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PRELIMINARY AND INCOMPLETE

Abstract

This paper analyzes the predictive content of macroeconomic information for the yield curve
of interest rates and excess bond returns within a dynamic factor model of yields and macroe-
conomic data. The model uses macroeconomic information for both extracting the yield curve
factors and identifying the sources of unspanned risk. Estimation is performed using the Re-
stricted EM algorithm and Kalman filter using US data from January 1970 to December 2009.
Results show that: 1) the federal funds rate and money contain useful information only to
extract the yield curve factors; 2) real variables are the primary source of unspanned risk; 3)
nominal variables contain both information that is related to the yield curve and unspanned
risk. The estimated factors explain up to 47% of the bond risk premium and have superior
predictive ability than the Cochrane and Piazzesi (2005) and the Ludvingson and Ng (2009)
factors jointly.



1 Introduction

Empirical evidence on yield curve modeling and forecasting suggests that augmenting the yield
curve factors with macroeconomic indicators improves the predictive ability of yield curve models.
On the other hand, recent evidence finds that factors with negligible impact on yields are the main
drivers of bond risk premia. In this paper, we propose a joint model for the yield curve of interest
rates and macroeconomic variables to identify the sources of unspanned macroeconomic risk and to
investigate whether, and to which extent, macroeconomic information is useful for predicting both
the yield curve and excess bond returns. The proposed macro-yields model is a state-space model
that exploits the co-movements between yields and macroeconomic variables and that, at the same
time, allows for unspanned macroeconomic risk, i.e. additional macroeconomic factors that have
negligible effects on the cross-section of yields but that contain important information to forecast
excess bond returns.

We model the linkages between the yield curve and the macroeconomic variables allowing yields
and macroeconomic variables to be driven by the same sources of co-movements. This is in contrast
with the macro-finance literature, see e.g. Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006)
and Mönch (2008), where the interactions between yields and macroeconomic variables are modeled
augmenting the yield curve factors with observable or latent macroeconomic factors. We deviate
from this approach that assumes the macroeconomic factors are additional factors of the yield curve
for three reasons. First, the idea behind factor models is parsimony and augmenting the number
of factors goes against this notion, specially if the three yield curve factors already explain most of
the variation of the yields. Second, the yield curve factors are highly correlated with measures of
inflation and economic activity, see e.g. Diebold, Rudebusch and Aruoba (2006), therefore adding
macroeconomic factors in the observation equation of the yields can be redundant. Third, our
objective is to disentangle the variation in the macroeconomic variables that is common to the
yield curve from the one that is unspanned by the cross-section of yields.

The macro-yields model proposed in this paper allows for any number of unspanned latent
factors and does not require to specify a priori which macroeconomic variables are spanned by the
yield curve nor which ones are unspanned. We use empirical evidence on the in-sample and out-
of-sample performance of the model for both yields and excess bond returns to select the number
of unspanned macroeconomic factors. Cochrane and Piazzesi (2005) find that a linear combination
of forward rates is successful in explaining the bond risk premium, while principal components of
the yield curve can account only for a small part of this predictability. In addition, Ludvigson and
Ng (2009) show that macroeconomic variables are the main drivers of bond risk premia. Following
these findings, Duffee (2011) builds a five-factor model with two unspanned factors, i.e. factors
that cannot be inferred from the cross-section of yields but that have significant predictive content
for excess returns. These hidden factors have opposite effects on bond risk premia and on expected
future short rates. Joslin, Priebsch and Singleton (2010) build five factor model with two hidden
macroeconomic factors, i.e. output growth and inflation. Both Duffee (2011) and Joslin et al.
(2010) use an affine dinamic term structure model where explicit assumptions about the behavior
of the time-varying risk premium have to be made and, in particular, about which factors drive
the risk premium. In this paper, we combine the reduced form approach of Cochrane and Piazzesi
(2005) and Ludvigson and Ng (2009) with a joint model for the yield curve and macroeconomic
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variables without, however, imposing any assumption on the behavior of the market price of risk.
The paper is organized as follows. Section 2 presents the proposed macro-yields model. Section

3 desribes the estimation procedure and the information criteria approach for model selection.
Section 4 introduces the data and some preliminary empirical evidence. Empirical results about
the estimated factors, the fit and forecast of the yields are contained in Section 5, while Section 5.1
contains results about the predictive regressions and prediction of excess bond returns.

2 The Macro-Yields Model

The macro-yields model is a dynamic factor model for the joint behavior of government bond yields
and macroeconomic indicators. The yields with different maturities are driven by the Nelson and
Siegel (1987) yield curve factors, while the macroeconomic indicators are driven both by the yield
curve and a few macroeconomic-specific factors, the unspanned macro factors. All variables in the
model have an autocorrelated idiosyncratic component, and the joint dynamic of the yield curve
and macroeconomic factors follow a VAR(1). In what follows we detail on each of the points.

We assume that yields on bonds with different maturities are driven by three common factors
and an idiosincratic component

yt = ay + Γyy F
y
t + vyt , (1)

where yt is a Ny × 1 vector of yields with Ny different maturities at time t, Γyy is a Ny × 3 matrix
of factor loadings, F yt is a 3 × 1 vector of latent factors at time t and vyt is an Ny × 1 vector of
idiosincratic components. We identify the yield curve factors F yt as the Nelson and Siegel (1987)
factors imposing that

ay = 0; Γ(i)
yy =

[
1

1− e−λτ i
λτ i

1− e−λτ i
λτ i

− e−λτ i
]
, (2)

where Γ
(i)
yy is the i-th row of the matrix of factor loadings, λ is a decay parameter of the factor

loadings and τ i denotes the maturity of the i-th bond. Diebold and Li (2006) show that this
functional form of the factor loadings, implies that the three yield curve factors can be interpreted
as the level, slope, and curvature of the yield curve. Indeed, the loading equal to one on the
first factor, for all maturities, implies that an increase in this factor increases all yields equally,
shifting the level of the yield curve. The loadings on the second factor are high for short maturities,
decaying to zero for the long ones. Accordingly, an increase in the second factor increases the slope
of the yield curve. Loadings on the third factor are zero for the shortest and the longest maturities,
reaching the maximum for medium maturities. Therefore, an increase in this factor augments the
curvature of the yield curve. Given these particular functional forms for the loadings on the three
yield curve factors, one can thus disentangle movements in the term structure of interest rates into
three factors which have a clear-cut interpretation. The parameter λ governs the exponential decay
rate: a small value of λ can better fit the yield curve at long maturities, while large values can
better fit it at short maturities. This parameter determines the maturity at which the loadings on
the curvature factor reaches the maximum.

We further assume that macroeconomic variables are driven by the yield curve factors, a few
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macroeconomic-specific factors and an idiosyncratic component

xt = ax + Γxy F
y
t + Γxx F

x
t + vxt , (3)

where ax is an Nx×1 vector of intercepts, xt is a Nx×1 vector of macroeconomic variables at time
t, Γxy is a Nx×3 matrix of factor loadings on the yield curve factors, Γxx is a Nx×r matrix of factor
loadings on the macro factors, F xt is an r × 1 vector of macroeconomic latent factors (normalized
to have zero mean and unit variance) and vxt is an Nx × 1 vector of idiosincratic components.

We consider equation (1) and (3) in the unified framework of a macro-yields model as follows(
yt
xt

)
=

(
ay
ax

)
+

[
Γyy Γyx
Γxy Γxx

] (
F yt
F xt

)
+

(
vyt
vxt

)
, (4)

where Γyx = 0. By construction, yields only load on the yield curve factors F yt , while macroeconomic
variables load on both the yield curve F yt and the macro factors F xt . This allows F xt to capture
the source of co-movement in the macroeconomic variables that is not accounted by the yield curve
factors, i.e. the unspanned macroeconomic risk.

The joint dynamics of the yield curve and the macroeconomic factors follow a VAR(1)(
F yt
F xt

)
=

(
µy
µx

)
+A

(
F yt−1
F xt−1

)
+

(
uyt
uxt

)
,

(
uyt
uxt

)
∼ N(0, Q) (5)

where Q is a diagonal matrix and µx = 0. In addition, we assume that the idiosincratic components
collected in vt = [vyt vxt ]′ follow a univariate AR(1) process

vt = Bvt−1 + ξt, ξt ∼ N(0, R) (6)

where B and R are diagonal matrices. Furthermore, the shocks to the idiosyncratic components of
the individual variables, ξt, and the innovations driving the common factors, ut, are assumed to be
mutually independent.

We use of a dynamic factor for four reasons. First, due to the high level of co-movement of yields
with different maturities, three yield curve factors can explain most of the variation in the yield
curve, see e.g. Litterman and Scheinkman (1991). Second, macroeconomic variables are also char-
acterized by a high degree co-movement and the bulk of their dynamics is explained a few common
factors, see e.g. Sargent and Sims (1977), Stock and Watson (2002) and Giannone, Reichlin and
Sala (2005). Third, using a factor model allows to use a large number of macroeconomic variables
preserving the parsimony of the model. Alternatively, one could use a few selected macroeconomics
indicators but this raises the problem of which indicators to use. Fourth, a common objection
against empirical macro-finance models is that data revisions imply that the information set avail-
able to the econometrician is different from the information set available to investors. This could
imply that estimates of the parameters governing the mutual interactions between macroeconomic
and financial variables may be biased. However, data revision are typically series specific and hence
have negligible effects when we extract the common factors, see e.g. Bernanke and Boivin (2003)
and Giannone et al. (2005).

As shown in (2), we use restrictions on the factor loadings of the yields on the yield curve
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factors to identify the Nelson and Siegel (1987) factors. This choice is determined by the fact that
empirically the Nelson-Siegel model fits the yield curve well and performs well in out-of-sample
forecasting exercises, as shown by Diebold and Li (2006) and De Pooter, Ravazzolo and van Dijk
(2007). Moreover, Joslin, Singleton and Zhu (2011) show that any linear combination of yields can
serve as observable factors in a no-arbitrage model and Coroneo, Nyholm and Vidova-Koleva (2011)
fail to reject the null that the Nelson and Siegel (1987) is statistically different from a gaussian
affine term structure model. However, the approach proposed in the paper can also be used without
imposing the Nelson and Siegel (1987) restrictions and just normalizing the yield curve factors to
have zero mean and unit variance.

3 Estimation

The maximum likelihood estimators of the parameters of the macro-yields model are not available
in closed form, as the yield curve and the macro factors are unobserved. One possibility is to
maximize numerically the likelihood function but this is computationally demanding, due to the
large number of parameters. For this reason, we estimate the macro-yields model by maximum
likelihood, combining the Expectation Restricted Maximization (ERM) algorithm and the Kalman
filter. This procedure allows us to consistently estimate the macro-yields model using a large number
of variables and to successfully restrict the factor loadings to identify the yield curve factors.

The ERM algorithm is a generalization of the Expectation Maximization (EM) algorithm intro-
duced by Shumway and Stoffer (1982) and derived in detail for dynamic factor models Ghahramani
and Hinton (1996). Doz, Giannone and Reichlin (2006) show that the EM algorithm procedure
makes maximum likelihood estimation of approximate factor models feasible for large cross sections
and that consistency is guaranteed even when the hypothesis of orthogonality and absence of serial
correlation of the idiosyncratic component are violated. This is particularly important in our case
since, even if the macro-yields model has the form of an exact factor model, the assumption of
orthogonal idiosyncratic elements is likely to be too restrictive. However, despite the fact that this
procedure provides asymptotically valid estimates even when the assumption of absence of serial
correlation in the idiosyncratic component assumption is violated, we explicitly model the idiosyn-
cratic components as AR(1). This allows to exploit the persistency in the idiosyncratic component,
improving the predictions of the model, see Stock and Watson (2002).

The macro-yields model in equations (4), (5) and (6) can be written in a compact form as

zt = a+ ΓFt + vt,

Ft = µ+AFt−1 + ut, ut ∼ N(0, Q)

vt = Bvt−1 + ξt, ξt ∼ N(0, R)

where Q, B and R are diagonal matrices and a =

[
0
ax

]
, Γ =

[
Γyy 0
Γxy Γxx

]
, µ =

[
µy
0

]
and Γyy satisfies

the Nelson and Siegel (1987) restrictions in (2). Following Diebold and Li (2006), we fix the decay
parameter λ = 0.0609 to the value that maximizes the loading on the curvature factor for the yields
with maturity 30 months.1

1Using the Expectation Conditional Restricted Maximization (ECRM) algorithm is also possible to estimate λ.
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To put the model in a state-space form, we augment the states with the idiosyncratic components
and a constant as follows

zt = Γ∗F ∗t + v∗t , v∗t ∼ N(0, R∗)

F ∗t = A∗F ∗t−1 + u∗t , u∗t ∼ N(0, Q∗)

where Γ∗ =
[
Γ a In

]
, F ∗t =

Ftct
vt

, A∗ =

 A µ . . . 0
... . .

.
1

...

0 . . . . . . B

, u∗t =

utνt
ξt

, Q∗ =

 Q . . . 0
... ε

...

0 . . . R


and R = εIn, with ε a very small fixed coefficient and ct an additional state variable restricted to
one.

The restrictions on the factor loadings Γ∗ and on the transition matrix A∗ can be written as

H1 vec(Γ∗) = q1, H2 vec(A∗) = q2, (7)

where H1 and H2 are selection vectors, and q1 and q2 contain the restrictions.
We assume that F ∗1 ∼ N(π1, V1) and define y = [y1, . . . , yT ] and F ∗ = [F ∗1 , . . . , F

∗
T ]. Then

denoting the parameters by θ = {Γ∗, A∗, Q∗, π1, V1}, we can write the joint loglikelihood of zt and
Ft, for t = 1, . . . , T , as

L(z, F ∗; θ) = −
T∑
t=1

(
1

2
[zt − Γ∗F ∗t ]′ (R∗)−1 [zt − Γ∗F ∗t ]

)
+

−T
2

log |R∗| −
T∑
t=2

(
1

2
[F ∗t −A∗F ∗t−1]′(Q∗)−1[F ∗t −A∗F ∗t−1]

)
+

−T − 1

2
log |Q∗|+ 1

2
[F ∗1 − π1]′V −1[F ∗1 − π1] +

−1

2
log |V1| −

T (p+ k)

2
log 2π + λ′1 (H1 vec(Γ∗)− q1) + λ′2 (H2 vec(A∗)− q2)

where λ1 contains the lagrangian multipliers associate with the constraints on the factor loadings
Γ∗ and λ2 contains the lagrangian multipliers associated with the constraints on the transition
matrix A∗.

The ERM algorithm alternates Kalman filter extraction of the factors to the restricted maxi-
mization of the likelihood. In particular, at the j-th iteration the ERM algorithm performs two
steps:

1. In the Expectation-step, we compute the expected log-likelihood conditional on the data and
the estimates from the previous iteration, i.e.

L(θ) = E[L(z, F ∗; θ(j−1))|z]

This algorithm allows to perform numerical maximization of the conditional likelihood with respect to λ, but, despite
the increase in the computation burden, the results remain substantially unchanged.

5



which depends on three expectations

F̂ ∗t ≡ E[F ∗t ; θ(j−1)|z]
Pt ≡ E[F ∗t (F ∗t )′; θ(j−1)|z]

Pt,t−1 ≡ E[F ∗t (F ∗t−1)
′; θ(j−1)|z]

These expectations can be computed, for given parameters of the model, using the Kalman
filter.

2. In the Restricted Maximization-step, we update the parameters maximizing the expected
log-likelihood with respect to θ:

θ(j) = arg max
θ
L(θ)

This can be implemented taking the corresponding partial derivative of the expected log
likelihood, setting to zero, and solving.

In practise, the estimation problem is reduced to a sequence of simple steps, each of which uses the
Kalman smoother and two multivariate regressions. We initialize Nelson and Siegel (1987) factors
using the two-steps OLS procedure introduced by Diebold and Li (2006). We then project the
macroeconomic variables on the Nelson and Siegel (1987) factors and use the principal components
of the residuals of this regression to initialize the macroeconomic factors. Initial values for A∗ and
Q∗ are obtained estimating a VAR(1) on the initial factors.

3.1 Model Selection

The macro-yields model decomposes variations in yields and macroeconomic variables into yield
curve factors and unspanned macroeconomic factors. The yield curve factors are identified as the
Nelson and Siegel (1987) factors which have a clear interpretation as level, slope and curvature.
However, the true number of unspanned macroeconomic factors is not known. We can select the
optimal number of factors using an information criteria approach. The idea is to choose the number
of factors that maximizes the general fit of the model using a penalty function to account for the
loss in parsimony.

Bai and Ng (2002) derive information criteria to determine the number of factors in approximate
factor models when the factors are estimated by principal components. They also show that their
IC3 information criterion can be applied to any consistent estimator of the factors provided that the
penalty function is derived from the correct convergence rate. For the quasi-maximum likelihood
estimator, Doz et al. (2006) show that it converges to the true value at a rate equal to

C∗2NT = min

{√
T ,

N

logN

}
(8)

where N and T denote the cross-section and the time dimension, respectively. Thus, a modified
Bai and Ng (2002) information criterion that can be used to select the optimal number of factor
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Table 1: Macroeconomic Variables

Series N. Mnemonic Description Transformation

1 AHE Average Hourly Earnings: Total Private 2
2 CPI Consumer Price Index: All Items 2
3 INC Real Disposable Personal Income 2
4 FFR Effective Federal Funds Rate 0
5 IP Industrial Production Index 2
6 M1 M1 Money Stock 2
7 Manf ISM Manufacturing: PMI Composite Index (NAPM) 0
8 Paym All Employees: Total nonfarm 2
9 PCE Personal Consumption Expenditures 2
10 PPIc Producer Price Index: Crude Materials 2
11 PPIf Producer Price Index: Finished Goods 2
12 CU Capacity Utilization: Total Industry 1
13 Un Civilian Unemployment Rate 1

This table lists the 13 macro variables used to estimate the macro-yields. Most series have been subjected to
some transformation prior to the estimation, as reported in the last column of the table. The transformation
codes are: 0 = no transformation, 1 = monthly growth rate and 3 = annual growth rate.

when estimation is performed by maximum likelihood is as follows

IC∗(s) = log(V (s, F̂ ∗(s))) + s g(N,T ), g(N,T ) =
logC∗2NT
C∗2NT

(9)

where s denotes the number of factors, F̂ (s) are the estimated factors and V (s, F̂ ∗(s)) is the sum

of squared idiosyncratic components (divided by NT) when s factors are estimated. The penalty
function g(N,T ) is a function of both N and T and depends on C∗2NT , the convergence rate of the
estimator, in our case given by (8).

4 Data and Empirical Evidence

We use monthly data spanning the period 1970:1-2009:12. The bond yield data are taken from the
Fama-Bliss dataset available from the Center for Research in Securities Prices (CRSP) and contain
observations on one- through five-year zero-coupon U.S. Treasury bond prices. The macroeconomic
dataset consists of 13 macroeconomic variables, which include five inflation measures, six real
variables, the federal funds rate and a money indicator. Table 1 contains a complete list of the
macroeconomic variables along with the transformation applied to ensure stationarity. We use
annual growth rates for all variables, except for capacity utilization and the unemployment rate (in
monthly growth rates) and the federal funds rate and manufacturing index (in levels).

As preliminary analysis, we extract the Nelson and Siegel (1987) factors by ordinary least
squares, as in Diebold and Li (2006). Table 2 reports the cumulative share of variance of the yields
explained by the Nelson and Siegel (1987) level, slope and curvature factors. It is clear that the
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Table 2: Yields and share of variance explained by the Nelson and Siegel factors

Maturity L L+S L+S+C

12 0.59 0.85 1.00
24 0.63 0.79 0.99
36 0.68 0.79 1.00
48 0.72 0.79 0.99
60 0.76 0.82 1.00

This table lists the 5 maturities of gov-
ernment bond yields used for the esti-
mation of the macro-yields model. The
second to fourth columns provide, for
each maturity, the cumulative shares of
variance explained by the Nelson and
Siegel (1987) level (L), slope (S), and
curvature (C) factor, respectively.

Table 3: Correlations of macroeconomic variables with the Nelson and Siegel factors

L S C

AHE 0.31 0.53 0.24
CPI 0.48 0.56 0.23
INC 0.08 0.05 0.33
FFR 0.78 0.64 0.43
IP 0.04 0.11 0.23
M1 0.33 -0.39 -0.22
Manf -0.09 -0.07 0.02
Paym 0.14 0.32 0.34
PCE 0.50 0.36 0.43
PPIc -0.04 0.34 -0.07
PPIf 0.23 0.57 0.07
CU 0.01 -0.19 0.01
Un -0.03 0.11 -0.08

This table list the correlations of
the 13 macro variables used in the
macro-yields model with the es-
timated Nelson and Siegel (1987)
Level (L), Slope (S) and Curva-
ture (C) factors, respectively.
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Table 4: Model Selection

s IC∗(s) V (s, F̂ ∗(s))

3 0.15 0.48
4 0.07 0.33
5 0.08 0.25
6 0.25 0.22
7 0.31 0.17
8 0.58 0.17

This table reports the in-
formation criterion IC∗(s),
as shown in (9) and (8),
and the sum of the variance
of the idiosyncratic com-
ponents (divided by NT ),
V (s, F̂ ∗

(s)), when s factors
are estimated.

Nelson and Siegel (1987) factors achieve an almost exact fit of the yields. The level explains most of
the variation of yields, especially for long maturities. The level and the slope factors jointly explain
about 80% of the variance of the yields, and adding the curvature factor we can explain almost
100% of the variance of the yields, leaving virtually no space for any other additional factor. We also
compute the correlations of the extracted Nelson and Siegel (1987) factors with the macroeconomic
variables. Results, displayed in Table 3, show that the federal funds rate, money, inflation and
economic activity are highly correlated with the yield curve factors, as as also shown by Diebold et
al. (2006), suggesting that the yield curve co-moves with the rest of the economy. This combined
with the fact the the three Nelson and Siegel (1987) factors explain most of the variation in the
yield curve, supports our choice of allowing the macroeconomic variables to be driven by the yield
curve factors, instead of adding macroeconomic indicators, or macroeconomic factors, as additional
factors in the observation equation of the yields.

5 Results

We estimate the macro-yields model in equations (4)–(6) by quasi-maximum likelihood as described
in section 3 on the full sample of data, from January 1970 to December 2009.

As explained in Section 3.1, we need to select the number of unspanned factors. To this end, we
estimate the macro-yields model allowing from three, i.e. only the Nelson and Siegel (1987) factors,
up to a total of eight factors, where the first three factors are yield curve factors and the others are
unspanned macro factors. Table 4 reports the information criterion, as shown in Equation (9), and
the sum of the variance of the idiosyncratic components for each specification of the macro-yields
model. The information criterion selects the model with the three Nelson and Siegel (1987) yield
curve factors plus one unspanned factor, i.e. s = 4. This is also confirmed by the fact that the
strongest reduction in the sum of the variances of the idiosyncratic components is obtained passing
from the three to the four factors specification. However, while this model is only marginally
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Table 5: Share of variance explained by the macro-yields model with 5 factors

Variable F y M1 M2 Total

y12 1.00 0.00 0.00 1.00
y24 0.99 0.00 0.00 0.99
y36 1.00 0.00 0.00 1.00
y48 1.00 0.00 0.00 1.00
y60 1.00 0.00 0.00 1.00

AHE 0.36 0.00 0.28 0.63
CPI 0.52 0.01 0.35 0.85
INC 0.07 0.25 0.02 0.35
FFR 0.97 0.00 0.00 0.97

IP 0.04 0.50 0.01 0.56
M1 0.28 0.00 0.01 0.30

Manf 0.02 0.49 0.00 0.52
Paym 0.15 0.37 0.00 0.55
PCE 0.39 0.16 0.19 0.78
PPIc 0.13 0.15 0.19 0.53
PPIf 0.38 0.00 0.47 0.84

CU 0.04 0.20 0.02 0.23
Un 0.02 0.22 0.03 0.25

This table reports the share of variance of
the yields and macro variables explained
by the Nelson and Siegel (1987) factors
(denoted by F y) and the two unspanned
macroeconomic factors (denoted by M1
and M2). The last column reports the total
share of variance explained by the macro-
yields model with 5 factors.

preferred to the model with five factors, the model with only the three Nelson and Siegel (1987)
factors is clearly not able to capture the joint dynamic of the yields and macroeconomic variables.
This indicates that, even if the macro variables are highly correlated with the yield curve factors,
as shown in Table 3, we still need at least one additional factor to capture the co-movements in the
macroeconomic variables that is unspanned by the yields.

Figure 1 shows the in-sample fit of three specifications of the macro-yields model, i.e. with
3, 4 and 5 factors, for the yields with 12 and 60 months maturity, the consumer price index and
the industrial production index. All the three specification of the macro-yields model provide a
similar fit for the yields. This is due to the fact that the observation equation of the yields contains
only the three Nelson and Siegel (1987) factors and, as shown in Table 2, they are able to capture
well the yield curve dynamics. Results in Figure 1 also indicate that the fourth factor captures
the dynamics of the industrial production index, while the fifth factor explains the dynamics of
the consumer price index that are unspanned by the yield curve factors. This evidence that the
fourth factor is a real factor and that the fifth factor is a nominal factor is confirmed by Table 5,
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Figure 1: Macro-yields model in-sample fit: model selection

80 90 00

2

4

6

8

10

12

14

Yield: 12 months maturity

 

 

Data MY3 MY4 MY5

80 90 00
2

4

6

8

10

12

14

Yield: 60 months maturity

80 90 00

-2

-1

0

1

2

3

Consumer Price Index

80 90 00

-3

-2

-1

0

1

Industrial Production Index

The figure displays the observed data in blue and the corresponding in-sample fit of the macro-yields model for

different specifications of the model. The green line refers to the macro-yields model with only three Nelson and

Siegel (1987) yield curve factors. The red line refers to the macro-yields model with four factors and the light blue

line refers to the macro-yields model with five factors. The upper left plot refers to the yields with maturity 12

months, the upper right to the yields with maturity 60 months, the lower left to the consumer price index and the

lower right to the industrial production index.
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Figure 2: Macro-yields factors
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The figure displays the estimated macro-yields factors (MY). The red lines in the top graphs refer to the Nelson

and Siegel (1987) yield curve factors (NS) estimated by ordinary least squares as in Diebold and Li (2006). The

grey-shaded areas indicate the recessions as defined by the NBER.

which reports the share of variance of the yields and macro variables explained by the macro-yields
factors. The Nelson and Siegel (1987) factors explain most of the variance of the yields and the
federal funds rate but also the bulk of the variance of price indices, nominal earnings, nominal
consumption and money. The fourth factor captures the dynamics of industrial production and
other real variables, while the fifth factor mainly explains the producer price index of finished gods
and other nominal variables. Thus, Table 5 indicates that 1) the federal funds rate and money
contain only useful information to extract the yield curve factors; 2) real variables are the primary
source of unspanned risk; 3) nominal variables contain both information that is spanned by the
yield curve and unspanned information.

Figure 2 displays the estimated macro-yields factors. The first three plots report the yield
curve factors, while the last two refer to the unspanned factors. The estimated yield curve factors
of the macro-yields model are highly correlated with the Nelson and Siegel (1987) factors. However,
Figure 2 shows that there are some differences especially for the curvature and the level. This is
due to the fact that, in the macro-yields model, the yield curve factors are common factors for
the yield curve and the macroeconomic variables. In practice, we extract the yield curve factors
from both yields and macroeconomic variables and impose the Nelson and Siegel (1987) restrictions
on the factors loadings of the yields to identify them as yield curve factors. Thus the difference
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between the Nelson and Siegel (1987) factors and the first three macro-yields factors is due to the
effect of the macroeconomic information. The second row of Figure 2 shows the unspanned macro
factors. The first macro factor is a business cycle factor that starts to decrease at the beginning
of the recessions and reaches the minimum at the end of the recessions. The second macro factor
has an opposite behavior, it presents a trough at the beginning of the recession and then increases
during the recession.

To evaluate the predictive ability of the macro-yields model, we generate out-of-sample iterative
forecasts of the factors

Et(F
∗
t+h) ≡ F̂ ∗t+h|t = (Â∗|t)

hF̂ ∗t|t,

where h denotes the forecast horizon and Â∗|t is estimated using the information available till time
t. We then compute out-of-sample forecasts of the yields given the projected factors

Et(zt+h) ≡ ẑt+h|t = Γ̂∗|tF̂
∗
t+h|t.

We forecast 1, 3, 6 and 12 steps ahead the yields estimating each model recursively using data
from January 1970 until the time that the forecast is made, beginning in January 1985 to December
2009. We use two evaluation periods, from January 1985 to December 2009 and a smaller evaluation
period from January 1985 to December 2003, which excludes the recent financial crisis and can be
easy compared with previous works about the predictability of the yield curve, e.g. De Pooter et
al. (2007).

To evaluate the prediction accuracy, we use the Mean Square Forecast Error (MSFE), i.e. the
average square error in the evaluation period for the h-months ahead forecast of the yield with
maturity τ i

MSFEt1t0 (τ i, h,M) =
1

t1 − t0 + 1

t1∑
t=t0

(
ŷ
(τ i)
t+h|t(M)− y(τ i)t+h

)2
, (10)

where t0 and t1 denote, respectively, the start and the end of the evaluation period, y
(τ i)
t+h is the

realized yield with maturity τ i at time t+h and ŷ
(τ i)
t+h|t(M) is the h-step ahead forecast of the yield

with maturity τ i from model M using the information available up to t.
Forecast results for yields are usually expressed as relative performance with respect to the

random walk, which is a näıve benchmark for yield curve forecasting very difficult to outperform
given the high persistency of the yields. The random walk h-steps ahead prediction at time t of
the yield with maturity τ i is

Et(y
(τ i)
t+h) ≡ ŷ(τ i)t+h|t = y

(τ i)
t ,

where the optimal predictor does not change regardless of the maturity of the yield and the forecast
horizon. To measure the relative performance of the macro-yields model with respect to the random
walk, we use the Relative MSFE computed as

RMSFEt1t0 (τ i, h,M) =
MSFEt1t0 (τ i, h,M)

MSFEt1t0 (τ i, h,RW )
.

Table 5 reports the RMSFE with respect to the random walk for different specifications of the
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Table 6: Out-of-sample predictive power for the yields

Evaluation 1985 - 2009 Evaluation 1985 - 2003

Maturity 12 24 36 48 60 12 24 36 48 60

Horizon Only Yield Model

12 1.11 1.12 1.11 1.06 1.07 1.18 1.13 1.09 1.02 1.03
6 1.12 1.13 1.08 1.01 1.04 1.18 1.13 1.06 0.98 1.01
3 1.09 1.12 1.07 1.01 1.04 1.13 1.13 1.05 0.99 1.02
1 1.03 1.14 1.07 1.02 1.02 1.05 1.15 1.06 0.99 1.02

Horizon Macro-Yield 3 factors

12 1.51 1.47 1.47 1.44 1.46 1.43 1.31 1.25 1.19 1.21
6 1.41 1.34 1.28 1.24 1.28 1.31 1.19 1.11 1.06 1.09
3 1.36 1.26 1.18 1.15 1.20 1.24 1.16 1.07 1.04 1.09
1 1.43 1.21 1.10 1.09 1.14 1.33 1.17 1.05 1.03 1.11

Horizon Macro-Yield 4 factors

12 1.09 1.11 1.14 1.16 1.19 0.94 0.92 0.92 0.89 0.90
6 1.32 1.24 1.21 1.20 1.24 1.00 0.99 0.97 0.96 0.99
3 1.37 1.20 1.14 1.12 1.17 1.09 1.03 1.01 1.02 1.07
1 1.69 1.15 1.06 1.06 1.12 1.43 1.06 1.00 1.03 1.12

Horizon Macro-Yield 5 factors

12 1.01 1.01 1.02 1.01 1.01 1.05 1.00 0.97 0.92 0.90
6 1.42 1.33 1.28 1.25 1.25 1.31 1.20 1.15 1.12 1.10
3 1.42 1.26 1.19 1.15 1.15 1.35 1.19 1.12 1.10 1.09
1 1.41 1.16 1.07 1.02 1.00 1.43 1.12 1.03 1.01 0.99

Horizon Macro-Yield 6 factors

12 1.26 1.28 1.30 1.28 1.27 1.39 1.33 1.30 1.23 1.18
6 1.46 1.41 1.35 1.30 1.30 1.55 1.43 1.35 1.27 1.23
3 1.37 1.28 1.21 1.15 1.15 1.43 1.30 1.22 1.15 1.13
1 1.12 1.13 1.08 1.01 0.98 1.13 1.12 1.06 1.01 0.98

This table reports the Relative MSFE of different specifications of the macro-yields model with
respect to the random walk. Bold values denote the smallest RMSFE for each maturity and
forecast horizon.
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macro-yields model for the two evaluation periods considered. We consider four specifications of the
macro-yields models (with 3 up to 6 factors) and the only yields model (a restricted version of the
macro-yields model where only the yields are used to extract the three yield curve factors and there
are no additional macroeconomic factors). For both evaluation periods, results in Table 5 show that
the only yield model is outperformed by the macro-yields model for the 12 months forecast horizons
and that the macro-yields model with only the three yield curve factors is the worst performing
model. This suggests that allowing for unspanned macroeconomic risk improves the out-of-sample
predictive ability of the model. For the evaluation sample January 1985–December 2003, the macro-
yields model with four factors outperforms the random walk, for medium–long horizons. However,
for the longest evaluation sample, results indicate that during the recent financial crisis naive
models, as the random walk, have outperformed more sophisticated models indicated a reduced
predictability of the yields. The best performing model for middle horizons is the only yields model
while for long horizons is the macro-yields model with five factors.2 This suggests that the nominal
factor, i.e. the fifth factor, has been important for capturing the dynamics of the yield curve during
the recent financial crisis since, as shown in Figure 2, it provides a signal at the beginning of
recessions.

5.1 Excess bond returns

We use the macro-yields model to analyze excess returns of government bond by the following
simple transformation

rx
(n)
t+12 = r

(n)
t+12 − y

(1)
t = −(n− 1)y

(n−1)
t+12 + ny

(n)
t − y(1)t (11)

where rx
(n)
t+12 is the excess return of a n-year bond and r

(n)
t+12 is the return of a n-year bond. We

can rewrite Equation (11) in compact notation as

rxt+12 = Π1yt+12 + Π2yt (12)

where Π1 =
[
D[−1:−K] 0[K×1]

]
, Π2 =

[
1[K×1] D[2:K+1]

]
, D[−1:−K] denotes a diagonal matrix

with elements −1,−2, . . . ,−K in the diagonal and K + 1 denotes the total number of maturities.
The expectation hypothesis of interest rates states that excess bond returns should not be

predictable with variables in the information set at time t. However, Cochrane and Piazzesi (2005)
find that a linear combination of forward rates is successful in explaining the bond risk premium,
while the first three principal components of the yield curve can account only for a small part
of this predictability. To investigate whether the macro-yields factors have predictive ability for
excess bond returns we run predictive regressions of one year excess bond returns on lagged macro-
yields factors. Tables 7–8 reports result for the predictive regressions, i.e. estimates from OLS
regressions of average excess bond returns on 12 months lagged factors. Results in Table 7 refer to
the sample January 1970–December 2003 and are comparable with Cochrane and Piazzesi (2005)
and Ludvigson and Ng (2009)3, while Table 8 refers to the sample January 1970–December 2009

2Unreported results but available upon request show that the forecast performance for the evaluation period
January 1985–December 2007 is similar to the one of the evaluation sample January 1985–December 2003.

3Notice that our sample period starts in 1970 while in Cochrane and Piazzesi (2005) and Ludvigson and Ng (2009)
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which includes also the recent financial crisis. In addition to results for different specifications of
the macro-yields model (with 3 to 6 factors) and for the only-yields model (a restricted version
of the macro-yields model where only the yields are used to extract the three yield curve factors
and there are no additional macroeconomic factors), we also report results for the Cochrane and
Piazzesi (2005), the Ludvigson and Ng (2009)4 and the Nelson and Siegel (1987) factors. For each
regression, we report the regression coefficients, heteroskedasticity and serial correlation robust t-
statistics, and adjusted R2 statistic. We use use the Newey and West (1987) correction for serial
correlation with 18 lags to compute the asymptotic standard errors. This correction is needed
because the continuously compounded annual return has an MA(12) error structure under the null
hypothesis that one-period returns are unpredictable. However, because the Newey and West (1987)
correction down-weights higher-order autocorrelations, we follow Cochrane and Piazzesi (2005) and
Ludvigson and Ng (2009) and use an 18-lag correction to ensure that the procedure fully corrects
for the MA(12) error structure.

Table 7 confirms that the Cochrane and Piazzesi (2005) factors explain about a third of the
variation in bond risk premia and that the Ludvigson and Ng (2009) factors have additional pre-
dictive ability over the Cochrane and Piazzesi (2005) factors. The Nelson and Siegel (1987) factors
do not have any predictive ability above the Cochrane and Piazzesi (2005) factors, in line with
the finding of Cochrane and Piazzesi (2005) that the first three principal components of yields do
not have any predictive ability for the excess bond returns. The only-yields model has a similar
performance than the Nelson and Siegel (1987) model, which suggests that using a state-space
model with autocorrelated idiosyncratic components does not improve the predictive ability of the
yield curve factors. However, the macro-yields model with three factors explains about a third of
the variation on excess bond returns and, in particular, the slope and the curvature factors have
predictive ability above the Cochrane and Piazzesi (2005) factor. The only difference between the
macro-yields model with three yield curve factors and the only yields model is that the former uses
both yields and macroeconomic information to extract the yield curve factors. Thus the fact that
the macro-yields model with three factors has superior predictive ability for excess bond returns
means that macroeconomic information helps to better extract the yield curve factors. However,
the best performing model is the macro-yields model with four factors which explains 47% of the
bond premium, higher than the Cochrane and Piazzesi (2005) and the Ludvigson and Ng (2009)
factors jointly. If we use the full sample of data, from January 1970 to December 2009, we observe
a decline in the predictability of excess bond returns but the conclusions are similar, except for the
fact that the the predictive regressions using the macro-yield models with 4, 5 and 6 factors achieve
a similar adjusted R2.

To grasp further insight about the predictive ability of the macro-yields factors, we perform an
out-of-sample forecast exercise of excess bond returns. The out-of-sample prediction of excess bond
returns from the macro-yields model is as follows

Et(rxt+12) ≡ rxt+12|t = Π1(Γ̂
∗
|tF
∗
t+12|t) + Π2yt

it starts in 1964.
4The Ludvigson and Ng (2009) factors are downloaded from the personal webpage of Sydney Ludvigson and

available only up to December 2003.
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Table 7: Predictive Regression: January 1970–December 2003

Factors CP L S C M1 M2 M3 LN1 LN2 R
2

CP 1.00 0.31
(7.44)

LN -0.05 1.03 0.22
(-0.13) (3.10)

LN+CP 0.93 0.80 -0.01 0.41
(4.78) (3.66) (-0.03)

NS 0.34 -0.80 0.52 0.22
(1.31) (-3.35) (3.49)

CP + NS 1.00 0.00 0.00 0.00 0.30
(5.02) (0.00) (0.00) (0.00)

OY 0.23 -0.79 0.82 0.25
(0.89) (-3.23) (3.48)

CP + OY 0.87 -0.02 -0.10 0.25 0.31
(4.38) (-0.09) (-0.50) (0.98)

MY3 0.33 -1.15 0.82 0.31
(1.26) (-3.86) (2.26)

CP + MY3 0.65 0.05 -0.60 0.61 0.36
(4.01) (0.23) (-1.72) (1.64)

MY4 0.19 -1.03 1.17 -1.42 0.47
(0.79) (-3.78) (4.24) (-3.41)

CP +MY4 0.43 0.02 -0.68 0.99 -1.33 0.49
(3.58) (0.11) (-2.31) (3.42) (-3.14)

MY5 0.29 -0.77 0.76 -1.53 1.45 0.44
(1.33) (-3.58) (3.38) (-4.16) (2.71)

CP + MY5 0.59 0.10 -0.31 0.41 -1.40 1.31 0.47
(3.02) (0.43) (-1.27) (1.50) (-3.86) (2.71)

MY6 0.32 -0.74 0.69 -1.29 1.55 -0.92 0.43
(1.63) (-3.47) (3.06) (-3.46) (2.74) (-1.56)

CP + MY6 0.57 0.13 -0.30 0.34 -1.17 1.42 -0.78 0.46
(2.62) (0.62) (-1.22) (1.21) (-3.27) (2.69) (-1.34)

The table reports estimates from OLS regressions of average excess bond returns on lagged factors. The
dependent variable is the average excess log return on Treasury bonds. The first column report the type of
factors used as regressors. CP refers to the Cochrane and Piazzesi (2005) factor, LN refers to the Ludvigson
and Ng (2009) factors, NS to the Nelson and Siegel (1987) factors estimated as in Diebold and Li (2006), OY
refers to the only-yield model (a restricted version of the macro-yields model where only the yields are used to
extract the three yield curve factors and there are no additional macroeconomic factor). MY3, MY4, MY5 and
MY6 denote the macro-yields models with 3, 4, 5 and 6 factors. Newey and West (1987) corrected t-statistics
have lag order 18 months and are reported in parentheses. Coefficients that are statistically significant at the
10% or better level are highlighted in bold. A constant is always included in the regression.
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Table 8: Predictive Regression: January 1970–December 2009

Factors CP L S C M1 M2 M3 R
2

CP 1.00 0.22
(5.96)

NS 0.22 -0.66 0.31 0.14
(0.92) (-2.75) (2.10)

CP + NS 1.00 0.00 0.00 0.00 0.21
(4.23) (0.00) (0.00) (0.00)

OY 0.16 -0.66 0.45 0.15
(0.66) (-2.78) (2.13)

CP + OY 0.96 -0.01 -0.03 0.06 0.21
(4.25) (-0.04) (-0.15) (0.26)

MY3 0.39 -0.72 -0.01 0.16
(1.47) (-2.06) (-0.02)

CP + MY3 0.86 0.15 -0.14 -0.17 0.22
(5.17) (0.62) (-0.42) (-0.50)

MY4 -0.05 -0.90 0.82 -1.91 0.40
(-0.21) (-3.61) (2.91) (-4.18)

CP +MY4 0.45 -0.15 -0.59 0.68 -1.85 0.42
(3.86) (-0.66) (-2.39) (2.36) (-4.03)

MY5 0.08 -0.66 0.41 -2.03 1.12 0.38
(0.38) (-3.32) (2.17) (-6.16) (1.95)

CP + MY5 0.65 -0.05 -0.23 0.17 -1.92 1.03 0.41
(3.16) (-0.23) (-1.04) (0.78) (-5.90) (1.97)

MY6 0.18 -0.64 0.32 -1.92 1.40 -1.93 0.41
(1.15) (-3.34) (1.82) (-6.41) (2.46) (-2.62)

CP + MY6 0.60 0.06 -0.25 0.10 -1.80 1.30 -1.75 0.44
(2.71) (0.35) (-1.14) (0.46) (-6.74) (2.46) (-2.35)

The table reports estimates from OLS regressions of average excess bond returns on lagged factors.
The dependent variable is the average excess log return on Treasury bonds. The first column report
the type of factors used as regressors. CP refers to the Cochrane and Piazzesi (2005) factor, LN
refers to the Ludvigson and Ng (2009) factors, NS to the Nelson and Siegel (1987) factors estimated
as in Diebold and Li (2006), OY refers to the only-yield model (a restricted version of the macro-
yields model where only the yields are used to extract the three yield curve factors and there are
no additional macroeconomic factor). MY3, MY4, MY5 and MY6 denote the macro-yields models
with 3, 4, 5 and 6 factors. Newey and West (1987) corrected t-statistics have lag order 18 months
and are reported in parentheses. Coefficients that are statistically significant at the 10% or better
level are highlighted in bold. A constant is always included in the regression.
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Table 9: Out-of-sample predictive performance for excess returns

Evaluation 1985-2009

n CP MY3 MY4 MY5 MY6 OY

2 1.30 1.52 1.10 1.02 1.28 1.12
3 1.21 1.45 1.09 1.00 1.26 1.10
4 1.10 1.33 1.03 0.92 1.17 1.00
5 1.05 1.36 1.10 0.96 1.21 1.01

Evaluation 1985-2003

n CP MY3 MY4 MY5 MY6 OY

2 1.19 1.36 0.90 0.99 1.32 1.12
3 1.00 1.19 0.84 0.91 1.21 1.03
4 0.89 1.07 0.78 0.82 1.10 0.93
5 0.85 1.09 0.81 0.84 1.12 0.93

This table reports the Relative MSFE different speci-
fications of the macro-yields model with respect to the
constant expected returns benchmark where, apart
from an MA(12) error term, excess returns are unfore-
castable as in the expectations hypothesis. Results
refer to one-year-ahead out-of-sample forecast com-
parisons of n-period log excess bond returns, rx

(n)
t+12.

CP refers to the Cochrane and Piazzesi (2005) model
and OY to the only yields model. Bold values denote
the smallest RMSFE for each maturity.

where F ∗t+12|t is the 12-steps ahead forecasts made at time t and Γ̂∗|t is estimated using data up to
time t.

We compare the out-of-sample forecasting performance of different specifications of the macro-
yields models to the only-yields model and the Cochrane and Piazzesi (2005) factors. Table 9 con-
tains the RMSFE of the selected models with respect to the constant expected returns benchmark
where, apart from an MA(12) error term, excess returns are unforecastable as in the expectations
hypothesis. Results are reported for two evaluation periods: from January 1985 to December 2003
and from January 1985 to December 2009. The RMSFE show that the macro-yields model is the
best performing model. In particular, for the smaller evaluation sample, the macro-yields model
with four factors is the best performing model outperforming the constant excess bond return
benchmark for all the maturities. For the longest evaluation sample, we observe a general decline
in predictability of excess bond returns with the macro-yields model with five factors outperforming
all the other models and, for long maturities, also the benchmark. These results are in line with the
predictive regressions of excess bond returns and also with the out-of-sample forecast performance,
12 steps ahead, of the macro-yields model for the yields.
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