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ABSTRACT

Many time series are sampled at different frequencies. When we study co-movements between such series we usually analyze
the joint process sampled at a common low frequency. This has consequences in terms of potentially mis-specifying the co-
movements and hence the analysis of impulse response functions - a commonly used tool for economic policy analysis.
We introduce a class of mixed frequency VAR models that allows us the measure the impact of high frequency data on low
frequency and vice versa. Our approach does not rely on latent processes/shocks representations. As a consequence, the mixed
frequency VAR is an alternative to commonly used state space models for mixed frequency data. State space models involve
latent processes, and therefore rely on filtering to extract hidden states that are used in order to predict future outcomes. We
also explicitly characterize the mis-specification of a traditional common low frequency VAR and its implied mis-specified
impulse response functions. The class of mixed frequency VAR models can also characterize the timing of information
releases for a mixture of sampling frequencies and the real-time updating of predictions caused by the flow of high frequency
information. Hence, they are parameter-driven models whereas mixed frequency VAR models are observation-driven models
as they are formulated exclusively in terms of observable data and do not involve latent processes and thus avoid the need to
formulate measurement equations, filtering etc. We also propose various parsimonious parameterizations, in part inspired by
recent work on MIDAS regressions. Various estimation procedures for mixed frequency VAR models are also proposed, both
classical and Bayesian. Numerical and empirical examples quantify the consequences of ignoring mixed frequency data.
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1 Introduction

It is simply a fact of life that time series observations are sampled at different frequencies. Some data
series - such as financial ones - are easy to collect and readily available, while others are costly to
record and therefore not frequently sampled. When we study co-movements between such series we
usually analyze the joint process sampled at a common low sampling frequency. A typical example,
following the seminal work of Sims (1980), is a vector autoregressive (VAR) model with both real and
financial time series sampled quarterly - even though financial series are observed more frequently. We
introduce a mixed frequency data VARmodel and analyze the consequences of ignoring the availability
of high frequency data. Take a simple example: GDP growth observed quarterly and non-farm payroll
published monthly. We could look at the dynamics between the two series at a quarterly frequency
- ignoring the fact that we do have monthly data for the second series. How does the shock to non-
farm payroll and its impact on future GDP growth produced by standard VAR model analysis relate
to the monthly surprises in the series? The quarterly VAR model shocks will be some mixture of the
innovations in the underlying series. What type of mixture would this be? What are the costs in terms
of impulse response analysis when we mis-align the data by ignoring the high frequency data? How
does the flow of high frequency data allow us to update predictions of future low and high frequency
data? We provide formal answers to all of these types of questions.

We introduce a relatively simple mixed sampling frequency VAR model. By simple we mean, (1)
parsimonious, (2) one that can track the proper timing of low and high frequency data - that may include
releases of quarterly data in the middle of the next quarter along with the releases of monthly data or
daily data, (3) a specification that allows us to measure the impact of high frequency data onto low
frequency ones and vice versa and perhaps most subtle (4) a specification that does not involve latent
shocks.

We characterize the mapping between the mixed frequency VAR model and a traditional VAR
model where all the data are sampled at a common low frequency. This mapping allows us to study
the mis-specification of impulse response functions of traditional VAR models. The VAR models we
propose can also handle time-varying mixed frequencies. Not all months have the same number of
trading days, not all quarters have the same number of weeks, etc. Assuming a deterministic calendar
effect, which makes all variation in changing mixed frequencies perfectly predictable, we are able to
write a VAR with time-varying high frequency data structures.

The mixed frequency VAR provides an alternative to commonly used state space models involving
mixed frequency data.1 State space models involve latent processes, and therefore rely on filtering to
extract hidden states that are used in order to predict future outcomes. State space models are, using the
terminology of Cox (1981), parameter-driven models. The mixed frequency VAR models are, using
again the same terminology, observation-driven models as they are formulated exclusively in terms of

1See for example, Harvey and Pierse (1984), Harvey (1989), Bernanke, Gertler, and Watson (1997), Zadrozny (1990),
Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), and more recently Aruoba, Diebold, and Scotti (2009), Ghysels
and Wright (2009), Kuzin, Marcellino, and Schumacher (2009), Marcellino and Schumacher (2010), among others.
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observable data. The fact we rely only on observable shocks has implications with respect to impulse
response functions. Namely, we formulate impulse response functions in terms of observable data -
high and low frequency - instead of shocks to some latent processes. Finally, mixed frequency VAR
models, like MIDAS regressions, may be relatively frugal in terms of parameterization.

Technically speaking we adapt techniques typically used to study seasonal time series with hidden
periodic structures, to multiple time series that have different sampling frequencies. The techniques we
adapt relate to work by Gladyshev (1961), Pagano (1978), Tiao and Grupe (1980), Hansen and Sargent
(1990, Chap. 17), Hansen and Sargent (1993), Ghysels (1994), Franses (1996), among others. In
addition, the mixed frequency VAR model is a multivariate extension of MIDAS regressions proposed
in recent work by Ghysels, Santa-Clara, and Valkanov (2006), Ghysels and Wright (2009), Andreou,
Ghysels, and Kourtellos (2010) and Chen and Ghysels (2011), among others.

We study two classes of estimation procedures, classical and Bayesian, for mixed frequency VAR
models. For the former we characterize how the mis-specification of traditional VAR models translates
into pseudo-true VAR parameter and impulse response estimates. Parameter proliferation is an issue
in both mixed frequency and traditional VAR models. We therefore also cover a Bayesian approach
which easily accommodates the potentially large set of parameters to be estimated.

The paper is organized as follows. Section 2 introduces the structure of mixed frequency VAR
models, discusses parsimony and impulse response functions. Section 3 elaborates on structural VAR
models in the context of real-time updating of predictions and policy analysis. Section 4 covers the
(mis-specified) traditional low frequency VAR process dynamics and impulse response functions im-
plied by a mixed frequency VAR and also characterizes the loss of information due to ignoring high
frequency data. Section 5 discusses classical and Bayesian estimation procedures. Section 6 provides
numerical illustrative examples and finally Section 7 reports empirical findings with conclusions ap-
pearing in Section 8.

2 Mixed Frequency Vector Autoregressive Models

Since the work of Sims (1980), it is now standard to characterize the co-movements of macroeconomic
time series as a VAR model. This typically involves some real activity series (i.e. GDP growth), some
price series (i.e. inflation) and some monetary policy instrument (i.e. short term interest rates). This
means we actually do have a mixture of respectively quarterly, monthly and daily series. Usually the
sampling frequencies are aligned, for example inflation is computed quarterly and only end-of-the-
quarter interest rates are sampled. Since the purpose of VAR models is to capture time series dynamics,
it is natural to wonder how much harm is done both in terms of specification errors and prediction
inaccuracy. Specification errors affect policy impulse response analysis and also have consequences as
far as the asymptotic properties of estimators goes.

When we think of mixed frequencies, we need to distinguish situations where the high frequency
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data are sampled m(τL) times more often than the low frequency series where either m(τL) = m,

a constant or m(τL) has a deterministic time path. For example quarterly/annual, monthly/quarterly,
daily/hourly amount to fixedm,whereas of daily/quarterly or weekly/quarterly involvem(τL) featuring
pre-determined calendar effects. We start with the case of fixedm, namely:

Assumption 2.1. We consider a K-dimensional process with the first KL < K elements, collected
in the vector process xL(τL), are only observed every m fixed periods. The remaining KH = K -
KL series, represented by double-indexed vector process xH(τL, kH) which is observed at the (high)
frequency periods kH = 1, . . . , m during period τL.

We will often refer to xL(τL) as the low frequency (multivariate) process, and the xH(τL, kH)

process as the high frequency (multivariate) one. Note that, for the sake of simplicity we consider
the combination of two sampling frequencies. More than two sampling frequencies would amount to
more complex notation, but would be conceptually similar to the analysis with a combination of two
frequencies (see also section 4 for further discussion).

2.1 Shocks: Latent versus observable

So far attempts to accommodate mixed frequency data involve latent processes and therefore latent
shocks. Zadrozny (1990) starts with a joint high frequency VAR(MA) model as if high frequency
observations for xL(τL) were available. A state space representation is then used to match the latent
process with the mixture of data observed. This approach has recently been generalized by Chiu,
Eraker, Foerster, Kim, and Seoane (2011) who develop a Bayesian approach to such mixed frequency
VAR models where the missing data are drawn via a Gibbs sampler. Note that in such an approach
the fundamental shocks are with respect to the hidden high frequency VAR. Factor models are also
commonly used to handle mixed frequency data. For example, Mariano and Murasawa (2003) extract a
coincident factor using quarterly and monthly time series (see also Nunes (2005)). Along similar lines,
Aruoba, Diebold, and Scotti (2009) describe a dynamic one-factor model evolving on a daily basis to
construct a coincident business index. Here too, the system is driven by latent shocks - not shocks to a
high frequency VAR, but instead shocks that drive the latent factor that is measured with error through
repeated high and low frequency data observations.

Our approach does not involve latent shocks. This means there is no need for filtering and the
impulse response functions are based on observable shocks. To analyze mixed frequency vector pro-
cesses we use insights from periodic models and construct stacked skip-sampled processes. We will
start with an example where all the low frequency τL series appear at the end of the (low frequency)
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period. Namely, consider the following finite order VAR representation of a stacked vector:
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+ ε(τL) (2.1)

which isKL +m ∗KH dimensional VAR model with P lags.2 Hence, with quarterly data we stack for
example the months of January, February and March together with the first quarter low frequency data.
Similarly we stack April, May and June with the second quarter, etc. For the moment, we focus on
predicting next quarter’s high and low frequency data given previous quarter’s high and low frequency
observations. Note however, that one may think of a specification similar to structural VAR models
where we pre-multiply the vector [xH(τL, 1)′, . . . , xH(τL,m)′, xL(τL)′]′ with a matrix Ac :

Ac
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where the matrix Ac pertains to contemporaneous (in this case within quarter) relationships. Writing
the matrix Ac explicitly, we have the left hand side of (2.2) as:
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(2.3)

Hence, elements below the diagonal pertain to downstream impacts, i.e. high frequency data affect
subsequent within-τL period observations. This will be relevant notably for intra-τL period prediction
updating - a topic discussed in section 3.1. In contrast, elements above the diagonal will be relevant
notably when we will discuss policy rules in section 3.2. Obviously, with Ac invertible we can always
view equation (2.1) as one obtained after pre-multiplying both sides of (2.2) by A−1

c . Hence, for the
moment we will ignore the presence of Ac.

One might think that the stacked system appearing in (2.1) could be prone to parameter prolifera-
tion. That may not actually be the case as we will show later in the section. While we do not address
parameter proliferation issues for the moment, it is worth pointing out the relationship with MIDAS
regressions, in particular, by looking at a special case with KL = KH =1. The last equation in the

2The assumption of a finite order VARmay appear somewhat restrictive. It is worth noting that much of our analysis could
be extended to VARMA models. Since VAR models are more widely used and considering VARMA models significantly
complicates the estimation we forego the generalization of adding MA terms.
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system then reads:

xL(τL) = Am+1,1
0 +

P
∑

j=1

Am+1,m+1
j xL(τL − j) +

P
∑

j=1

m
∑

k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (2.4)

which is the ADL MIDAS regression model discussed in Andreou, Ghysels, and Kourtellos (2010).
There are various parsimonious parameterizations suggested for such regressions, see e.g. Ghysels,
Sinko, and Valkanov (2006), Andreou, Ghysels, and Kourtellos (2010) and Sinko, Sockin, and Ghysels
(2010), that will be discussed later.

Note that the aforementioned VAR model contains, besides MIDAS regressions, also the impact
of what one might call the low frequency shock ε(τL)m+1,1 (the last element of the innovation vector
in this particular example) onto both future high and low frequency series as well as high frequency
shocks ε(τL)i,1 (i = 1, . . . , m again in this particular example) onto future high and low frequency
series.

2.2 The constituents of the stacked vector

We adopt a general approach, and therefore analyze a generic stacked vector systems. Yet, we also need
to keep in mind that the observations we stack into vectors may differ from application to application
and in particular may depend on the focus of the application.

For example, let us consider two different scenarios involving a mixture monthly and quarterly
data. The first scenario, one could refer to as economic time, seeks to study the fundamental dynamics
of the economy. Namely, there is a number of people employed during the month of January, another
number for February, a third for March, and then there is a GDP number for the first quarter. This yields
four numbers, three monthly employment figures and one GDP, which would logically be collected in
a single stacked vector. An alternative scenario is news-release time. For example, on January 6 the
Bureau of Labor Statistics (BLS) releases the December employment report, on January 27 the Bureau
of Economic Analysis (BEA) will release the GDP number for the fourth quarter of the previous year,
on February 3 the BLS will release the employment report for January and a revised value for the
employment number for December, on February 29 the BEA will release a revised estimate of previous
fourth quarter of GDP, on March 2 the BLS will release the employment report for February (and
revisions of the December and January counts), and on March 29 the BEA will release yet another
estimate of the previous year GDP. Perhaps we want to collect all eight of these numbers in the vector
for the first quarter. Note also that in the first scenario we would take final data, not the real-time series.

Clearly, both scenarios are of interest and can be covered by our generic mixed frequency VAR
model. While throughout the paper we will try to provide a general discussion, it will be clear that
some parts of our analysis will be more relevant for specific applications. For example, the mapping
from mixed frequency to traditional low frequency VAR models and the analysis of potentially mis-
specified impulse response functions appearing in section 4 is clearly more relevant for aforementioned
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economic time structural dynamic analysis. Likewise, the distinction between mixed and periodic
stacked VAR representations appearing in subsection 2.3 will also mostly pertain to the first scenario
type of research.

On the other hand, if one is interested in a real-time forecasting exercise, then we clearly consider
the second approach. For example, assume all low frequency data are release at the same time and
compare:

x(τL) =
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(2.5)

where the release of low frequency appears at the end, beginning or some time in the middle of τL. The
order of appearance in the vector therefore determines the timing of intra-τL period releases and that
will be important later to understand the impact and timing of shocks as well as the updating of predic-
tions as new intra-τL period shocks occur. The high frequency releases of low frequency data can be
scattered at various kH throughout period τL and therefore impact the structure of shocks and responses.
More specifically theKL low frequency seriesKkH

L in xL(τL) are released at time kH in period τL for
kH = 1, . . . , m, with

∑m
i=1K

i
L =KL.3 When we need to keep track of the high frequency releases on

low frequency data we use xL(τL, kH), for the sub-vector released at kH .All xL(τL, kH) combined for
kH = 1, . . . , m, yield the time-stamped low frequency process. Hence, when all the low frequency data
are released at the end of period τL then x(τL) ≡ (xH(τL, 1)′, . . . , xH(τL,m)′, xL(τL)′)′, otherwise it
contains (xL(τL, kH)′, xH(τL, kH)′)′ for the sequence kH = 1, . . . , m.4

For many parts of the paper the details about the specific constituents of the stacked vector will be
irrelevant, and we will put all the high frequency data first followed by the low frequency data. How-
ever, when the focus is real-time analysis, as in subsections 2.5 and 3.1, we will deal more explicitly
with the specific order of the elements in the stacked vector.

3 Most releases are on a fixed schedule, with notable exceptions such as some FOMC announce-
ments. In addition to the extensive academic literature, mostly studying the phenomenon of financial mar-
ket impact of announcements - one can find many details regarding announcement schedules on finan-
cial news sites such as http://www.nasdaq.com/markets/us-economic-calendar.aspx or
http://biz.yahoo.com/c/e.html, among many others. The framework presented in this paper can, with
some modification handle announcements that may occur at random - the technicalities of it are clarified in subsection 3.3.

4If xH(τL, kH) is empty for some kH , we only stack the high frequency data.
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2.3 Mixed and Periodic Stacked VAR Representations

It will be convenient to use a more compact notation for the KL +m ∗KH dimensional vector x(τL),
namely we will write equation (2.1) as:

A(LL)(x(τL)− µx) = ε(τL) (2.6)

where LL is the low frequency lag operator, i.e. LLx(τL) = x(τL − 1), and:

A(LL) = I −
P
∑

j=1

AjL
j
L

µx = (I −
P
∑

j=1

Aj)
−1A0 (2.7)

where we assume that the VAR is covariance stationary to be able to write the above equations (see
Assumption 2.2 below) and we let E[ε(τL)ε(τL)′] = CC′.

We are also interested in a second representation which will be useful for studying the relationship
between mixed frequency and traditional VAR models which ignores the availability of xH(τL, kH).

To this end, we will introduce a joint process x(τL) ≡ (xH(τL)′, xL(τL)′)′, where the first sub-vector
of low frequency observations is left unspecified for the moment - i.e. we are not going to be explicit
until the next section about how the high frequency data aggregate to low frequency observations. We
are interested in the VAR model:

B(LL)(x(τL)− µx) = ε(τL) (2.8)

where B(LL) = I -
∑P

j=1BjL
j
L, and E[ε(τL)ε(τL)′] = CC

′
. Note that the lag length of the VAR may

not be finite, i.e. P may be infinite.5 Obviously, what also interests us is the relationships between the
(traditional) VAR characterized by B(LL) and C and the original mixed frequency dynamics LL and
C. It is one of our goals to characterize this relationship.

While the VAR model appearing in equation (2.6) looks standard, its simple appearance is deceiv-
ing. Inherently, its structure shares features with so called periodic time series models originated by
Gladyshev (1961). Yet, it does not quite fully resemble periodic models, and we will need an aug-
mented version of (2.6) to achieve this. We will consider a (K ∗m)× (KL +m ∗KH) matrixH such
that:

ẍ(τL) = Hx(τL) (2.9)

One prominent example is ẍ(τL)≡ (xH(τL, 1)′, xL(τL)′, . . . , xH(τL,m)′, xL(τL))′. Note that the low
frequency series is repeated, capturing every high frequency period the relationship between how and

5Incorrectly assuming one has a finite VAR will have consequences on the asymptotic properties of the parameter estima-
tors - a topic that will be discussed later.
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high frequency data. Note that this is simply a reshuffling of the original vector - we are not constructing
a mapping involving a latent vector. Recall that we discussed two different scenarios in subsection 2.2.
The first scenario seeks to study the fundamental dynamics of the economy, whereas the second is
oriented towards real-time analysis. It is mostly for the first type of analysis that we will need the
ẍ(τL) representation. As discussed later, this will allow us to examine how mixed frequency impulse
responses will get scrambled.6

Formally stated, we assume the following data generating process for the mixture of high and low
frequency data:

Assumption 2.2. The vector ẍ(τL) ≡ (xH(τL, 1)′, xL(τL, 1)′, . . . , xH(τL,m)′, xL(τL,m))′ is of di-
mensionm ∗K and has a finite order covariance stationary VAR representation:

Ä(LL)(ẍ(τL)− µẍ) = ε̈(τL) (2.10)

where Ä(LL) = I -
∑P

j=1 ÄjL
j
L, µẍ = Ä0(I −

∑P
j=1 Äj)−1 and E[ε̈(τL)ε̈(τL)′] = C̈C̈′.

In the remainder of this section we will work mostly with the vector x(τL) appearing in (2.6)
rather than ẍ(τL). The latter will be useful when we derive the mapping between traditional and mixed
frequency VAR models, a topic which we will cover in section 4.

2.4 Parsimony

The question of parsimony in VAR models has been much discussed as it is an issue that is partic-
ularly acute for large dimensional models and/or models involving many lags. One might think that
the acuteness of parameter proliferation is likely to be even more an issue with a mixture of sampling
frequencies. It is the purpose of this section to show that this may not be as severe as one might think.
There are mainly two reasons why there may not be a parameter proliferation problem despite the po-
tentially large dimensional VAR systems. First, the stacking of high frequency data typically involves
repeating the same parametric structure across allm replicas (unlike the periodic models which inspired
the structure of mixed frequency VAR models). Second, the key insights of MIDAS regressions also
play a key role in keeping the parameter space low dimensional. We develop a few examples showing
how one could potentially write sparsely parameterized mixed frequency VAR models. These are not
per se the specifications, but they provide a few leads on how one may go about writing conveniently a
parametric structure. The common theme, however, is that we aim for specifications with the appeal-
ing feature that the number of parameters does not depend on m, i.e. the number of high frequency
observations per low frequency time period.

6If we were to consider the second scenario involving real-time applications, the low frequency components of the vector
ẍ(τL) will gradually update the data release throughout τL, together with the high frequency observations xH(τL, kH), in
chronological order. Hence, the difference between the vector x(τL) and ẍ(τL) is that the former simply stacks all the timed
releases of low and high frequency data, whereas the latter repeats all the elements of the low frequency process with stale
values until intra−τL updates happen. For the sake of brevity we skip the details of such analysis.
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For the purpose of streamlining the exposition we will start again with an example where all the
low frequency τL series appear at the end of the stacked vector as in equation (2.1). In addition, we set
KL =KH = 1 and assume that all the series are either demeaned or are assumed mean zero.7 Therefore,
we rewrite equation (2.1) as:


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which ism+1-dimensional VAR model with P lags. When we assume that the high frequency process
is ARX(1) with the impact of the low frequency series constant throughout the period, we have:
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w(γ)jm . . . w(γ)(j−1)m+1 αj

















xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL)

which involves P parameters αj , two parameters ρ and a and a low dimensional MIDAS polynomial
parameter vector γ.When all αj = 0 for j > 1, and the dimension of γ is 2, which is not unreasonable
(see Appendix A for details), we end up with 5 parameters regardless of the value of m. Admittedly,
this is a tightly constrained model, yet it is not an unreasonable starting point. Continuing with the
system in (2.11), the innovation covariance matrix may also be sparsely specified. Continuing with the
above specification, we can write:

E[ε(τL)ε(τL)
′] =













σHH ρσHH . . . ρm−1σHH σHL

ρσHH (1 + ρ2)σHH 0
... σHL

...
... . . . ρσHH

...

ρm−1σHH ρm−2σHH . . . (1 +
∑m−1

i=1 ρ2)σHH
...

σHL σHL . . . . . . σLL













(2.12)

adding another three parameters, and therefore a total of eight again independent of m. Obviously,
for some of the high frequency applications, one may consider adding ARCH-type dynamics to the
innovations, or add announcement effects to some of the elements of the covariances - which would
entail a richer, yet still moderate and independent ofm, parameter structure.

7In subsection 5.2 we cover the cases withKL low frequency andKH high frequency series.
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The specification of the MIDAS regressions, when KL > 1, deserves some attention as well.
Namely, consider the following:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ] = B ⊗

[
KH×P
∑

i=1

(w(γ)i)

]

(2.13)

with B aKL ×KH matrix and
∑KH×P

i=1 (w(γ)i) is a scalarMIDAS polynomial. Hence, we impose a
common decay pattern with a single polynomial lag structure with B containing the collection of slope
parameters identified as the sum of the polynomial lag weights add up to one. As noted before, there
are various parsimonious parameterizations suggested for the weights ω(γ)i, that are briefly reviewed
Appendix A. The above specification has the virtue of reducing (KL×KH)×P ×m parameters to just
KL ×KH + the dimension of γ which is 2 in many of the examples discussed in the aforementioned
Appendix. Needless to say that this characterization of the polynomials may be too restrictive - yet
as in the previous case, it may be a reasonable starting point in many practical settings. Along the
same lines, one can consider a less parsimonious specification inspired by the so called multiplicative
MIDAS (see equation (A.8) in Appendix A):

[Am+1,1
i . . . Am+1,m

i ] = Bi ⊗

[
m
∑

i=1

(w(γ)i)

]

i = 1, . . . , P (2.14)

meaning that within-τL period high frequency weights remain invariant and yield a low frequency
parameterized process xH(τL − j)(γ) with lag coefficients Bi. The advantage of this specification is
that the impact of high frequency data on low frequency ones nests specifications with ad hoc linear
time aggregation such as time averaging - taking the last within-τL period high frequency observation.
Bai, Ghysels, and Wright (2009) show that the above specification matches a steady state Kalman filter
prediction equation obtained from a single factor state space model and provides a good approximation
for many more complex state space model specifications. Note that, at least for the block of low
frequency series, the above specification is quite similar to a traditional VAR with lag coefficients Bi,

augmented by a small number of parameters used in the filtering scheme. Here again, the number of
parameters does not augment withm.

We adopt in the remainder of the paper a generic setting where all the parameters are collected
into a vector Ψ. The above sparsely parameterized mixed frequency VAR model is a frugal example,
while more richly specified structures obviously will involve higher dimensional parameter vectors. In
general, we will write the finitely parameterized mixed frequency VAR models appearing in equations
(2.6) and (2.10) respectively as:

AΨ(LL)(x(τL)− µΨx ) = ε(τL)

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL) (2.15)

with E[ε(τL)ε(τL)′] = C(Ψ)C(Ψ)′, and E[ε̈(τL)ε̈(τL)′] = C̈(Ψ)C̈(Ψ)′. Note that the parameter vector
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Ψ governs both the stacked and periodic representations and that we do not count the unconditional
mean as part of the parameter space since we used demeaned series in our analysis.

To streamline the notation, we will drop the parameter vector Ψ for the remainder of this section,
although one has to keep in mind that the material we will present is subject to potential specification
errors resulting from parsimonious parameterizations - a subject we will address in the next section.

2.5 Shocks and Choleski factorization

Much has been written about impulse response functions in VAR models, in particular with regards to
the interpretation of shocks. The class of mixed frequency VAR models sheds new light on this topic.
First of all, let us recall that the vectors x(τL) and ẍ(τL) have a natural order for the intra−τL period
timing of shocks since their elements represent a sequence of time events. If more than one series is
released at a specific time, then the order of associated shocks is subject to the same considerations as
in traditional VAR models - or perhaps not. For example if during a day, or a week, or month both
financial and macro series are released, we do not necessarily know how to order them - except that
macro data are released before financial markets open, so there is again a natural order despite the
contemporaneous time stamp in the vector x(τL).

It is important to note that for the purpose of information accounting we will work with x(τL)
appearing in (2.6) rather than ẍ(τL), as the latter contains repetitive strings of stale low frequency data.
The stacked mixed frequency VAR model implies an impulse response function:

(x(τL)− µx) = (I −
P
∑

j=1

AjL
j
L)

−1ε(τL)

=
∞
∑

j=0

Fjε(τL − j) ≡ F (LL)ε(τL) (2.16)

where I = (A(LL))F (LL), which allows us to study the intra−τL period timing of shocks, both high
frequency as well as low frequency.

This means that shocks ε(τL) tell us something about the timed surprise of either type of series, and
therefore the impulse responses tell us what is the impact of say a macroeconomic announcement of a
low frequency series onto future low and high frequency ones, and surprises in high frequency series
on both future low and high frequency series. Compared to the impulse responses from the VAR in
equation (2.8), namely: (x(τL) − µx) = (B(LL))−1ε(τL) we can see how intra−τL period shocks are
scrambled - something we will be more explicit about in the next section.

Since the order of the series is no long arbitrary, it is also the case that the Choleski factorization of
the innovations is no longer arbitrary. In particular consider:

E[ε(τL)ε(τL)
′] = CC

′ = M[m]ΩM
′
[m] (2.17)
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where Ω is a diagonal matrix andM[m] is a lower triangular matrix. We add the index m to the latter
as it will be relevant for the material presented in the next subsection. Since the inverse of a lower
triangular matrix is again a lower triangular one, consider (M[m])

−1 = N[m], and:

A(LL)(x(τL)− µx) = ε(τL)

= M[m]η(τL)

N[m]A(LL)(x(τL)− µx) = η(τL) (2.18)

where E[η(τL)η(τL)′] = Ω, a diagonal matrix.

When we turn our attention again to the parsimonious examples in the previous subsection, and in
particular equation (2.12) we realize that the parameters governing the covariance matrixE[ε(τL)ε(τL)′]

and thus its Choleski factorization, are tied to the parameters governing the VAR dynamics, in particular
the parameter ρ in equation (2.11). This leaves us with the choice of either (1) estimate the factorization
unconstrained, or (2) explore the common parameter restrictions and aim for a more efficient estima-
tion of the impulse response functions. This issue is reminiscent of structural VAR models as alluded
to in equation (2.2). We will revisit the connection with traditional structural VAR models in the next
subsections. To summarize: while Choleski factorizations are typically ambiguous in terms impulse
response analysis in traditional VAR models, they are a more natural tool for impulse response analysis
for time-stamped mixed frequency VAR systems. In addition, there are potential gains to be made from
considering common parameter restrictions between the mixed frequency VAR dynamics and the lower
triangular factorization.

3 Structural Mixed Frequency VAR Models

We turn our attention now to structural VAR models and consider various specifications for the Ac

matrix appearing in equation (2.2). We will focus on two particular applications, namely real-time
prediction updating and policy analysis. A subsection is devoted to each topic. A final subsection
will deal with a generalization of mixed frequency VAR models relevant for both real-time and policy
analysis.

3.1 Real-time predictions

The potential mis-specification of shocks due to aggregation of mixed frequency data also leads us to
the question how much is lost by ignoring the real-time stream of high frequency data as one foregoes
the possibility to engage in within-τL updates of forecasts. It turns out this will be an example of using
certain types of structural VAR matrices to update within-τL information.

Continuing with the example in equations (2.6) and (2.18) consider the following transformations

12



for i = 1, . . . , m− 1 : N[i]A(LL)(x(τL)− µx) = N[i]ε(τL) or:

N[i]x(τL) = N[i]A0 +
P
∑

j=1

N[i]Ajx(τL − j) +N[i]ε(τL) (3.19)

involving the matrices, N[i], i = 1, . . . , m− 1, which can be written as:

N[i] =
















I 0 · · · · · · 0 0

N 2,1
[i] I 0 · · · 0 0
...

...
...

N i+1,1
[i] · · · N i+1,i

[i] I
... 0

...
... 0

. . . ...
Nm+1,1

[i] · · · Nm+1,i
[i] 0 · · · I
















(3.20)

where the matrices N a,b
[i] are of dimension KH × KH except for a = m + 1. Matrices Nm+1,b

[i] are
of dimension KH × KH . These matrices are related to the inverse of the Choleski lower triangular
decomposition, namely recall from equation (2.18) that (M[m])

−1 = N[m], and define the matrices,
N[i] as the partial triangular decompositions orthogonalizing only the first i shocks.

To clarify the role played by the transformation appearing in (3.20), let us for instance take a look
at N[1], which applies to a first high frequency data point becoming available, and the special case
considered before ofKL =KH = 1, i.e.:

N[1] =










I 0 · · · 0

N 2,1
[1] I · · · 0
... 0

. . . ...
Nm+1,1

[1] 0 · · · I










Then the last equation in the system reads:

xL(τL) = Am+1,1
0 −Nm+1,1

[1] xH((τ)L, 1)
︸ ︷︷ ︸

+
P
∑

j=1

Am+1,m+1
j xL(τL − j)

New Info

+
P
∑

j=1

m
∑

k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (3.21)

which is the ADL MIDAS regression model with (one) lead(s) discussed in Andreou, Ghysels, and
Kourtellos (2010). Alternatively, we can also write the last equation, based on the inversion of theN[1]
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matrix as:

xL(τL) = (Am+1,1
0 −Nm+1,1

[1] A1,1
0 )−Nm+1,1

[1] ε(τL)
1,1

+
P
∑

j=1

(Am+1,m+1
j −Nm+1,1

[1] A1,1
j )xL(τL − j)

+
P
∑

j=1

m
∑

k=1

(Am+1,k
j −Nm+1,1

[1] A1,k
j )xH(τL − j, k) + ε(τL)

m+1,1 (3.22)

The latter representation is closer to a Kalman filter approach as it adds the information innovation
ε(τL)1,1, which equals xH((τ)L, 1) - EτL [xH((τ)L, 1)], to the equation and re-weights all the old
information accordingly.

Note, the simplicity of the updating scheme: (1) we estimate a mixed frequency VAR model, (2)
compute the Choleski factorization of the errors and then take them−1 lower triangular truncations of
the original factorization. It is also worth recalling that we may or may not impose common parameter
restrictions between the parameters of the mixed frequency VAR and the covariance matrix of the full
system as noted at the end of the previous section.

3.2 Policy response functions

The analysis in the previous subsection is one example of mixed frequency VAR models with a particu-
lar choice of Ac matrix appearing in equation (2.2). In the present subsection we study structural VAR
models with mixed frequency data for the purpose of studying policy analysis. To do so, we consider
a high frequency vector that contains some monetary policy instrument, such as the Federal funds rate
(henceforth FFR). In fact, to simplify the presentation, let us only focus on FFR in combination with
some low frequency series. In particular:

Ac















FFR(τL, 1)
...

FFR(τL, k)
...

FFR(τL,m)

xL(τL)















= A0 +
P
∑

j=1

Aj















FFR(τL − j, 1)
...

FFR(τL − j, k)
...

FFR(τL − j,m)

xL(τL − j)















+ ε(τL) (3.23)
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with

Ac =


















IKH
. . . . . . . . . . . . A1,m

c A1,m+1
c

... . . . ...
...

... . . . ...
...

Ak,1
c . . . Ak,k−1

c IKH
Ak,m

c Ak,m+1
c

...
... . . . ...

...
Am,1

c . . . . . . IKH
Am,m+1

c

Am+1,1
c . . . . . . Am+1,m

c IKL


















(3.24)

Let us focus on the equation for FFR(τL, k). For simplicity, we set Ak,j
c = 0 for j < k − 1 and k <

j ≤ m. Moreover, we leave unspecified the regressors appearing on the right hand side of the above
equation, and therefore we have:

FFR(τL, k) = Ak,1
0 −Ak,k−1

c FFR(τL, k − 1)−Ak,m+1
c xL(τL)

+ regressors prior to τL + ε(τL)
k,1 (3.25)

Note that the above equation for FFR(τL, k) features the low frequency xL(τL) (as well as lagged low
and high frequency data). This means that policy may respond to current conditions - although xL(τL)
may not yet be observed at period k of τL. This raised some interesting issues. To address these, let
us define the information set I(τL, k) as all the information available at period k of τL. Therefore, one
may interpret equation (3.25) as:

FFR(τL, k) = Ak,1
0 −Ak,k−1

c FFR(τL, k − 1)−Ak,m+1
c E[xL(τL)|I(τL, k)] + . . . (3.26)

involving real-time estimates of xL(τL). Therefore, we may think of cross-equation restrictions since
E[xL(τL)|I(τL, k)] involves the rows of N[k]x(τL) pertaining to the concurrent estimates of xL(τL).
Recall that in equation (2.12) we noted that the parameters governing the covariance matrixE[ε(τL)ε(τL)′]

and thus its Choleski factorization, are tied to the parameters governing the VAR dynamics. Imposing
such restrictions - while feasible - may be convoluted. Fortunately, there is an easy shortcut. It is worth
recalling that the instruments used in the estimation of (3.25), and all FFR equations across all k, are
orthogonal to the error xL(τL) - E[xL(τL)|I(τL, k)]. Therefore, using an argument often invoked in
the estimation of rational expectations models (see e.g. McCallum (1976)), we can obtain consistent
estimates of Ak,m+1

c in equation (3.25) using ex post realizations of low frequency series to analyze the
real-time policy decision rules.

3.3 Time-varying mixed frequencies and randomly timed events

We started the section with Assumption 2.1 where assumed a fixedm for the balance between low and
high frequency data. In many applications this is not the case. For example, the number of trading
days varies from month to month, and therefore also from quarter to quarter. Most often, however,
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this variation is deterministic and driven by pure calendar effects that are perfectly predictable. In this
subsection we relax Assumption 2.1 and replace it by:

Assumption 3.1. We consider a K-dimensional process with the first KL < K elements, collected in
the vector process xL(τL), only observed every mτ periods. The remaining KH = K - KL series,
represented by double-indexed vector process xH(τL, kH) which is observed at the (high) frequency
periods kH = 1, . . . , mτ during period τL. The sequence {mτL}, τ = 1, . . . , is deterministic and takes
values in a finite setM(m).

The above assumption deals with perfectly predictable calendar effects which makes {mτ} typ-
ically vary over a small set of values. For example, the number of trading days in a month can be
between 20 and 23, depending on the month and holidays. Since the mixed frequencies scheme is time
varying we also have time variation in the system dynamics. Namely, we consider:

A
τL
Ψ (LL)(x(τL)− µΨ,τLx ) = ε(τL) (3.27)

withE[ε(τL)ε(τL)′] =CτL(Ψ)CτL(Ψ)′,which is of dimension m̃2
τ , with m̃τ ≡KL +mτ ∗KH , and the

matrix polynomial Aτ
Ψ(LL) is of dimension m̃τL × m̃(τ−1)L , and the vector µ

Ψ,τLx is of dimension m̃τ .

Note that these matrices are no longer the typical squared ones encountered in traditional VAR models
or the mixed frequency VAR models with fixed m we have seen so far. Note that we use the same
parameter vector Ψ as before. Indeed, one might think that we need to enlarge again the parameter
space as we deal with time varying mixed frequencies. Say we thatM(m) is of dimension four, to take
again the daily trading day example. Now we have potentially sixteen system matrices, four covariance
matrices - and thus associated Choleski factorizations for real-time updates - as well as four vectors for
the mean. Yet, it is easy to see that equations such as (2.11) and (2.12) remain tightly parameterized if
we do two things: (1) replace m by mτL , and (2) accommodate time varying mixed frequencies with
the same MIDAS polynomials. On the latter subject we refer to the Matlab MIDAS Toolbox (Sinko,
Sockin, and Ghysels (2010, Sec. 2.8)) where various schemes are discussed for MIDAS polynomials
that handle time varying mixed frequencies within the same framework as fixed m specifications that
are characterized by unequal number of MIDAS lags over time that cover the same time span - say a
month. Hence, we typically still have the same small number of parameters, despite the time variation
in mixed frequencies. As long as the mixture is perfectly predictable, we can use the right dimensions
of system matrices as well as the suitable Choleski factorizations to do estimation and updating.

Next, we consider randomly timed events. In footnote 3 we touched on the fact that data release
schemes or events like FOMC meetings may change across τL. In particular, let us consider a sequence
E ≡ [(τ eL, k

e
H), e = 1, . . . , T e]. Hence, the sequence is a set of time stamps for events. This may be

in the context of fixed m, as in Assumption Assumption 2.1, or time varying mixed frequencies as in
Assumption 3.1. To keep notation simple, it will be easier to look at the fixedm case. Associated with
the sequence E is a sequence E− which gives all the time stamps prior to the events in E. Typically,
(τ e

−

L , ke
−

H ) will be (τ eL, k
e
H − 1), but it may be (τ eL − 1,m) if keH = 1. We will take advantage of
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the real-time updating to handle randomly timed events. In particular, for the sequence E we pre-
multiply x(τ e−L ) by N[ke−

H
] - to have the pre-event predictions - and pre-multiply x(τ

e
L) by N[ke

H
] using

the suitable matrices appearing in equation (3.20). These computations will measure the impact of
the event sequence E on predictions of both low and high frequency data. As noted before, this is
reminiscent of a Kalman filter update without going through a latent process specification, measurement
equations, etc. An example is the timing of FOMC meetings. Francis, Ghysels, and Owyang (2011)
use arguments that are conceptually similar in the context of a single MIDAS regression - hence not
a complete mixed frequency VAR - to study the low frequency impact of monetary policy shocks
identified via the occurrence of FOMC meetings.

4 Implied Low Frequency VAR Models

In this section we characterize the relationship between the mixed frequency data VAR appearing in
(2.6) and the aggregated series VAR in (2.8). Recall that in the previous section we mostly worked with
vector x(τL) appearing in (2.6) rather than ẍ(τL), while in this section we will work with the latter.

We need to be more specific about how the low frequency VAR model is obtained in terms of
aggregation. Throughout the section we will work with fixed mixed sampling frequencies, as stated in
Assumption 2.1. Moreover, we will start with a simple skip-sampling scheme where the low frequency
VAR model is obtained from picking every last high frequency observation of the low frequency time
period. The latter will be relaxed in subsequent analysis. We noted before that we assume that all
the processes are covariance stationary and therefore have a spectral representation. Indeed, it will
be convenient to characterize the mapping between the mixed frequency VAR model in (2.6) and the
aggregated series VAR in (2.8) via their spectral domain representation. Then the following result
holds:

Theorem 4.1. Let the process ẍ(τL) satisfy Assumptions 2.1 and 2.2. Moreover, let ẍ(τL) and x(τL)

have spectral densities equal to respectively S̈(z) and S(z), for z = exp (−iω) with ω ∈ [0,π], which
can be written as:

S̈(z) = Ä(z)−1
C̈C̈

′(Ä(z−1)−1)′

S(z) = B(z)−1
CC

′
(B(z−1)−1)′ (4.1)

then the low frequency VAR model is determined by the following relationship:

S(z) =
1

m

m−1
∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (4.2)

where Q(z) =
[

I zI . . . zm−1I
]

Proof: See Appendix B
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The result in equation (4.2) is a combination of two operations: (1) the averaging of high frequency
covariances as in a typical Tiao and Grupe (1980) formula and (2) the skip-sampling of the aforemen-
tioned process. Intuitively, what drives the result is the following: the process ẍ(τL) contains all the
covariance relationships among the high frequency series and between high and low frequency series.
The formula in (4.2) averages these covariances within τL to produce a low frequency covariance struc-
ture of the repeated stacked vector process. The latter provides the key ingredients of the traditional
VAR impulse response functions.

To handle more general aggregation schemes, we introduce aK-dimensional latent high frequency
process zH(τL, kH), used to construct ẍ(τL). We will focus on linear aggregation schemes - that in-
cludes the two most common cases, stock and flow aggregation. In general, we will consider the
m∗K-dimensional stacked vector [zH(τL, 1)′ . . . zH(τL,m)′]′, and generically denote the aggregation
filter as:

ẍ(τL) = D(LH)







zH(τL, 1)
...

zH(τL,m)







D(LH) ≡ diag(D1(LH), . . . ,Dm(LH)) (4.3)

where the aggregation scheme may involve long spans, i.e. Pa may be larger than m. For example,
the Ki

L elements of the low frequency vector released at different times may all pertain to (τ − 1)L

realizations of zH . Stock and flow sampling schemes are special cases.8 In section 6 we will provide
some specific examples of filters. For general aggregation schemes we can characterize the result in
equation (4.2) in terms of S̈zH which is the spectral density of [zH(τL, 1)′ . . . zH(τL,m)′]′, namely:

S(z) =
1

m

m−1
∑

j=0

1

m
QD(

z + 2πj

m
)S̈zH ((

z + 2πj

m
)m)QD((

z + 2πj

m
)−1) (4.4)

where QD(z) = Q(z)D(z). Hence, one can think of the low frequency VAR model in terms of skip-
sampled filtered zH , which may represent a combination of flow and stock variables - through filtering
withD(LH), which also may capture a mixture of releases involving publication delays (as noted in the
discussion below equation (4.3)). Naturally, the aggregation scheme will affect how the low frequency
VARmodel will look like. Publication delays, i.e. one of the low frequency series pertains to τL−j,will
shape differently the low frequency VAR dynamics. In section 6 we will provide numerical illustrative
examples of such delay effects.

8For more discussion of general linear aggregation schemes, see e.g. Lütkepohl (1987).
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5 Specification and Estimation

Empirical work involves critical choices of model specification and parametrization. In the context of
VAR models this amounts to selecting: (1) the variables that are included in the VAR, (2) the sampling
frequency of the model, (3) the number of lags to be included and (4) restrictions on the parameter
space. Choices of the second type - namely sampling frequency - are not much discussed in the litera-
ture and are the focus of this section. Obviously, the choice of sampling frequency is not detached from
all the other aforementioned model selection choices. For instance, lag selection is very much related
to sampling frequency and so are the parameterizations of the VAR.

To formulate a maximum likelihood based estimator of mixed frequency VAR models, consider the
conditional density of the τ thL observation:

f(x(τL)|x(τL − 1), . . . , x(τL − P );Ψ) = (2π)m̃τL |(CτL(Ψ)CτL(Ψ)′)−1|1/2 ×

exp (ε(τL)
′(CτL(Ψ)CτL(Ψ)′)−1ε(τL))

which yields the sample log likelihood function for a sample of size TL :

L(x(τL)TL

1 |Ψ) = (−1/2)
TL∑

τL=1

m̃τL log (2π) + (1/2)
TL∑

τL=1

log |(CτL(Ψ)CτL(Ψ)′)−1| (5.1)

−(1/2)
TL∑

τL=1

[ε(τL)
′(CτL(Ψ)CτL(Ψ)′)−1ε(τL)]

which form fixed, i.e. under Assumption 2.1, specializes to the usual sample log likelihood function:

L(x(τL)TL

1 |Ψ) = (−TL(KL +m ∗KH)/2) log (2π) + (TL/2) log |(C(Ψ)C(Ψ)′)−1| (5.2)

−(1/2)
TL∑

τL=1

[ε(τL)
′(C(Ψ)C(Ψ)′)−1ε(τL)]

The asymptotic analysis of VAR models is well known, see e.g. Hamilton (1994), and applies in the
current setting without any modifications. This also covers the case of time varying mixed sampling
frequencies under Assumption 3.1.

In a first subsection we cover the asymptotic properties of mis-specified VAR models with an
emphasis on mixed versus low frequency specifications. A final subsection covers Bayesian mixed
frequency VAR estimation.
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5.1 Asymptotic Properties of Mis-specified Low Frequency Data VAR Model Estima-
tors

Having specified some potentially parsimonious mixed frequency specifications, we now turn our atten-
tion to the comparison of a low frequency VAR model with a finite number of lags and with parameter
vectorΦ compared with a mixed frequency VARmodel with finite number of lags and parameter vector
Ψ.More specifically, we assume the DGP is them∗K dimensional vector ẍ(τL) described by equation
(2.10):

Ä(LL)(ẍ(τL)− µẍ) = ε̈(τL)

with E[ε̈(τL)ε̈(τL)′] = C̈C̈′. Against the backdrop of this DGP we have on the one hand the mixed
frequency VAR specification appearing in (2.15) parameterized by Ψ :

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL)

with E[ε(τL)ε(τL)′] = C(Ψ)C(Ψ)′, and on the other hand theK dimensional traditional low frequency
VAR parameterized by Φ :

BΦ(LL)(x(τL)− µΦ
x ) = ε(τL) (5.3)

where B(LL) = I -
∑P

j=1Bj(Φ)L
j
L, and E[ε(τL)ε(τL)′] = C(Φ)C(Φ)′. Hence, we look at a researcher

who ignores the high frequency data, picks a finite set of lags and possibly imposes parameter restric-
tions on the VAR, versus a researcher who looks at the high frequency data, picks a finite set of lags -
not necessarily the right number - and possibly imposes restrictions to tackle parameter proliferation.

The use of the DGP in equation (2.10) as the benchmark against which to assess approximation
errors may require some explanation. We think of the DGP as a description of the data series sampled
at their primitive sampling frequencies. It is against this backdrop that we compare parsimoniously
parameterized mixed frequency VAR models and traditional low frequency ones. Since the discussion
here essentially revolves around the estimation of mis-specified linear Gaussian processes, we will
be using a notion of relative (rather than absolute) entropy - that is the Kullback and Leibler (1951)
measure to assess approximation errors. For the latter, the penalty for high dimensional systems will
not appear as we have chosen it to be the benchmark against which all other models are compared.

Analogous to the equation (5.2) we also have the sample log likelihood function:

L(x(τL)
TL

1 |Φ) = (−TL(KL +KH)/2) log (2π) + (TL/2) log |(C(Φ)C(Φ)
′)−1| (5.4)

−(1/2)
TL∑

τL=1

[ε(τL)
′(C(Φ)C(Φ)′)−1ε(τL)]

Using results from Hansen and Sargent (1993) we obtain the following:

Proposition 5.1. Let Assumptions 2.1 and C.1 through C.4 hold and the DGP is described by (2.10).
Moreover, assume the low frequency process is constructed as a skip sampled sequence analogous - as
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in Theorem 4.1. Then the maximum likelihood estimator appearing in (5.1), denoted Ψ̂, minimizes

Ψ̂ = Argmin
Ψ

[

E1(S̈(Ψ), S̈) + E2(S̈(Ψ), S̈) + E3(S̈(Ψ), S̈)
]

E1(S̈(Ψ), S̈) =
1

2π

∫ π

−π
log(det S̈(ω,Ψ))dω

E2(S̈(Ψ), S̈) =
1

2π

∫ π

−π
trace(S̈(ω,Ψ)−1S̈(ω))dω

E3(S̈(Ψ), S̈) = (µẍ − µΨ
ẍ )

′S̈(0,Ψ)(1)−1(µẍ − µΨ
ẍ ) (5.5)

whereas the maximum likelihood estimator appearing (5.4), denoted Φ̂, minimizes

Ψ̂ = Argmin
Φ

[

E1(S(Φ), S̈) + E2(S(Φ), S̈) + E3(S(Φ), S̈)
]

E1(S(Φ), S̈) =
m

2π

∫ π

−π
log(detS(ω,Φ))dω

E2(S(Φ), S̈) =
1

2π

∫ π

−π
trace(S(ω,Φ)−1Q(exp (iω))′S̈(ω)Q(exp (−iω)))dω

E3(S(Φ), S̈) = (µẍ − 1m ⊗ µΦ
x )

′S(0,Φ)(1)−1(µẍ −⊗µΦ
x ) (5.6)

Proof see Appendix C

Note that if the mixed frequency VAR model is correctly specified, then the terms E2 and E3 in
equation (5.5) disappear and one has a standard MLE. Likewise, again assuming the mixed frequency
VAR model is correctly specified, one can replace all the terms involving the DGP in equation (2.10)
appearing in E2 and E3 of equation (5.6) with the parameterized mixed frequency VAR one. Note also
that the termE3 in both cases refers to the mis-specification of the mean. The term is important when it
comes to approximation errors in the context of periodic models, as emphasized by Hansen and Sargent
(1993). In our analysis, this play less of a role and we will typically handle cases without specification
errors of the overall mean of the process - whether it is sampled at low or high frequency.

Finally, we far we assumed a skip sampling scheme in the Proposition 5.1. It would be easy to
adopt the general aggregation schemes we discussed in the previous section. It suffices to replace Q(.)

with QD(z), and make the appropriate changes to the spectral representations. We refrain here from
providing the details, as they are relatively straightforward.

5.2 Bayesian Mixed Frequency VAR

Recent work on MIDAS regressions includes Bayesian estimation approaches, see notably Rodriguez
and Puggioni (2010) and Ghysels and Owyang (2011). It is the purpose of this section to expand these
recent developments to a mixed frequency VAR framework. We do so with the objective of staying as
close as possible to the standard Bayesian VAR approach.
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It will be convenient to start again with a simplified example. Namely, consider the case where all
the low frequency τL series are release at the end of the period as in equation (2.1) with zero mean
series, with KL and KH of any dimension (hence not necessarily one). To highlight the role of the
MIDAS regression parameters we write the last set of equations as a function of γ :









xH(τL, 1)
...

xH(τL,m)

xL(τL)









=
P
∑

j=1









A1,1
j . . . A1,m

j A1,m+1
j

... . . .
...

...
Am,1

j . . . Am,m
j Am,m+1

j

Am+1,1
j . . . Am+1,m

j Am+1,m+1
j

















xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL)

where dim(Am+1,m+1
j ) =K2

L, dim(Ai,m+1
j ) =KH×KL for i = 1, . . . , m and finally dim(Aa,b

j , a, b =

1, . . . ,m) =K2
H .

Since the MIDAS part of the VAR is novel in terms of Bayesian estimation, we focus first on its
formulation. We therefore start with the matrices Am+1,.

j (γ) and make them explicitly functions of the
MIDAS polynomial parameters. We will suggest two approaches - one for general MIDAS polynomial
specifications and a second using the MIDAS with step functions of Ghysels, Sinko, and Valkanov
(2006) and U-MIDAS (unrestricted MIDAS polynomial) approach suggested by Foroni, Marcellino,
and Schumacher (2011) (see also Appendix A). We cover the general case first.

Recall from subsection 2.4 that we considered two schemes, appearing in equations (2.13) and
(2.14):

[Am+1,1
1 (γ) . . . Am+1,m

1 (γ)Am+1,1
2 (γ) . . . Am+1,m

P (γ)] =

{ B ⊗
[
∑KH×P

i=1 (w(γ)i)
]

[Bi ⊗ [
∑m

i=1 (w(γ)i)] , i = 1, . . . , P ]

(5.7)

Recall also thatB aKL×KH matrix and in subsection 2.4 we assumed
∑KH×P

i=1 (w(γ)i) is a scalar
MIDAS polynomial such that the weighting schemes are the same across the different low frequency
equations. We can easily relax this, by assuming a scheme where all the MIDAS polynomials are driven
by a common prior, namely [Am+1,1

1 (γ) . . . Am+1,m
1 (γ)Am+1,1

2 (γ) . . . Am+1,m
P (γ)] can be expressed

as:
{

(

Ba,b
[
∑KH×P

i=1

(

w(γa,b)i
)
]

, a = 1, . . . ,KL; b = 1, . . . ,KL

)

[

Ba,b
i

[∑m
i=1

(

w(γa,b)i
)]

, i = 1, . . . , P, a = 1, . . . ,KL; b = 1, . . . ,KL

]
(5.8)

We will consider the case ofMIDASBeta polynomials (see Appendix A), the other cases are similar and
therefore not covered. The prior both in the case of a single MIDAS polynomial (5.7) or the common
prior in the case of many single MIDAS polynomials as in (5.8), is a Gamma distribution. Since
the MIDAS Beta polynomial involves two parameters, we draw each parameter from an independent
Gamma. In the case of (5.8) theKL ×KH MIDAS polynomials each involve two parameters and they
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also have two independent Gamma distributions. We use a Gamma distribution as the values of the
Beta polynomial take on positive values. For simplicity we cover the single MIDAS polynomial, then
the prior for γ ≡ (γ1, γ2) is:

γi ∼ Γ (f0,F0) i = 1, 2 (5.9)

where f0 = F0 = 1. This prior amounts to a flat weighting scheme that put equal weight on all high
frequency data. Yet, there are several variations that put further restrictions. They are: (a) downward
sloping weights: γ ≡ (1, γ2) with γ2 ∼ Γ (f0,F0) and f0 = F0 = 1, (b) hump-shaped weights γ ≡

(1 + γ1, 1 + γ1 + γ2), among others. The downward sloping scheme is particularly appealing as it
amount to a single parameter weighting scheme.

Following Ghysels and Owyang (2011), we utilize a Metropolis-in-Gibbs step (as in Chib and
Greenberg (1995)) to sample the MIDAS hyperparameters. The Metropolis step is an accept-reject
step which requires a candidate draw, γ∗, from a proposal density, q

(

γ∗|γ[i]
)

, where γ[i] is the last
accepted draw. The draw is then accepted with a probability that depends on both the likelihood and
parameters’ prior distribution. In this case, the functional form of the weighting polynomial motivates
our choice of the proposal density. Because we have chosen the beta weighting polynomial, a Gamma
proposal distribution provides a suitable candidate.

To formalize, for the (i+ 1) iteration, we can draw a candidate γ∗ = (γ∗1 , γ
∗
2)

′ from

γ∗j ∼ Γ

(

c
(

γ[i]j

)2
, cγ[i]j

)

,

where c is a tuning parameter chosen to achieve a reasonable acceptance rate. The candidate draw is
then accepted with probability a = min {α, 1}, where

α =
L(x(τL)TL

1 |Ψ−γ , γ∗)

L(x(τL)TL

1 |Ψ−γ , γ[i])

dΓ (γ∗|f0,F0)

dΓ
(

γ[i]|f0,F0

)
dΓ(γ[i]|c (γ∗)2 , cγ∗)

dΓ(γ∗|c
(

γ[i]
)2

, cγ[i])
,

where L(x(τL)TL

1 |Ψ−γ , γ∗) is the conditional likelihood given the parameters Ψ−γ - which are all the
parameters in Ψ excluding γ and dΓ (.|., .) is the Gamma density function. Obviously, whenever there
are multiple MIDAS polynomials the aforementioned Metropolis step is repeated for each weighting
scheme separately. Hence, in such case we essentially draw various weighting profiles. For convenience
we will keep using the notation γ for a single as well as multipleMIDAS polynomial weighting schemes
to avoid further complicating the notation.

The Bayesian analysis of mixed frequency VAR and traditional VAR models becomes quite similar
once the parameter draws for the MIDAS polynomial are given. First we write the VAR as a first order
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system (again assuming unconditional mean zero processes):

x(τL) = [x(τL − 1) . . . x(τL − P )]×









A1(Ψ−γ , γ)

A2(Ψ−γ , γ)
...

AP (Ψ−γ , γ)









+ ε(τL) (5.10)

where we acknowledge that the lag matrices Aj(Ψ−γ , γ) depend on the parameter vector driving the
MIDAS polynomial weights as well as the remaining parameters in Ψ−γ .

Equation (5.10) looks like a ’regular’ regression framework associated with VAR models. Hence,
from here on we can follow Doan, Litterman, and Sims (1984), Litterman (1986), Kadiyala and Karls-
son (1997), Sims and Zha (1998), among others, for the formulation of priors regarding Ψ−γ , which is
partitioned into three blocks (dropping the dependence on γ etc. for convenience):

• Ψ−γ,H = ((Aa,b
j , a = 1, . . . ,m, b = 1, . . . ,m+1), j = 1, . . . , P )′, the set parameters pertaining

to the high frequency components of the vector.

• Ψ−γ,L = ((B or Bi, i = 1, . . . , P )′, the slope parameters pertaining to the MIDAS regres-
sions.

• Ψ−γ,V = ((CC′)a,b; a = 1, . . . ,m + 1, b = 1, . . . ,m + 1)′, the parameters pertaining to the
covariance matrix of the errors.

In particular, the means and variances for the priors in Ψ−γ,H are (dropping again the dependence on
γ etc.):

E[Aa,b
j ] = 0K2

H
, V[Aa,b

j ] = λ2

[(j−1)m+(m−b+a)]21K2
H

a = 1, . . . ,m, b = 1, . . . ,m− 1

E[Aa,m
1 ] = diag(ρa)K2

H
V[Aa,m

1 ] = λ2

[(a)]21K2
H

a = 1, . . . ,m

E[Aa,m
j ] = 0K2

H
, V[Aa,m

j ] = λ2

[(j−1)a+a]21K2
H

j > 1, a = 1, . . . ,m

E[Aa,m+1
j ] = 0KH×KL

, V[Aa,m+1
j ] = ϑHL

λ2

[(j−1)m]2SHL a = 1, . . . ,m
(5.11)

where the notation V[ ] stands for a matrix of variances, 0 and 1 are matrices respectively of zeros
and ones, with the dimension as subscript, diag(x) is a diagonal matrix with elements x and again
the dimension as subscript, and finally SHL ≡ [σ2

i,H/σ2
j,L; i = 1, . . . ,KH , j = 1, . . . ,KL]. The latter

captures the difference in scaling between high and low frequency data, as is typically done in Bayesian
VAR models (see above references). The hyperparameter λ governs the overall tightness of the prior
distributions around the AR(1) (including white noise) specification for the high frequency process.
The hyperparameter ϑHL ∈ (0, 1) governs the extent to which the low frequency data affect high
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frequency data. Note that we leave within low frequency series prior distribution uniform. Namely,
since we write V[Aa,b

j ] is only scaled by j, a and b we essentially treat the dependence within the vector
of high frequency data as uniform. We can change this by replacing 1K2

H
with a matrix that would

involve another set of hyperparameters that would govern the extent to which low frequency series are
mutually affected. This is an easy generalization which we do not consider for the sake of simplicity.

The prior in (5.11) is much inspired by the parsimonious representation appearing (2.11). Namely,
it essentially says that all the high frequency processes are AR(1) with autoregressive parameter ρ that
is common among all the series. We typically set ρ = 0, i.e. all high frequency processes are white
noise, or put ρ equal to some value between zero and one, and possibly equal to one. The variances of
the prior tell us that the precision on the parameters is tighter as lags increase. This is typically done
in traditional Bayesian VAR models, and is shrinking at a rate that is the square of the lag length as in
Litterman (1986). Note, however, that the decay is not only governed by j, but also by (a, b) as they
represent the intra-τL period lag structure. Regarding the MIDAS regressions in Ψ−γ,L, we have the
following priors for the slope coefficients:

E[B] = 0KL×KH
, V[B] = ϑLHλ21KL×KH

SLH

E[Bj ] = 0KL×KH
, V[Bj ] = ϑLH

λ2

j2 1KL×KH
SLH

(5.12)

with ϑLH and SLH having interpretations similar to the ones considered for the high frequency data
regressions in the VAR. Not that the prior in (5.12) implies that we typically start from a VAR that has
flat weights for the MIDAS polynomial and the high frequency data do not have an impact on the low
frequency data. Note also that the reverse is also true since we put the prior that E[Aa,m+1

j ] = 0KH×KL
.

Last but not least, we also need to formulate priors for Ψ−γ,V . Here we refer to Kadiyala and
Karlsson (1997) who consider so called Minnesota priors with fixed residual covariance matrices, or
the Normal-Wishart and Diffuse priors, the Normal-Diffuse and Extended Natural Conjugate priors. In
all cases they derive the posterior distributions which are summarized in Kadiyala and Karlsson (1997,
Table 1). The MCMC procedure therefore can rely on the explicitly derived posterior distributions -
conditional of draws of γ for the MIDAS weights.

It is important to note that one can also implement the estimation of mixed frequency VAR mod-
els using exclusively standard Bayesian VAR methods, that is avoid the use of the Metropolis step
described earlier in the subsection. This involves the step functions approach to MIDAS of Ghy-
sels, Sinko, and Valkanov (2006) and the completely unrestricted specification where each weight is
estimated separately, i.e. the U-MIDAS approach suggested by Foroni, Marcellino, and Schumacher
(2011) shown to work for small values ofm.Using the step function example, we can think of replacing
equation (5.7) with:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ] =

[

B1 . . . B1
︸ ︷︷ ︸

B2 . . . B2
︸ ︷︷ ︸

. . . Bs . . . Bs
︸ ︷︷ ︸

]

(5.13)
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with s step matrices that imply fixed lag effects across subsets that span P ×m lags.9 The U MIDAS
case is one where s = P×m, and therefore each matrix is unrestricted. Now, we are left with specifying
priors for the step functions. The easy case is where the steps are multiples ofm, as is usually the case.
Then we can use a prior similar to that appearing in (5.12) for E[Bj ] and V[Bj ]. In particular in the U
MIDAS case one may also think of using the shrinkage methods for large dimensional VAR models.
However, large VAR models in the traditional sense means a lot of individual series (sampled at the
same frequency), whereas here large dimensions result from the stacking of the same series. There is
already a great amount of shrinkage explicitly taking into account via the priors appearing in equations
(5.11) and (5.12).

6 Numerical Examples

In this section we provide some numerical illustrative examples to compare the behavior of impulse re-
sponse functions in mixed frequency and traditional VAR models. We look at bivariate systems, i.e. we
study cases with a single series of each type - low and high frequency. We do this to simplify the study
of impulse response functions. We use the setup in equation (2.11). We consider m =3, correspond-
ing to a monthly/quarterly data mixture and m = 12, representing a weekly/quarterly mixture. For the
former - which we refer to as Case 1, we have: a = 0, ρ = .5, α1 = .5, with [w(γ)3, w(γ)2, w(γ)1] =
[.2, .5, .9] and set the innovation covariance matrix to an identity matrix. Therefore, Case 1 corresponds
to mildly persistent high and low frequency series (since ρ = α1 = .5), without any impact of low fre-
quency onto high frequency series. Moreover, the MIDAS weights feature a typical downward decay
pattern. Given the mixed frequency VAR data generating process we characterize the corresponding
traditional VAR(1) model - with point-sampling of the high frequency data - which is obtained from
minimizing the criterion appearing in Proposition 5.1. Hence, we view the traditional VAR as a mis-
specified model estimated via standard MLE.10

Since a is zero, there is no causality between the low frequency series. Hence, we expect that a
shock to xL(τL) will not affect future xH(τL + k, i) for i = 1, . . . , 3, for k > 0. Recall that we are
thinking of a quarterly model, hence the impulse responses are in terms of quarterly time ticks. The
results appearing in Figure 1. The left panel shows three impulse response functions: (1) the impact of
a shock to xH(τL, 1) on future quarterly xL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the
mixed frequency VAR, (2) the impact of a shock to xH(τL, 3) on future quarterly xL(τL + k), and (3)
the impact of a shock to aggregate high frequency series in the VAR(1) for x(τL) on future quarterly
low frequency data. The impulse response functions (1) and (2) feature+whereas (3) is marked by o. It
is interesting to note that while high frequency shocks affect the low frequency series up to 10 quarters
in the future, the standard frequency VAR hardly shows any impact of shocks to the aggregated (skip
sampled) high frequency series on the low frequency process.

9We assume here for simplicity that all the high frequency series involve the same step sizes.
10In the Internet Appendix we provide the Matlab code used to compute the numerical results. Some parts of the code were

inspired by code reported in Hansen and Sargent (1990).
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It is instructive to look at the numerical coefficients of the mis-specified VAR(1) model which ap-
pear in Table 1. Clearly, the implied dynamics have little resemblance with the original mixed frequency
dynamics. The high frequency process features no persistence but is driven by the low frequency pro-
cess. In contrast, the low frequency process picks up more persistence (with 0.889) than the DGP. The
right panel also shows three impulse responses, namely: (1) the impact of a shock to xL(τL) on future
quarterly xH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR, (2) the impact
of a shock to xL(τL) on future quarterly xH(τL + k, 3), and (3) the impact of a shock to aggregate
low frequency series in the VAR(1) for x(τL) on future quarterly high frequency data. Since a is zero,
the first two impulse response functions are flat and equal to zero. In great contrast, and as implied
by the dynamics in (??), we find that the low frequency process greatly impacts the high frequency
process. Obviously, this numerical example touches on the topic of Granger causality being altered due
to aggregation.11

For the second case we reverse the causal relationship between high and low frequency data.
In addition we also change the persistence of the series. Namely, we set a = 0.4, ρ = α1 = .1 and
[w(γ)3, w(γ)2, w(γ)1] = [0., 0., 0.], implying that the high frequency data do not affect the low fre-
quency (which is an exogenous process). The results appear respectively in Figure 2 and Table 1. We
observe a similar spurious phenomenon: the impact of high frequency series - which is zero - becomes
significant after we estimate a standard VAR as we can see from the left hand side of Figure 2. The
right hand side plot in the figure also tells us that the actual impact of low frequency data onto high
frequency series is severely mis-specified in the standard VAR as well. As one can read from Table
we see that the VAR dynamics become non-trivial with a feedback effect from low frequency to high
frequency equal to 0.3805 together with the spurious impact of xH(τL) onto xL(τL) equal to 0.1095.

The third example involves a mixture of weekly and quarterly series. We consider somewhat dif-
ferent parameter values, namely a = .01, ρ = .1, α1 = .5, [w(γ)3, w(γ)2, w(γ)1] = [.5, .4, .3] and all
other remaining 9 MIDAS polynomial weights equal to zero. Hence, this example causality runs in
both directions, albeit of small magnitude. The impulse response functions appear in Figure 3, which
has again two panels with the same type of three impulse response functions as in Figure 1. We clearly
misread the dynamics of the impulse responses again both in terms of magnitude and timing. We
provided only two numerical examples. One obviously can think of many alternative scenarios. The
Matlab code provided enables the reader to experiment with alternative specifications.

7 Empirical Examples

The empirical application is tailored after Chiu, Eraker, Foerster, Kim, and Seoane (2011) who develop
a Bayesian approach to such mixed frequency VAR models where the missing data are drawn via

11Much has been written about the spurious effects temporal aggregation may have on testing for Granger causality, see
e.g. Granger (1980), Granger (1988), Lütkepohl (1993), Granger (1995), Renault, Sekkat, and Szafarz (1998), Breitung and
Swanson (2002), McCrorie and Chambers (2006), among others. In concurrent research we study the topic of testing for
Granger causality in a mixed frequency setting - see Ghysels, Motegi, and Valkanov (2011).
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a Gibbs sampler. Their primary objective is to formulate a model that allows analysis of GDP at a
frequency higher than the quarterly data readily available. Their analysis also has the virtue of keeping
the empirical exercise simple and transparent. We want to do the same and therefore replicate their
setting for the purpose of comparison. In particular they consider a latent VAR(1) model involving
industrial production, inflation, and unemployment rate, and GDP for the US. All but the last series
are observed monthly. The data are the twelve-month change in industrial production (denoted IP) and
inflation (denoted INFL), the four-quarter change in real GDP (denoted GDP), and the unemployment
rate (denoted UNEMP), all expressed as percentage points. Chiu, Eraker, Foerster, Kim, and Seoane
(2011) assume - like we do - that every month, the monthly data are observed, and the quarterly data
are observed only during the last month of each quarter. We compare the mixed frequency VAR with a
traditional quarterly VAR model. Therefore, we study the co-movements of:









IP (τL)

INFL(τL)

UNEMP (τL)

GDP (τL)









vs









xH(τL, 1)

xH(τL, 2)

xH(τL, 3)

GDP (τL)









with xH(τL, j) =






IP (τL, j)

INFL(τL, j)

UNEMP (τL, j)




 (7.1)

INCOMPLETE

8 Conclusions
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Table 1: Approximate Vector Autoregressive Models
The table reports the mis-specified VAR(1) using the setup in equation (2.11). Given the mixed frequency VAR data generating process we characterize the corresponding traditional
VAR(1) model - with point-sampling of the high frequency data - which is obtained from minimizing the criterion appearing in Proposition 5.1.In the Internet Appendix we provide
the Matlab code used to compute the numerical results. Case 1 hasm = 3, with a = 0, ρ = α1 = .5, with [w(γ)3, w(γ)2, w(γ)1] = [.2, .5, .9] and set the innovation covariance matrix
to an identity matrix. Case 2 has m 3, a = 0.4, ρ = α1 = .1, and [w(γ)3, w(γ)2, w(γ)1] = [.0, .0, .0]. Case 3 has m = 12, a = .05, ρ = .1, α1 = .5, [w(γ)3, w(γ)2, w(γ)1] =
[.5, .4, .3] with all other remaining 9 MIDAS polynomial weights equal to zero and set the innovation covariance matrix to an identity matrix.

Case 1
[

xH(τL)
xL(τL)

]

=
[

−0.0064 0.1807
0.0500 0.8890

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.3405 0.0005
0.0005 0.3377

]

Case 2
[

xH(τL)
xL(τL)

]

=
[

0.0582 0.3805
0.1095 0.6203

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.3437 0.0003
0.0003 0.3368

]

Case 3
[

xH(τL)
xL(τL)

]

=
[

0.7020 0.0193
−0.0330 0.8972

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.8350 0.0174
0.0174 1.0096

]
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Figure 1: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) with a = 0, ρ = α1 = .5, with
[w(γ)3, w(γ)2, w(γ)1] = [.2, .5, .9] and set the innovation covariance matrix to an identity matrix. We consider m =3, corresponding to a monthly/quarterly data mixture with
point-sampling of the high frequency data - which is obtained from minimizing the criterion appearing in Proposition 5.1. The left panel shows three impulse response functions: (1)
the impact of a shock to xH(τL, 1) on future quarterly xL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the mixed frequency VAR, (2) the impact of a shock to xH(τL, 3)

on future quarterly xL(τL + k), and (3) the impact of a shock to aggregate high frequency series in the VAR(1) for x(τL) on future quarterly low frequency data. The right panel
also shows three impulse responses, namely: (1) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR,
(2) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 3), and (3) the impact of a shock to aggregate low frequency series in the VAR(1) for x(τL) on future quarterly
high frequency data.
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Figure 2: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) with a = .4, ρ = α1 = .1,

[w(γ)3, w(γ)2, w(γ)1] = [0., 0., 0.] and set the innovation covariance matrix to an identity matrix. We consider m =3, corresponding to a monthly/quarterly data mixture with
point-sampling of the high frequency data - which is obtained from minimizing the criterion appearing in Proposition 5.1. The left panel shows three impulse response functions: (1)
the impact of a shock to xH(τL, 1) on future quarterly xL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the mixed frequency VAR, (2) the impact of a shock to xH(τL, 3)

on future quarterly xL(τL + k), and (3) the impact of a shock to aggregate high frequency series in the VAR(1) for x(τL) on future quarterly low frequency data. The right panel
also shows three impulse responses, namely: (1) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR,
(2) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 3), and (3) the impact of a shock to aggregate low frequency series in the VAR(1) for x(τL) on future quarterly
high frequency data.
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Figure 3: Impulse Response Functions Weekly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) with a = .05, ρ = .1, α1 = .5,

[w(γ)3, w(γ)2, w(γ)1] = [.5, .4, .3] with all other remaining 9 MIDAS polynomial weights equal to zero and set the innovation covariance matrix to an identity matrix. We consider
m =3, corresponding to a monthly/quarterly data mixture with point-sampling of the high frequency data - which is obtained from minimizing the criterion appearing in Proposition
5.1. The left panel shows three impulse response functions: (1) the impact of a shock to xH(τL, 1) on future quarterly xL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the
mixed frequency VAR, (2) the impact of a shock to xH(τL, 3) on future quarterly xL(τL + k), and (3) the impact of a shock to aggregate high frequency series in the VAR(1) for
x(τL) on future quarterly low frequency data. The right panel also shows three impulse responses, namely: (1) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 1),

for k = 1, . . . , 24 as determined by the mixed frequency VAR, (2) the impact of a shock to xL(τL) on future quarterly xH(τL + k, 3), and (3) the impact of a shock to aggregate low
frequency series in the VAR(1) for x(τL) on future quarterly high frequency data.
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Technical Appendix

A Parsimony - Details

We proceed with a brief discussion of univariate MIDAS regression polynomial specifications. A detailed de-
scription appears in Sinko, Sockin, and Ghysels (2010). The most commonly used parameterizations (some
involving restrictions denoted by superscript r) are:

1. Normalized beta probability density function,

wi(γ) =wi(γ1, γ2) =
xγ1−1
i (1− xi)γ2−1

∑N
i=1 x

γ1−1
i (1− xi)γ2−1

(A.1)

wr
i (γ) = wi(1, γ2) (A.2)

where xi = (i− 1)/(N − 1) and one often sets the first parameter equal to one as in (A.2).

2. Normalized exponential Almon lag polynomial

wi(γ) =wi(γ1, γ2) =
eγ1i+γ2i

2

∑N
i=1 e

γ1i+γ2i2
(A.3)

wr
i = wi(γ1, 0) (A.4)

3. Almon lag polynomial specification of order P (not normalized, i.e. sum of individual weights is not equal
to 1).

βwi(γ0, . . . , γP ) =
P
∑

p=0

γpi
p (A.5)

Note that this can also be written in matrix form:













w0

w1

w2

w3

...
wN














=














1 0 0 · · · 0

1 1 1 · · · 1

1 2 22 · · · 2P

1 3 32 · · · 3P

...
...

...
...

...
1 N N2 · · · NP






















γ0
γ1
...
γP









(A.6)

Therefore the use of Almon lags in MIDAS models can be achieved via OLS estimation with properly
transformed high frequency data regressors using the matrix representation appearing in the above equa-
tion. Once the weights are estimated via OLS, one can always rescale them to obtain a slope coefficient
(assuming the weights do not sum up to zero).
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4. Polynomial specification with step functions (not normalized)

βwi(γ1, . . . , γP ) = γ1Ii∈[a0,a1] +
P
∑

p=2

γpIi∈(ap−1,ap]

a0 = 1 < a1 < . . . < aP = N

Ii∈[ap−1,ap] =

{

1, ap−1 ≤ i ≤ ap
0, otherwise

(A.7)

where a0 = 1 < a1 < . . . < aP = N . The step functions approach to MIDAS appeared in Ghysels,
Sinko, and Valkanov (2006). A special case is a completely unrestricted specification where each weight
is estimated separately. This so called U-MIDAS (unrestricted MIDAS polynomial) approach suggested
by Foroni, Marcellino, and Schumacher (2011) is shown to work for small values ofm.

A so called multiplicative ADL MIDAS regression specifications is also suggested in Andreou, Ghysels, and
Kourtellos (2010). Taking the last equation in (2.11) we have:

xL(τL) =
P
∑

j=1

αj +
P
∑

j=1

bjxH(τL − j)(γ) + ε(τL,m+ 1)

xH(τL − j)(γ) ≡
m
∑

k=1

w(γ)kxH(τL − j, k) (A.8)

hence, the within-τL period high frequency weights remain invariant and yield a low frequency parameterized
process xH(τL − j)(γ).

B Proof of Theorem 4.1

We start be defining the covariance generating functions, based on equations (??):

S̈(z) = c̈(0) +
∞
∑

k=1

[

c̈(−k)z−k + c̈(−k)′zk
]

S(z) = c(0) +
∞
∑

k=1

[

c(−k)z−k + c(−k)′zk
]

(B.1)

Since the former is derived from a periodic linear model, we can apply what is known as the Tiao and Grupe
(1980) formula which yields a high frequency non-periodic process x(τL, kH), with spectral density equal to:

Sx(z) =
1

m
Q(z)S̈(zm)Q(z−1) (B.2)

where Q(z) =
[

IzI . . . zm−1I
]

.

The resulting process is the high frequency aperiodic representation which inherits the high frequency sam-
pling of the periodic models. To obtain the implied low frequency process, we need to address the aliasing
problem (see e.g. Hansen and Sargent (1983) and Phillips (1973)) associated with sampling this process only at

39



low frequency. More specifically, S(z) is a skipped sampled version of Sx, and therefore:

S(z) =
1

m

m−1
∑

j=0

Sx(
z + 2πj

m
) (B.3)

which can be written as:

S(z) =
1

m

m−1
∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (B.4)

Using the spectral density representations appearing in equations (4.1) yields:

S(z) =
1

m

m−1
∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (B.5)

!

C Proof of Proposition 5.1

We start with listing the regularity conditions. We assume the DGP is the KL + m ∗ KH dimensional vector
x(τL) described by equation (2.6):

A(LL)(x(τL)− µx) = ε(τL)

with E[ε(τL)ε(τL)′] = CC′. Similar to Theorem 4.1 we assume all the processes are covariance stationary and
therefore have a spectral representation. In particular:

Assumption C.1. The process ẍ(τL) satisfy Assumptions 2.1 and 2.2 and has spectral density S̈(z) for z =
exp (−iω) with ω ∈ [0,π], which can be written as:

S̈(z) = Ä(z)−1
C̈C̈

′(Ä(z−1)−1)′

The same process is parameterized as:

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL)

with spectral density:
S̈(z,Ψ) = ÄΨ(z)

−1
C̈ΨC̈

′

Ψ(ÄΨ(z
−1)−1)′

Furthermore, a simple skip-sampled or the general aggregation scheme as in (4.3) yields a low frequency VAR
model with spectral density as in (4.1) parameterized by Φ :

S(z,Φ) = BΦ(z)
−1

CΦC
′

Φ(BΦ(z
−1)−1)′

Moreover, the parameter vector spaces are respectively Φ ∈ ∆Φ, Ψ ∈ ∆Ψ and

Assumption C.2. The parameter spaces ∆Φ and ∆Ψ are compact subsets of a Eucledian space
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Assumption C.3. The spectral densities S̈(z,Ψ) and S(z,Φ) for z = exp (−iω) are continuous mappings map-
ping respectively [−π,π]×∆Ψ and [−π,π]×∆Φ into the space of positive definite Hermitian matrices such that
for some 0 < εl < εu : εlI ≤ S̈(exp (−iω),Ψ) ≤ εuI and εlI ≤ S(exp (−iω),Φ) ≤ εuI for respectively each
(ω,Ψ) ∈ [−π,π]×∆Ψ and (ω,Φ) ∈ [−π,π]×∆Φ, S̈(exp (iω),Ψ) is the complex conjugate of S̈(exp (−iω),Ψ)

and S(exp (iω),Φ) is the complex conjugate of S(exp (−iω),Φ).

Assumption C.4. µx is a continuous function on the domain of ∆Φ. µẍ is a continuous function on the domain
of ∆Ψ.

Under the above assumptions, Hansen and Sargent (1993) show for a generic potentially mis-specified model
characterized by spectral density G(δ) involving parameter vector δ against DGP with spectral density S̈, that
the maximum likelihood estimator minimizes the Kullback and Leibler (1951) information criterion which can
be written as:

E(G(δ), S̈) = E1(G(δ), S̈) + E2(G(δ), S̈) + E3(G(δ), S̈)

E1(G(δ), S̈) =
1

2π

∫ π

−π

log(detG(exp (−iω)))dω

E2(G(δ), S̈) =
1

2π

∫ π

−π

trace(detG(δ, exp (−iω))−1S̈(exp (−iω)))dω

E3(G(δ), S̈) = (µẍ − ν(δ))′G(1)−1(µẍ − ν(δ)) (C.6)

using results from Akaike (1973), Ljung (1978), White (1982) and Pötscher (1987). The results in equations
(5.5) follows by substituting G(δ) with S̈(Ψ) and the corresponding mean in E3. For the result in equation (5.6)
we need to add one operation, namely we need to handle fact that the low frequency process needs to be stacked
and skip sampled. This results in the appearance of (1) the multiplicative termm in the first term E1, (2) the use
of Q(.) in E2 and (3) the use of 1m, am-dimensional vector of ones in the term E3.
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Internet Appendix - Matlab Code

This program computes the spectral density of traditional low frequency VARmodel, given a mixed
frequency VAR(1) model:

x(τL) = A ∗ x(τL) + ετ

with E[ετετ ′] = B.

The stacked periodic representation is obtained via the transformation

ẍ(τL) = H ∗ x(τL)

The program assumes that the matrices A, B and H are in memory.

%
% Computing the impulse response of low frequency shocks onto
% high frequency series

%
% Computing the impulse response of first high frequency shock
%
[IMPULSE_Mixeds] = dimpulse(A,BChol',H,D,1,25);
%
% Computing the impulse response of last high frequency shock
%
[IMPULSE_Mixede] = dimpulse(A,BChol',H,D,m,25);
%
% Computing the impulse response of low frequency shock
%
[IMPULSE_Mixedl] = dimpulse(A,BChol',H,D,m+1,25);
%
% Computing the traditional VAR implied spectral density
%
I1 = eye(size(A));
i=sqrt(-1);
ngx=max(size(A));
ngy=max(size(H));
ngy2=max(size(H))./m;
%
% T is the number of coordinates for the discrete Fourier transforms
%
T=2ˆ7;
%
%
% STY is the spectral density of the periodic mixed frequency VAR
%
STY=zeros(ngy*(T/2+1),ngy);
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STy2=zeros(ngy2*(T/2+1),ngy2);
%
% STLF is the spectral density of the traditional low frequency VAR
%
STLF=zeros(T/2+1,ngy2);
%
for j=0:T/2;

ex=exp(2*pi*i*j/T);
exinv=exp(-2*pi*i*j/T);
Q=zeros(ngy2,ngy);
Qinv = Q;

for h=1:m
nh=int2str(h);
Q(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exˆ(h-1)*eye(ngy2);
Qinv(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exinvˆ(h-1)*eye(ngy2);

end
STY(j*ngy+1:(j+1)*ngy,:) = (H/(I1-A*exˆm))*CC*((H/(I1-A*exˆ(-m))))';
STy2(j*ngy2+1:(j+1)*ngy2,:)= Q*(STY(j*ngy+1:(j+1)*ngy,:))*Qinv';
for k=1:ngy2;

STLF(j+1,k)=STy2(j*ngy2+k,k);
end

end
%
% Now plot the spectral densities
%
%spec1 = real(STLF(1,1:T/2+1))');
%f=[0:T/2].*2*pi/T;
% plot(f',real(STLF(1,1:T/2+1))),title('spectr of series 1'),pause
% plot(f',real(STLF(2,1:T/2+1))),title('spectr of series 2'),pause
% size(STLF)
% STLFifft = ifft(STLF);
% size(STLFifft)
%
vecSTY = reshape(STY,1,ngy*(T/2+1)*ngy);
otherparams = [ngy ngy2 T m vecSTY];
% Need to generalize this here the -1 in the next line
param0 = [.1 .1 .1 .1 1. 2. 3.];
f = @(param0)klicobjspeczero(param0,otherparams);
options.MaxFunEvals = 2000;
[param_stV] = fminunc(f,param0,options);
param0 = param_stV;
f = @(param0)klicobjspec(param0,otherparams);
[param_stV] = fminunc(f,param0,options);
ngy22 = ngy2*ngy2;
AstV = reshape(param_stV(1:ngy22),ngy2,ngy2);
BstV = tril([param_stV(1,ngy22+1) param_stV(1,ngy22+2); ...

param_stV(1,ngy22+2) param_stV(1,ngy22+3)])*...
triu([param_stV(1,ngy22+1) param_stV(1,ngy22+2); ...
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param_stV(1,ngy22+2) param_stV(1,ngy22+3)]) ;
BstV = (chol(BstV))';
CstV = eye(ngy2);
DstV = zeros(ngy2,ngy2);
%
%
% Computing the impulse response traditional VAR to aggregated HF series
%
[IMPULSE_MixedstVHF] = dimpulse(AstV,BstV,CstV,DstV,1,25);
%
% Computing the impulse response traditional VAR to aggregated LF series
%
[IMPULSE_MixedstVLF] = dimpulse(AstV,BstV,CstV,DstV,2,25);
%
%plot(IMPULSE_Mixeds(:,4),'+', IMPULSE_Mixede(:,4),'o',...,
% IMPULSE_MixedstVHF(:,2),'d')
hold on;
%plot(IMPULSE_Mixeds(2:25,4),'+-')
%plot(IMPULSE_Mixede(2:25,4),'+-')
%plot(IMPULSE_MixedstVHF(2:25,2),'o:')
%
plot(IMPULSE_Mixedl(2:25,1), '+-')
plot(IMPULSE_Mixedl(2:25,3), '+-')
plot(IMPULSE_MixedstVLF(2:25,1),'o:')
hold off

The next function provides the parameters of a traditional low frequency VAR(1) model that min-
imizes the Kullblack-Leibler distance (in terms of spectral representation) with respect to the mixed
frequency VAR. It is assumed that the following is in memory:

• STY is the spectral density of the periodic mixed frequency VAR

• m the number of high frequency series

• the parameters and structure of the mixed frequency VAR

We impose unconditional mean zero.

function fun = klicobjspec(param0,otherparams)
ngy = otherparams(1,1);
ngy2 = otherparams(1,2);
T = otherparams(1,3);
m = otherparams(1,4);
STY = reshape(otherparams(1,5:end),ngy*(T/2+1),ngy);
ngy22 = ngy2*ngy2;
AstV = real(reshape(param0(1:ngy22),ngy2,ngy2));
% Need to generalize this
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BstV = real(tril([param0(1,ngy22+1) param0(1,ngy22+2); ...
param0(1,ngy22+2) param0(1,ngy22+3)])*...

triu([param0(1,ngy22+1) param0(1,ngy22+2); ...
param0(1,ngy22+2) param0(1,ngy22+3)])) ;

E2 = 0.;
E3 = 0.;
fun = realmax;

SstV = zeros(T/2+1,ngy2);
I1 = eye(ngy2);
for j=0:T/2;

ex=exp(2*pi*i*j/T);
exinv=exp(-2*pi*i*j/T);
Q=zeros(ngy2,ngy);
Qinv = Q;

for h=1:m
nh=int2str(h);
Q(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exˆ(h-1)*eye(ngy2);
Qinv(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exinvˆ(h-1)*eye(ngy2);

end
SstV(j*ngy2+1:(j+1)*ngy2,:) = ...

(I1/(I1-AstV*exˆm))*BstV*((I1/(I1-AstV*exˆ(-m))))';
E2 = E2 + log(det(SstV(j*ngy2+1:(j+1)*ngy2,:)));
E3 = E3 + trace((Q*(STY(j*ngy+1:(j+1)*ngy,:))*Qinv')/...

SstV(j*ngy2+1:(j+1)*ngy2,:));
end;
fun = real(E2 + E3);

function fun = klicobjspeczero(param0,otherparams)
% This function provides a first guess of the parameters by focusing on the
% zero frequency before running the klicobjspec
%
ngy = otherparams(1,1);
ngy2 = otherparams(1,2);
T = otherparams(1,3);
m = otherparams(1,4);
STY = reshape(otherparams(1,5:end),ngy*(T/2+1),ngy);
ngy22 = ngy2*ngy2;
AstV = real(reshape(param0(1:ngy22),ngy2,ngy2));
% Need to generalize this
BstV = real(tril([param0(1,ngy22+1) param0(1,ngy22+2); ...

param0(1,ngy22+2) param0(1,ngy22+3)])*...
triu([param0(1,ngy22+1) param0(1,ngy22+2); ...
param0(1,ngy22+2) param0(1,ngy22+3)])) ;

E2 = 0.;
E3 = 0.;
fun = realmax;

SstV = zeros(ngy2,ngy2);
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I1 = eye(ngy2);
ex=1.;
exinv=1.;
Q=zeros(ngy2,ngy);
Qinv = Q;

for h=1:m
nh=int2str(h);
Q(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exˆ(h-1)*eye(ngy2);
Qinv(:,(h-1)*ngy2+1:h*ngy2)=mˆ(-.5)*exinvˆ(h-1)*eye(ngy2);

end
SstV = (I1/(I1-AstV*exˆm))*BstV*((I1/(I1-AstV*exˆ(-m))))';
E2 = E2 + log(det(SstV));
E3 = E3 + trace((Q*(STY(1:ngy,:))*Qinv')/SstV);
fun = real(E2 + E3);

The next programss sets up the structures for Case 1 covered in section 6. All other cases can be
derived similarly.

a = 0;
rho = .5;
gamma = .5;
delta1 = .9;
delta2 = .5;
delta3 = .2;
A = [0 0 rho a ; 0 0 rhoˆ2 a*(1 + rho);...

0 0 rhoˆ3 a*(1 + rho + rhoˆ2);
delta3 delta2 delta1 gamma];

% Input of the parameters for the B matrix
%
B = eye(4);
%
% m = the number of high frequency periods
%
m = 3;
%
BChol = chol(B);
CC=B;
%
% m = the number of high frequency periods
%
% Design of the H matrix
%
H = [1 0 0 0; 0 0 0 1; 0 1 0 0;...

0 0 0 1;0 0 1 0; 0 0 0 1];
%
D = 0.*H;
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