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Abstract

This paper uses existing and new methods in high frequency financial econometrics to propose new

tools to inform the study of time variation in equity betas. We first develop nonparametric tests for

time variation of betas. We then build on these tests to obtain a method of nonparameric search for

breaks in betas. These methods do not impose any parametric structure across time, they fully account

for measurement error in betas, and are robust to market microstructure noise inherent in tick time

data. In order to obtain robustness to di↵erent specifications of the market microstructure noise, we

use the subsampling method of Kalnina (2011) in the construction of the tests. Our context requires

a multivariate method, so we extend her univariate subsampling method to the multivariate case. We

also show its robustness to long memory in volatility, which is a well documented stylized fact. We

implement our tests with a small number of stocks on the NYSE over the year 2006. We find that the use

of high frequency data allows to detect significant variation of betas over shorter intervals of time than

the estimators relying on data at moderate frequencies, such as 5, 15, or 20 minutes. We strongly reject

the hypothesis that beta is constant across quarters in year 2006 for all stocks considered. More power is

needed to identify the time of the break, and we find that moderate frequency data does not have enough

power to identify a single break in betas in 2006 for most of the stocks, while highest frequency data

reveals breaks in most weeks in 2006 for each stock considered.
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1 Introduction

This paper proposes nonparametric tests for time variation in betas and search for breaks in betas with

high frequency data. These methods do not impose any parametric structure across time, they fully account

for measurement error in betas, and are robust to market microstructure noise inherent in tick time data.

In order to gain robustness to general specifications of the market microstructure noise, we use inference

procedure along the lines of Kalnina (2011). We extend her univariate procedure to the multivariate case

and demonstrate its robustness to long memory in the spot volatility of asset prices. An empirical study of

a small number of stocks from NYSE confirms this to be a very powerful method in detecting the timing of

the breaks in betas.

While failure of the unconditional, constant beta Capital Asset Pricing Model of Lintner (1965) and

Sharpe (1964) is widely accepted, there is no consensus on the nature of time variation in betas. A traditional

way is to estimate betas on rolling windows of say 5 years of monthly data, see, e.g. Fama and MacBeth

(1973) and Fama and French (1992). Braun, Nelson, and Sunier (1995) have modeled betas with leverage

e↵ects according to an EGARCH model, finding very little leverage e↵ects or even time variation. In Bekaert

and Wu (2000), beta dynamics is driven by an asymmetric BEKK specification of the variance-covariance

matrices. Meanwhile, access to high-frequency data has driven development of nonparametric volatility

estimators allowing also more flexible and precise estimation of betas, see e.g., Barndor↵-Nielsen and Shepard

(2004). The resulting estimators are often called realized measures, such as realized volatility and realized

beta, and are justified in stochastic process theory with an asymptotic scheme where observations are

sampled more and more frequently. Several papers have investigated dynamics of betas estimated from high

frequency data, for example, Patton and Verardo (2011) investigate e↵ect of news on daily realized betas of

individual stocks, Bollerslev and Zhang (2003) model dynamics of monthly realized betas as Fama-French

three factor model, Andersen, Bollerslev, Diebold, and Wu (2006) assess dynamics of monthly realized

betas of portfolios in a fractional co-integration model, Andersen, Bollerslev, Diebold, and Wu (2005) relate

monthly realized betas of portfolios to macroeconomic fundamentals within a linear state space model, and

Hansen, Lunde, and Voev (2010) develop a Realized Beta GARCH. All these studies use a parametric model

across days and abstract from the estimation error in beta estimators. The aim of this paper is to develop

tools to aid analysis of time variation of betas with high frequency data that satisfy four criteria. First, we do

not impose any particular parametric structure across time. Second, we fully account for the measurement

error in beta estimates. Third, we allow for the presence of market microstructure noise enabling us to use

tick time data. Fourth, we allow for general specifications of the market microstructure noise by using a

multivariate version of the inference method of Kalnina (2011).

Full record transaction prices are asynchronously observed and known to be contaminated with market
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microstructure noise, such as bid-ask bounce. Several papers allow estimation of betas in this setting:

Barndor↵-Nielsen, Hansen, Lunde, and Shephard (2010), Christensen, Kinnebrock, and Podolskij (2010),

and Zhang (2011). We construct tests for betas based on the estimator of Zhang (2011). An inference

procedure for betas is required to construct any tests. Since none is proposed in Zhang (2011), we use the

inference procedure of Kalnina (2011). It has the advantages of being simple to implement and being robust

to di↵erent specifications of the market microstructure noise such as autocorrelation and heteroscedasticity.

These advantages derive from the fact that it does not rely on the exact expression of the asymptotic variance

of the beta estimators, which can have complicated expressions in the presence of market microstructure

noise.

In order to apply the method of Kalnina (2011) for our purpose, we extend it in two directions.

First, we show the robustness of the subsampling method of Kalnina (2011) to long memory in spot

variance process.1 Long memory in the asset price variances is a well documented stylized fact. Early

contributions include Ding, Granger, and Engle (1993) and Bollerslev and Mikkelsen (1996). See also Comte

and Renault (1998), Giraitis, Kokoszka, Leipus, and Teyssière (2003), and Sizova (2011). Long memory in

spot variance process can explain long memory in realized betas, which has been assumed in, e.g., Andersen

et al. (2004), Andersen et al. (2005), and Bandi et al. (2008).

Second, we extend the univariate subsampling method of Kalnina (2011) to the multivariate case. The

univariate method cannot be applied directly to the beta estimators even in the case of one asset, because

they do not satisfy a basic requirement of her method, which is additivity of the variance of the beta

estimator over time. We provide intuition for this in Section 4.2. On the other hand, we can easily derive

the asymptotic variance of a beta estimator by the Delta method if we use a multivariate inference method.

An appealing feature of this multivariate subsampling method is that it always produces estimates of the

variance-covariance matrix that are positive semi-definite.

We then proceed to construct a test of betas being constant over time. This test is applicable for one

stock or for several stocks simultaneously. Finally, we determine break times in betas nonparametrically. We

do so by accounting for multiple testing among all the possible break dates by controlling familywise error

rate. We implement these tests with six stocks on the NYSE in year 2006, a period of relative tranquility

in volatilities and hence betas, with Standard and Poors Depositary Receipts (SPIDERS) as a proxy for

the market factor. As a benchmark, we first calculate the tests with traditional 5, 10, or 20 minute based

estimators, and find they can easily detect significant time variation over the whole year 2006 and also over

some quarters for some stocks. High frequency estimators can detect significant time variation in betas for

every quarter and every stock we consider. In a joint test across 6 assets, moderate frequency estimators

1Long memory in the spot variance process implies long memory in the process of integrated variances with the same

persistence parameter (Rossi and Magistris, 2011).
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can also detect time variation in betas for every quarter. However, finding the time of the break requires

more power, and this is where the real di↵erence between the methods emerges. We find that moderate

frequency methods do not have enough power to detect a single break for most of the stocks. On the other

hand, methods exploiting highest frequency data find breaks among most of the weeks in 2006 for each of

the stocks.

The remainder of this paper is organized as follows. Section 2 introduces the model and defines beta.

Section 3 describes the available literature that provides beta estimators in both moderate and high frequency

settings. Section 4 shows robustness of the subsampling method of Kalnina (2011) to long memory in

volatility and extends it to the multivariate framework. Section 5 describes the tests for constant betas and

the nonparametric search for breaks. Section 6 investigates the finite sample properties of the proposed

methods via simulations. Section 7 implements these with high frequency data. Section 8 concludes. All

proofs are collected in the appendix.

2 The model

Denote X to be the log-price process of the market portfolio, and Y to be a log-price process of an individual

stock. Suppose they both follow a continuous bivariate Brownian semimartingale process,

dX
t

= µx

t

dt+ �x

t

dW x

t

(1)

dY
t

= µy

t

dt+ �y

t

dW y

t

over k intervals of length one, i.e., t 2 [i� 1, i) , i = 1, . . . , k, where k is some fixed number. These intervals

will correspond to weeks in the empirical application. In the above, µx and µy are predictable locally

bounded drift processes, �x and �y are adapted càdlàg volatility processes, and W x and W y are standard

Brownian Motion processes with Corr (W x

t

,W y

t

) = ⌘
t

. The case of N stocks corresponds to (N + 1)-variate

process and is used later in Section 5.2, but so far we use one stock for simplicity of exposition.

In continuous time, a natural measure of the variability of the process X over some interval [i� 1, i) is

its quadratic variation,

hX,Xi
i

=

iZ

i�1

(�x

t

)2 dt,

and similarly covariation

hX,Y i
i

=

iZ

i�1

�x

t

�y

t

⌘
t

dt
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measures the covariability of X and Y . Using these, we can define the integrated beta (or just beta) over

interval [i� 1, i) as

�
i

:=
hX,Y i

i

hX,Xi
i

. (2)

This paper develops nonparametric tests of time variation of integrated beta �
i

across time, as well as

a procedure to search for breaks in betas. We now briefly discuss several perspectives, from which this

integrated beta has meaning in financial economics.

First, consider a one factor (cross-sectional) model,

r
s

= ↵
s

+ �
s

r0 + "
s

, s = 1, ..., N,

where N is the number of assets, r
s

is the return on the sth asset and r0 is the return on the systematic

risk factor (such as the market), with innovations "
s

uncorrelated with r0. Then, over a fixed period of time

[i� 1, i), it would be encompassed by the following model in continuous time,

dp
st

= ↵
st

dt+ �
is

�0tdW0t + �
st

dW
st

, s = 1, ..., N.

In the above, the systematic risk factor is represented by �0tdW0t, and �
st

dW
st

represents the idiosynchratic

risk. It can be easily verified that the coe�cient �
is

equals to

�
is

=
hp

s

, p0i
i

hp
s

, p
s

i
i

.

Denoting p0 by X and p1 by Y to minimise the number of subscripts, the above equality exactly equals the

integrated beta definition in equation (2). This interpretation is equivalent to one in Bollerslev and Zhang

(2003) and Todorov and Bollerslev (2009). The methods remain the same for multi-factor representations.

Second, knowledge of integrated betas can inform intertemporal asset pricing model formulations. Con-

ditional CAPM requires to specify the information sets of investors, which is impossible in practice. One

solution to this problem has been to assume that betas are constant over some relatively short periods of

time, such as quarters or years (see, e.g., Lewellen and Nagel, 2006). After such decision, typically no formal

tests are made as to whether this assumption is su�cient. Using a general nonparametric di↵usion model

for stock returns, we can avoid several misspecification sources, and find breaks in betas nonparametrically.

However, one should also keep in mind the limitations of the high frequency data. The NYSE Trade and

Quote Database, which records intraday transactions data, is only available since 1993. The time span of

the data is too small to obtain good tests for whether changes in integrated betas are indeed due to changes

in long-run asset market equilibrium. Hence, the current paper is not a direct contribution to this literature.

Rather, it presents an additional tool that can aid finding breaks nonparametrically in high frequency betas,

which should be useful in formulating parametric asset pricing models and risk management more generally.
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Alternatively, integrated betas can aid risk management and porfolio decisions as measures of exposure

to systematic risks without reference to specific asset pricing models. As a simple example, suppose an

investor aims to hedge exposure to being short of one unit of Y
t

by holding ⇢
t

units of X
t

. Denoting by Z
t

the gain or loss by following this procedure, we have the following relationship

dY
t

= ⇢
t

dX
t

+ dZ
t

, 0  t  T.

Then, ⇢
t

, or instantaneous beta, is obtained by minimizing the residual sum of squares. Under continuous

observations, the residual sum of squares is the quadratic variation of Z, hZ,Zi
T

.2 Therefore, instantaneous

beta becomes

⇢
t

=
d hX,Y i

t

d hX,Xi
t

=
hX,Y i0

t

hX,Xi0
t

,

where d hX,Y i
t

is the derivative of hX,Y i
t

with respect to time (in our setup ⇢
t

simplifies to (�x

t

)�1 �y

t

⌘
t

),

see Mykland and Zhang (2006). The relationship between this instantaneous beta ⇢
t

and the integrated

beta �
i

defined by equation (2) is straighforward. If ⇢
t

is constant across any interval [i� 1, i+ 1), then

integrated betas over [i� 1, i) and [i, i+ 1) would have to be equal, �
i

= �
i+1. Therefore, rejection of the

hypothesis �
i

= �
i+1 implies rejection of the hypothesis of ⇢

t

being constant over the interval [i� 1, i+ 1).

The opposite is not true, the intuition being that some higher frequency movements of ⇢
t

over time would

be missed by the integrated beta.3

Before proceeding, we note that some care should be taken of what a null hypothesis of constant betas

means. The integrated betas are random, so the unconditional probability that two di↵erent betas happen

to be the same is zero. Therefore, a better interpretation is to conduct all analysis conditional on the realized

path of the spot volatility. Conditional on the volatility path, betas are constant. Thus, when we talk about

a null hypothesis of two betas being the same, we mean that the volatility path has realized such that betas

are equal.4 Having said that, all analysis in this paper is written without conditioning on the volatility path.

It does not change the form of our test statistics or their asymptotic distribution.5

2Recall that quadratic variation of Z can be defined as

hZ,Zi
T

= lim
⇡#0

nX

i=1

�
Z

ti � Z

ti�1

�2

where we consider some partition 0 = t0 < t1 < ... < t

n

= T of the interval [0, T ], and ⇡ = max
i

|t
i

� t

i�1|.
3Spot beta can be estimated by localization in time of the integrated beta estimators, see Bandi and Reno (2010), Kristensen

(2010), and Zu and Boswijk (2009).
4I am grateful to Christian Gourieroux for suggesting this interpretation.
5This is because the extra randomness that arises in the limit is independent of the spot volatility process, see proof of

Proposition 2 for an example.
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3 Existing theory for estimation of beta

We first review the existing methods we aim to use. While the focus of the paper is on data at the

highest frequency, the setting of moderate frequencies serves as an important benchmark. We start with

this benchmark case due to its relative simplicity.

3.1 Noise-free and synchronous data

We refer to moderate frequency data a situation when sampling frequencies are low enough for the e↵ects of

market microstructure to be negligible, e.g., 5, 15, or 20 minutes.6 In these cases, the data is interpolated

to a regular grid of calendar time, but the e↵ect of interpolation is usually negligible. Thus, the underlying

assumption is that we have discrete equi-distant observations on the continuous time log-price process in

equation (1). Denote by n the number of observations in each time period. Normalizing the length of period

to be 1, the distance between observations becomes 1/n. In this relatively simple scenario we can estimate

quadratic variation of X by realized variance

[X,X]
i

=
nX

j=1

�
X(i�1)n+j

�X(i�1)n+j�1

�2

and quadratic covariation between X and Y by realized covariance,

[X,Y ]
i

=
nX

j=1

�
X(i�1)n+j

�X(i�1)n+j�1

� �
Y(i�1)n+j

� Y(i�1)n+j�1

�
.

These can be used to calculate the so-called realized beta as explored by Andersen et al. (2004), Andersen

et al. (2005), and Barndor↵-Nielsen and Shephard (2004),

b�RV

i

:=
[X,Y ]

i

[X,X]
i

.

It is consistent for the true beta as the sampling becomes more and more frequent (i.e., as 1/n ! 0), under

the assumption of no noise and synchronous observations. Asymptotic distribution of realized covariation

matrix was first derived in Barndor↵-Nielsen and Shephard (2004). We have

p
n

 
[X,X]

i

� hX,Xi
i

[X,Y ]
i

� hX,Y i
i

!
) MN (0, 

i

)

where

 
i

=

iZ

i�1

 
2�4

x

(u) 2�3
x

(u)�
y

(u) ⌘ (u)

2�3
x

(u)�
y

(u) ⌘ (u) �2
x

(u)�2
y

(u)
�
1 + ⌘2 (u)

�

!
du. (3)

6Additional precision can be gained by sampling at data-driven moderate frequencies, see Bandi and Russell (2008).
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and where MN (0, 
i

) means mixed normal distribution with random conditional variance  
i

independent

of the underlying normal distribution.7 The above convergence is stable in law, which is slightly stronger

than the usual convergence in law, see e.g., Aldous and Eagleson (1978), which means that confidence

intervals intervals can be constructed as usual even though  
i

is random. By the Delta method, provided

hX,Xi
i

> 0 for i = 1, .., k,
p
n
⇣
b�RV

i

� �
i

⌘
) MN

�
0, V RV

i

�

where

V RV

i

= hX,Xi�2
i

⇣
��

i

1
⌘
 

i

 
��

i

1

!
.

From Barndor↵-Nielsen and Shephard (2004), we know that the asymptotic variance of b�RV

i

can be estimated

by

[X,X]�2
i

0

@
nX

j=1

2
i,j

�
n�1X

j=1


i,j


i,j+1

1

A (4)

where


i,j

=
�
X(i�1)n+j

�X(i�1)n+j�1

� �
Y(i�1)n+j

� Y(i�1)n+j�1

�

�b�RV

i

�
X(i�1)n+j

�X(i�1)n+j�1

�2
.

Joint distribution of estimated betas across di↵erent time periods can be obtained from marginals, since

asymptotic distributions of
p
n
�
V RV

i

��1/2
⇣
b�RV

i

� �
i

⌘
are independent for any i 6= j (see e.g. Mykland and

Zhang, 2006).

The estimator of Barndor↵-Nielsen (2004) is the first and most popular estimator of  
i

and hence of the

asymptotic variance of b�RV

i

in practice. Potentially better approximations are provided by bootstrapping

of Donovon, Gonçalves, and Meddahi (2008) and blocking of Mykland and Zhang (2009).

3.2 Noisy and asynchronously observed data

We now turn to the case of highest frequency data, which is full record transaction prices. These are irregular

(observed at non-equidistant times), asynchronous across stocks, and are known to be contaminated by

market microstructure noise. The same structure applies to every interval (such as a day or a week), so to

facilitate the notation in this section, we omit the reference to multiple intervals, use a generic time interval

[0, T ], and use notation similar to Zhang (2011). The market microstructure noise is typically modeled as

7In other words, the limiting distribution is that of the random variable  �1/2
i

Z, which is a product of two (multivariate)

independent random variables,  �1/2
i

and a standard normal random variable Z. Conditional on the volatility path {�
t

}
t�0,

 
i

is nonstochastic and the distribution of
p
 

i

Z is normal, N (0, 
i

).
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an additive measurement error, so one assumes that latent prices X⇤ and Y ⇤ still follow di↵usions as in

equation (1), but we only have noisy observations on them, X = X⇤ + ✏x and Y = Y ⇤ + ✏y. Assumptions

about the noise are collected in the Assumption N below.

We start by describing the Refresh Time synchronisation process, which was introduced by Barndor↵-

Nielsen, Hansen, Lunde, and Shephard (2010). Suppose we have n
x

observations on X and n
y

observations

on Y . Let T
n

x

and �
n

y

be the sets that contain observations on X and Y ,

T
n

x

:= {0 = ⌧
n

x

,0 < ⌧
n

x

,1 < . . . < ⌧
n

x

,n

x

= T} ,�
n

y

:=
�
0 = �

n

y

,0 < �
n

y

,1 < . . . < �
n

y

,n

y

= T
 
.

Then, Refresh Times 0 = v0 < v1 < . . . < v
n

= T are those times when both stocks have traded again. In

other words, v
i

is set to be the maximum of min{⌧ 2 T
n

x

: ⌧ > v
i�1} and min{� 2 �

n

y

: � > v
i�1}. To

obtain observations at Refresh Times, one uses previous tick interpolation,

t
i

= max{⌧ 2 T
n

x

: ⌧  v
i

} and s
i

= max{� 2 �
n

y

: �  v
i

}, (5)

so that t
i

and s
i

become the new sampling points of X and Y .8 n becomes the new number of observations.

One needs to assume that distances between sampling points are not too large, see Condition C2 of Zhang

(2011).

Beta can be estimated with high frequency data using Two Scale Realized Volatility or Multi Scale

Realized Volatility estimator of Zhang (2011), Realized Kernels of Barndor↵-Nielsen, Hansen, Lunde, and

Shephard (2010), or pre-averaging estimators of Christensen, Kinnebrock, and Podolskij (2010). We use the

Two Scale estimator. It uses the following assumptions about the noise:

Assumption N. The noise

�
✏x
t

i

, ✏y
s

i

�
is independent of the e�cient price (X,Y ), it is stationary, exponen-

tially ↵-mixing, and both ✏x
t

i

and ✏y
s

i

have finite (4 + �)th moment for some � > 0.

Beta can be estimated as follows using the Two Scale estimators9

b�AMZ =
\hX,Y i

AMZ

\hX,Xi
AMZ

. (6)

In the above equation (6), \hX,Y i
AMZ

is defined as

\hX,Y i
AMZ

= [X,Y ](G1) � n
G1

n
G2

[X,Y ](G2) (7)

8For practical implementation, the algorithm in Palandri (2006) representing this synchronization process is useful.
9[0, T ] represents time intervals [i, i+ 1), i = 1, . . . , k. For estimation in Section 7 these correspond to weeks, while synchro-

nisation is done for every day separately. While in theory di↵erences in interval definitions do not matter, in practice there are

overnight jumps, which are not easily treated in the framework of semimartingales. The overnight jumps are deleted together

with other jumps in our empirical application.
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where [X,Y ](Gl

) is subsampled (i.e., calculated on sparse data) and averaged realized variance:

[X,Y ](Gl

) =
1

G
l

nX

j=G

l

⇣
X

t

j

�X
t

j�G

l

⌘⇣
Y
s

j

� Y
s

j�G

l

⌘
, l = 1, 2

n
G

l

=
n�G

l

� 1

G
l

, l = 1, 2

with G1 and G2 two constants determining the two ‘time scales”, i.e., frequency of returns used in [X,Y ](Gl

).

From the joint asymptotic distribution

n1/6

0

@

0

@
\hX,Xi

AMZ

\hX,Y i
AMZ

1

A�
 

hX,Xi
hX,Y i

!1

A ) MN
�
0,⌃AMZ

�
, (8)

we obtain the asymptotic distribution for realized beta by the Delta method (provided hX,Xi > 0 a.s.),

n1/6
⇣
b�AMZ � �

⌘
) MN

�
0, V AMZ

�
(9)

where

V AMZ = hX,Xi�2
⇣

�� 1
⌘
⌃AMZ

 
��

1

!
.

The exact expression of ⌃AMZ is rather complicated, and the reader can find it in Zhang (2011). We

do not need the exact expression for estimation because we will use subsampling to estimate ⌃AMZ , see

Section 4.2. The above method is used for every period [i � 1, i), i = 1, . . . , k. Asymptotic distributions of
p
V AMZn1/6

i

⇣
b�AMZ
i

� �
i

⌘
are again independent across periods i, as in the no noise case in Section 3.1.

The next section proves robustness of the subsampling method of Kalnina (2011) against long memory

volatility and extends the method to the multivariate case. Section 5 then builds on the two preceeding

sections to construct methods for investigation of time variation in betas.

4 Construction of robust confidence intervals by subsampling

Our aim in this section is to estimate ⌃AMZ
i

in an automatic way, i.e., doing so without using the exact

expression for ⌃AMZ
i

. Our main motivation is to obtain confidence intervals that are robust to di↵erent

specifications of the underlying processes. In particular, Kalnina (2011) shows that her univariate subsam-

pling method is not only robust to autocorrelation but also heteroscedasticity of the market microstructure

noise process. All these features show up in the expression for ⌃AMZ
i

and hence make element by element

estimation of ⌃AMZ
i

prone to misspecification. However, one first has to extend the subsampling method of

Kalnina (2011) to the multivariate case before using it on betas. This is done in Section 4.2 below.
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In the same spirit of robust confidence intervals, we note that in general, the assumption of Brownian

Semimartingale for the spot volatility (see Assumption A1 below) precludes long memory. This is rather

unfortunate given that long memory feature in stock price volatility is a well documented stylized fact.

Brownian Semimartingale structure for spot volatility is otherwise rather general and has been used in a

series of papers, including that of Kalnina (2011).10 Therefore, we start by demonstrating robustness of her

subsampling method to long memory in the spot volatility process.

For simplicity of notation, we omit reference to multiple intervals in this section and work with a generic

interval [0, T ].

4.1 Subsampling with long memory volatility

The subsampling method of Kalnina (2011) rests on marriage of two ideas. The first is the subsampling

method of Politis and Romano (1994), the second is time localization. To see how the first is meant to

work, suppose there is some general estimator b✓
n

(think of i.i.d. Y 0
i

s, a parameter of interest ✓ = E(Y ),

and b✓
n

= 1
n

P
Y
i

). Suppose we know its asymptotic distribution

p
n(b✓

n

� ✓) =) N (0, V ) ,

but we would like to estimate V , in order to be able to construct confidence intervals for b✓
n

. Construct

K di↵erent subsamples of m = m(n) consecutive observations, starting at di↵erent values (whether they

are overlapping or not is irrelevant here), where m ! 1, m/n ! 0. Denote by b✓
n,m,l

the estimator b✓
n

calculated using the lth block of m observations. Then, under the stationarity assumption the asymptotic

distribution of
p
m(b✓

n,m,l

� ✓) is the same, i.e.,

p
m
⇣
b✓
n,m,l

� ✓
⌘
=) N (0, V ) .

Moreover, one could replace the unobservable ✓ by b✓
n

and above result would still hold. Therefore,

m
⇣
b✓
n,m,l

� b✓
n

⌘2
is one noisy observation on V . By averaging over many such observations we can esti-

mate V consistently.

As it stands this idea does not work in our context. Realized Volatility (RV), for example, on the whole

interval does not approximate the same object as RV on some small subsample. The second idea is therefore

to use above construction locally in time, provided V is additive in time, say if it can be written as

V =

Z
T

0
f(�(t))dt, (10)

10See e.g. Christensen, Oomen and Podolskij (2009). Examples of papers with a similar assumption that also allows for

jumps in volatility are Jacod (2008), Jacod, Podolskij, and Vetter (2010), and Todorov and Tauchen (2011).

11



for some function f . We cannot use b✓
n

instead of ✓ this time, so an additional set of subsamples has to be

constructed. One way of obtaining the second set of subsamples is to use longer subsamples, see Figure 1

for a graphical illustration.11 Then, m
⇣
b✓short
l

� b✓long
l

⌘2
becomes a noisy observation on f(�(t)) for some t,

and averaging over subsamples delivers a consistent estimate of V.12

Two things follow from this discussion. First, additivity in time of V , (see e.g. equation 10) is crucial.

Asymptotic variances of beta estimators do not satisfy this condition. Therefore, beta cannot be subsampled

directly. However, if one extends these ideas to the multivariate framework, asymptotic variance of beta can

be estimated by subsampling estimators of hX,Y i and hX,Xi jointly and using a Delta method. Therefore,

Section 4.2 below proposes the multivariate subsampling method.

Second, some smoothness assumption on volatility is needed for this subsampling scheme to work. This

is evident by looking at the Figure 1. The subsample that b✓long1 is calculated on does not cover the same

interval as b✓short1 . For the subsampling idea to work, these estimators have to approximate the same quantity.

Suppose a jump occurs in volatility of returns that are used in b✓long1 , but not in b✓short1 . Then, the two do

not approximate the same quantity and b✓long1 cannot be used to demean b✓short1 and extract its variance. To

ensure su�cient smoothness, Kalnina (2011) assumed volatility follows a di↵usion:

Assumption A1. The volatility process {�(t), t 2 [0, T ]} is a Brownian semimartingale of the form

d�(t) = µ̃(t)dt+ �̃(t)dfW (t)

where

fW (t) is standard Brownian motion, the stochastic process eµ(t) is locally bounded and the stochastic

process e�(t) is càdlàg.

This assumption includes many parametric models used in practice, but it excludes long memory dynamics

such as13

Assumption A2. The logarithm of the volatility process x(t) = ln�(t) solves the following first-order

fractional SDE:

dx(t) = �x(t)dt+ �dB
↵

(t), t 2 [0, T ]

where

B
↵

(t) =

Z
t

0

(t� s)↵

�(1 + ↵)
dfW (s),

where

fW (t) is a standard Brownian motion, and where �,, and ↵ are constants such that  > 0, 0 < ↵ < 1
2 .

We now show that the subsampling of Kalnina (2011) is robust to the above long memory in volatility:

11See Section 2.3 of Kalnina (2011) for an alternative construction of the subsamples.
12Some scaling factor might be needed to ensure this object is of order 1, see equation (12) for exact expression.
13This is because fractional Brownian motion with ↵ 6= 1/2 is not a semimartingale, see e.g. Compte (2005).
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Proposition 1. Suppose log-price X satisfies equation (1), and the noise ✏
t

i

satisfies Assumption N. Let

b✓
n

be the TSRV estimator

\hX,Xi
AMZ

defined by (7), with parameters G1 and G2 satisfying G1 =
⌅
cn2/3

⇧
for

some constant c, G2 is such that Cov (✏1, ✏G2) = o
�
n�1/2

�
, G2 ! 1, and G2/G1 ! 0. Let V be defined by

V AMZ

in (9), and

bV
sub

be defined by

b⌃
sub

in (12) with below with s = m. Let J ! 1, m ! 1, J/m ! 1,

m/n ! 1, G1/J ! 0. Suppose one of the two:

(a) � satisfies Assumption A1 and Jmn�5/3 ! 0, or

(b) � satisfies Assumption A2 and Jm↵n�2/3�↵ ! 0.

Then,

bV
sub

p! V.

The proof of Proposition 1b can be found in the appendix. Proposition 1a is equivalent to Theorem 4 of

Kalnina (2011) and is stated here for ease of comparison. Note that the long memory parameter ↵ enters

the conditions for Proposition 1b. That is because some smoothness condition is needed on � due to the

time localization used in the construction of bV , and more persistent memory gives more smooth sample

paths. A typical estimate in the literature is ↵ = 0.4, see for example Andersen, Bollerslev, Diebold, and

Labys (2002), Bandi and Perron (2006), and Ray and Tsay (2000).

The above proposition can easily be extended to accomodate heteroscedastic noise as in Kalnina and

Linton (2008), provided the heteroscedasticity does not destroy the additive bias correction and hence

consistency of the Two Scale estimator. In the latter case, one can always use the jittered Two Scale

estimator proposed in Kalnina and Linton (2008) to restore the consistency of the Two Scale estimator.

We now turn to the multivariate extension of the subsampling procedure of Kalnina (2011).

4.2 Multivariate subsampling

The aim of this section is to generalize the ideas of Kalnina (2011) to the multivariate framework, thus

producing an automatic, positive semi-definite estimator of the asymptotic variance-covariance matrix.14

This will be applied to tick data to estimate ⌃AMZ in (8). In general, we seek to estimate matrix ⌃ in

⌧
n

⇣
b✓ � ✓

⌘
) MN (0,⌃) (11)

where ⌧
n

is a known rate of convergence when n observations are used. The rate of convergence is assumed

to be the same for all elements of b✓. For our purposes

✓ =

 
hX,Xi
hX,Y i

!
,

14The sense in which this method is automatic is that it does not rely on the information about the expression for the

asymptotic variance V .
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and b✓ is later taken to be the Two Scale estimator. Construct a series of longer blocks of observations,

m returns in each block, as well as a series of shorter blocks of observations, J returns in each block,

J < m < n, see Figure 1. Denote A to be a set containing some observation times, and b✓ (A) to be an

estimator b✓ calculated using observations at times in A. Using this notation, the subsampling estimator of

the asymptotic variance-covariance matrix ⌃ is

b⌃
sub

=
J

n

1

K

KX

l=1

⌧2
n

⇣n
J
b✓short
l

� n

m
b✓long
l

⌘⇣n
J
b✓short
l

� n

m
b✓long
l

⌘0
(12)

where

b✓long
l

= b✓
��

t(l�1)s+1, t(l�1)s+2, ..., t(l�1)s+m+1

 �

b✓short
l

= b✓
��

t(l�1)s+1, t(l�1)s+2, ..., t(l�1)s+J+1

 �

K =

⇠
n�m

s
+ 1

⇡
,

K is the number of subsamples, and s stands for ‘shift”, i.e., by how many observations to roll the window to

obtain the next subsample. Thus, it controls the amount of overlap between the subsamples. The smallest

s is 1 and it corresponds to the maximum overlap and largest number of subsamples; Figure 1 is drawn for

this case. This choice also gives the smallest asymptotic variance. However, it can be very computationally

intensive in practice, so a larger s can also be used at the expense of less e�cient, but nevertheless consistent

b⌃
sub

. From the definitions of b✓short
l

and b✓long
l

above, we can see that longer and shorter subsamples start at

the same time. This case is less involved to write down, but in practice the case drawn in Figure 1 is slightly

better, i.e., both subsamples are centered at the same time. For this case, shorter subsample should start

at t(l�1)s+b(m�J)/2c+1 and not t(l�1)s+1. Also, notice that the formula in (12) simplifies to one in Kalnina

(2011) for univariate estimator and no overlap case (i.e., s = m and K = dn/me).
The proof of the consistency of b⌃

sub

follows exactly the same steps as in Theorem 4 of Kalnina (2011),

and hence is omitted. The assumptions needed are essentially the same. The latter theorem proves the

consistency of b⌃
sub

for the univariate case when ✓ = hX,Xi and when ✓ is estimated by the Two Scale

estimator. The assumptions on the lengths of subsamples (m and J) and the parameters of the Two Scale

estimator (G1 and G2) are the same as in the univariate case, J ! 1, m ! 1, J/m ! 0, G1/J ! 0, and

Jmn�5/3 ! 0. The latent process X should follow multivariate brownian semimartingale as in (16). Also,

the spot volatility should also follow a multivariate Brownian semimartingale. Theorem 4 of Kalnina (2011)

assumes equidistant observations. This can be extended to irregular and endogenous (but synchronous)

observations case as follows. Suppose that t
n

= F (i/n) where F is a smooth random process which does not

depend on n. In particular F (t) =
tR

0
⌘2(u)du where ⌘2(u) has strictly positive, càdlàg sample paths. Then all

14



ALL OBSERVATIONS

t0 t1 t2 t
n

t
m

t0 FIRST SUBSAMPLE

t
m+1t1 SECOND SUBSAMPLE

t
m+2t2 THIRD SUBSAMPLE

PPPPPPqPPPPPPPPPPPq

b✓long1 (m returns)

b✓short1 (J returns)

Figure 1: The Subsampling Scheme of Kalnina (2011)

calculations can be implemented in transaction times, sampling say every 5 transactions where the formulas

call for equal distances in time. This is theoretically equivalent to working with a Brownian semimartingale

with drift µ
F (u)⌘(u) and spot volatility �

F (u)⌘(u) instead of µ(u) and �(u), see Proposition 2 of Barndor↵-

Nielsen, Hansen, Lunde, and Shephard (2008a). We note that settings with much stronger endogeneity in

sampling times are possible, which distort the asymptotic distribution more, up to the extent that prevents

construction of any confidence intervals due to lack of mixed asymptotic normality, see Li, Mykland, Renault,

Zhang, and Zheng (2009). The last issue is asynchronous observations. Zhang (2011) shows that the bias

correction for the noise of the Two Scale estimator also corrects for the e↵ect of asynchronous observations,

so that there is no e↵ect on the asymptotic distribution on the Two Scale estimator. It is therefore intuitive

that subsampled Two Scale estimator will not have any e↵ect from asynchronous observations, but the proof

is highly technical and so we do not pursue it here. Monte Carlo section demonstrates this in finite sample

for several designs.

It is easy to see that b⌃
sub

is positive semi-definite by construction. This avoids any risk of length of

estimated confidence intervals for b� (or other continuous functionals of elements of b✓) being negative.

With these tools in hand, we turn to constructing di↵erent tests for time variation in beta. We then use

these in section 5.3 to propose a nonparametric method of search for breaks in beta.
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5 Testing for constant betas with high frequency data

5.1 The test statistic for the beta of a single asset

Using the joint asymptotic distribution of betas across k time periods, we can construct a Chi-square test

for the true betas being constant across these time periods. The number of time periods k is any fixed

positive integer. The construction will be based on b�AMZ and b�RV , so we use a generic b� to denote any of

them. Define

b� =
⇣

b�1 b�2 . . . b�
k

⌘0
and

� =
⇣

�1 �2 . . . �
k

⌘0
.

Given that standardized asymptotic distributions of b�
i

� �
i

are independent across time periods i =

1, 2, . . . , k (see e.g. Mykland and Zhang, 2006), we obtain the joint asymptotic distribution from the marginal

ones. The asymptotic variance covariance matrix will be diagonal. We have

�
⇣
b� � �

⌘
) MN (0, V ) (13)

where

V = diag (V1, V2, ..., V
k

)

� = diag (⌧
n1 , ⌧n2 , . . . , ⌧n

k

) .

In above, ⌧
n

i

is the rate of convergence of the estimator, so that ⌧
n

i

= n1/2
i

for b�RV and ⌧
n

i

= n1/6
i

for b�AMZ.

The observations can be di↵erent across days, but they should be of the same magnitude asymptotically,

see Proposition 2 below.

We are interested in testing the hypothesis that true beta is constant over time,

H0 : �1 = . . . = �
k

, versus H1 : �i 6= �
j

for some i and j. (14)

Our test statistic is a sum of squared di↵erences b�
i

� b�1 for i = 2, . . . , k, properly standardized. For this

purpose, introduce the following k � 1 by k matrix

�
(k�1)⇥k

=

0

BBBBBBB@

�1 1 0 0 ... 0

�1 0 1 0 ... 0

�1 0 0 1 ... 0

... ... ... ... ... ...

�1 0 0 0 ... 1

1

CCCCCCCA

. (15)
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We use this matrix to obtain a vector of length k � 1 containing all di↵erences in betas,

�
⇣
b� � �

⌘
=

0

BBBBB@

b�2 � b�1 � (�2 � �1)

b�3 � b�1 � (�3 � �1)

...

b�
k

� b�1 � (�
k

� �1)

1

CCCCCA
.

Proposition 2. Let

b� satisfy the asymptotic distribution in (13) with ⌧
n

i

= ⌧
n1 (ci + o(1)) for some positive

constants c
i

, i = 2, . . . , k. Then,

⇣
b� � �

⌘0
�0 ����2V�0��1

�
⇣
b� � �

⌘
) X 2

k�1

holds conditionally on the volatility path (�
t

)
t�0, as well as unconditionally. Moreover, under the H0 in

(14), �
⇣
b� � �

⌘
= �b� and hence

T ⌘
⇣
b�
⌘0
�0

⇣
���2 bV�0

⌘�1
�b� ) X 2

k�1

where

bV is any consistent estimator of V .

There are several choices for the estimation of V . We recommend to estimate V RV by methods of

Barndor↵-Nielsen and Shephard (2004) for moderate frequency and V AMZ by the subsampling method of

Section 4.2 for high frequency data. These are the choices used in the simulation section and empirical

analysis.

Under the alternative H1, this test statistic T diverges to infinity, meaning that the test is consistent.

We use the estimate of the first beta for centering, but it can be shown that the resulting test statistic is

invariant to the choice of centering.

5.2 Joint tests across several assets

The above analysis can be extended to joint tests across several assets. Suppose we have N assets where N

is a fixed number. These assets plus the market factor give a (N + 1)-dimensional vector valued stochastic

process X, which we assume to be multivariate Brownian semimartingale,

dX
t

= µ
t

dt+ �
t

dW
t

(16)

where {µ
t

}
t�0 is a (N + 1)-dimensional predictable locally bounded drift vector, {�

t

}
t�0 is a (N + 1) ⇥

(N + 1)-dimensional adapted càdlàg covolatility matrix process, and {W
t

}
t�0 is a (N + 1)-dimensional

standard Brownian motion. Define vector valued integrated betas over i� th interval as

�
i

(N⇥1)
=

✓
hX(1)

,X

(N+1)i
i

hX(N+1)
,X

(N+1)i
i

hX(2)
,X

(N+1)i
i

hX(N+1)
,X

(N+1)i
i

. . .
hX(N)

,X

(N+1)i
i

hX(N+1)
,X

(N+1)i
i

◆0
, i = 1, 2, . . . , k.
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The null hypothesis we aim to test is

H0 : �
(i)
1 = �(i)

2 = . . . = �(i)
k

for each i

where �(i)
1 means beta of the ith stock on the 1st time period etc.

Collect all betas into one Nk�dimensional row vector, � = (�0
1,�

0
2, . . . ,�

0
k

)0 . As before, we use generic

b� to mean either b�RV or b�AMZ . For every interval we have the joint asymptotic distribution,

⌧
n

i

⇣
b�
i

� �
i

⌘
) MN (0, V

i

) , i = 1, 2, . . . , k.

The rate of convergence ⌧
n

i

is n1/2
i

for b�RV and n1/6
i

for b�AMZ where n
i

is the number of observations for

every stock on ith interval. Since after standardizing by V �1/2
i

, the asymptotic estimation errors are again

independent across intervals, we have

⌧
n

⇣
b� � �

⌘
) MN (0, V ) (17)

where V = diag (V1, V2, . . . , V
k

) and ⌧
n

= diag (⌧
n1IN , ⌧

n2IN , . . . , ⌧
n

k

I
N

). Exactly as in Proposition 2,

assume ⌧
n

i

= ⌧
n1 (ci + o(1)) for some positive constants c

i

, i = 2, . . . , k. We now want to consider the same

type of di↵erences as in the Section 5.1, so define � to be the transformation matrix that produces them,

�
⇣
b� � �

⌘
=

0

BBBBB@

�
⇣
b�(1) � �(1)

⌘

�
⇣
b�(2) � �(2)

⌘

...

�
⇣
b�(N) � �(N)

⌘

1

CCCCCA

where � is as in equation (15) and �(j) is a k ⇥ 1 vector of betas of the jth stock across all time periods.

Then, similarly to Proposition 2,

⇣
b� � �

⌘0
�0 ��⌧�2

n

V�0��1
�
⇣
b� � �

⌘
) X 2

(k�1)N .

Under the null hypothesis, �
⇣
b�AMZ � �

⌘
= �b�AMZ , so we can define the test statistic

T = b�0�0
⇣
�⌧�2

n

bV�0
⌘�1

�⌧
n

b�,

which under the null is asymptotically distributed as X 2
(k�1)N . In above, bV is any consistent estimator of V .

We recommend to estimate V by methods of Barndor↵-Nielsen and Shephard (2004) for moderate frequency

and by method of Section 4.2 for high frequency data. Besides general time series dynamics, this test is also

robust to very rich interactions between the assets considered.
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5.3 Nonparametric search for breaks in betas

Instead of finding out whether beta is constant over a particular time period or not, we might be interested

in finding the time of breakpoints in beta nonparametrically. Performing many tests at the same time is

subject to multiple testing problem, meaning that some hypotheses will be rejected by chance alone (a

chance that is not controlled by the significance level of individual tests).

We propose to search for breaks in betas nonparametrically by considering each possible break time as

a hypothesis and accounting for multiple testing. Several aspects of our procedure are important. First,

we account for multiple testing by controlling family-wise error rate. Second, we fully account for the

dependence structure of the test statistics while preserving their nonparametric structure. Third, we use

a stepwise procedure first initiated by Holm (1979) to increase the power. The procedure below is for one

asset, but can be extended easily for search for simultaneous breaks across several assets.

Suppose we have k time intervals, and we are interested in finding the breaks in beta across these time

intervals. Instead of one null hypothesis, we have k � 1 null hypotheses. Label the null hypothesis by

intervals,

H
s

: �
s

= �
s+1 vs. H 0

s

: �
s

6= �
s+1

for s = 1, . . . , k � 1. We aim to control the familywise error rate,

FWE = P {Reject at least one true null hypothesis} , (18)

i.e., we aim to construct a test that has lim supFWE  ↵ when all null k � 1 hypotheses are true.

Denote as before � = diag(⌧
n1 , ⌧n2 , . . . , ⌧n

k

). Assume � = ⌧
n1C where C is a diagonal matrix containing

positive constants.15 Define the following k � 1 test statistics w1, w2, . . . , w
k�1 based on the di↵erences in

beta estimates across intervals,

w =
⇣

w1 w2 . . . w
k�1

⌘0
= ⌧

n1�b�.

If all null hypotheses are true,

w = ⌧
n1�b� = ⌧

n1�
⇣
b� � �

⌘
) MN

�
0,�C�2V�0� .

The testing procedure is implemented in a stepwise manner. Order elements of w according to their absolute

values, from largest to smallest, |w
r1 | � |w

r2 | � . . . � |w
r

k�1 | (r1 is the index of the largest test statistic

and so on). For the first step, the ideal critical value is the 1� ↵/2 quantile of the sampling distribution of

15If we assume the slightly weaker � = ⌧

n1 (C + o(1)), the critical values described below should be calculated using �/⌧
n1

instead of C, and the first-order properties of the testing procedure remain exactly the same.
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max
j

|w
j

|,

c1 = c1(1� ↵) = inf

⇢
x : P

⇢
max

1sk�1
|w

r

s

|  x

�
� 1� ↵

2

�
.

Since we can estimate the joint distribution of w1, . . . , w
k�1, the estimate of the above, ĉ1, can be obtained

by simulation. The test procedure is then to reject those null hypotheses, for which the individual confidence

interval [w
r

s

± ĉ1] does not contain zero.

First step is su�cient to control FWE. However, adding further steps increases the power of the proce-

dure. Choice of critical values for subsequent steps is analogous. Suppose R1 hypotheses were rejected in the

first step. The ideal critical value c2 is the 1�↵/2 quantile of the sampling distribution of max
R1+1sk�1 |wj

|
defined as

c2 = c2(1� ↵) = inf

⇢
x : P

⇢
max

R1+1sk�1
|w

r

s

|  x

�
� 1� ↵

2

�
,

and it can be estimated by simulations as before. For the jth step, the ideal critical value is

c
j

= c
j

(1� ↵) = inf

⇢
x : P

⇢
max

R

j

+1sk�1
|w

r

s

|  x

�
� 1� ↵

2

�
,

where R
j�1 is the number of hypotheses rejected in the first j�1 steps (R0 = 0). The procedure is continued

until no new hypotheses can be rejected. While detailed analysis of the data is deferred to Section 7, the

reader can see the importance of subsequent steps in real data in Table 8.

For implementation we standardize test statistics. This is advocated by Romano and Wolf (2005) to

distribute the p-values more evenly across the hypotheses. The standardization is not reflected in above

description to facilitate notation.16

6 Simulation Study

This section has two objectives. First, we verify the finite sample properties of the multivariate subsampling

with irregular and asynchronous data. Second, we verify the size properties of the test for constant betas.

In particular, we replicate with simulated data the setting of Table 6 of the empirical section. As in the

empirical section, length of intervals [i� 1, i) is taken to be one week.

For the first objective, we simulate data for one week. E�cient log-price of each of the two stocks follows

a univariate Heston (1993) model:

dX(i)
t

=
⇣
↵1 � v(i)

t

/2
⌘
dt+ �(i)

t

dW (i)
t

dv(i)
t

= ↵2

⇣
↵3 � v(i)

t

⌘
dt+ ↵4

⇣
v(i)
t

⌘1/2
dB(i)

t

, i = 1, 2

16In other words, if we denote by S the diagonal matrix containing the diagonal elements of �C

�2
V�0, we work with test

statistics bS�1/2
w instead of w.
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% = 0 % = 0.25 % = 0.5 % = 0.75

⇠2 = 0 0.943 0.926 0.932 0.914

⇠2 = 0.001 0.939 0.927 0.925 0.924

⇠2 = 0.01 0.938 0.925 0.921 0.922

Table 1: Empirical coverage probabilities of 95% confidence interval for beta, where beta is estimated using

Two Scale estimators as in (6). Confidence intervals of the Two Scale estimator are calculated using the

plug-in approach with asymptotic variance estimated by subsampling. ⇠2 is the noise to signal ratio. %

controls the realizations of beta, see (19). Number of simulations is 2000.

where v(i)
t

=
⇣
�(i)
t

⌘2
, W (i)

t

and B(i)
t

are independent Brownian Motions. The parameters of the univariate

e�cient log-price process are chosen to be the same as in Zhang et al. (2005). They are ↵1 = 0.05, ↵2 = 5,

↵3 = 0.04, and ↵4 = 0.5 (the same for i = 1, 2). Correlation of the two processes is obtained by setting

Corr
⇣
W (1)

t

,W (2)
t

⌘
= %, with % taking values 0, 0.25 , 0.50, and 0.75 across experiments. In this model, the

beta for the ith period is

�
i

= %

iZ

i�1

�(1)
u

�(2)
u

du

,
iZ

i�1

⇣
�(1)
u

⌘2
du. (19)

Microstructure noise is simulated as a normally distributed white noise with variance ⇠2IQ(1), where ⇠2 is

a noise-to signal ratio taking values 0, 0.001, and 0.01, and IQ(1) is the weekly integrated quarticity of the

first stock (approximated as a Riemann sum of simulated 1 second values of �2
t

). Since volatility paths are

di↵erent across simulations, noise variance also varies across simulations and increases with higher volatility

of the e�cient price. Observed prices are e�cient log-prices plus noise.

Asynchronous data is simulated as follows. As a first step, we simulate one week of 1 second synchronous

observations (simulation is done via an Euler scheme with one year as a unit of time and one second step

length). From these, we take 35,000 irregular and asynchronous observations for each stock as follows. We

draw a random permutation of all observation times in a week, take the first 35,000 of them, and sort them.

Observation times are independent across stocks. Observations are then synchronized using the Refresh

Time method, resulting in a random number of observations (usually somewhere around 25,000).

The Two Scale estimator is implemented with exactly the same parameters as in the empirical analysis

(Section 7). In other words, G1 is taken so as to correspond to 5 minutes on average (typically around 70),

and G2 = 3 (see Section 3.2 for the meaning of these parameters). Subsampling parameters are also taken

as in section 7, i.e., J = 5G1 and m = 20G1.

Table 1 shows the resulting coverage probabilities for betas. There is some undercoverage, but otherwise
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subsampling method seems to work reasonably well in finite samples.

For the second objective, we replicate the above setup for each week 52 times. To investigate the size

of the test we need to simulate a process that satisfies the null hypothesis of constant betas. The simplest

way to achieve this is to keep the volatility path the same across weeks. The Brownian Motion driving the

prices, market microstructure noises, and the trading process is simulated anew for each week.

Table 4 in the appendix shows the resulting empirical rejection probabilities with 5% level of significance

of the test of constant betas (described in Section 5.1). Simulation designs include di↵erent noise to signal

ratios ⇠2 = 0, 0.001, and 0.01, di↵erent % = 0, 0.25, 0.50 and 0.75, and di↵erent number of weeks, mimicking

the test with real data within quarters and a year of the Table 6. Both high frequency and moderate

frequency methods perform reasonably well, although there is some overrejection for the high frequency

method and some underrejection for the moderate frequency methods.

7 Empirical Analysis

This section implements above methods with real data. For both moderate and high frequency data, we

first implement the test of constant betas, then search for the exact time of breaks nonparametrically. All

figures and tables of this section, with the exception of Table 2, can be found in the appendix.

To implement these testing procedures, we need estimated variances of b�RV and b�AMZ . To this end, we

use Barndor↵-Nielsen and Shephard (2004) estimator of the variance-covariance matrix of b�RV , and the

estimator of variance-covariance matrix of b�AMZ obtained by subsampling as in Section 4.2. We calculate

b�AMZ using all data, but for b�RV we need to choose some lower sampling frequency. We choose three

frequencies that are popular in practice, 5, 15, and 20 minutes, and denote the resulting estimators as b�RV

5min ,

b�RV

15min , and
b�RV

20min . In all that follows, length of intervals [i� 1, i) is taken to be one week.

7.1 The Data

We use high frequency transactions data on six individual stocks. They are American International Group,

Inc. (listed under the ticker symbol AIG), General Electric Co. (GE), International Business Machines Co.

(IBM), Intel Co. (INTC), Minnesota Mining and Manufacturing Co. (MMM), and Microsoft Co. (MSFT).

To proxy for a market portfolio, we use Standard and Poors Depositary Receipts (SPIDERS for short, ticker

symbol SPY), which are an Exchange Traded Fund set up to mimic the movements of the Standard and

Poor’s 500 Composite Stock Price Index. Our data covers the whole year 2006 and is obtained from the

NYSE Trade and Quote database.

We clean the data as follows. We apply time filter 9:30 - 16:00. We retain all satellite markets. Where

multiple transactions per second are recorded, we take the first one. Where repeated times are recorded, we
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take the average. Next, we delete bounce backs, jumps, as well as gradual jumps as follows. Bounce backs

are most likely to result from data mistakes, such as incorrect time record, so as a first step we identify

bounce backs among prices and delete them. We define bounce backs as two consecutive price changes

of the opposite sign, where each of the two price changes is larger, in absolute value, than five standard

deviations of the observed price over a moving window of 500 transactions. Next, we remove jumps using the

thresholding methodology of Mancini (2004). In other words, we set those returns that are larger than some

threshold to zero. The threshold for this purpose is defined as five standard deviations of the observed price,

and is calculated over a moving window of one day. Finally, we remove gradual jumps. Barndor↵-Nielsen

et al. (2008b) discuss the fact that Realized Kernels do not behave well when price only rises (falls) over

some period of time. Two Scale estimator is similarly not robust to gradual jumps, so we also have to deal

with them. Barndor↵-Nielsen et al. (2008b) define gradual jumps as relatively long periods containing only

price increases or only price decreases. They then replace the returns of this period with one single jump.

We define gradual jumps as at least 5 minutes long interval containing only price increases (or decreases),

provided the total price change exceeds a threshold of five standard deviations of the observed returns.

Gradual jumps are replaced with a zero return. The threshold is recalculated over a moving window of 5

days. All window lengths mentioned in the cleaning procedure are average ones; windows are fixed in terms

of number of transactions so as to achieve the target calendar time period on average over the year.

In order to calculate realized betas, we need to synchronize the data (see Section 3.2). When constructing

tests on individual assets, we synchronize data in pairs to maximize the information used. For example,

when testing time variability of beta of INTC we only require to synchronize INTC with SPY; to estimate

beta of MMM, we synchronize MMM with SPY. Therefore, di↵erent transformations of the original SPY

data is used to calculate di↵erent betas. When implementing the joint tests we synchronize data across all

assets. The next section discusses the e↵ect of these choices.

7.2 Results

We start by analyzing the high frequency data. Table 3 contains some summary statistics of the data

before synchronization: transactions per week, estimates of the noise variance, noise-to-signal ratio, and

autocorrelations of returns at first three lags. First autocorrelations are all large and negative, which is

typical of noisy data and unlikely to arise from Brownian Semimartingale. Second autocorrelations are all

positive, some are large. Alternating signs of autocorrelations indicate that the main component of the noise

is bid-ask bounce. In fact, if we removed all zero returns, the remaining data would display very persistent

autocorrelation with alternating signs (see figure with autocorrelations in Kalnina (2011), this has been

also noted in e.g. Gri�n and Oomen 2005). In full data set with zero returns, this e↵ect is attenuated
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because switching times of bid and ask are random. Third autocorrelations are of di↵erent signs and small.

The estimates of the noise variance (columns 2 and 3 in Table 3) are very small, and in fact several orders

of magnitude smaller than Hansen and Lunde (2006) estimates for year 2004. For example, the simplest

estimator of the noise variance is

b!2 = [X,X] /2n.

Our estimate for INTC in 2006 is 0.518 · 10�7, while Hansen and Lunde (2006) report this number for 2004

to be 0.46 · 10�3. Apart from the obvious fact that years are di↵erent, there are also important di↵erences

in methodology. We calculate b!2 using the whole year, they calculate it every day and report the annual

average. Also, data cleaning can also be an important source of di↵erences.

Table 5 contains the same summary statistics for the cleaned data. As long as there is any asynchronicity

in the observations, number of synchronized observations is always smaller. We can see the reduction of

the transactions per week by comparing first columns of Table 3 and 5. Joint synchronization across assets

gives the smallest number of synchronized observations (last 7 rows of Table 5). Noise variances are larger

as measured by b!2, but we can easily verify this is purely due to larger finite-sample bias caused by smaller

number of observations. In particular, the bias-adjusted estimators

b!2 =

✓
[X,X]� \hX,Xi

AMZ

◆
/2n

are the same with and without synchronization. Autocorrelations are smaller, which is due to frequency

being lower.

Figure 2 contains volatility signature plots for each individual stock (plots of realized variance against

the frequency used in its calculation), as well correlation signature plots (plots of realized correlation against

the frequency).17 Volatility signature plots show a large increase for highest frequencies, consistent with

the additive noise model where bias explodes as we sample more and more frequently. On the other hand,

realized covariances display the so-called Epps e↵ect due to Epps (1979), i.e., they tend to zero as the

frequency increases, so that the realized correlations are also driven to zero.18 Not surprisingly, realized

beta signature plots in Figure 3 show a clear bias towards zero for highest frequencies. Therefore, neither

Realized Variance, nor Realized Covariance should be calculated using the highest frequencies. On the other

hand, the Two Scale estimator, while using all the synchronized data, cancels both the e↵ect of noise and

asynchronous observations and is consistent (see Zhang, 2011).

17Realized correlation is defined as
[X,Y ]p

[X,X] [Y, Y ]
,

and for correlation signature plots the interval is taken to be the whole year 2006.
18Zhang (2011) analytically characterizes this bias for realized covariance based on previous-tick interpolated prices (Refresh

Time synchronization method is a special case since it also uses previous-tick interpolation).
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Figures 4 - 6 show plots of estimated betas using b�RV

5min and b�AMZ together with 95% confidence intervals,

which are based on equation (4) and subsampling, respectively. In fact, similar series of confidence intervals

for b�RV

5min was also graphed by Andersen et al. (2004) in their Figures 13 - 15, except they used 15 minute

and daily data to calculate estimated betas over intervals of one quarter. They did not however formally

test variability of betas across time or tried to adjust for the multiple testing that is implicit in such graphs.

The emphasis of their paper was parametric modelling of betas over time. In figures 4 - 6, we see that beta

is estimated much more precisely using full record transaction prices. The two parameters in b�AMZ were

chosen as follows. G1 was set to the number of ticks as to correspond to 5 minutes on average. G2 was set to

3, given that there is no evidence of autocorrelations at larger lags. The two parameters of the subsampling

scheme were set to m = 20G1 and J = 5G1. Estimates and confidence intervals for b�RV

15min and b�RV

20min are

not shown, but they have much longer confidence intervals than b�RV

5min .

Table 6 contains the results of the test for constant betas for individual stocks. The null hypothesis is

that the true beta is constant over some time period. We implement the test for five di↵erent time periods:

the whole year 2006 and each quarter separately. This means using k = 52 and k = 13 respectively in

equation 14. Four di↵erent tests are implemented based on four estimators: b�RV

5min ,
b�RV

15min ,
b�RV

20min and b�AMZ .

The reader should be careful when interpreting the p-values since at this stage they are not adjusted to

reflect multiple testing. However, a general idea of results can be anticipated by looking at the figures with

point estimates and their confidence intervals. The null hypothesis of beta being constant over the whole

year can be rejected using a test based on any of the four estimators/frequencies. For shorter periods, answer

varies depending on the stock and the exact time period. The test based on b�AMZ can reject the null, at 5%

level of significance, for any of scenarios considered, except it has a p-value of 0.057 for GE Q1. The test

based on b�RV

5min rejects the null for fewer cases. The test based on b�RV

15min fails to reject the null for roughly

half of quarters-based cases, and the test based on b�RV

20min fails to reject the null for most of quarters-based

cases.

Table 7 contains the results of the joint test for constant betas. The null hypothesis tested is that the

betas of all 6 stocks are constant across some time interval. We implement the test for the same five time

periods and the same estimators as in the univariate case. One would in general expect that it is easier

to detect beta variation jointly across stocks (partly because more data is used, partly because the null

is di↵erent and is less likely to be true; for asynchronous data, the increase of number of observations is

smaller due to data loss arising from synchronization of more stocks). Indeed, we see that even the moderate

frequency estimators now reject most null hypotheses.

The benefit of using more data is mitigated to some extent by the data loss due to synchronising more

stocks than before. Overall, we see that the first e↵ect dominates, with largest di↵erences in 5 minute data.

Unsurprisingly, all hypotheses are again rejected with 1 tick data.
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When considering the whole year 2006, the results across frequencies are similar in the sense that we

can reject the null hypothesis of constant betas in all cases. The test statistics are however much higher

for the 1 tick data. This di↵erence becomes crucial when we attempt to determine the exact time of the

break. Table 2 below shows the number of breaks found among 52 weeks in 2006 (note that highest possible

number of breaks is 51).

AIG GE IBM INTC MMM MSFT

↵ = 0.01 0 0 0 1 0 7

5 min ↵ = 0.05 0 0 0 2 0 8

↵ = 0.10 0 0 0 2 0 10

↵ = 0.01 0 0 0 0 0 1

15 min ↵ = 0.05 0 0 0 1 0 2

↵ = 0.10 0 0 0 1 0 2

↵ = 0.01 0 0 0 0 0 1

20 min ↵ = 0.05 0 0 0 1 0 3

↵ = 0.10 0 0 0 1 0 3

↵ = 0.01 48 46 48 49 45 49

1 tick ↵ = 0.05 50 48 48 49 47 50

↵ = 0.10 50 48 51 49 47 51

Table 2: Number of detected breaks in weekly betas during 2006, i.e., number of rejected null hypotheses out

of 51. See section 5.3 for exact description of the test. ↵ is the level of significance.

Di↵erences across frequencies are striking. We can see that tick data reveals significant breaks in beta

for virtually every week, while moderate frequency data does not find any for most of the stocks. In similar

circumstances when no null hypotheses can be rejected after accounting for multiple testing by controlling

FWE, a strategy that can be considered is to change the definition of the size of the test, so as to make

the test more lenient to the possibility of rejecting true null hypotheses. One prominent example is control

of False Discovery Rate (see Benjamini and Hockberg, 1995). With probability ↵ (the size of the test),

it allows, on average, some fixed percentage such as 10% of the total number of hypotheses to be falsely

rejected. Therefore, it rejects more hypotheses by construction and is more powerful against false hypotheses.

However, even one break in betas is important for applications, so this approach cannot be justified in our

setting. Fortunately, we see that with the amount of precision tick data gives one can determine breaks in

betas without a recourse to more liberal definitions of the size of the test.
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Additional stages of the test increase finite sample power of the test while not changing its asymptotic

consistency and size. Table 8 in the appendix gives a more detailed view by breaking down the result of

Table 2 at every stage of the test. We see that additional steps indeed sometimes find additional breaks,

though usually very few.

We conclude that while moderate frequency data can give evidence about a break in beta taking place

somewhere in a period of time such as a year, it cannot in general detect the exact time of the break

nonparametrically. On the other hand, due to the much higher precision, the nonparametric search for

breaks with high frequency data can detect many breaks.

8 Conclusion

This paper studies the question of time variability in equity betas. Recent developments in high frequency

econometrics allows us to estimate quadratic variation version of the betas in a model-free framework with

ultra high frequency and asynchronously observed data from NYSE. Due to the market microstructure

noise in this data, estimators of beta can have complicated expressions of the asymptotic variance, in which

case it is convenient to use an automatic inference method to implement tests on betas. We show how

the multivariate version of the subsampling method of Kalnina (2011) can be used to achieve this. We

demonstrate the robustness of the inference method of Kalnina (2011) to long memory and extend it to the

multivariate case. Using this inference method, we construct tests for no time variation in betas. Next,

we build on these to arrive at a nonparametric procedure for search for breaks in betas by treating every

possible time of break in betas as a hypothesis and accounting for multiple testing. We implement these

methods with six stocks on the NYSE over year 2006 with Standard and Poors Depositary Receipts as a

proxy for the market factor. We find the strongest advantage of the high frequency data when searching

for breaks in beta. In particular, we find that moderate frequency data does not have enough power to

identify a single break in betas in 2006 for most of the stocks, while highest frequency data reveals breaks in

most weeks in 2006 for each stock considered. An interesting application that we leave for future research is

implementation of the nonparmetric search for breaks over a longer period of time and then relating these

to the dynamics of macroeconomic fundamentals in a second step.
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A Proofs

A.1 Proof of Proposition 1

In what follows we use C to denote a generic constant, the meaning of which changes from line to line. We

start with the following lemma, see Section A.2 for a proof.

Lemma 3. Suppose Assumption A2 holds. Then for any k 2 N and ↵ 2 (0, 0.5) we have

E
h����k(t2)� �k(t1)

���
i
 C|t2 � t1|↵/2.

To prove Proposition 1, we first introduce some notation (same as in Kalnina, 2011),

V =
4

3
c

1Z

0

�4
u

du+ 8c�2Var (✏)2 + 16c�2 lim
n!1

nX

i=1

Cov
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✏0, ✏

i/n

�2

V short

l

=
4

3
c

[(l�1)m+J ]/nZ

(l�1)m/n

�4
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du+ 8c�2J
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Var (✏)2 + 16

J

n
c�2 lim

n!1

nX

i=1

Cov
�
✏0, ✏

i/n

�2

✓long
l

=

m/nZ

(l�1)m/n

�2
u

du, ✓short
l

=

[(l�1)m+J ]/nZ

(l�1)m/n

�2
u

du,

and V
l

the same as V short

l

except with m instead of J .
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Note that we are using the non-overlapping version of the estimator (i.e., s = m) and hence the number

of subsamples is K =
⌃
n

m

⌥
. In the proof of Theorem 4 of Kalnina (2011), Assumption A1 is used for two

statements19:

V �
KX

l=1

m

J
V short

l

= o
p

(1) (20)

and
m

J

KX

j=1

n1/3

✓
✓short
l

� J

m
✓long
l

◆2

= o
p

(1). (21)

We now show they both remain true under Assumption A2 instead. To prove equation (20), notice that

E
���V

l

� m

J
V short

l

��� =
4c

3
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for each sample path of �, are random variables such that the third equality holds. Their existence for each

sample path is guaranteed by Mean Value Theorem. Last equality follows because s
l

and s0
l

converge to zero

a.s. by right-continuity and boundedness of �. Notice that neither Assumption A1 nor A2 are needed here.

19Both these statements are from the main body of the proof of Theorem 4 of Kalnina (2011). Lemma 7 of Kalnina (2011)

does not use Assumption A1.
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To prove equation (21), we have
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where 5th equality follows by Lemma 3. This (together with K =
⌃
n

m

⌥
) proves equation (21) as long as

condition Jm↵n�2/3�↵ ! 0 holds.

A.2 Proof of Lemma 3

Proof. If we prove

E

⇣
�k(t2)� �k(t1)

⌘2�
 C|t2 � t1|↵, (22)
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Lemma 3 follows by the Cauchy-Schwarz inequality. For k = 1, equation (22) is a statement from the

Appendix of Comte and Renault (1998), p. 314. The process x(t) = ln�(t) can also be written as

Z
t

0
a(t� s)dW (s)
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�

�(1 + ↵)

✓
x↵ � e�x

Z
x

0
euu↵du

◆

and W (s) a standard Brownian Motion, see Comte and Renault (1998). Let t1  t2. We have �(t) =

exp(x(t)) and hence �k(t) = exp(kx(t)). Next,
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The term inside the last parenthesis being necessarily nonnegative, the term in the last great exponential is

nonpositive. Moreover |
R
t2

t1
a2(x)dx|  M2

1 |t2 � t1| with M1 = sup
x2[0,1] |a(x)|, and since a is ↵-Hölder,
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Then using that 8u  0, 0  1� eu  |u|, equation (22) follows. This concludes the proof of Lemma 3.

A.3 Proof of Proposition 2

From ⌧
n

i

= ⌧
n1 (ci + o(1)), we have

� = ⌧
n1diag (c1 + o(1), c2 + o(1), . . . , c
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where convergence is stable in law. Thus,

⌧
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⌘
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⌧
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�C�2V�0��1/2

�
⇣
b� � �

⌘
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b� � �

⌘0 �
�C�2V�0��1

�
⇣
b� � �

⌘
) X 2

k�1. (23)

Since � = ⌧
n1C plus smaller order terms, we obtain the first equation of the Proposition 2, without condi-

tioning on the volatility path. Next, since the right-hand-side random variable X 2
k�1 is independent of the

volatility path and the convergence is stable in law, equation (23) also holds, conditional on the volatility

path. Second equation of the Proposition 2 follows immediately from the first.

B Figures and Tables

trans./week b!2 · 107 e!2 · 107 b⇠2 · 105 acf(1) acf(2) acf(3)

AIG 18,029 0.207 0.136 0.156 -0.320 0.102 -0.014

GE 29,015 0.228 0.188 0.189 -0.582 0.248 -0.118

IBM 20,070 0.162 0.095 0.117 -0.302 0.081 0.008

INTC 35,267 0.518 0.407 0.127 -0.525 0.200 -0.085

MMM 14,005 0.284 0.123 0.121 -0.269 0.092 0.006

MSFT 32,421 0.338 0.282 0.178 -0.555 0.224 -0.100

SPY 39,801 0.037 0.018 0.048 -0.352 0.065 0.006

Table 3: Summary statistics of data before synchronization. First column contains average number of

transactions per week. Second and third columns contains variance of the noise estimates over the whole

year 2006, b!2 = RV/2n, e!2 =
⇣
RV � cIV

⌘
/2n where IV is estimated by the TSRV; n is the total number

of transactions in 2006 for the corresponding stock. Fourth column contains estimated noise-to-signal ratio,

b⇠2 = b!2/cIV . Last three columns contain autocorrelation functions of returns at first, second, and third lag.
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trans./week b!2 · 107 e!2 · 107 b⇠2 · 105 acf(1) acf(2) acf(3)

AIG(SPY) 15,425 0.220 0.138 0.282 -0.15 0.051 0.02

GE(SPY) 21,819 0.229 0.176 0.295 -0.221 0.058 0.015

IBM(SPY) 16,890 0.174 0.095 0.223 -0.166 0.052 0.021

INTC(SPY) 24,601 0.545 0.384 0.700 -0.247 0.060 0.016

MMM(SPY) 12,315 0.303 0.121 0.389 -0.114 0.048 0.014

MSFT(SPY) 23,322 0.347 0.267 0.451 -0.238 0.061 0.017

SPY(AIG) 15,425 0.059 0.011 0.045 -0.276 0.084 -0.006

SPY(GE) 21,819 0.049 0.014 0.040 -0.509 0.173 -0.059

SPY(IBM) 16,890 0.056 0.011 0.040 -0.257 0.069 0.011

SPY(INTC) 24,601 0.045 0.014 0.011 -0.439 0.132 -0.041

SPY(MMM) 12,315 0.071 0.011 0.031 -0.232 0.082 0.013

SPY(MSFT) 23,322 0.046 0.014 0.024 -0.476 0.155 -0.051

AIG(joint) 6,957 0.037 0.018 0.273 -0.111 0.010 -0.007

GE(joint) 6,957 0.032 0.015 0.262 -0.218 0.028 0.005

IBM(joint) 6,957 0.032 0.013 0.228 -0.08 0.010 -0.003

INTC(joint) 6,957 0.094 0.037 0.227 -0.174 0.002 -0.006

MMM(joint) 6,957 0.046 0.014 0.197 -0.103 0.032 0.003

MSFT(joint) 6,957 0.054 0.027 0.277 -0.199 0.013 -0.004

SPY(joint) 6,957 0.011 0.001 0.145 -0.014 0.028 0.010

Table 5: Summary statistics of data after synchronization. Notation AIG(SPY) means stock AIG after it

has been synchronized with SPY. By construction, number of transactions of AIG(SPY) is the same as that

of SPY(AIG). AIG(joint) means stock AIG after it has been synchronised with other 6 series. See Table 1

annotation for meaning of other column entries.
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Figure 2: The solid lines (left y-axis) are the volatility signature plots, i.e., realized variance plotted against

the frequency (in ticks) used in its calculation. Dashed lines (right y-axis) are the realized correlation plots

against the frequency (in ticks). Data covers the whole year 2006.
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Figure 3: Average weekly betas of individual stocks against the frequency (in ticks) used in their calculation.

Data year 2006.
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Figure 4: Estimated betas for AIG and GE with 95% confidence intervals. Filled dots with rectangular CIs

correspond to

b�RV

5min , empty dots with error-bar-type CIs correspond to

b�AMZ . Weeks on the x-axis.
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Figure 5: Estimated betas for IBM and INTC with 95% confidence intervals. Filled dots with rectangular

CIs correspond to

b�RV

5min , empty dots with error-bar-type CIs correspond to

b�AMZ . Weeks on the x-axis.
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Figure 6: Estimated betas for MMM and MSFT with 95% confidence intervals. Filled dots with rectangular

CIs correspond to

b�RV

5min , empty dots with error-bar-type CIs correspond to

b�AMZ . Weeks on the x-axis.
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2006 Q1 Q2 Q3 Q4

Test based on

b�RV

5min

AIG 196.50 (0) 23.47 (0.024) 35.63 (0) 52.83 (0) 56.28 (0)

GE 101.03 (0) 15.26 (0.228) 15.55 (0.213) 27.75 (0.006) 26.00 (0.011)

IBM 110.82 (0) 14.58 (0.265) 30.02 (0.003) 26.59 (0.009) 17.41 (0.135)

INTC 248.96 (0) 33.84 (0.001) 40.96 (0) 36.15 (0) 43.65 (0)

MMM 132.45 (0) 27.48 (0.007) 25.10 (0.014) 21.83 (0.039) 37.48 (0)

MSFT 213.30 (0) 22.74 (0.03) 71.43 (0) 64.97 (0) 42.23 (0)

Test based on

b�RV

15min

AIG 112.70 (0) 26.03 (0.011) 19.99 (0.067) 33.69 (0.001) 15.78 (0.202)

GE 75.14 (0.012) 12.23 (0.427) 19.81 (0.071) 25.06 (0.015) 17.17 (0.143)

IBM 73.48 (0.017) 15.09 (0.236) 21.33 (0.046) 8.94 (0.708) 8.57 (0.739)

INTC 134.91 (0) 27.62 (0.006) 30.37 (0.002) 6.62 (0.882) 24.29 (0.019)

MMM 85.34 (0.001) 14.52 (0.269) 25.03 (0.015) 16.88 (0.154) 28.24 (0.005)

MSFT 121.52 (0) 15.49 (0.216) 39.48 (0) 34.18 (0.001) 22.80 (0.029)

Test based on

b�RV

20min

AIG 74.54 (0.014) 24.37 (0.018) 9.43 (0.666) 9.19 (0.687) 22.80 (0.03)

GE 85.89 (0.001) 16.26 (0.18) 15.16 (0.233) 17.38 (0.136) 22.89 (0.029)

IBM 68.38 (0.043) 10.93 (0.535) 17.80 (0.122) 11.85 (0.458) 7.36 (0.833)

INTC 107.53 (0) 20.81 (0.053) 29.48 (0.003) 3.36 (0.992) 19.16 (0.085)

MMM 73.00 (0.019) 14.54 (0.268) 14.30 (0.282) 16.99 (0.15) 20.90 (0.052)

MSFT 87.09 (0.001) 13.61 (0.326) 19.62 (0.075) 28.56 (0.005) 15.33 (0.224)

Test based on

b�AMZ

AIG 269.04 (0) 22.44 (0.033) 34.97 (0) 71.28 (0) 57.31 (0)

GE 224.40 (0) 20.56 (0.057) 65.13 (0) 63.42 (0) 26.08 (0.01)

IBM 136.70 (0) 18.93 (0.09) 37.52 (0) 26.76 (0.008) 18.96 (0.09)

INTC 845.32 (0) 143.45 (0) 83.10 (0) 79.34 (0) 55.97 (0)

MMM 200.38 (0) 28.75 (0.004) 40.19 (0) 21.96 (0.038) 63.09 (0)

MSFT 403.21 (0) 30.24 (0.003) 96.47 (0) 124.55 (0) 60.15 (0)

Table 6: Values of the Chi-square test; corresponding p-values in parenthesis. The null hypothesis is that

true betas are constant over the some time interval. The top row indicates the corresponding time interval.
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b�RV

5min
b�RV

15min
b�RV

20min
b�AMZ

2006 937.6 (0) 510.3 (0) 545.2 (0) 3530.7 (0)

Q1 107.2 (0.005) 64.3 (0.729) 85.2 (0.138) 458.4 (0)

Q2 147.1 (0) 96.1 (0.03) 106.9 (0.005) 510.4 (0)

Q3 296.8 (0) 168.9 (0) 140.6 (0) 745.7 (0)

Q4 172.4 (0) 103 (0.01) 154.7 (0) 741.1 (0)

Table 7: Values of the joint Chi-square test (see section 5.2); corresponding p-values in parenthesis. The

null hypothesis is that true betas for all 6 stocks are constant over the some time interval. The first row

indicates the corresponding time interval. First three methods (labelled

b�RV

5min,
b�RV

15min, and
b�RV

20min ) are based

on noise-free theory described in section 3.1; for the last method, TSRV method is used for point estimates

of betas, and subsampling method is used to estimate their asymptotic variance-covariance matrix.
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↵ = 0.01 ↵ = 0.05 ↵ = 0.10

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

AIG

5 min 0 0 0 0 0 0 0 0 0

15 min 0 0 0 0 0 0 0 0 0

20 min 0 0 0 0 0 0 0 0 0

1 tick 47 1 0 48 1 1 48 2 0

GE

5 min 0 0 0 0 0 0 0 0 0

15 min 0 0 0 0 0 0 0 0 0

20 min 0 0 0 0 0 0 0 0 0

1 tick 46 0 0 46 2 0 46 2 0

IBM

5 min 0 0 0 0 0 0 0 0 0

15 min 0 0 0 0 0 0 0 0 0

20 min 0 0 0 0 0 0 0 0 0

1 tick 48 0 0 48 0 0 48 1 2

INTC

5 min 1 0 0 2 0 0 2 0 0

15 min 0 0 0 1 0 0 1 0 0

20 min 0 0 0 1 0 0 1 0 0

1 tick 49 0 0 49 0 0 49 0 0

MMM

5 min 0 0 0 0 0 0 0 0 0

15 min 0 0 0 0 0 0 0 0 0

20 min 0 0 0 0 0 0 0 0 0

1 tick 45 0 0 45 2 0 46 1 0

MSFT

5 min 4 1 2 8 0 0 8 2 0

15 min 1 0 0 1 1 0 2 0 0

20 min 1 0 0 2 1 0 3 0 0

1 tick 49 0 0 49 1 0 49 1 1

Table 8: Number of rejected null hypotheses out of 51 for each step. See section 5.3 for exact description

of the test. ↵ is the level of significance.
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