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Abstract

We study how commodity financialization affects trading behavior, prices, and welfare

through affecting risk sharing and price discovery in futures markets. Our analysis

highlights a supply channel through which the futures price feeds back into the later

spot price. This feedback effect tends to reduce price effi ciency but improve welfare.

Consistent with recent evidence, we show that financial traders either provide or de-

mand liquidity in the futures market, depending on the information environment, and

that commodity financialization reduces the futures price bias through broadening risk

sharing and injecting information into the market. Commodity financialization also

has important welfare implications.
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1 Introduction

Historically, futures market was introduced for commodity producers (such as farmers) and

demanders (such as manufacturers) to share later spot-price risks and control costs. Over the

past decade, particularly after the year of 2004, commodity futures have become a popular

asset to financial investors, such as hedge funds and commodity index traders. This process

has been referred to as the “financialization of commodity markets” (Basak and Pavlova,

2014; Cheng and Xiong, 2014). The fundamental role of futures market is to facilitate risk

sharing and price discovery. Economists and regulators are concerned about whether and

how financialization has affected the functioning of commodity futures markets.

According to the 2011 Report of the G20 Study Group on Commodities (p. 29), “(t)he

discussion centers around two related questions. First, does increased financial investment

alter demand for and supply of commodity futures in a way that moves prices away from

fundamentals and/or increase their volatility? And second, does financial investment in

commodity futures affect spot prices?” In addition, the existing empirical literature has

asked many other important questions. For instance, do financial traders provide liquidity

or demand liquidity in the futures market? How does the presence of more financial traders

affect the futures price biases (i.e., the deviations of the future price from the expected later

spot price)? In this paper, we develop a rational expectations equilibrium model to answer

these questions.

Our model features one commodity good (labeled as “wheat”) and two periods (t = 0

and 1). At date 1, there is a wheat spot market where consumers as commodity demanders

trade against commodity suppliers (labeled as “growers,”who represent commercial hedgers

in reality). The resulting spot price is determined by two shocks, a demand shock θ̃ built

in consumers’preference and a supply shock c̃ built in growers’production technology. At

date 0, the growers and K financial traders trade futures contracts, where financialization

is parameterized by the number K of financial traders active in the futures market. The

futures market features asymmetric information– growers as wheat producers are informed

of the supply shock c̃, while financial traders have diverse private signals about the demand

shock θ̃. Growers trade futures to hedge their wheat production and to speculate on their
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private information. Financial traders trade futures for speculation purposes.

Our analysis highlights a supply channel through which the futures price affects the later

spot price: a higher futures price induces growers to supply more commodity, which in turn

drives down the spot price through the spot market clearing mechanism. In our setting,

growers actively learn from the futures price to guide their real production decisions. In

effect, because both the futures contract and their production technology expose them to

the same source of risks, growers can effectively treat the futures price as their wheat selling

price in making production decisions. As a result, through affecting the futures price and

hence growers’commodity supply, financial investment in commodity futures can affect spot

prices. Thus, our analysis provides a positive answer to G20’s second question.

The supply channel also provides a natural setting for the “feedback effect” studied in

the finance literature, which refers to the phenomenon that the price of a traded asset affects

its cash flow (see Bond, Edmans, and Goldstein (2012) for a survey). In our setting, the

traded asset is the futures contract whose cash flow is the later spot price. Thus, through the

supply channel, the price of the futures contract naturally feeds back to its own cash flow.

In Section 7, we show that this feedback effect tends to reduce market effi ciency, which is a

central topic in financial economics and concerns how much the asset price reflects its cash

flow. Nonetheless, the feedback effect can benefit all agents of the economy, which highlights

the delicate link between market effi ciency and social welfare.

We then use our framework to examine various issues that have been of interests to the

empirical literature. First, we find that financial traders can either provide or demand liquid-

ity in the futures market, depending on the information environment. In addition, financial

traders may change faces in the process of financialization, for instance, they may switch

from liquidity providers to demanders as there are more of them in the futures market. These

results help to reconcile the mixed empirical evidence that financial traders both provide and

demand liquidity in commodity futures market. For instance, Moskowitz, Ooi, and Pedersen

(2012) argue that their finding is consistent with that financial traders as speculators provide

liquidity. By contrast, according to Kang, Rouwenhorst, and Tang (2014), financial traders

demand liquidity from hedgers in commodity futures market. Cheng, Kirilenko, and Xiong

(2014) document that financial traders can either provide or demand liquidity at different
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time periods. This evidence is broadly consitent with our theoretical analysis.

Second, we show that the futures market can either feature a normal backwardation

(i.e., a downward bias in futures price relative to the expected value of the later spot price)

or a contango (i.e., an upward bias in future price). When the average production cost

is relatively low, a normal backwardation ensues, and otherwise, a contango follows. We

then demonstrate that commodity financialization reduces the futures price bias through

two effects. The direct effect is that more financial traders in the futures market can share

the risk off-loaded by growers. The indirect effect is that more financial traders bring more

new information to the market, which, through the futures price, reduces the risks faced by

all market participants. Consistent with our finding, Hamilton and Wu (2014) have recently

documented that the risk premium in crude oil futures on average decreased since 2005.

Finally, our framework delivers normative implications and thus informs regulators of

who wins and who loses in the process of commodity financialization. Specifically, as more

financial traders come to the futures market, the welfare of commodity consumers increases,

while the welfare of each individual financial trader decreases. The welfare implication for

growers is ambiguous. On the one hand, more financial traders can share risks off-loaded by

the hedging activities of growers, thereby benefiting growers. On the other hand, commodity

financialization reduces the futures price bias, which lowers the trading gains that come from

growers’s speculation activities based on private information. The trade-off between these

two offsetting effects implies a non-monotone relation between growers’ welfare and the

number of financial traders in the futures market.

2 Related Literature

2.1 Literature on commodity financialization

So far, the literature on financialization of commodities is largely empirical and it docu-

ments the trading behavior of financial traders in futures markets and their pricing impact.1

The theoretical research is relatively scarce. Basak and Pavlova (2014) and Baker (2014)

1See Irwin and Sanders (2011) and Cheng and Xiong (2014) for excellent surveys.
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construct dynamic equilibrium models to study asset price dynamics. While their analyses

offer important insights, their models feature symmetric information, which is therefore not

suitable for our goal of analyzing how financialization affects price discovery in futures mar-

kets. In addition, we consider some dimensions that their models do not (such as welfare

implications) and their models consider some dimensions that we do not (such as return

dynamics), and therefore, our analysis complements theirs.

In a contemporaneous paper, Leclercq and Praz (2014) have also explored how the entry

of new speculators affects the supply of the commodity in a rational expectations equilibrium

model. Our model differs from and complements theirs in two important ways. First, in

Leclercq and Praz’s (2014) setup, the equilibrium futures price is equal to the exogenous

commodity production cost (due to an assumption of a linear cost technology) and com-

modity producers do not learn from the futures price, which largely limits the information

aggregation role of the futures price. In contrast, in our setup, the futures price aggregates

both demand and supply side information and commodity producers actively learn from as-

set prices to guide their real production decisions. This difference makes our model able to

characterize the role of the feedback effect in Section 7, which is not feasible in Leclercq and

Praz (2014). Second, our positive analysis has explored additional important topics stud-

ied in the existing empirical literature– for instance, whether financial traders provide or

demand liquidity, how commodity financialization affects futures price bias– while Leclercq

and Praz’s (2014) focus is on the average and volatility of spot prices.

In addition, Goldstein, Li, and Yang (2014) and Sockin and Xiong (2015) develop asym-

metric information models to explore the implications of the financialization of commodity

futures markets. Our paper and those studies complement each other in many important

dimensions. Goldstein, Li, and Yang (2014) emphasize that in the futures market, because

financial institutions are limited to trade in the futures contracts for speculation purposes,

while commodities producers trade the futures contracts mostly for hedging, these two groups

of traders they may respond to the same information in opposite directions. This can lead

to a reduction in price informativeness and an increase in the futures risk premium. By

contrast, in our setting, financial institutions and commodities producers observe different

information, and commodity financialization always reduces the futures price biases.
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Sockin and Xiong (2015) focus on information asymmetry in the spot market, and their

main theory insight is that a high spot price may further spur the commodity demand

through an informational channel, which may therefore fuel a short-term bubble in spot

prices. In contrast, our analysis focuses on information asymmetry in the futures market

and the real effect on spot prices is through a supply channel in our setting. Moreover, we

have provided both positive and normative analyses, while both Goldstein, Li, and Yang

(2014) and Sockin and Xiong (2015) mainly focus on pricing implications.

2.2 Literature on futures markets

The literature on futures market is classic and huge (see Section 1.1 of Acharya, Lochstoer

and Ramadorai (2013) for a brief literature review on this literature). This literature has de-

veloped theories of “hedging pressure”(Keynes, 1930; Hirshleifer, 1988, 1990) or “storage”

(Kaldor, 1939; Working, 1949) to explain futures prices. Notably, the literature has also

developed asymmetric information models on futures market (e.g., Grossman, 1977; Dan-

thine, 1978; Bray, 1981; Stein, 1987). However, because commodity financialization is just a

recent phenomenon, these models have focused on different research questions, for instance,

on whether the futures market is viable (Grossman, 1977), on whether the futures price is

fully revealing (Danthine, 1978; Bray, 1981), and on whether speculative trading can reduce

welfare (Stein, 1987).

Among these models, Stein (1987) is closest in terms of research topics. Stein (1987)

shows that introducing a new asset can harm welfare by generating price volatility. However,

he does not explore the general implications of financialization for risk sharing and price

discovery, such as the effect on the trading behavior of financial traders. Also, his model

features an endowment economy, while our setup has commodity production, which is crucial

for many of our results.

In terms of model setup, our model is closer to Danthine (1978). His main finding is that

the futures price provides a suffi cient statistics used by rational traders in formulating their

probability distributions. The futures price is not fully revealing in our setup, because we

have introduced two sources of uncertainty, similar to Bray (1981) and Goldstein and Yang

(2015). In addition, our analysis has focused on topics emphasized by the recent empirical
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literature on financialization of commodities.

3 The Model

We consider an asymmetric information model similar to Grossman (1977), Danthine (1978),

and Stein (1987) to study the implications of commodity financialization. There are two con-

sumption goods– a commodity good (call it wheat) and a numeraire good (call it money)–

and two tradable assets, a futures contract on the commodity and a risk-free asset (with

the net risk-free rate normalized at zero). Time lasts two periods: t = 0 and 1. At date 0,

K ∈ N financial investors, such as hedge funds or commodity index traders, trade futures

contracts against J ∈ N commodity producers (call them growers). Here we use parameter

K to capture financialization of commodities, i.e., the process of commodity financialization

corresponds to an increase in K. Growers make their investment on the commodity produc-

tion at date 0, which in turn determines the commodity supply at the date-1 spot market. At

date 1, J ∈ N consumers purchase commodity from the spot market, and all agents consume

and exit the economy.2 The timeline of the economy is summarized in Figure 1. We next

describe in detail the behavior and information structure of each type of agents.

3.1 Consumers

There are J > 0 identical consumers. At date 1, a representative consumer derives utility

from the two consumption goods according to the following utility function:

UC (y,m) = −1

2
y2 + θ̃y +m, (1)

where y is the wheat consumption, m is the left-over money, and θ̃ denotes a preference

shock which follows a normal distribution with a mean of θ̄ ∈ R and a precision (the in-

verse of variance) of τ θ > 0 (i.e., θ̃ ∼ N
(
θ̄, 1/τ θ

)
).3 When making consumption choices,

consumers know the preference shock θ̃ and the spot price ṽ, which differs from Sockin and

Xiong (2015) whose analysis emphasizes the information inference problem in commodity

2For simplicity, we have assumed that the number of consumers and the number of growers are the same.
This assumption is just a normalization without loss of generality.

3Throughout the paper, we use a tilde (~) to signify a random variable, where a bar denotes its mean
and τ denotes its precision. That is, for a random variable z̃, we have z̄ ≡ E (z̃) and τz = 1

V ar(z̃) .
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demanders’decisions.

Preference shock θ̃ can also be interpreted as a technology shock. For instance, suppose

that consumers do not directly consume wheat and they have to transform wheat into bread

according to a concave technology, B = −1
2
y2 + θ̃y, where B is the bread output and y

is the wheat input. Then preference (1) follows directly. We are agonistic about both

interpretations. The key is that θ̃ represents demand shocks in the commodity spot market.

We also follow Stein (1987) and assume that consumers do not trade in the futures market

back at date 0.

The behavior of consumers generates the commodity demand in the spot market. Their

effective role in the model is to provide a parsimonious device that determines the wheat

spot price. Specifically, let ṽ denote the spot price of wheat and normalize each consumer’s

initial endowment at 0. Then, a representative consumer’s problem is

max
y

(
−1

2
y2 + θ̃y − ṽy

)
,

which yields the following wheat demand function of each consumer:

y = θ̃ − ṽ. (2)

The aggregate wheat demand is J × y = J
(
θ̃ − ṽ

)
. The spot price ṽ is random and its

distribution will be endogenously derived in subsequent sections.

The essential role of consumers in our model is to provide the wheat demand function (2)

to determine the spot price ṽ.4 In this sense, consumers may be better interpreted as those

parties in reality who deal with physical commodities but do not participate in the futures

market (e.g., some airline companies) because of market frictions such as limited knowledge

about the operation of futures markets.

3.2 Growers

There are J > 0 identical growers who only consume the numeraire good. We make growers

risk averse to introduce their hedging motives. Specifically, a representative grower has a

constant absolute risk aversion (CARA) utility with a risk aversion coeffi cient of α > 0; that

4Specifically, growers’information set does not include the later spot price ṽ and thus their decisions on
wheat production x does not depend on ṽ (see equation (9)). It is consumers’wheat demand that brings ṽ
into the market clearing condition of the spot market.
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is, his utility function is UG (W ) = −e−αW , where W is his final wealth at the end of date

1. Growers make decisions at date 0 and these decisions are twofold. First, they decide how

much wheat to produce, which will in turn determine the wheat supply at the date-1 spot

market. Second, they decide how many futures contracts to invest in the futures market

to hedge their wheat production and to speculate on their private information that will be

introduced shortly.

Consider a representative grower. If he decides to produce x units of wheat, he needs to

pay a production cost5

C (x) = c̃x+
1

2
x2, (3)

where the cost shock c̃ ∼ N (c̄, 1/τ c) (with τ c > 0) is independent of the demand shock

θ̃. The cost function (3) is convex in x. The cost shock c̃ is growers’private information.

We introduce this shock for two reasons. First, it is empirically relevant that commodity

producers indeed have valuable private information when they trade futures. Second, we

will assume that financial traders possess private information on θ̃, and by doing so, we will

have a structure that financial traders and growers possess different information, so that the

interactions between these two dimensional information can endogenously make financial

traders either provide or demand liquidity in equilibrium.

The representative grower trades futures contracts. The payoff on the futures contract is

the wheat spot price ṽ at date 1. Each unit of futures contract is traded at an endogenous

price p̃. This price is observable to all market participants and it contains valuable infor-

mation. Thus, the grower’s information set is IG ≡ {c̃, p̃}. His decision is to choose wheat

production x and futures investment dG (and investment in the risk-free asset) to maximize

E
(
−e−αW̃G

∣∣∣ c̃, p̃) (4)

subject to

W̃G = ṽx− c̃x− 1

2
x2 + (ṽ − p̃) dG, (5)

where we have normalized grower’s initial endowment as 0.

5The cost function C (x) can be alternatively interpreted as an inventory cost. For instance, suppose that
the date-0 wheat spot price is v0 and carrying an inventory of x units of wheat incurs a cost of c̃x + 1

2x
2.

Then the total cost of storing x units of wheat is C (x) = (c̃+ v0)x+ 1
2x

2, which is essentially equation (3)
with a renormalization of the mean of c̃. However, this interpretation is made in a partial equilibrium setting
as the date-0 spot price v0 is exogenous. We can fully endogenize this spot price as well at the expense of
introducing one extra source of uncertainty, because otherwise the prices of futures and current spot price
will combine to fully reveal the shocks (see Grossman, 1977).
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To better connect our setup to previous models, we have followed the literature (e.g.,

Danthine, 1978) and interpreted growers as commodity suppliers. In effect, a more precise

interpretation of growers should be commercial hedgers, because as become clear later, their

futures demand contains a hedging component (see equation (12)). In this sense, growers

can be either commodity providers or commodity demanders. Specifically, if x < 0, then

in equation (5) the term ṽx − c̃x − 1
2
x2 can be interpreted as the utility from consuming

|x| units of wheat, and so growers are wheat demanders. We can also extend the model to

have multiple growers who receive different cost shocks, so that in equilibrium some growers

supply wheat while others demand wheat. We abstract from this extension for simplicity.

3.3 Financial traders

There are K ≥ 0 financial traders who derive utility only from their consumption of the

numeraire good at date 1. They have a CARA utility with a risk aversion coeffi cient of γ > 0.

Financial traders trade futures only for speculation, not for hedging any real production of

commodities. To capture the fact that financial traders can bring new information to the

market, we assume that they have private information about the demand shock θ̃ in the

later spot market (recall that growers have private information about the supply shock c̃).

In addition, we specify that financial traders have diverse information to implement the

notion that as more financial traders come to the market, they bring more information in

aggregate. That is, at date 0, prior to trading, a financial trader k receives a private signal

s̃k = θ̃ + ε̃k with ε̃k ∼ N (0, 1/τ ε) and τ ε ≥ 0, (6)

where ε̃k is independent of each other and of other random variables. Parameter τ ε controls

the quality of the private signals. We allow the possibility of τ ε = 0 which corresponds to

the case in which financial traders do not have any private information at all.

Financial traders also observe the futures price p̃, and thus financial trader k has an

information set IF,k ≡ {s̃k, p̃}. His decision problem is to choose investments in futures and

the risk-free asset to maximize the conditional expected utility. Specifically, let dF,k be the

futures demand of financial trader k, and his decision problem is

max
dF,k

E
[
−e−γ(ṽ−p̃)dF,k

∣∣ s̃k, p̃] , (7)

where we have also normalized the initial endowment of financial traders to be zero. For
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simplicity, we have assumed that financial traders do not trade other assets such as stocks.

As long as the payoffs of other assets are independent of futures payoff, our results will not

change even if more assets are introduced into the economy. However, if the payoffs are

correlated across assets, financial traders may trade futures also for hedging motives, which

will complicate the analysis significantly. We do not expect this modification changes the

main results of the paper.

4 Equilibrium Characterization

An equilibrium consists of two subequilibria: the date-1 spot market equilibrium and the

date-0 futures market equilibrium. At date 1, consumers maximize their preferences, which

yields the wheat demand function and in turn clears the wheat supply provided by growers at

the prevailing spot price ṽ. Because the wheat demand depends on the demand shock θ̃ and

the wheat supply depends on the cost shock c̃ and futures price p̃, the spot price ṽ will be a

function of
(
θ̃, c̃, p̃

)
. At date 0, we consider a competitive rational expectations equilibrium

(REE) in the futures market. Given that growers have private information c̃ and financial

traders have private information {s̃k}Kk=1, the futures price p̃ will depend on (c̃, s̃1, ..., s̃K),

leading to the futures price function p (c̃, s̃1, ..., s̃K). Growers and financial traders extract

information from observing p̃ as well as their own private information to maximize their

expected utilities at the prevailing price.

Definition 1 An equilibrium consists of a spot price function, v
(
θ̃, c̃, p̃

)
: R3 → R, a futures

price function, p (c̃, s̃1, ..., s̃K) : RK+1 → R, a commodity production policy, x (c̃, p̃) : R2 → R,

a trading strategy of growers, dG (c̃, p̃) : R2 → R, and a trading strategy of financial traders,

dF (s̃k, p̃) : R2 → R, such that:

(a) at date 1, the spot market clears, i.e., J ×
[
θ̃ − v

(
θ̃, c̃, p̃

)]
= J × x (c̃, p̃) ⇐⇒ θ̃ −

v
(
θ̃, c̃, p̃

)
= x (c̃, p̃) ;

(b) at date 0, given that ṽ is defined by v
(
θ̃, c̃, p̃

)
, (b1) x (c̃, p̃) and dG (c̃, p̃) solve for growers’

problem given by (4) and (5); (b2) dF (s̃k, p̃) solves financial traders’problem (7); and (b3)

the futures market clears, i.e., J × dG (c̃, p̃) +
∑K

k=1
dF (s̃k, p̃) = 0.
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We next construct an equilibrium in which the price functions v
(
θ̃, c̃, p̃

)
and p (c̃, s̃1, ..., s̃K)

are linear. As standard in the literature, we solve the equilibrium backward from date 1.

4.1 Date-1 spot market equilibrium

The wheat demand is given by equation (2), y = θ̃ − ṽ. The wheat supply is determined by

growers’date-0 investment decisions. Solving growers’problem (given by (4) and (5)) yields

the following first-order conditions:

x+ dG =
E (ṽ|IG)− p̃
αV ar (ṽ|IG)

, (8)

x = p̃− c̃. (9)

The above expressions are similar to those in Danthine (1978). The intuition is as follows.

Given both real investment x and financial investment dG expose a grower to the same risk

source ṽ, his overall exposure to this risk is given by the standard demand function of a

CARA-investor, as expressed in (8). Expression (9) says that after controlling the total

risk given by (8), growers essentially treat p̃ as the wheat selling price when making real

production decisions. Aggregating (9) across all growers delivers the aggregate wheat supply

at the spot market: J×x = J (p̃− c̃). By the market clearing condition y = x and equations

(2) and (9), we can solve the spot price ṽ, which is given by the following lemma.

Lemma 1 The date-1 spot price ṽ is given by

ṽ = θ̃ + c̃− p̃. (10)

This lemma formally establishes a supply channel through which the date-0 futures price

p̃ affects the date-1 spot price ṽ. Equation (10) therefore provides a positive answer to the

following question raised in the 2011 G20 Report on Commodities, “does financial investment

in commodity futures affect spot prices?”That is, financial traders’futures investments will

alter the behavior of p̃, which in turn changes the later spot price ṽ through equation (10).

In other words, the futures market is not just a side show, and it has consequences for the

real side. This phenomenon is labeled as the “feedback effect”in the finance literature, i.e.,

the price p̃ of a traded asset feeds back to its own cash flows ṽ (recall that for a futures

contract, its cash flow is the later spot price).6

6See Bond, Edmans, and Goldstein (2012) for a survey on the feedback effect literature.
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Lemma 1 has two additional interesting implications. First, the feedback effect identified

in our setting tends to weaken the correlation between p̃ and ṽ, Cov (p̃, ṽ). This correlation

is usually viewed as a measure for informational effi ciency of the financial market, i.e., how

well the market price p̃ reflects its cash flows ṽ. We will explore this implication later in

Section 7. Second, if we hold constant fundamental shocks θ̃ and c̃, the noise terms (ε̃1, ..., ε̃2)

in financial traders’private signals can cause the futures price p̃ and the later spot price ṽ

to move in opposite directions. That is, Cov
(
p̃, ṽ|θ̃, c̃

)
< 0. This means that under those

realization paths without fundamental changes in the supply and demand sides, we may

observe a negative correlation between futures and spot prices driven by financial activities.

4.2 Date-0 futures market equilibrium

We conjecture the following futures price function:

p̃ = p0 + psS̃ + pcc̃ with S̃ ≡
1

K

∑K

k=1
s̃k, (11)

where p0, pc, and ps are undetermined coeffi cients. Next, we compute the demand function

of futures market participants and use the market clearing condition to construct such a

linear REE price function.

By (8) and (9), growers’demand for the futures contract is

dG (c̃, p̃) =
E (ṽ|IG)− p̃
αV ar (ṽ|IG)︸ ︷︷ ︸
speculation

− (p̃− c̃)︸ ︷︷ ︸
hedging

. (12)

Thus, growers trade futures for two reasons. First, they hedge their real commodity produc-

tion of x = p̃ − c̃. Second, because they also have private information on their production

cost c̃, they speculate on this private information. Given that growers’ information set is

IG ≡ {c̃, p̃}, they can use the price function (11) to back out signal S̃ (provided ps 6= 0),

which provides information about the demand component θ̃ in the later spot price ṽ. For-

mally, growers’conditional forecast is

E (ṽ|IG) = E
(
θ̃
∣∣∣ S̃)+ c̃− p̃ =

τ θθ̄ +Kτ εS̃

τ θ +Kτ ε
+ c̃− p̃, (13)

V ar (ṽ|IG) = V ar
(
θ̃
∣∣∣ S̃) =

1

τ θ +Kτ ε
. (14)

Solving financial trader k’s problem in (7), we can compute his futures demand as follows:

dF (s̃k, p̃) =
E (ṽ|IF,k)− p̃
γV ar (ṽ|IF,k)

. (15)
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Clearly, financial trader k trades only for speculating on information IF,k ≡ {s̃k, p̃}. Provided

pc 6= 0 (which is true in equilibrium), the price p̃ is equivalent to the following signal in

predicting ṽ:

s̃p ≡
p̃− p0

pc
= ρS̃ + c̃ with ρ ≡ ps

pc
. (16)

Using Bayes’law, we can compute his forecast as follows:

V ar (ṽ|s̃k, p̃) =
(K − 1) (τ c + τ θ +Kτ ε) ρ

2 − 2Kτ ε (K − 1) ρ+K2τ ε
τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)

, (17)

E (ṽ|s̃k, p̃) = θ̄ + c̄+ βF,p
(
s̃p − ρθ̄ − c̄

)
+ βF,s

(
s̃k − θ̄

)
− p̃, (18)

where

βF,p =
Kτ ε (τ c (K − 1) ρ+K (τ θ + τ ε))

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
, (19)

and βF,s =
Kτ ε (− (τ θ +Kτ ε) ρ+Kτ ε)

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
. (20)

Using the market clearing condition,

J × dG (c̃, p̃) +
∑K

k=1
dF (s̃k, p̃) = 0, (21)

and the expressions of the demand functions, and comparing coeffi cients, we can establish the

following proposition regarding the existence and uniqueness of REE in the date-0 futures

market.

Proposition 1 There exists a linear REE where the futures price p̃ and the spot price ṽ are

given respectively by

p̃ = p0 + psS̃ + pcc̃,

ṽ = θ̃ + c̃− p̃,

where S̃ ≡ 1
K

∑K

k=1
s̃k and the coeffi cients p0, ps ≥ 0, and pc > 0 are given in the appendix.

The equilibrium is characterized by ρ ≡ ps
pc
∈
[

Kτε
τθ+Kτε+α

, Kτε
τθ+Kτε

]
, with ρ being determined by

ρ =
J Kτε

α
+ K

γ
Kτε[−(τθ+Kτε)ρ+Kτε]

(K−1)(τc+τθ+Kτε)ρ2−2Kτε(K−1)ρ+K2τε

J
(
τθ+Kτε

α
+ 1
) . (22)

Moreover, if growers’risk aversion coeffi cient α is suffi ciently small, then the equilibrium is

unique within the linear price function class.
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5 Trading and Pricing Implications

5.1 Liquidity providers and demanders

The empirical literature on commodity financialization finds that financial traders can either

provide liquidity or demand liquidity in the futures market (see Cheng and Xiong, 2014;

Cheng, Kirilenko, and Xiong, 2014; Kang, Rouwenhorst, and Tang, 2014). Our model is

useful for understanding this phenomenon. In our analysis, we follow Vayanos and Wang

(2012) and define liquidity demanders and providers as follows.

Definition 2 For trader type t ∈ {G,F}, if Cov (dt (It) , p̃) > 0, then type-t traders are

liquidity demanders; that is, they buy the asset when the price goes up and sell the asset

when the price goes down. Otherwise, if Cov (dt (It) , p̃) < 0, then type-t traders are liquidity

providers.

Intuitively, if a trader demands liquidity, then it is likely that he initiates the trade. Thus,

if he wants to buy the asset, he has to offer a price high enough to attract the other side

to engage in the trade. Similarly, if he wants to sell the asset, then he has to sell it at a

suffi ciently low price to convince the other side to buy in the asset. As a result, a liquidity

demander’s equilibrium order flow tends to be positively correlated with the equilibrium asset

price. By the same token, a liquidity suppler’s order flow tends to be negatively correlated

with the equilibrium price. Given that financial traders trade against growers in our economy,

it must be the case that when financial traders provide liquidity, growers demand liquidity,

and vice versa.

In our model, the general equilibrium feature endogenously makes financial traders admit

either the role of liquidity demanders or of suppliers, depending on the information environ-

ment. Loosely speaking, financial traders tend to demand liquidity when the precision τ ε of

their private information is high and/or when the precision τ c of the cost shock is high, and

they tend to supply liquidity when the opposite is true. The intuition is as follows. First,

financial traders speculate on their private information s̃k, and so if their information is very

precise (i.e., if τ ε is very high), they will trade aggressively, and as a result, their order flows

will more likely move prices in the same direction. That is, financial traders demand liq-
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uidity when τ ε is high. Second, growers trade futures both for hedging and for speculation,

where the strength of their trading motives is captured by the variance 1
τc
of the cost shock

c̃ in their production technology. When 1
τc
is high (or when τ c is small), growers’trading

incentives are strong, and it is more likely for them to demand liquidity, which implies that

in equilibrium financial traders have to provide liquidity on the other side. As a consequence,

financial traders tends to provide liquidity when τ c is small.

Proposition 2 Financial traders tend to supply liquidity when τ ε or τ c are small, and

they tend to demand liquidity when τ c is large. That is, for a given K < ∞, we have

Cov (dF (p̃, s̃k) , p̃) < 0 for small values of τ ε or τ c, and Cov (dF (p̃, s̃k) , p̃) > 0 for large

values of τ c.

Figure 2 provides an illustration for Proposition 2 under the parameter configuration

τ θ = α = γ = 1, J = K = 20, θ̄ = 5, and c̄ = 1. We use “+” to indicate the region of

(τ ε, τ c) for which financial traders demand liquidity in equilibrium, while the blank region

indicates the values of of (τ ε, τ c) for which financial traders supply liquidity. Indeed, we find

that financial traders tend to demand liquidity when either τ ε or τ c is high and that they

tend to provide liquidity when the opposite is true. Thus, our analysis shows that financial

traders can either demand or provide liquidity depending on the information environment,

even when financial traders always behave as speculators in futures market (that is, their

demand function (15) does not have a hedging component). This contrasts with the literature

which typically relies on financial traders’hedging need, say due to portfolio concerns, to

make them become liquidity demanders (e.g., Cheng, Kirilenko, and Xiong, 2014; Kang,

Rouwenhorst, and Tang, 2014).

Figure 3 conducts a different exercise. Here, we fix the values of (τ ε, τ c) and examine

how the number K of financial traders affects their liquidity provision/demanding behavior.

The general patterns depend on the comparison between τ c and τ θ. Specifically, in Panel

A, we choose τ c = 2 and τ θ = 1, while in Panel B, we choose τ c = 0.5 and τ θ = 1. In

both panels, the other parameters are fixed at τ ε = 0.1, α = γ = 1, J = 20, θ̄ = 5, and

c̄ = 1. We find that in Panel A, financial traders start to be liquidity providers as K is small,

and then they become liquidity demanders when K becomes large. In contrast, in Panel B,

15



financial traders keep providing liquidity independent of the values of K. Note that Panel A

of Figure 3 suggests that as more financial traders come to the futures market, it is possible

that financial traders may switch from providing liquidity to demanding liquidity.

The result of Figure 3 can be understood as follows. Given that the qualitative difference

between Panels A and B happens when K is large, we consider the limiting case of K →∞.

In the limit, the average signal S̃ ≡ 1
K

∑K

k=1
s̃k → θ̃, and thus growers perfectly know θ̃ and

c̃. As a result, their trade must force the futures price p̃ to fully reveal ṽ, that is, p̃ = ṽ = θ̃+c̃
2
,

where the second equality follows from equation (10). Since the price is close to be fully

revealing, the speculation component in dG (c̃, p̃) is close to dF (s̃k, p̃) except for the different

risk aversion coeffi cients. Thus, the market clearing condition implies∑K

k=1
dF (s̃k, p̃) ∝ p̃− c̃ =

θ̃ + c̃

2
− c̃ =

θ̃ − c̃
2

.

As a consequence, we have

Cov
(∑K

k=1
dF (s̃k, p̃) , p̃

)
∝ Cov

(
θ̃ − c̃, θ̃ + c̃

)
=

1

τ θ
− 1

τ c
,

and thus, Cov
(∑K

k=1
dF (s̃k, p̃) , p̃

)
> 0 if and only if τ c > τ θ.

5.2 Futures price biases

The literature has looked at “futures price bias,”that is, the deviation of the futures price

from the expectation of the later spot price, E (ṽ − p̃). A downward bias in the futures

price is termed “normal backwardation,”while an upward bias in the futures price is termed

“contango.”A major branch of literature on futures pricing has attributed bias to hedging

pressures of commodity producers. Hamilton and Wu (2014) document that the futures

price bias in crude oil futures on average decreased since 2005. Our model sheds light on

how commodity financialization affects the average futures price, the average spot price, and

the resulting futures price bias.

In the appendix, we show that the futures price bias E (ṽ − p̃) is given as follows:

E (ṽ − p̃) =
θ̄ − c̄

2A+ 1
, (23)

where

A ≡ 1

αV ar
(
θ̃
∣∣∣ S̃) +

K

J

1

γV ar (ṽ|s̃k, p̃)
. (24)

Parameter A is a normalized capacity of the market to absorb risks. To see this, note
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that by the demand functions (12) and (15) and the market clearing condition (21), the

futures price can be understood as determined by J CARA-investors with risk aversion α

and K CARA-investors with risk aversion γ, while the effective supply is J (p̃− c̃), which

is the aggregate hedging pressure from growers. Thus, in (24), the conditional variances

V ar
(
θ̃
∣∣∣ S̃) and V ar (ṽ|s̃k, p̃) are the payoff risks faced by growers and financial traders,

respectively. We then adjust the payoff risks by their respective risk aversions to capture

the effect of preferences. The second term is also adjusted by a ratio of K
J
to capture the

fact that there are K financial traders while the total futures supply is proportional to the

number J of growers.

By equations (23) and (24), we have E (ṽ − p̃) > 0 if and only if c̄ < θ̄. The intuition is

as follows. When the average cost shock c̄ is low, growers tend to produce more wheat and

thus they will short more futures to hedge their wheat production, thereby depressing the

futures price. But this result is non-trivial, because c̃ affects both the futures price p̃ and

the later spot price ṽ in the same direction (see Proposition 1). The key observation is that

c̃ affects p̃ more than it affects ṽ. Fama and French (1987) used 21 commodities to test the

futures risk premium hypothesis, and indeed, they found that some markets feature “normal

backwardation,”while others feature “contango.”According to our theory, this difference

can be explained by the relative sizes of the average supply shock and the average demand

shock.

Increasing the number K of financial traders tends to decrease futures price bias, that is,
∂|E(ṽ−p̃)|

∂K
< 0, which is consistent with the empirical evidence provided by Hamilton and Wu

(2014). This is because the market’s aggregate risk bearing capacity A may increase with K

through two channels. First, the newly added financial traders directly share the risk that is

loaded off from the hedging needs of growers. Second, since financial traders can bring more

information into the market, other existing market participants also learn more information

about the futures payoff from reading the futures price, which effectively reduces the payoff

risks faced by the market.7

7These two channels nicely echo the remark made by the G20 Study Group in its report on commodities
(2011, p. 6): “Greater (financial) investor participation can be expected to enhance the functioning of
markets by adding depth and liquidity. This should help producers and consumers to hedge price fluctuation
risks. Greater participation of financial investors can also aid the development of long-term commodity
futures, which would facilitate risk management and planning over longer time horizons. More generally,
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Similarly, we can show

E (p̃) = c̄+
A

2A+ 1

(
θ̄ − c̄

)
and E (ṽ) = θ̄ − A

2A+ 1

(
θ̄ − c̄

)
, (25)

and thus, parameter K also affects the average futures price E (p̃) and the average spot price

E (ṽ) through its effect on the capacity A of the market to absorb risks. When θ̄ > c̄, growers

need to hedge a lot of their wheat production so that the effective futures supply is high,

the average futures price E (p̃) increases with the risk absorption capacity A. Due to the

increased average futures price, the average spot price E (ṽ) = θ̄ + c̄− E (p̃) decreases with

A. When θ̄ < c̄, the opposite is true.

Proposition 3 (a) There is a downward bias (i.e., normal backwardation) in futures price

relative to the expected value of the later spot price if and only if c̄ < θ̄. That is, E (ṽ − p̃) > 0

if and only if c̄ < θ̄.

(b) Suppose the risk aversion α of growers is suffi ciently small.

(b1) Commodity financialization decreases futures price bias. That is, ∂|E(ṽ−p̃)|
∂K

< 0.

(b2) If c̄ < θ̄, then commodity financialization increases average futures price and decreases

average spot price. If c̄ > θ̄, then the opposite is true. That is, if c̄ < θ̄, then ∂E(p̃)
∂K

> 0 and
∂E(ṽ)
∂K

< 0, and if c̄ > θ̄, then ∂E(p̃)
∂K

< 0 and ∂E(ṽ)
∂K

> 0.

Figure 4 graphically illustrates Proposition 3. In the top two panels, we set θ̄ = 5 and

c̄ = 1, while in the bottom two panels, we set θ̄ = 1 and c̄ = 5. In all panels, the other

parameters are: τ ε = 0.1, τ c = τ θ = α = γ = 1, and J = 20. Consistent with Proposition 3,

we observe that in Panel A1, there is a downward futures price bias and it declines with the

number of the number K of financial traders. In Panel B1, there is an upward bias, and its

absolute value also declines with K. In addition, in Panel A2 where θ̄ > c̄, the average spot

price E (ṽ) decreases with K, while the average futures price E (p̃) increases with K, while

in Panel B2 where θ̄ < c̄, E (ṽ) increases with K and E (p̃) decreases with K.

Panel B1 offers a possible explanation for the recent behavior of the crude oil market.

Since June 2014, the crude oil price has kept declining from more than $110 per barrel down

to about $30 per barrel in Feburary 2016, a more than 70% plunge. Many observers believe

participation of well-informed financial investors may enhance the quality of price signals.”
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that this falling price is predominantly a supply effect.8 As we know, it takes time to search

and develop oil fields. It is plausible that back to 2007—2008, commodity financialization

has pushed oil futures price way too high, with its peak close to $140 per barrel, and oil

producers may have started to develop too many oil fields in which they would not invest

otherwise. A few years later, these oil fields are fully developed and the new resulting oil

wells generate excess oil supply, which is responsible for the price decline in the current oil

market.

6 Welfare Implications

6.1 Welfare computations

We use the date-0 ex ante expected utility to represent the welfare of each group of agents.

For consumers, we insert their date-1 wheat demand function (2) into their preference ex-

pression (1) and use the equilibrium spot price (10) to obtain consumers’date-1 indirect

utility as follows:

ŨC,1 =
1

2
(p̃− c̃)2 . (26)

Note that 1
2

(p̃− c̃)2 is also growers’ equilibrium profits from producing wheat. So equa-

tion (26) says that after the spot market clears, consumers’welfare coincides with growers’

profits. Taking expectation over ŨC,1 yields consumers’date-0 expected utility (or certainty

equivalent given that their preference is linear in money consumption and thus they are risk

neutral) as follows:

CEC,0 ≡ E
(
ŨC,1

)
=

1

2
[E (p̃− c̃)]2 +

1

2
V ar (p̃− c̃) . (27)

For financial traders, we can compute their indirect utility after trading as

C̃EF,1 =
[E (ṽ − p̃|IF,k)]2

2γV ar (ṽ|IF,k)
, (28)

which is essentially the trading gains captured by financial traders in the futures market

conditional on the realizations of the futures price p̃ and the private signal s̃k. Using an

argument similar to Grossman and Stiglitz (1980), we can show that the date-0 certainty

8For instance, in speaking to Wall Street Journal, Christine Lagarde, managing director of the Interna-
tional Monetary Fund, says: “What we do first is try to analyze whether it’s a supply or demand effect. And
in the present circumstances, it’s predominantly supply. It’s 80% supply, 20% demand.” (“How the IMF’s
Christine Lagarde Sees the World’s Economic Hot Spots,”Wall Street Journal, 2014 December 9).
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equivalent before the realizations of p̃ and s̃k is

CEF,0 ≡ −1

γ
log
[
E
(
e−γC̃EF,1

)]
=

[E (ṽ − p̃)]2

2γV ar (ṽ − p̃) +
1

2γ
log

[
V ar (ṽ − p̃)
V ar (ṽ|IF,k)

]
. (29)

This expression is intuitive. The first term is the certainty equivalent that a trader can obtain

without making demands dependent on the equilibrium price or any private information,

where the numerator [E (ṽ − p̃)]2 captures the potential gains due to the deviations between

the futures contract’s price p̃ and its payoff ṽ and the denominator 2γV ar (ṽ − p̃) captures the

risk in trading. The second term in (29) represents the additional benefit from trading with

superior information, where V ar (ṽ − p̃) is the benchmark risk when there is no information,

while V ar (ṽ|IF,k) is the reduced risk due to the additional information in the futures price

p̃ and the private signal s̃k.

Similarly, we can compute the indirect utility of growers after trading and production as

follows:

C̃EG,1 =
[E (ṽ − p̃|IG)]2

2αV ar (ṽ|IG)
+

1

2
(p̃− c̃)2 , (30)

where the first term captures the trading gains from participating in the futures market, while

the second term is the profit from producing wheat (recall that growers take the futures price

p̃ as the effective selling price of wheat). The date-0 ex ante certainty equivalent before the

realizations of p̃ and c̃ is

CEG,0 ≡ − 1

α
log
[
E
(
e−αC̃EG,1

)]
=

1

α

(
Q0 −

1

2
Q′1 (I + 2ΣQ2)−1 ΣQ1

)
+

1

2α
log |I + 2ΣQ2| , (31)

where I is the 2×2 identity matrix, Σ is covariance matrix of (E (ṽ − p̃|IG) , p̃− c̃)′, and

Q2 =

 τθ+Kτε
2

0

0 α
2

 , Q1 =

 (τ θ +Kτ ε)E (ṽ − p̃)

αE (p̃− c̃)

 ,
and Q0 =

(τ θ +Kτ ε) [E (ṽ − p̃)]2

2
+
α

2
[E (p̃− c̃)]2 .

Again, in (31), the first term captures the certainty equivalent that a grower can obtain

without making decisions based on private information c̃ and the futures price p̃, while the

second term relates to the extra benefit from speculating on superior information.
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6.2 Symmetric information economy: The role of risk sharing

We now set τ ε = 0, so that the presence of more financial traders in the futures market

simply adds more market participants without adding new information to the market. In

this case, financial traders can infer the private information c̃ owned by growers, so that the

futures market features symmetric information. Since no information on θ̃ is brought into

the market, the variations in the futures price p̃ are fully driven by the variations in the cost

c̃ of the wheat production technology. In this limiting economy, we can compute the welfare

expressions analytically, which are given in the appendix.

Consumers’ welfare increases with the number K of financial traders. Note that by

equation (26), after the spot market clears, consumers’welfare coincides with growers’profits.

When there are more financial traders in the futures market, growers can hedge better their

wheat production, which effectively improves their profit. Specifically, recall that the futures

price p̃ is also the effective selling price of wheat in growers’production decision. When the

cost c̃ is low, growers tend to produce more, but by Proposition 1), p̃ tends to be low as well

(i.e., pc = ∂p̃
∂c̃
> 0), which lowers growers’revenue. As more financial traders come to the

futures market, their trading causes the price to be less senstive to c̃ (i.e., ∂pc
∂K

< 0). This

reduced price impact of c̃ increases growers’profits and hence consumers’welfare by (26).

The welfare of each financial trader decreases with the number K of financial traders in

the futures market for two reasons. First, as more financial traders participate in the market,

they bring down the futures price bias [E (ṽ − p̃)]2 by Proposition 3, and thus, the first term

in (29), which corresponds to the trading gains without information, will decrease. Second,

the second term in (29) also decreases with K, because more financial traders, who have the

same information as growers, also bring the price p̃ closer to its payoff ṽ, which effectively

reduces V ar (ṽ − p̃).

The effect of commodity financialization on the welfare of growers is ambiguous: increas-

ing K will benefit growers if and only if the number of financial traders is suffi ciently large.

This is in contrast to our conventional wisdom that expanding the traders base would ben-

efit growers (as hedgers) through more risk sharing in the market. We can demonstrate the

intuition most clearly by examining equation (30), which is the indirect utility C̃EG,1 post
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trading and production. We also set τ c = ∞ so that c̃ = c̄. By so doing, we essentially

remove the randomness in the futures price p̃, and thus C̃EG,1 = CEG,0. We can show

that increasing K affects the two terms of (30), [E(ṽ−p̃|IG)]2

2αV ar(ṽ|IG)
and 1

2
(p̃− c̃)2, in opposite direc-

tions: it increases 1
2

(p̃− c̃)2 but decreases [E(ṽ−p̃|IG)]2

2αV ar(ṽ|IG)
. First, when there are more financial

traders, they can share the risk loaded offby growers, thereby increasing the profit 1
2

(p̃− c̃)2

made by growers (see the discussion on consumers’welfare). Second, the presence of more

financial traders also lowers the futures price bias, which therefore reduces the trading gains
[E(ṽ−p̃|IG)]2

2αV ar(ṽ|IG)
. This second negative effect dominates when there are not many financial traders

in the market and so the futures bias is initially large.

Interestingly, we can also show that the dominance of the negative effect on growers’

welfare only arises in our production economy in which growers make real investment deci-

sions. In contrast, in an endowment economy in which growers are given with an exogenous

amount of commodities, increasing the number of financial traders always benefits growers.

That is, the negative effect is stronger in our production economy. This is because when the

futures price p̃ increases due to the added financial traders, growers also supply more wheat

in the later spot price, which therefore also endogenously changes the payoff on the futures

contract, making the decrease in the futures price bias particularly severe.

Proposition 4 Suppose τ ε = 0 so that the futures market features symmetric information.

(a) Increasing the number K of financial traders benefits consumers and harms financial

traders. That is, ∂CEC,0
∂K

> 0 and ∂CEF,0
∂K

< 0.

(b) If, in addition τ c =∞ and c̄ 6= θ̄, growers’welfare improves with financialization if and

only if K
γ
> J

α
. That is, if τ c =∞ and c̄ 6= θ̄, then ∂CEG,0

∂K
> 0 if and only if K

γ
> J

α
.

6.3 Asymmetric information economy: The role of price discovery

Now we allow τ ε > 0, so that the futures market participation of financial traders also

brings new information about the demand shock θ̃ into the market. We find that this new

feature mainly changes the implication for growers’welfare. Because of the complexity of the

welfare expressions, it is diffi cult to establish analytical results. We therefore use a numerical

example to illustrate our analysis. We have tried numerous parameter configurations and
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found that the pattern we identified is quite robust.

In Figure 5, we choose parameter values similar to those in previous figures. That is,

τ ε = 0.1, τ c = τ θ = α = γ = 1, J = 20, θ̄ = 5, and c̄ = 1. The interesting observation

concerns the welfare of growers in Panel A. Recall that in Proposition 4, when τ ε = 0,

growers’welfare CEG,0 first decreases and then increases with K. Now when τ ε > 0, we find

that CEG,0 first decreases, then increases, but finally decreases again with K. This suggests

that the negative welfare effect on the trading gains is particularly strong either when K is

suffi ciently small or when K is suffi ciently large. The intuition for the case of small K is still

the same as before, that is, when there are not many financial traders in the market, the

futures bias can be large, leaving a large room for it to decline. Now, when τ ε > 0, recall

that financial traders bring information to the market. Thus, when there are many financial

traders who infer information from prices, a newly added financial trader will cause all these

traders to reform their forecast, and after aggregating their trading, the price can reveal a lot

more information. This price discovery process will hurt the growers’trading gains through

a channel similar to the Hirshleifer effect (1971). That is, more financial traders bring more

information about the payoff on the futures payoff, thereby destroying the potential trading

gains that can be captured by market participants.

Panels B and C of Figure 5 suggest that commodity financialization still benefits con-

sumers and harms financial traders. The aforementioned price discovery effect also adversely

affects financial traders. However, since when τ ε = 0, the welfare of each financial trader

has already declined with K, the extra negative effect due to price discovery only strength-

ens this pattern and will not change the direction. Note that here it is the welfare of each

individual financial trader that decreases with K. As a group, financial traders’aggregate

welfare K × CEF,0 actually first increases and then decreases with K.

7 The Feedback Effect, Market Effi ciency, and Welfare

In the model presented in Section 3, growers make production decisions after observing

the futures price p̃, which establishes a feedback effect of futures price on the later spot

price through the supply channel (i.e., Lemma 1). In this section, we consider an extension
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with two types of growers to examine the role of this feedback effect in determining market

effi ciency and agents’welfare.

7.1 The setup and equilibrium of the extended economy

Let us divide the J growers into two groups: Group A which includes µJ growers (with

µ ∈ [0, 1]) and Group B which includes (1− µ) J growers. Growers in Group A behave in

the same way as in our baseline model– i.e., they have access to the futures price p̃ when they

make production decisions xA.9 By contrast, growers in Group B have to make production

decisions xB before the futures market clears, and thus the wheat supply from this group of

growers does not depend on the futures price p̃. That is, the futures price p̃ affects the later

spot price ṽ only through the supply of A-growers. In this way, the fraction µ of A-growers

controls the strength of the feedback effect of p̃ on ṽ.

The other features remain the same as in Section 3. Specifically, at date 0, all growers’

productions incur a cost according to equation (3) and they know c̃ when making production

decisions. Growers trade futures contracts to maximize preference given by equation (4).

Financial trader k observes the private signal s̃k and trades futures contracts to maximize

(7). At date 1, consumers observe the demand shock θ̃, choose wheat consumption to

maximize (1), which forms the wheat demand function in the spot market .

In this extended economy, the futures price function still takes the form of (11). However,

the spot price ṽ will be different from equation (10), as B-growers’wheat supply function

differs from that of A-growers. Nonetheless, ṽ is still normally distributed. The decision

problems of consumers, financial traders, and A-growers are the same as in the baseline

model. That is, consumers’wheat demand function y
(
θ̃, ṽ
)
is given by equation (2). Finan-

cial trader k’s futures demand function dF (s̃k, p̃) is given by (15). The wheat supply xA (c̃, p̃)

from A-growers is given by equation (9), while their futures demand dA (c̃, p̃) is given by equa-

tion (12). Note that the expressions of conditional moments in (12) and (15)– i.e., E (ṽ|IG),

V ar (ṽ|IG), E (ṽ|IF,k), and V ar (ṽ|IF,k)– need to be recomputed appropriately because the

equilibrium spot price ṽ will be different in the presence of B-growers.

Now let us examine the decision problems of the new type of agents, B-growers. They

9So, the letter A refers to “adjustable”commodity supply after the futures market clears.
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make two sequential decisions at date 0: first, they decide on the wheat quantity xB to

produce given private information {c̃}, and second, they then decide on the quantity dB of

futures contracts to hold in the futures market given information {c̃, p̃}. We work out these

problems backward by first solving the futures investment problem.

In the futures market, B-growers take the wheat production xB as given and choose

futures investment dB (and investment in the risk-free asset) to maximize

E
(
−e−α[ṽxB−c̃xB−

1
2
x2B+(ṽ−p̃)dB]

∣∣∣ c̃, p̃) . (32)

Solving the above problem delivers

dB (c̃, p̃) =
E (ṽ|c̃, p̃)− p̃
αV ar (ṽ|c̃, p̃)︸ ︷︷ ︸
speculation

− xB︸︷︷︸
hedging

. (33)

Comparing (33) with (12), we find that B-growers’demand for futures differ from that of

A-growers only to the extent of their optimal wheat production that needs to be hedged.

Inserting the futures demand dB (c̃, p̃) into the objective function (32) yields the indirect

value function of B-growers at the futures market. Taking expectation with respect to

the futures price p̃ conditional on c̃ delivers the objective function of B-growers when they

choose the optimal wheat production, xB. In the appendix, we show that the optimal wheat

production xB linearly depends on c̃, i.e.,

xB = b0 − bcc̃, (34)

where b0 and bc are endogenous constants.

The futures market clearing condition is

µJ × dA (c̃, p̃) + (1− µ) J × dB (c̃, p̃) +
∑K

k=1
dF (s̃k, p̃) = 0. (35)

This equation, together with the expressions of the demand functions, determines the futures

price function.

At date 1, the spot market clearing condition is

µJ × xA (c̃, p̃) + (1− µ) J × xB (c̃) = J × y
(
θ̃, ṽ
)
, (36)

where the left-hand side is the total wheat supply from A-growers and B-growers, while the

right-hand side is the aggregate wheat demand from consumers. Using (2), (9), and (34),

we can compute

ṽ = θ̃ + vcc̃− µp̃− v0, (37)
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where

vc ≡ µ+ (1− µ) bc and v0 ≡ (1− µ) b0. (38)

Equation (37) verifies that in equilibrium, the spot price ṽ is indeed normally distributed.

In the appendix, we prove the following characterization proposition.

Proposition 5 In the linear REE of the extended economy, the futures price p̃ and the spot

price ṽ take the form of

p̃ = p0 + psS̃ + pcc̃,

ṽ = θ̃ + vcc̃− µp̃− v0,

with vc ≡ µ+ (1− µ) bc and v0 ≡ (1− µ) b0, where p0, ps, pc, b0, and bc are determined by the

following system

p0 =
J
[
τθ θ̄−(τθ+Kτε)v0

α
− (1− µ) b0

]
+K

(1−ρβF,p−βF,s)θ̄+(vc−βF,p)c̄−v0
γV ar(ṽ|s̃k,p̃)

J
[

(τθ+Kτε)(µ+1)
α

+ µ
]

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

, (39)

ps =
J Kτε

α
+K

ρβF,p+βF,s
γV ar(ṽ|s̃k,p̃)

J
[

(τθ+Kτε)(µ+1)
α

+ µ
]

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

, (40)

pc =
J
(

(τθ+Kτε)vc
α

+ [µ+ (1− µ) bc]
)

+K
βF,p

γV ar(ṽ|s̃k,p̃)

J
[

(τθ+Kτε)(µ+1)
α

+ µ
]

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

, (41)

b0 =
p0 + psθ̄ − h0Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2
V ar(ṽ−p̃|c̃)

, (42)

bc =
−pc + 1 + hcCov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2
V ar(ṽ−p̃|c̃)

, (43)

where

ρ =
ps
pc
,

βF,p = Kτ ε
τ c (K − 1) ρ+Kvc (τ θ + τ ε)

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
,

βF,s = Kτ ε
−vc (τ θ +Kτ ε) ρ+Kτ ε

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
,

V ar (ṽ|s̃k, p̃) =
(K − 1) (τ c + τ θv

2
c +Kτ εv

2
c ) ρ

2 − 2Kτ εvc (K − 1) ρ+K2τ ε
τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)

,
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V ar (p̃|c̃) = p2
s

(
1

τ θ
+

1

Kτ ε

)
,

V ar (ṽ − p̃|c̃) =
1

τ θ +Kτ ε
+

(
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

)2(
1

τ θ
+

1

Kτ ε

)
,

Cov (p̃, E (ṽ − p̃|p̃, c̃) |c̃) = ps

(
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

)(
1

τ θ
+

1

Kτ ε

)
,

h0 = [1− (µ+ 1) ps] θ̄ − v0 − (µ+ 1) p0,

hc = vc − (µ+ 1) pc.

Given the complexity of the system, our subsequent analysis relies on numerical analysis.

To compute the equilibrium, we first use equations (40), (41), and (43) to solve the three

unknowns ps, pc, and bc. After we obtain these three unknowns, we then use equations (39)

and (42) to form a linear system in terms of p0 and b0.

7.2 Implications for market effi ciency and welfare

7.2.1 The feedback effect and market effi ciency

Market effi ciency, also labeled as price effi ciency and informational effi ciency, refers to the

extent to which the prevailing market price reflects the future value of the traded asset. In

our case, the traded asset is the futures contract, and its price and cash flow are p̃ and ṽ,

respectively. The correlation coeffi cient Corr (ṽ, p̃) between the futures and spot prices is

a measure for market effi ciency. Regulators and academics often view promoting market

effi ciency as one desirable goal. The idea is that an informationally effi cient market can

effectively guide resource allocation– i.e., a high market price of an asset indicates that the

underlying business of the asset is in high demand, which in turn attracts more resources and

benefits the entire society (Fama and Miller, 1972). We use Figures 6 and 7 to respectively

examine the implications of the feedback effect for market effi ciency and welfare.

In Figure 6, we plot Corr (ṽ, p̃) against the fraction µ of A-growers. The other parameter

values are: τ ε = 0.1, τ c = τ θ = α = γ = θ̄ = c̄ = 1 and J = K = 20.10 We find

that Corr (ṽ, p̃) monotonically decreases with µ and thus in our setting, the feedback effect

weakens market effi ciency. The intuition lies in equation (37). As µ increases, the A-group

10The result in Figure 6 is robust to the choice of parameter values.
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has more growers whose wheat supply depends positively on the futures price p̃. So, seeing

a high p̃, these A-growers will supply a lot more wheat in the spot market, driving down the

spot price ṽ, and vice versa. Through this supply channel, an increase in µ tends to reduce

the correlation between p̃ and ṽ.

The result presented in Figure 6 differs from those in other feedback effect settings. For

instance, suppose that the traded asset is the stock on a firm. The firm manager can learn

from its stock price to guide real decisions, which establishes a feedback effect from the stock

price to its cash flows. More specifically, the firm may be uncertain about the future demand

for its product, which depends on consumers’preference. The stock price incorporates such

demand side information through consumers’ investment in the firm’s stocks, so that the

firm can learn from its own stock price. In this alternative setting, the feedback effect tends

to strengthen market effi ciency: a high stock price signifies a strong demand for the firm’s

product, which in turn guides the firm to make more informed decisions, thereby indeed

improving its fundamentals.

Figure 6 also makes new empirical predictions on market effi ciency based on the strength

of the feedback effect driven by the supply channel. For instance, for a fixed horizon, say, one

year, the agriculture industry is far more flexible in adjusting supply than the oil industry.

We therefore expect that the feedback effect is stronger for agricultural firms than for oil

firms. Thus, according to Figure 6, other things being equal, the stock prices of agricultural

companies should be less informationally effi cient than the stock prices of oil firms.

7.2.2 Feedback effect and welfare

We use Figure 7 to plot various welfare variables against µ for the same parameter value

in Figure 6. Variables CEA, CEB, CEC , and CEF represent the date-0 certainty equiva-

lents before realizations of any random variables for A-growers, B-growers, consumers, and

financial traders, respectively (this is similar to equations (27), (29), and (31) in the baseline

model). The exact expressions are given in the appendix. In Panel C, we also report the

weighted average of CEA and CEB,

CEG ≡ µCEA + (1− µ)CEB,
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as a proxy for the welfare of an average grower without knowing the type. In Panel F, we

report an aggregate welfare measure, which is the sum of the certainty equivalents of all

agents, i.e.,

Agg.Wel. ≡ µJ × CEA + (1− µ) J × CEB + J × CEC +K × CEF .

We find that the reduced informational effi ciency (due to the feedback effect) in Figure 6

does not necessarily translate into a lower welfare in Figure 7, which highlights the delicate

link between informational effi ciency and welfare. Specifically, we compare two extreme

economies: (1) µ = 0 vs. (2) µ = 1. In the first economy, all growers are in the B-group, so

that the feedback effect is shut down. In the second economy, all growers are A-growers, and

thus the feedback effect is the strongest. Panels C, D, and E reveal that for the parameter

configuration in Figure 7, all agents– growers, consumers, and financial traders– are better

off in the second economy with the feedback effect. Of course, in Panel F, the aggregate

welfare in the second economy is higher as well.

The intuition for this welfare result is as follows. In the second economy with only A-

growers, growers can make more informed investment decisions by observing the futures price

p̃ that conveys information about the wheat demand shock θ̃ in the later spot market, and

thus their welfare increases from this more informed production decision. This is simply

Blackwell’s (1951) theorem that the ex ante expected utility of a single decision maker under

a finer information set is weakly higher than under a coarser information set. Panel C of

Figure 7 suggests that the partial equilibrium intuition of Blackwell’s (1951) theorem can

hold in our general equilibrium setting.

Consumers also partly enjoy the benefit of the more informed productions because they

are now served better by commodity producers. For financial traders, their benefit comes

from trading against more uninformed trading in the second economy. Specifically, since

A-growers can adjust their production when trading the futures contracts, their production

is more responsive to the cost shock c̃ than the production of B-growers (more formally,

bc < 1), which in turn means that A-growers hedge more in the futures market than B-

growers. As a result, there is more hedging-motivated trading in the futures market when

the economy is populated by A-growers only than by B-growers only. This benefits financial

traders who speculate in the financial market and gain at the expense of uninformed trading.
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8 Conclusion

In the past decade, there is a sharp increase in the inflow of financial investors into com-

modity futures markets, which is labelled as the financialization of commodities. In this

paper, we develop a model to study the implications of this phenomenon for trading be-

havior, asset prices, and welfare through the lens of risk sharing and price discovery. Our

analysis highlights a supply channel through which the futures price affects the commodity

spot price, which establishes the real effect of financial activities in the commodity futures

market. Financial traders as speculators can either provide liquidity to or demand liquidity

from other futures market participants such as commercial hedgers, depending on the in-

formation environment. Commodity financialization helps to reduce futures price bias, not

only because financial traders help to share risk, but also because they bring new information

to the market, which reduces the risk faced by all market participants. Commodity finan-

cialization generally harms financial traders and benefits the final end consumers. Unlike

the conventional wisdom that argues that commercial hedgers benefit from the presence of

more market participants, commercial hedgers can actually lose in the process of commodity

financialization, because more financial traders active in the futures market also reduces the

trading gains of commercial hedgers through bringing down the futures price bias.
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Appendix

Proof of Proposition 1

In order to get equation (22) determining ρ, we first plug all the conditional moments into the

demand functions of each type of traders, then plug the expressed demand function into the

market clearing condition, to write the equilibrium price p̃ as functions of
(
c̃, S̃
)
, and finally

compare compare coeffi cients. Specifically, in the aggregate order flow, information about c̃

is brought by growers, and S̃ is brought by growers and financial traders. We compute the

coeffi cient on c̃ in the aggregate order flow as J
[

1

αV ar( θ̃|S̃)
+ 1

]
and the coeffi cient on S̃ is

J Kτε
α

+K
βF,s

γV ar(ṽ|s̃k,p̃) . Thus, we have:

ρ =
ps
pc

=
J Kτε

α
+K

βF,s
γV ar(ṽ|s̃k,p̃)

J

[
1

αV ar( θ̃|S̃)
+ 1

] . (A1)

Plugging the expressions of βF,s and V ar (ṽ|s̃k, p̃) into the above expression yields (22).

Examining equation (22), we find that when ρ = 0, the RHS is positive, and that when

ρ→∞, the RHS is finite. Thus, by the intermediate value theorem, there exists a solution

ρ ∈ (0,∞) to equation (22). In effect, we can further narrow down the range of ρ as[
Kτε

τθ+Kτε+α
, Kτε
τθ+Kτε

]
. To see this, suppose ρ > Kτε

τθ+Kτε
, so that βF,s < 0. Then, by equation

(22), we must have ρ ≤ J Kτε
α

J

(
1

αV ar(θ̃|S̃)
+1

) =
Kτε
α

τθ+Kτε
α

+1
= Kτε

τθ+Kτε+α
. A contradiction. Thus,

we must have ρ ≤ Kτε
τθ+Kτε

and βF,s ≥ 0. Accordingly, by equation (22), we have ρ ≥
J Kτε

α

J

(
1

αV ar(θ̃|S̃)
+1

) = Kτε
τθ+Kτε+α

.

Next, we establish the uniqueness of the equilibrium when α is suffi ciently small. Note

that only
βF,s

V ar(ṽ|s̃k,p̃) depends on ρ in the RHS of (A1). By the expressions of βF,s and

V ar (ṽ|s̃k, p̃), we have
∂

∂ρ

βF,s
V ar (ṽ|s̃k, p̃)

=
∂

∂ρ

Kτ ε (− (τ θ +Kτ ε) ρ+Kτ ε)

(K − 1) (τ c + τ θ +Kτ ε) ρ2 − 2Kτ ε (K − 1) ρ+K2τ ε

= Kτ ε

 − (τ θ +Kτ ε) ((K − 1) (τ c + τ θ +Kτ ε) ρ
2 − 2Kτ ε (K − 1) ρ+K2τ ε)

− (− (τ θ +Kτ ε) ρ+Kτ ε) (2 (K − 1) (τ c + τ θ +Kτ ε) ρ− 2Kτ ε (K − 1))


((K − 1) (τ c + τ θ +Kτ ε) ρ2 − 2Kτ ε (K − 1) ρ+K2τ ε)

2 .
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The numerator of the above expression is quadratic and it is downward sloping for ρ ≤
Kτε

τθ+Kτε
. In addition, this quadratic numerator is negative at ρ = Kτε

τθ+Kτε
. Note that in

equilibrium, ρ ∈
(

Kτε
τθ+Kτε+α

, Kτε
τθ+Kτε

)
, and thus, when α is suffi ciently small, ∂

∂ρ

βF,s
V ar(ṽ|s̃k,p̃) < 0

for all ρ ∈
[

Kτε
τθ+Kτε+α

, Kτε
τθ+Kτε

]
. As a result, the RHS of (A1) is downward sloping in ρ, while

its RHS is upward sloping. Therefore, uniqueness is established.

Finally, using the market clearing condition, we can compute the expressions of p0, ps

and pc as follows:

p0 =
J τθ θ̄

α
+K

(1−ρβF,p−βF,s)θ̄+(1−βF,p)c̄
γV ar(ṽ|s̃k,p̃)

J
(

2(τθ+Kτε)
α

+ 1
)

+ 2K
γV ar(ṽ|s̃k,p̃)

,

ps =
J Kτε

α
+

K(βF,pρ+βF,s)
γV ar(ṽ|s̃k,p̃)

J
(

2(τθ+Kτε)
α

+ 1
)

+ 2K
γV ar(ṽ|s̃k,p̃)

,

pc =
J
(
τθ+Kτε

α
+ 1
)

+
KβF,p

γV ar(ṽ|s̃k,p̃)

J
(

2(τθ+Kτε)
α

+ 1
)

+ 2K
γV ar(ṽ|s̃k,p̃)

.

Note that ps ≥ 0 and pc > 0 because J > 0, K ≥ 0 and both βF,p and βF,s are non-negative.

Proof of Proposition 2

We prove Corr (dF , p̃) < 0 for small values of τ ε or τ c by considering two limiting economies.

First, for any given τ c ∈ [0,∞), when τ ε → 0, we have Corr (dF , p̃) → −1. To see this, by

setting τ ε = 0, we can use Proposition 1 to show

p̃ =
τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

θ̄ +
τ θ

(
J
α

+ K
γ

)
+ J

2τ θ

(
J
α

+ K
γ

)
+ J

c̃,

dF (s̃k, p̃) =
E (ṽ − p̃|s̃k, p̃)
γV ar (ṽ|s̃k, p̃)

∝ p̃− c̃ =
τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

(
θ̄ − c̃

)
.

Thus, as long as V ar (c̃) > 0, we have Corr (p̃− c̃, p̃) = −1. Second, for any given τ ε > 0,

when τ c → 0, we also have Corr (dF , p̃)→ −1. Note that when τ c → 0, we have V ar (c̃)→

∞, and thus the variations in dF (s̃k, p̃) and p̃ are primarily driven by variations in c̃. Again,

by Proposition 1, we can show that as long as τ ε > 0, the coeffi cient pc on c̃ in the price p̃

is given by

pc =
J
(
τθ+Kτε

α
+ 1
)

+ K
γV ar(ṽ|s̃k,p̃)

J
(

2(τθ+Kτε)
α

+ 1
)

+ 2K
γV ar(ṽ|s̃k,p̃)

∈ (0, 1)
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and the coeffi cient of c̃ in dF (s̃k, p̃), it is proportional to

1− 2pc = − J

J
(

2(τθ+Kτε)
α

+ 1
)

+ 2K
γV ar(ṽ|s̃k,p̃)

< 0.

Thus, Corr (dF , p̃)→ −1 as τ c → 0 for a given τ ε > 0.

We prove Corr (dF , p̃) > 0 for large values of τ c by considering a limiting economy of

τ c →∞. Setting τ c →∞ in Proposition 1, we can show

p̃ =

(
J
α

+ K
γ

)
τ θθ̄ +

(
J
α

+ K
γ

)
(τ θ +Kτ ε) c̄+ Jc̄+

(
J
α

+ K
γ

)
Kτ εS̃

J + 2
(
J
α

+ K
γ

)
(τ θ +Kτ ε)

,

and dF ∝ p̃− c̄. As a result, we have Corr (dF , p̃) = 1.

Proof of Proposition 3

By the demand functions (12) and (15) and the market clearing condition (21), we can show

v̄ − p̄ =
J (p̄− c̄)

J

αV ar(θ̃|S̃)
+ K

γV ar(ṽ|s̃k,p̃)
=
p̄− c̄
A

, (A2)

where A is given by (24) and v̄ = E (ṽ) and p̄ = E (p̃). Then, we use the expression of ṽ in

(10) to obtain

v̄ = θ̄ + c̄− p̄. (A3)

From equations (A2) and (A3), we can solve

p̄ = c̄+
A

2A+ 1

(
θ̄ − c̄

)
,

v̄ = θ̄ − A

2A+ 1

(
θ̄ − c̄

)
,

v̄ − p̄ =
θ̄ − c̄

2A+ 1
.

Clearly, v̄ − p̄ > 0 if and only if θ̄ > c̄.

Also, K affects p̄ and v̄ through affecting A. Given the expressions of V ar
(
θ̃
∣∣∣ S̃) and

V ar (ṽ|s̃k, p̃) in (14) and (17), we can express A as follows:

A =
τ θ +Kτ ε

α
+
K

J

τ c (K − 1) (τ θ +Kτ ε) ρ
2 +K2τ ε (τ θ + τ ε)

γ [(K − 1) (τ c + τ θ +Kτ ε) ρ2 − 2Kτ ε (K − 1) ρ+K2τ ε]
.

Suppose τ ε > 0. Then, when α is small, the derivative ∂A
∂K
is mainly driven by the first term,

which increases with K. That is, ∂A
∂K
≈ τε

α
> 0. This effect occurs through the information

effect on growers’trading. If τ ε = 0, then,

A =
τ θ
α

+
K

J

τ θ
γ
,

and still, increasing K will increase A directly. This effect occurs through the effect of
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expanding the traders population. Therefore, independent of the value of τ ε, A increases

with K for small levels of α. All the other results follow immediately.

Proof of Proposition 4

By Proposition 1, we can show that when τ ε = 0, we have

p̃ =
τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

θ̄ +
τ θ

(
J
α

+ K
γ

)
+ J

2τ θ

(
J
α

+ K
γ

)
+ J

c̃,

p̃− c̃ =
τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

(
θ̄ − c̃

)
.

Thus, we can compute

V ar (p̃− c̃) =

 τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

2

1

τ c
, (A4)

[E (p̃− c̃)]2 =

 τ θ

(
J
α

+ K
γ

)
2τ θ

(
J
α

+ K
γ

)
+ J

2 (
θ̄ − c̄

)2
. (A5)

It is clear that both [E (p̃− c̃)]2 and V ar (p̃− c̃) increase with K.

Given the expression of CEC,0 in (27), we know that
∂CEC,0
∂K

> 0.

We can also show that

C̃EF,1 =
1

2γτ θ
(p̃− c̃)2

(
J

J
α

+ K
γ

)2

⇒

CEF,0 =
1

2γ
log

1 + 2

 Jτ θ√
2τ θ

1

2τ θ

(
J
α

+ K
γ

)
+ J

2

1

τ c



+
1

γ

(
Jτθ√
2τθ

1

2τθ( Jα+K
γ )+J

)2 (
θ̄ − c̄

)2

1 + 2

(
Jτθ√
2τθ

1

2τθ( Jα+K
γ )+J

)2
1
τc

.

As K increases, both the first term and the second term of CEF,0 decrease. Thus, CEF,0

decreases with K.

For growers, we can show

C̃EG,1 =
1

2
(p̃− c̃)2

 1

ατ θ

(
J

J
α

+ K
γ

)2

+ 1

⇒
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CEG,0 =
1

2α
log

1 + α

 1

ατ θ

(
J

J
α

+ K
γ

)2

+ 1

V ar (p̃− c̃)



+
1

2

[
1
ατθ

(
J

J
α

+K
γ

)2

+ 1

]

1 + α

[
1
ατθ

(
J

J
α

+K
γ

)2

+ 1

]
V ar (p̃− c̃)

[E (p̃− c̃)]2 .

Now suppose τ c =∞ and θ̄ 6= c̄. Then, the first term in CEG,0 vanishes by (A4), and then

combined with (A5), direct computation shows ∂CEG,0
∂K

> 0⇔ K
γ
> J

α
.

Proof of Proposition 5

We first derive the conditions determining p0, ps, and pc, by examining the futures market.

Growers have information set {c̃, p̃}. Thus, they can back out signal S̃ from the price function

(11). Using the expression of ṽ in (37), we can compute

V ar (ṽ|c̃, p̃) =
1

τ θ +Kτ ε
,

E (ṽ − p̃|c̃, p̃) =
τ θθ̄ +Kτ εS̃

τ θ +Kτ ε
+ vcc̃− µp̃− v0 − p̃.

Inserting the above two expressions into (12) and (33), we obtain the demand functions of

A-growers and of B-growers, respectively, as follows:

dA (c̃, p̃) =
τ θθ̄ +Kτ εS̃ + (τ θ +Kτ ε) (vcc̃− µp̃− v0 − p̃)

α
− (p̃− c̃) , (A6)

dB (c̃, p̃) =
τ θθ̄ +Kτ εS̃ + (τ θ +Kτ ε) (vcc̃− µp̃− v0 − p̃)

α
− (b0 − bcc̃) , (A7)

where in (A7) we have replaced xB with equation (34).

Financial trader k has information set {s̃k, p̃}. Price p̃ is still equivalent to the signal s̃p
in (16). Using Bayes’law, we can compute the conditional moments as follows:

E (ṽ|s̃k, p̃) = θ̄ + vcc̄+ βF,p
(
s̃p − ρθ̄ − c̄

)
+ βF,s

(
s̃k − θ̄

)
− µp̃− v0,

V ar (ṽ|s̃k, p̃) =
(K − 1) (τ c + τ θv

2
c +Kτ εv

2
c ) ρ

2 − 2Kτ εvc (K − 1) ρ+K2τ ε
τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)

,

where

βF,p = Kτ ε
τ c (K − 1) ρ+Kvc (τ θ + τ ε)

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
,

βF,s = Kτ ε
−vc (τ θ +Kτ ε) ρ+Kτ ε

τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)
.
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Inserting these equations into (15) delivers the expression of dF (s̃k, p̃),

dF (s̃k, p̃) =

(
1− ρβF,p − βF,s

)
θ̄ +

(
vc − βF,p

)
c̄− v0 + ρβF,pS̃ + βF,pc̃+ βF,ss̃k − (µ+ 1) p̃

γV ar (ṽ|s̃k, p̃)
.

(A8)

We then plug demand functions (A6), (A7), and (A8) into the market clearing condition

(35) and compute

p̃ =
J
[
τθ θ̄−(τθ+Kτε)v0

α
− (1− µ) b0

]
+K

(1−ρβF,p−βF,s)θ̄+(vc−βF,p)c̄−v0
γV ar(ṽ|s̃k,p̃)

J
(

(τθ+Kτε)(µ+1)
α

+ µ
)

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

+
J Kτε

α
+K

ρβF,p+βF,s
γV ar(ṽ|s̃k,p̃)

J
(

(τθ+Kτε)(µ+1)
α

+ µ
)

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

S̃

+
J
(

(τθ+Kτε)vc
α

+ [µ+ (1− µ) bc]
)

+K
βF,p

γV ar(ṽ|s̃k,p̃)

J
(

(τθ+Kτε)(µ+1)
α

+ µ
)

+ K(µ+1)
γV ar(ṽ|s̃k,p̃)

c̃.

Comparing with the conjectured price function (11), we have equations (39)—(41) in Propo-

sition 5.

Next we compute the production decision of B-growers to generate equations (42) and

(43) in Proposition 5. Inserting the demand function (33) into B-growers’objective function

yields the indirect utility after trading as follows:

UB,1 (c̃, p̃) = − exp

(
− [E (ṽ − p̃|c̃, p̃)]2

2V ar (ṽ|c̃, p̃) − α
[
p̃xB −

(
c̃xB +

1

2
x2
B

)])
.

The exponent in UB,1 (c̃, p̃) is a quadratic form in p̃, which is normally distributed conditional

on c̃. By the moment generating function of a non-central Chi square distribution, we can

compute the expected utility of B-growers as follows:

UB,1 (c̃) = −

√
V ar (ṽ − p̃|p̃, c̃)
V ar (ṽ − p̃|c̃) exp

(
−αC̃EB,1

)
(A9)

where

C̃EB,1 = −1

2

[
1 + αV ar (p̃|c̃)− α [Cov (p̃, E (ṽ − p̃|p̃, c̃) |c̃)]2

V ar (ṽ − p̃|c̃)

]
x2
B

+

[
p0 + psθ̄ −

h0Cov (p̃, E (ṽ − p̃|p̃, c̃) |c̃)
V ar (ṽ − p̃|c̃) −

(
−pc + 1 +

hcCov (p̃, E (ṽ − p̃|p̃, c̃) |c̃)
V ar (ṽ − p̃|c̃)

)
c̃

]
xB

+
[E (ṽ − p̃|c̃)]2

2αV ar (ṽ − p̃|c̃) , (A10)
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with

V ar (ṽ − p̃|p̃, c̃) = V ar
(
θ̃|S̃
)

=
1

τ θ +Kτ ε
,

V ar (ṽ − p̃|c̃) =
1

τ θ +Kτ ε
+

(
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

)2(
1

τ θ
+

1

Kτ ε

)
,

V ar (p̃|c̃) = p2
s

(
1

τ θ
+

1

Kτ ε

)
,

Cov (p̃, E (ṽ − p̃|p̃, c̃) |c̃) = ps

(
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

)(
1

τ θ
+

1

Kτ ε

)
,

E (ṽ − p̃|c̃) = h0 + hcc̃,

h0 = [1− (µ+ 1) ps] θ̄ − v0 − (µ+ 1) p0,

hc = vc − (µ+ 1) pc.

Thus, B-growers’ optimal production decision is determined by maximizing C̃EB,1 in

(A10). The first-order condition yields

xB =
p0 + psθ̄ − h0Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2
V ar(ṽ−p̃|c̃)

−

(
−pc + 1 + hcCov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)
1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2

V ar(ṽ−p̃|c̃)

c̃. (A11)

Comparing (A11) with the conjectured strategy (34) leads to equations (42) and (43) in

Proposition 5. Also note that the second-order condition of maximizing C̃EB,1 is always

satisfied by Cauchy—Schwarz inequality.

Expressions of Welfare Variables in the Extended Economy in Sec-

tion 7

Consumers. Inserting the demand function (2) into consumers’objective function (1) and

taking expectation yields

CEC,0 =
1

2
E

[(
θ̃ − ṽ

)2
]

=
1

2

[
V ar

(
θ̃ − ṽ

)
+
(
θ̄ − v̄

)2
]
,

where by equations (11) and (37),

v̄ = E (ṽ) = θ̄ + vcc̄− µp̄− v0,

p̄ = E (p̃) = p0 + psθ̄ + pcc̄,

V ar
(
θ̃ − ṽ

)
= V ar (µp̃− vcc̃) = µ2V ar (p̃) + (vc − 2µpc)

vc
τ c
,

V ar (p̃) = p2
s

(
1

τ θ
+

1

Kτ ε

)
+ p2

c

1

τ c
.
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Financial traders. Their certainty equivalent is still given by equation (29), i.e.,

CEF,0 =
[E (ṽ − p̃)]2

2γV ar (ṽ − p̃) +
1

2γ
log

[
V ar (ṽ − p̃)
V ar (ṽ|s̃k, p̃)

]
,

where

E (ṽ − p̃) = v̄ − p̄,

V ar (ṽ − p̃) =

(
1

τ θ
+
v2
c

τ c

)
+ (µ+ 1)2 V ar (p̃)− 2 (µ+ 1)

(
ps
τ θ

+
vcpc
τ c

)
,

V ar (ṽ|s̃k, p̃) =
(K − 1) (τ c + τ θv

2
c +Kτ εv

2
c ) ρ

2 − 2Kτ εvc (K − 1) ρ+K2τ ε
τ c (K − 1) (τ θ +Kτ ε) ρ2 +K2τ ε (τ θ + τ ε)

.

A-growers. Their indirect utility after trading and production is still given by equation

(30), i.e.,We still have the Date-1 indirect utility:

UA (c̃, p̃) = − exp

{
−α
[

[E (ṽ − p̃|c̃, p̃)]2

2αV ar (ṽ|c̃, p̃) +
1

2
(p̃− c̃)2

]}

= − exp

{
− [E (ṽ − p̃|c̃, p̃)]2

2V ar (ṽ|c̃, p̃) −
α

2
(p̃− c̃)2

}
.

Both E (ṽ − p̃|c̃, p̃) and (p̃− c̃) are normally distributed. So, applying the moment gen-

erating function of a non-central Chi squared distribution, we can compute the ex-ante

certainty equivalent of A-growers

CEA,0 = − 1

α
log (−E [UA (c̃, p̃)])

=
1

α

(
Q0 −

1

2
Q′1 (I + 2ΣQ2)−1 ΣQ1

)
+

1

2α
log |I + 2ΣQ2| ,

where

Q2 =

 τθ+Kτε
2

0

0 α
2

 , Q1 =

 (τ θ +Kτ ε) (v̄ − p̄)

α (p̄− c̄)

 ,
Q0 =

(τ θ +Kτ ε) (v̄ − p̄)2

2
+
α

2
(p̄− c̄)2 ,

and Σ is covariance matrix of (E (ṽ − p̃|c̃, p̃) , p̃− c̃)′, with elements given by

Σ11 =

[
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

]2(
1

τ θ
+

1

Kτ ε

)
+ [vc − (µ+ 1) pc]

2 1

τ c
,

Σ12 = Σ21 =

[
Kτ ε

τ θ +Kτ ε
− (µ+ 1) ps

]
ps

(
1

τ θ
+

1

Kτ ε

)
+ [vc − (µ+ 1) pc] (pc − 1)

1

τ c
,

Σ22 = p2
s

(
1

τ θ
+

1

Kτ ε

)
+ (pc − 1)2 1

τ c
.
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B-growers. Inserting the optimal production (A11) into the expression of C̃EB,1 in (A10),

we have

C̃E
∗
B,1 =

[
p0 + psθ̄ − h0Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃) −
(
−pc + 1 + hcCov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)
c̃
]2

2
[
1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2

V ar(ṽ−p̃|c̃)

]
+

[E (ṽ − p̃|c̃)]2

2αV ar (ṽ − p̃|c̃) ,

which is quadratic in c̃. By (A9), the ex-ante certainty equivalent of B-growers is given by

CEB,0 =
1

2α
log

V ar (ṽ − p̃|c̃)
V ar

(
θ̃|S̃
)
− 1

α
log
(
E
[
exp

(
−αC̃E

∗
B,1

)])
.

Direct computation shows

E
[
exp

(
−αC̃E

∗
B,1

)]
=

1√
1 + 2A2/τ c

exp

{
−2A2c̄

2 − 2A1c̄− A2
1/τ c

2 (1 + 2A2/τ c)
+ A0

}
,

where

A2 = α


(
−pc + 1 + hcCov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)2

2
(

1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2
V ar(ṽ−p̃|c̃)

) +
h2
c

2αV ar (ṽ − p̃|c̃)

 ,

A1 = −α

−
(
p0 + psθ̄ − h0Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)(
−pc + 1 + hcCov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)
1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2

V ar(ṽ−p̃|c̃)

+
h0hc

αV ar (ṽ − p̃|c̃)

 ,

A0 = −α


(
p0 + psθ̄ − h0Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)

V ar(ṽ−p̃|c̃)

)2

2
(

1 + αV ar (p̃|c̃)− α [Cov(p̃,E(ṽ−p̃|p̃,c̃)|c̃)]2
V ar(ṽ−p̃|c̃)

) +
h2

0

2αV ar (ṽ − p̃|c̃)

 ,

where the expressions of the conditional moments and h0 and hc are given in Proposition 5.
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Figure 1: Timeline 

 

 

 

Note: This figure plots the order of events in the economy. 

  

  t = 1 (spot market)   t = 0 (futures market) time 

• Consumers observe the 
preference shock 𝜃𝜃� 

• Spot market opens, and 
consumers and growers trade 
wheat at price 𝑣𝑣� 

• Cash flows are realized and 
all agents consume 

• Financial trader 𝑘𝑘 observes private 
information 𝑠̃𝑠𝑘𝑘 

• Growers observe private information 𝑐̃𝑐 
• Financial markets open, and financial 

traders and growers trade futures 
contracts at price 𝑝𝑝� 

• Growers make production decisions 



43 
 

Figure 2: The Region of Financial Traders as Liquidity Suppliers/Demanders 

 

Note: The symbol “+” indicates the region for which financial traders demand liquidity in 
equilibrium. Financial traders demand liquidity if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑𝐹𝐹,𝑝𝑝�) > 0, and they supply liquidity if 
𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑𝐹𝐹 ,𝑝𝑝�) < 0. The parameter values are: 𝜏𝜏𝜃𝜃 = 𝛼𝛼 = 𝛾𝛾 = 1, 𝐽𝐽 = 𝐾𝐾 = 20, 𝜃̅𝜃 = 5 and 𝑐𝑐̅ = 1. 
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Figure 3: Trading Implications of Commodity Financialization  

 

Note: This figure plots 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑𝐹𝐹 ,𝑝𝑝�) against the number 𝐾𝐾 of financial traders. In Panel A, 𝜏𝜏𝑐𝑐 = 2 
and 𝜏𝜏𝜃𝜃 = 1 . In Panel B, 𝜏𝜏𝑐𝑐 = 0.5  and 𝜏𝜏𝜃𝜃 = 1 . In both panels, the other parameters are: 𝜏𝜏𝜀𝜀 =
0.1, 𝛼𝛼 = 𝛾𝛾 = 1, 𝐽𝐽 = 20, 𝜃̅𝜃 = 5 and 𝑐𝑐̅ = 1.  
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Figure 4: Pricing Implications of Commodity Financialization 

 
Note: This figure plots the futures price bias 𝐸𝐸(𝑣𝑣� − 𝑝𝑝�), the average spot price 𝐸𝐸(𝑣𝑣�), and the 
average futures price 𝐸𝐸(𝑝𝑝�) against the number 𝐾𝐾 of financial traders. In Panels A1 and A2, 𝜃̅𝜃 = 5 
and 𝑐𝑐̅ = 1. In Panels B1 and B2, 𝜃̅𝜃 = 1 and 𝑐𝑐̅ = 5. In all four panels, the other parameters are: 
𝜏𝜏𝜀𝜀 = 0.1, 𝜏𝜏𝑐𝑐 = 𝜏𝜏𝜃𝜃 = 1, 𝛼𝛼 = 𝛾𝛾 = 1 and 𝐽𝐽 = 20.  
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Figure 5: Welfare Implications of Commodity Financialization 

 

This figure plots how the number 𝐾𝐾 of financial traders affects the welfare of growers (Panel A), 
the welfare of consumers (Panel B), and the welfare of financial traders (Panel C). The other 
parameters are: 𝜏𝜏𝜀𝜀 = 0.1, 𝜏𝜏𝑐𝑐 = 𝜏𝜏𝜃𝜃 = 1, 𝛼𝛼 = 𝛾𝛾 = 1, 𝐽𝐽 = 20, 𝜃̅𝜃 = 5 and 𝑐𝑐̅ = 1. 
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Figure 6: Correlation between Futures and Spot Prices in Extended 
Economies 

 

This figure plots the correlation coefficient 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝�, 𝑣𝑣�) between the futures price and the spot price 
in the extended economy with two types of growers. The first type (A-growers) can adjust 
production after seeing the futures price. The fraction of the first type of growers is 𝜇𝜇  which 
measures the strength of the feedback effect from the futures price to the later spot price. The 
second type (B-growers) of growers has to make production decisions before the futures market is 
open. The other parameters are: 𝜏𝜏𝜀𝜀 = 0.1, 𝜏𝜏𝑐𝑐 = 𝜏𝜏𝜃𝜃 =  𝛼𝛼 = 𝛾𝛾 = 𝜃̅𝜃 = 𝑐𝑐̅ = 1 and 𝐽𝐽 = 𝐾𝐾 = 20. 
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Figure 7: Welfare of Agents in Extended Economies 

 

This figure plots various welfare variables in the extended economy with two types of growers. The first type (A-growers) can adjust production after seeing the 
futures price. The fraction of the first type of growers is 𝜇𝜇, which measures the strength of the feedback effect. The second type of growers (B-growers) has to make 
production decisions before the futures market is open. Variables 𝐶𝐶𝐶𝐶𝐴𝐴, 𝐶𝐶𝐶𝐶𝐵𝐵, 𝐶𝐶𝐶𝐶𝐶𝐶 , and 𝐶𝐶𝐶𝐶𝐹𝐹 are the certainty equivalent of A-growers, B-growers, consumers, and 
financial traders. Aggregate welfare is the sum of the certainty equivalents of all agents. The other parameters are: 𝜏𝜏𝜀𝜀 = 0.1, 𝜏𝜏𝑐𝑐 = 𝜏𝜏𝜃𝜃 =  𝛼𝛼 = 𝛾𝛾 = 𝜃̅𝜃 = 𝑐𝑐̅ = 1 and 
𝐽𝐽 = 𝐾𝐾 = 20. 
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