀ θ > θ̂∗ and if Et [Re,t+1] > 0

Where, the formula for θ̂∗ depends solely on the distribution parameters of the asset
returns.43

θ̂∗ = − Et [Re,t+1]

Et [Re,t+1|Re,t+1 < 0] × Φ(Re,t+1 < 0)

Thus θ̂∗ characterizes the approximate value of θ∗ such that the agent does not invest any
amount in stocks for values of θ > θ̂∗. The marginal improvement in the certainty equivalent
is negative if the agent invests even a small amount in stocks from his/her savings. Thus the
certainty equivalent, being concave, cannot be improved further by reallocating any more of
the savings from the risk-free asset to the risky asset.

I do not consider the case of negative portfolio weights as the negative weight implies
shorting the stock index. The returns on stock index are log-normal and thus the investor
faces unlimited downside if he/she shorts the stock index. In other words, for any given
negative portfolio weight, the probability of zero or negative wealth is turns out to be a finite
non-zero value44. The marginal utility is however infinite for zero wealth and not defined for
negative wealth.

If however the agent has limited liability and the approximation in Eqn. E.2 and the
marginal welfare in Eqn. E.4 are applicable, the agent would still not prefer to short the stock
index. This is because all the the positive excess return states turn into the disappointing
states.

43The negative excess return states are still the disappointing states if I perform a Taylor expansion on
welfare, μt in Eqn. E.3. This implies that the limiting θ parameter is positive given the average premium is
positive.

44If the portfolio weight, xνk
t is and negative, the states with excess returns Re,t+1 such that, Re,t+1 >

(Yλ,gK
/A

νK
t )+Rf

|xνk
t | result in wealth that is non positive.
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JνK
t+1 < μt

a + bAνK
t Re,t+1xt � μt

lim
xt→0−

a + bAνK
t Re,t+1xt � lim

xt→0−
μt

a + bAνK
t Re,t+1xt � a

lim
xt→0−

Re,t+1xt � 0

Re,t+1 � 0

If all the positive excess return states are disappointing then the marginal welfare is positive
at zero portfolio weight and the agent prefers not to short the stock index.

lim
xt→0−

∂μt

∂xt
� 0 ∀ θ > 0 and if Et [Re,t+1] > 0

F Critical DA Parameter for Defined Contribution

The agent does not receive any social security, pension or other source of non-tradable income
under the simplified representation of Defined Contribution. The budget equation therefore
simplifies to,

Wt+1 = (Wt − Ct) [Re,t+1xt + Rf ] ; ∀K ≤ t ≤ T.

K = 65, the last period agent works

The value function in retirement is,

Jt(Wt)
1−γ

1 − γ
= max

Ct,xt

(Ct)
1−γ

1 − γ
+ ptβ

μt(Jt+1(Wt+1))
1−γ

1 − γ
; ∀K ≤ t ≤ T.

The optimal portfolio weights in retirement are time invariant and simply involve max-

imization of function H(x) = μ(Rp)1−γ

1−γ
(See Lemma F.1). Rp is the portfolio return, where

Rp = Rex + Rf . Re = Re,t+1 since the investment opportunity set does not change. Thus
optimal portfolio weight is a solution to,

x∗ = arg max
x

μ(Rp)
1−γ

1 − γ
.

Ang, Bekaert, and Liu (2005) obtain the critical parameter θ∗, such that x∗ = 0 for all
θ ≥ θ∗. Transforming the notation the critical parameter is given by,
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θ∗ = − Et [Re,t+1]

Et [Re,t+1|Re,t+1 < 0] × Φ(Re,t+1 < 0)
.

Lemma F.1. The value function in retirement obtains the form Jt(Wt) = χtWt, where χt is
a positive constant, ∀ K ≤ t ≤ T . The optimal portfolio allocation x∗

t is the same through out
the retirement period, and the optimal consumption to wealth ratio CW ∗

t = C∗
t (Wt)/Wt varies

only with age.

Note that, without the non-tradable source of income, the value function is scalable in
consumption and wealth.

Proof. Assume that Jt+1(Wt+1) = χt+1Wt+1, where χt+1 is a positive constant. The budget
equation is, Wt+1 = (Wt − Ct) [Re,t+1xt + Rf ] = (Wt − Ct)Rp,t+1.

Thus,

μt(Jt+1(Wt+1))
1−γ

1 − γ
=

μt(χt+1Wt+1)
1−γ

1 − γ

= χ1−γ
t+1

μt((Wt − Ct)Rp,t+1)
1−γ

1 − γ

= (Wt − Ct)
1−γχ1−γ

t+1

μt(Rp,t+1)
1−γ

1 − γ
.

Inserting above result in the value function for period t, I obtain,

Jt(Wt)
1−γ

1 − γ
= max

Ct,xt

(Ct)
1−γ

1 − γ
+ ptχ

1−γ
t+1 β(Wt − Ct)

1−γ μt(Rp,t+1)
1−γ

1 − γ

Jt(Wt)
1−γ

1 − γ
= W 1−γ

t max
CWt,xt

(CWt)
1−γ

1 − γ
+ ptχ

1−γ
t+1 β(1 − CWt)

1−γ μt(Rp,t+1)
1−γ

1 − γ

Jt(Wt)
1−γ

1 − γ
= W 1−γ

t max
CWt

(CWt)
1−γ

1 − γ
+ ptχ

1−γ
t+1 β(1 − CWt)

1−γ
μ1−γ

χ

1 − γ

=
W 1−γ

t

1 − γ

[
(CW ∗

t )1−γ + ptχ
1−γ
t+1 β(1 − CW ∗

t )1−γμ1−γ
χ

]
Jt(Wt)

1−γ

1 − γ
= χ1−γ

t

W 1−γ
t

1 − γ

Jt(Wt) = χtWt

Where, χt is a constant and,
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max
xt

μt(Rp,t+1)
1−γ

1 − γ
=

μ1−γ
χ

1 − γ
.

χt is a constant since (1) portfolio decision is independent of time and level of wealth and
(2) the optimal consumption-wealth ratio depends only on time.

The optimization step involves maximizing function Gt(CWt, xt).

Gt(CWt, xt) =
(CWt)

1−γ

1 − γ
+ ptχ

1−γ
t+1 β(1 − CWt)

1−γ μt(Rp,t+1)
1−γ

1 − γ

Gt(CWt, xt) = G1,t(CWt) + G2,t(CWt) × Ht(xt)

Where, (1) G1,t(CWt) = (CWt)
1−γ

1−γ
, (2) G2,t(CWt) = ptχ

1−γ
t+1 β(1−CWt)

1−γ and (3) Ht(xt) =
μt(Rp,t+1)1−γ

1−γ
. But, note that the optimization with respect to portfolio weights simply involves

maximizing45 Ht(xt). In other words the portfolio optimization and consumption-wealth ratio

optimization are separate. Now, note that the optimization of Ht(xt) =
μt(Rp,t+1)1−γ

1−γ
involves

choosing optimal portfolio weight that depends only on the investment opportunity set at time
t. Thus, Ht(x

∗
t ) = H∗

t , a function of time only. However note that the investment opportunity
set is constant and thus the distribution of portfolio returns Rp,t+1 for a given portfolio weight

xt is the same at all time periods t. Thus, I obtain, μ(Rp)1−γ

1−γ
=

μt(Rp,t+1)1−γ

1−γ
and H(x) = Ht(xt).

Thus the optimal portfolio weight x∗ = x∗
t is time invariant.

Further substituting the optimal portfolio weight in the optimization of Gt(CWt, xt), I
obtain,

max
CWt,xt

Gt(CWt, xt) = max
CWt

G1,t(CWt) + G2,t(CWt) ×
[
max

xt

Ht(xt)

]
= max

CWt

G1,t(CWt) + G2,t(CWt) × H∗
t

Gt(CW ∗
t , x∗) = max

CWt

G1,t(CWt) + G2,t(CWt) × H∗.

Now the optimization of consumption-wealth ratio CWt involves only the parameters that
are constants. The optimal consumption-wealth ratio depends on preference parameters,
return distribution. and also the conditional probability of survival at time t, pt. It is the
dependence on the conditional probability of survival pt that results in a consumption-wealth
ratio that varies with time. Thus the optimal Gt(CW ∗

t , x∗) reduces to a constant.

max
CWt,xt

Gt(CWt, xt) = G1,t(CW ∗
t ) + G2,t(CW ∗

t ) × H∗

Gt(CW ∗
t , x∗

t ) = χ1−γ
t /1 − γ

45The constraints 0 ≤ CWt ≤ 1 and the fact that χt+1 > 0 imply that G2,t(CWt) > 0.
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Further, note that since G1,t(CW ∗
t ), G2,t(CW ∗

t ), H∗ are all positive, χt is also positive.
Now, note that the terminal valuation is given by, JT (WT ) = χT WT , where χT = 1. Hence,

Jt(Wt) = χtWt, where χt is a positive constant, optimal consumption-wealth ratio CW ∗
t varies

only with time and optimal portfolio weight x∗
t is time invariant for all ∀K ≤ t ≤ T .

G Equivalent Constant Consumption

Jt(Wt, νt)
1−γ

1 − γ
= max

Ct,xt

C1−γ
t

1 − γ
+ ptβ

μt(Jt+1(Wt+1, νt+1))
1−γ

1 − γ

μ1−γ
t = Et

[
Jt+1(Wt+1, νt+1)

1−γ
]

−θ Et
Jt+1<μt

[
μ1−γ

t − Jt+1(Wt+1, νt+1)
1−γ
]

I restate the optimization program above. The permanent level varies with the permanent
shock νt ≡ νt(ut) and the wealth is dependent on the permanent and the idiosyncratic shocks
and also the return shocks, Wt ≡ Wt(ut, εt, ηt). The last period valuation is JT = WT . Let,

V ∗
t (Wt, νt) =

J∗
t (Wt,νt)1−γ

1−γ
be the maximum value at time t if the agent follows the optimal

portfolio and consumption policy rules, xt ≡ xt(Wt, νt) and Ct ≡ Ct(Wt, νt) for all time
periods until the end of the optimization program T .

I consider the alternative where the agent, with wealth Wt and permanent income νt is
instead exogenously provided with a constant consumption in each time period, Ct = Ceqv ∀t ≤
T . Since the certainty equivalent of the sure thing is a sure things itself, the valuation under

this constant consumption program is V eqv = k′ × (Ceqv)1−γ

1−γ
.

I define the equivalent constant consumption for a given wealth and permanent income level
as the minimum constant consumption stream over the period of the optimization program
such that the agent is indifferent between accepting the labor income and stock return gamble
and accepting the constant consumption stream. In other words the agent achieves the same
level of utility irrespective of whether he takes on the chances with the uncertain labor income
and stock returns and follows the optimal policy rules or receives a sure consumption in every
period.

If the maximum utility for a given wealth Wt and permanent income level νt is,
J∗

t (Wt,νt)1−γ

1−γ
,

the equivalent constant consumption is given by,

k′ × (Ceqv,∗)1−γ

1 − γ
=

J∗
t (Wt, νt)

1−γ

1 − γ

Ceqv,∗ = (k′)γ−1 × J∗
t (Wt, νt)

Ceqv,∗ = k × J∗
t (Wt, νt) Where k = constant.
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Thus the equivalent constant consumption Ceqv,∗ is proportional to the maximum welfare
J∗

t (Wt, νt) that the agent with beginning period wealth Wt and permanent income level νt can
achieve.

H Approximate optimal weight

The optimal portfolio weights are the same as those for the power utility investor except
that the agent uses a distorted distribution for optimization. The welfare and the budget
constraints are as follows.

μ1−γ
t = Et

[
W 1−γ

t+1

]− θ Et
Wt+1<μt

[
μ1−γ

t − W 1−γ
t+1

]
(H.1)

Wt+1 = AtRp,t+1 + Yt+1

Rp,t+1 = Re,t+1xt + Rf

Re,t+1 = Rt+1 − Rf

The implicit formula for welfare Eqn. H.1 re-written as Eqn. H.2 shows that the agent is
evaluating the gamble with a distorted probability distribution46. The distorted probability
formulation is easier for the interpretation of the first order condition.

μ1−γ
t =

Et

[
W 1−γ

t+1 (1 + θI(Wt+1 < μt))
]

1 + θΦ(Wt+1 < μt)
(H.2)

μ1−γ
t =

∑
Wt+1

p̂(Wt+1)W
1−γ
t+1

p̂(Wt+1) =
1 + θI(Wt+1 < μt)

1 + θ
∑

Wt+1
p̂(Wt+1)I(Wt+1 < μt)

× p(Wt+1)

I differentiate Eqn. H.1 with respect to portfolio weight xt and use dWt+1

dxt
= AtRe,t+1.

μ−γ
t

dμt

dx
= Et

[
W−γ

t+1

dWt+1

dxt

]
− θ Et

Wt+1<μt

[
μ−γ

t

dμt

dx
− W−γ

t+1

dWt+1

dxt

]

dμt

dxt

= AtEt

[(
Wt+1

μt

)−γ

Re,t+1
(1 + θI(Wt+1 < μt))

1 + θΦ(Wt+1 < μt)

]

46
∑

Wt+1
p̂(Wt+1) = 1 and p̂(Wt+1) ≥ 0, hence p̂(Wt+1) ≤ 1 and p̂(Wt+1) represents a probability distribu-

tion.
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The first order condition for the optimization is, dμt

dxt
= 047.

0 = Et

[(
W ∗

t+1

)−γ
Re,t+1

(
1 + θI(W ∗

t+1 < μ∗
t )
)

1 + θΦ(W ∗
t+1 < μ∗

t )

]

0 = Êt

[(
W ∗

t+1

)−γ
R∗

e,t+1

]
Êt

[(
W ∗

t+1

)−γ
R∗

t+1

]
= Êt

[(
W ∗

t+1

)−γ
Rf

]
(H.3)

Thus the first order condition is same as that for the power utility except for the dis-
tortion of the data generating process for the labor income and stock returns. I use the
log-linearization technique of Campbell and Viceira (2002) to obtain an approximate formula
for the optimal weights. The budget constraint is Wt+1 = AtRp,t+1 + Yt+1. The portfolio
returns and the labor income have log-normal distributions. The sum of log-normal distri-
butions is not log-normal. Thus without an explicit formula for the distribution of terminal
wealth it is hard to obtain a closed form formula for the optimal portfolio weights. The log-
linearization approximates the budget equation and helps obtain log-normal approximation
for the terminal wealth. I use lower case letters to represent the natural logarithms. The
log-linearized version of the budget constraint is Eqn. H.4.

wt+1 ≈ k + ρ̂(at + rp,t+1) + (1 − ρ̂)yt+1 (H.4)

1

ρ̂
= 1 +

exp(y)

exp(a + rp)
; 0 < ρ̂ < 1

The quantity ρ̂ represents the elasticity of the terminal consumption with respect to finan-
cial wealth. It is evaluated using the expected value of log-labor income Êt [yt+1] ≡ y and the
expected value of log-financial wealth Êt [at + rp,t+1] ≡ a + rp. I follow Campbell and Viceira
(2002) and use the budget equation approximation of log-normal terminal wealth48 and re-
write the first-order condition Eqn. H.3.

47The welfare is concave and first order condition is sufficient.
48Computing the expectations in the first order condition yields the formula in terms of the covariance with

the terminal wealth/consumption.

Êt

[(
W ∗

t+1

)−γ
R∗

t+1

]
= Êt

[(
W ∗

t+1

)−γ
Rf

]
Êt

[
exp(−γw∗

t+1 + rt+1)
]

= Êt

[
exp(−γw∗

t+1 + rf )
]

Êt

[
exp(−γw∗

t+1 + rt+1 − rf )
]

= Êt

[
exp(−γw∗

t+1)
]

I compute the expectations assuming a log-normal distribution for the terminal wealth.
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Êt [rt+1 − rf ] +
1

2
σ̂2

r,t = γ ˆCovt(wt+1, rt+1) (H.5)

Further, substituting Eqn. H.4 into the first order condition Eqn. H.5 I obtain the approx-
imate formula for the optimal portfolio weights49.

xt ≈ 1

ρ̂

(
ˆrt+1 − rf + σ̂2

r,t/2

γσ̂2
r,t

)
+

(
1 − 1

ρ̂

)
σ̂y,r,t

σ̂2
r,t

xt ≈ 1

ρ̂

(
ˆrt+1 − rf + σ̂2

r,t/2

γσ̂2
r,t

)
; If σ̂y,r,t ≈ 0

Êt

[
exp(−γw∗

t+1 + rt+1 − rf )
]

= exp(−γw∗
t+1 +

γ2

2
vart(w∗

t+1))

× exp(Êt (rt+1 − rf ) +
1
2
σ̂2

r,t − γ ˆCovt(w∗
t+1, rt+1))

Êt

[
exp(−γw∗

t+1)
]

= exp(−γw∗
t+1 +

γ2

2
vart(w∗

t+1))

Equating the two expectations, I obtain the familiar formula, but with a distorted probability distributions.

Êt [rt+1 − rf ] +
1
2
σ̂2

r,t = γ ˆCovt(wt+1, rt+1)

49I also use following approximation for the portfolio returns:

rp,t+1 ≈ xt(rt+1 − rf ) + rf +
1
2
xt(1 − xt)σ̂2

r,t.

64



I Additional Plots and Tables
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Figure I.1: The optimal portfolio policy rules as a function of wealth scaled by the permanent
income for the young and the mid adult life for DA and CRRA preferences. These plots are
for the case of no correlation between the labor income and stock returns.
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Figure I.2: The optimal consumption policy rules as a function of wealth scaled by the per-
manent income for the young and the mid adult life for DA and CRRA preferences. The
consumption on y-axis is scaled by the permanent income. These plots are for the case of no
correlation between the labor income and stock returns.
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Figure I.3: The cross-sectional mean consumption at every age over the life of the agents with
DA preferences and varying θ.
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Figure I.4: The cross-sectional mean savings at every age over the life of the agents with DA
preferences and varying θ.

US stock market crashes since 1869
Period |Real stock returns|
1907-07 0.32
1916-20 0.47
1929-31 0.55
1937-37 0.37
1939-41 0.29
1973-74 0.49
2000-02 0.42
2008-08 0.37

Table I.1: The stock market crashes and the magnitude of cumulative real returns over the
same periods. The table is reproduced from Barro and Ursua (2009), Table 1.
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