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Abstract

Motivated by an intriguing observation during the recent U.S. housing cycle

that counties with housing supply elasticities in an intermediate range experi-

enced the most dramatic price booms and busts, this paper develops a model to

analyze information aggregation and learning in housing markets. In the presence

of pervasive informational frictions, housing prices serve as important signals in

the households� learning of the economic strength of a neighborhood. Supply

elasticity a¤ects not only housing supply but also the informational noise in the

price signal. Our empirical analysis also provides evidence supporting two key

predictions of the model: 1) both housing price and share of secondary home

purchases are most variable in areas with intermediate supply elasticities; and 2)

these variances are positively correlated.
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Conventional wisdom posits that supply elasticity attenuates housing cycles. As a result,

one expects housing prices to be more volatile in areas where the housing supply is more

inelastic. However, as noted by Glaeser (2013) and other commentators, during the recent

U.S. housing cycle in the 2000s, some areas such as Las Vegas and Phoenix experienced more

dramatic housing price booms and busts, despite their relatively elastic housing supply, com-

pared to areas with more inelastic supply, such as New York and Los Angeles. Interestingly,

by systematically examining the cross-section of the booms and busts experienced by di¤er-

ent counties during this housing cycle, we �nd that the monotonically decreasing relationship

between the magnitude of housing cycles and supply elasticity is more fragile than commonly

perceived. If one simply sorts counties into three groups based on Saiz�s (2010) widely used

measure of supply elasticity, each with an equal number of counties, the average housing

price increase in the boom period of 2004-2006 and drop in the bust period of 2007-2009

monotonically decreases across the inelastic, middle, and elastic groups. However, as the

inelastic group holds more than half of the population, this coarse grouping may disguise

non-monotonicity present under �ner parsings. Indeed, when we sort the counties into ten

elasticity groups, each with an equal number of counties, or into either three or ten elasticity

groups each with an equal population, we uncover a non-monotonic relationship between the

magnitudes of the housing price booms and busts experienced by di¤erent counties and their

supply elasticity. The most dramatic boom and bust cycle occurs in an intermediate range

of supply elasticity.

This hump-shaped relationship between housing cycle and supply elasticity, which we

summarize in Section 2, is intriguing and cannot be explained by the usual supply-side

mechanisms. In this paper, we develop a theoretical model to highlight a novel mechanism

for supply elasticity to a¤ect housing demand through a learning channel. We emphasize

that home buyers observe neither the economic strength of a neighborhood, which ultimately

determines the demand for housing in the neighborhood, nor the supply of housing. In the

presence of these pervasive informational frictions, local housing markets provide a useful

platform for aggregating information. This fundamental aspect of housing markets, however,

has received little attention in the academic literature. It is intuitive that traded housing

prices re�ect the net e¤ect of demand and supply factors. Supply elasticity determines

the weight of supply-side factors in determining housing prices and therefore by extension

determines the informational noise faced by home buyers in using housing prices as signals

1



for the strength of demand.

Our model integrates the standard framework of Grossman and Stiglitz (1980) and Hell-

wig (1980) for information aggregation in asset markets with a housing market in a local

neighborhood. This setting allows us to extend the insights of market microstructure analysis

to explore the real consequences of informational frictions in housing markets. In particu-

lar, our model allows us to analyze how agents form expectations in housing markets, how

these expectations interact with characteristics endemic to a neighborhood, and how these

expectations feed into housing prices.

We �rst present a baseline setting in Section 3 to highlight the basic information aggrega-

tion mechanism with each household purchasing homes for their own consumption and then

extend the model in Section 4 to further incorporate purchases of investment homes. The

baseline model features a continuum of households in a closed neighborhood, which can be

viewed as a county. Each household in the neighborhood has a Cobb-Douglas utility function

over its goods consumption and housing consumption, as well as housing consumption of its

neighbors. This complementarity in the households�housing consumption motivates each

household to learn about the unobservable economic strength of the neighborhood, which

determines the common productivity of all households and thus their housing demand.

Despite each household�s housing demand being non-linear, the Law of Large Numbers

allows us to aggregate their housing demand in closed form and to derive a unique log-linear

equilibrium for the housing market. Each household possesses a private signal regarding the

neighborhood common productivity. By aggregating the households�housing demand, the

housing price aggregates their private signals. However, the presence of unobservable supply

shocks prevents the housing price from perfectly revealing the neighborhood strength and

acts as a source of informational noise in the housing price.

Our model also builds in another important feature that households underestimate supply

elasticity. By examining a series of historical episodes of real estate speculation in the

U.S., Glaeser (2013) summarizes the tendency of speculators to underestimate the response

of housing supply to rising prices as a key for understanding these historical experiences.

In our model, underestimation of supply elasticity implies that households underestimate

the amount of informational noise in the observed price signal, which in turn causes the

households�expectations of the neighborhood strength and housing demand to overreact to

the housing price. The ampli�cation of housing price volatility induced by such overreaction
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depends on the uncertainty faced by households and the informational content of the price,

both of which are endogenously linked to the neighborhood�s supply elasticity.

It is useful to consider two polar cases. At one end with the supply being in�nitely

inelastic, housing prices are fully determined by the strength of the neighborhood and thus

perfectly reveals it. At the other end, with housing supply being in�nitely elastic, hous-

ing prices are fully determined by the supply shock, and households�uncertainty about the

strength of the neighborhood does not interact with the housing price. In between these

two polar cases, the households face uncertainty regarding neighborhood strength and the

uncertainty matters to the housing price. Consequently, households� overreaction to the

price signal has the most pronounced e¤ect on their housing demand and housing price in an

intermediate range of supply elasticity, causing the price volatility to have a hump-shaped

relationship with supply elasticity. That is, housing price volatility is largest at an inter-

mediate supply elasticity rather than when supply is in�nitely inelastic. This insight helps

explain the aforementioned empirical observation that during the recent U.S. housing cycle,

counties with supply elasticities in an intermediate range experienced the most dramatic

price booms and busts.

We further extend the baseline model in Section 4 to incorporate immigrants who are

attracted to the neighborhood by its economic strength in a later period and the speculation

of the current households in acquiring secondary homes in anticipation of selling them to im-

migrants. This model extension generates two additional predictions. First, the households�

learning e¤ects can induce another non-monotonic relationship between the variability of

the share of secondary home purchases among total home purchases and supply elasticity.

The intuition is similar to before. As secondary home purchases are more sensitive than

primary home purchases to the households�expectations of the neighborhood strength, in-

formational frictions and the households�overreaction to the price signal make households�

secondary home purchases most variable at an intermediate range of supply elasticity. This

mechanism also leads to a second prediction regarding a positive relationship between the

variability of the share of secondary home purchases and the volatility of housing prices

across neighborhoods with di¤erent elasticities.

Interestingly, we are able to con�rm these new model predictions in the data. First, we

�nd that counties in an intermediate range of supply elasticity indeed had the largest change

in the share of non-owner-occupied home (secondary home) purchases from the pre-boom
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period of 2001-2003 to the boom period of 2004-2006, as opposed to counties with either

the most elastic or inelastic supplies. Second, counties with greater increases in the share

of non-owner-occupied home purchases from 2001-2003 to 2004-2006 also experienced larger

price increases in 2004-2006 and larger price decreases in the bust period of 2007-2009. These

empirical �ndings provide evidence from a new dimension to support the important roles

played by informational frictions and household learning in driving housing cycles.

1 Related Literature

The existing literature has emphasized the importance of accounting for home buyers�ex-

pectations (and in particular extrapolative expectations) in understanding dramatic housing

boom and bust cycles, e.g., Case and Shiller (2003), Glaeser, Gyourko, and Saiz (2008), and

Piazzesi and Schneider (2009). Much of the analyses and discussions, however, are made

in the absence of a systematic framework that anchors home buyers�expectations to their

information aggregation and learning process. In this paper, we �ll this gap by developing

a model for analyzing information aggregation and learning in housing markets. By do-

ing so, we are able to uncover a novel e¤ect of supply elasticity, beyond its role in driving

housing supply, in determining the informational content of the housing price and house-

holds�learning from the price signal. This learning e¤ect implies non-monotonic patterns

in housing price volatility and the variability of share of secondary home purchases across

neighborhoods with di¤erent supply elasticities.

In our model, households overreact to the housing price signal. Such overreaction is

driven by their underestimation of supply elasticity. This overreaction mechanism, which

depends on the informational frictions faced by households and the endogenous informa-

tional content of the housing price, is di¤erent from the commonly discussed mechanisms

in the behavioral �nance literature, such as overcon�dence highlighted by Daniel, Hirsh-

leifer, and Subrahmanyam (1998), slow information di¤usion by Hong and Stein (1999), and

extrapolation by Barberis, Shleifer, and Vishny (1998) and Barberis et al. (2014).

Our model also di¤ers from Burnside, Eichenbaum, and Rebelo (2013), which o¤ers a

model of housing market booms and busts based on the epidemic spreading of optimistic or

pessimistic beliefs among home buyers through their social interactions. Our learning-based

mechanism is also di¤erent from Nathanson and Zwick (2015), which studies the hoarding

of land by home builders in certain elastic areas as a mechanism to amplify price volatility
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in the recent U.S. housing cycle. Glaeser and Nathanson (2015) presents a model of biased

learning in housing markets, building on current buyers not adjusting for the expectations

of past buyers and instead assuming that past prices re�ect only contemporaneous demand.

This incorrect inference gives rise to correlated errors in housing demand forecasts over time,

which in turn generate excess volatility, momentum, and mean-reversion in housing prices. In

contrast to this model, informational frictions in our model anchor on the interaction between

the demand and supply sides, and, in particular, on the elasticity of housing supply. This

key feature is also di¤erent from the ampli�cation to price volatility induced by dispersed

information and short-sale constraints featured in Favara and Song (2014).

By focusing on information aggregation and learning of symmetrically informed house-

holds with dispersed private information, our study di¤ers in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014). Neither does our model

emphasize the potential asymmetry between in-town and out-of-town home buyers, which is

shown to be important by a recent study of Chinco and Mayer (2015).

Our work features a tractable log-linear equilibrium framework, which is similar to that

in Sockin and Xiong (2015). This tractable framework allows us to highlight a new insight for

housing markets, through the interaction between supply elasticity and learning, to generate

excess volatility in housing prices and quantities, which is di¤erent from their focus on

the impact of learning on the price elasticity of commodity demand. This tractable log-

linear equilibrium is also di¤erent from the frameworks developed by Goldstein, Ozdenoren,

and Yuan (2013) and Albagi, Hellwig, and Tsyvinski (2012, 2014) to analyze asset market

equilibrium with asymmetric information and non-linear asset demand, as their frameworks

employ risk-neutral agents, normally distributed asset fundamentals, and position limits to

deliver tractable nonlinear equilibria.

Our paper contributes to the empirical housing literature by uncovering a hump-shaped

relationship between recent housing cycles and supply elasticity. In contrast with the com-

mon intuition that a more elastic housing supply mitigates house price volatility, a small,

growing literature has documented that some relatively unconstrained areas recently ex-

perienced more pronounced house price boom-bust cycles, e.g., Davido¤ (2013), Glaeser

(2013), Nathanson and Zwick (2015). None of these papers, however, have examined this

non-monotonic cross-sectional variation of house prices systematically by sorting U.S. coun-
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ties into �ner groups and by grouping them by population instead of number of counties.

Gao (2013) also summarizes this puzzling phenomenon across the U.S. housing market, but

instead rationalizes it with the time-to-build feature and over-building behavior of the hous-

ing supply side and extrapolative expectations on the demand side. In work related to our

analysis of secondary home purchases, Chinco and Mayer (2015) empirically investigate the

contribution of out-of-town home buyers to housing price appreciation with a focus on Las

Vegas, Miami, and Phoenix. In contrast to their study, we examine the role of supply elastic-

ity on secondary home purchases across U.S. counties and provide a conceptual framework.

In addition, there are extensive studies in the housing literature highlighting the roles

played by both demand-side and supply-side factors in driving housing cycles. On the de-

mand side, Himmelberg, Mayer, and Sinai (2006) focus on interest rates, Poterba (1991) on

tax changes, and Mian and Su� (2009) on credit expansion. On the supply side, Glaeser,

Gyourko, Saiz (2008) emphasize supply as a key force in mitigating housing bubbles, Haugh-

wout, Peach, Sporn and Tracy (2012) provide a detailed account of the housing supply side

during the U.S. housing cycle in the 2000s, and Gyourko (2009) systematically reviews the

literature on housing supply. By introducing informational frictions, our analysis shows that

supply-side and demand-side factors are not mutually independent. In particular, supply

shocks may a¤ect housing demand by acting as informational noise in household learning

and thus in�uencing households�expectations of the strength of the neighborhood.

2 Some Basic Facts

Before we present a model to analyze how supply elasticity a¤ects learning in housing mar-

kets, we present some basic facts regarding the relationship between supply elasticity and

the magnitudes of housing price booms and busts experienced by di¤erent counties during

the recent U.S. housing cycle. Even though common wisdom holds that supply elasticity

attenuates boom and bust cycles, the data do not support a robust, monotonic relationship

between the magnitude of the housing cycle in a county and its supply elasticity. In fact,

our analysis uncovers that counties with supply elasticities in an intermediate range had

experienced more dramatic housing booms and busts than counties with the most inelastic

supply.

Our focus is on the most recent housing cycle, which was a national cycle for the U.S.

housing market. Many factors, such as the Clinton-era initiatives to broaden homeownership,
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the low interest rate environment of the late 1990s and early 2000s, the in�ow of foreign

capital, and the increase in securitization and sub-prime lending, contributed to the boom.

While this was a well-known national phenomenon at the time, how these factors expressed

themselves at the regional level was more idiosyncratic and uncertain. The magnitude of

housing price cycles experienced by di¤erent regions re�ect such idiosyncratic uncertainty,

which is the focus of our empirical as well as theoretical analysis.1

Our county-level house price data come from the Case-Shiller home price indices, which

are constructed from repeat home sales. There are 420 counties in 46 states with a large

enough number of repeat home sales to compute the Case-Shiller home price indices. We

use the Consumer Price Index (CPI) from the Bureau of Labor Statistics to de�ate the

Case-Shiller home price indices. In addition, we also use population data from the 2000 U.S.

census.

For housing supply elasticity, we employ the commonly used elasticity measure con-

structed by Saiz (2010). This elasticity measure focuses on geographic constraints by de�n-

ing undevelopable land for construction as terrain with a slope of 15 degrees or more and

areas lost to bodies of water including seas, lakes, and wetlands. This measure provides an

exogenous measure of supply elasticity, with a higher value if an area is more geographically

restricted. Saiz�s measure is available for 269 Metropolitan Statistical Areas (MSAs). By

matching counties with MSAs, our sample includes 326 counties for which we have data on

both house prices and supply elasticity available from 2000 to 2010. Though our sample

covers only 11 percent of the counties in the U.S., they represent 53 percent of the U.S.

population and 57 percent of the housing trading volume in 2000.

Figure 1 displays the real home price indices for the U.S. and three cities, New York,

Las Vegas, and Charlotte, from 2000 to 2010. We normalize all indices to 100 in 2000. The

national housing market experienced a signi�cant boom and bust cycle in the 2000s with the

national home price index increasing over 60 percent from 2000 to 2006 and then falling back

to the 2000 level through 2010. Di¤erent cities in the U.S experienced largely synchronized

price booms and busts during this period even though the magnitudes of the cycle varied

across these cities. According to Saiz�s measure, the elasticity measures for New York, Las

Vegas, and Charlotte are 0.76, 1.39, and 3.09, respectively. New York, which has severe

1The regional uncertainty introduced by this national phenomenon is absent from the local boom and
bust episodes throughout the 1970s and 1980s. While there are other national housing cycles in history, data
limitations restrict our attention to the most recent U.S. housing cycle.
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geographic constraints and building regulations, had a real housing price appreciation of

more than 80 percent during the boom, and then declined by over 25 percent during the bust.

Charlotte, with its vast developable land and few building restrictions, had an almost �at

real housing price level throughout this decade. Sitting in between New York and Charlotte,

Las Vegas, with its intermediate supply elasticity, experienced the most pronounced price

expansion of over 120 percent during the boom, and the most dramatic price drop of over 50

percent during the bust. Many commentators, including Glaeser (2013), have pointed out

that the dramatic boom and bust cycles experienced by Las Vegas and other cities such as

Phoenix are peculiar given the relatively elastic supply in these areas.

Are Las Vegas and Phoenix unique in experiencing these dramatic housing cycles despite

their relatively elastic housing supply? We now systematically examine this issue by sorting

di¤erent counties in our sample into three groups, an inelastic, a middle, and an elastic

group, based on Saiz�s elasticity measure, each with the same number of counties. Figure

2 plots the average price expansion and contraction experienced by each group during the

housing cycle (the top panel), together with the total population in each group (the bottom

panel). We measure the price expansion in 2004-2006, the period that is often de�ned as the

housing bubble period, and the price contraction in 2007-2009.2

The top panel of Figure 2 shows that the inelastic group had the largest house price

expansion in 2004-2006 and the largest price contraction in 2007-2009, the middle group

experienced a milder cycle, and the elastic group had the most modest cycle. This pattern

appears to be consistent with the aforementioned common wisdom that supply elasticity

attenuates housing cycles.

It seems natural to sort the counties into several groups each with an equal number of

counties. In fact, this is a common practice used in the literature to demonstrate a monotonic

relationship between housing cycles and supply elasticity. Interestingly, the bottom panel of

Figure 2 shows that the population is unevenly distributed across the three groups, with the

inelastic group having more than half of the total population. This is consistent with the

fact that inelastic areas tend to be densely populated. As the inelastic group pools together

a large fraction of the population, there might be substantial heterogeneity between counties

within the inelastic group. Indeed, both New York and Las Vegas fall into this inelastic group.

This consideration motivates us to examine alternative ways of grouping the counties.

2We have also used an alternative boom period of 2001-2006 and obtained qualitatively similar results as
de�ning the boom in 2004-2006.
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In Figure 3, we sort the counties into ten groups from the most inelastic group to the

most elastic group, still with each group holding an equal number of counties. The top

panel shows that the housing price expansion and contraction experienced by these ten

groups are no longer monotonic with elasticity. In particular, group 3, which has the third-

most-inelastic supply, experienced the largest price expansion during the boom, and the

largest price contraction during the bust. Interestingly, Las Vegas falls into group 3, while

New York falls into group 1. The bottom panel again shows that the population tends

to be concentrated in the more inelastic groups. Taken together, Figure 3 shows that the

commonly perceived monotonic relationship between housing cycles and supply elasticity is

not robust.

In Figure 4, we sort the counties into three groups based on supply elasticity in an

alternative way. Instead of letting di¤erent groups have an equal number of counties, we

let them have the same population. If the magnitude of the housing cycle monotonically

decreases with supply elasticity, whether we group the counties by number or population

should not a¤ect the monotonically decreasing pattern across the groups. In contrast, the

top panel of Figure 4 shows that the middle group has the most pronounced housing cycle,

with its price expansion during the boom being substantially more pronounced than that of

the inelastic group, and its price contraction during the bust slightly greater than that of

the inelastic group. The bottom panel shows that the inelastic group has only 40 counties,

the middle group slightly below 120 counties, and the elastic group over 160 counties. Under

this grouping, while New York remains in the inelastic group, Las Vegas is now in the middle

group.

In Figure 5, we further sort the counties into ten groups from the most inelastic group to

the most elastic group, with each group having the same population. This �gure shows a �ner

non-monotonicity with groups 3 and 5 experiencing the most pronounced price expansions

and contractions.

To further examine whether the more pronounced housing cycles experienced by the

intermediate elasticity groups are robust to controlling for other fundamental factors, such as

changes of income and population and fraction of subprime households, we adopt a regression

approach. Speci�cally, we separately regress the housing price expansion in 2004-2006 and

contraction in 2007-2009 on two dummy variables that indicate whether a county is in the

middle elasticity group or the most elastic group, which are constructed in Figure 4, together
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with a list of control variables. This regression implicitly uses the inelastic group as the

benchmark for the middle and elastic groups. The control variables include the fraction of

subprime households in the county in 2005, which is computed based on individual mortgage

loan applications reported by the �Home Mortgage Disclosure Act�(HMDA) dataset, as well

as the contemporaneous population change and annualized per capita income change.

Table 1 reports the regression results. Columns 1 and 2 report the regressions of the

housing price expansion in 2004-2006 without and with the controls. Columns 3 and 4

report the regressions of the housing price contraction in 2007-2009 without and with the

controls. Among the control variables, the fraction of subprime households is signi�cantly

correlated with both the price expansion during the boom and the price contraction during

the bust. This result is consistent with Mian and Su� (2009), which shows that credit

expansion to subprime households before 2006 was a key factor in explaining the recent

housing cycle. The changes in population and income are insigni�cant in explaining either the

price expansion or the contraction across the cycle. More important, even after controlling

for these fundamental factors, the middle group experienced a signi�cantly more pronounced

housing price expansion in 2004-2006 and a more pronounced price contraction in 2007-2009

relative to the inelastic group.

It is important to note that the �ndings shown in Figures 2-5 and Table 1 are not driven

by a few areas such as Las Vegas and Phoenix. In unreported analysis, we dropped Las

Vegas and Phoenix and found that results are similar both qualitatively and quantitatively.

These robustness results are available upon request.

Taken together, Figures 2-5 and Table 1 show that the commonly perceived monotonic

relationship between housing cycle and supply elasticity is not robust to �ner groupings of

counties. Finer groupings and an alternative method of grouping counties by population

rather than number of counties, however, reveal a robust non-monotonic relationship in

which the counties in a median elasticity range experienced more pronounced price booms

and busts in the 2000s than counties with the most inelastic supply. This non-monotonic

relationship is intriguing and cannot easily be explained by the usual role of elasticity in

a¤ecting the supply side of housing. In the next section, we present a simple model to

illustrate a learning mechanism through which supply elasticity a¤ects the informational

role of housing prices and households�learning from housing prices.
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3 A Baseline Model

In this section we develop a simple model with two dates t = 1; 2 to analyze the e¤ects of

informational frictions on the housing market equilibrium in a closed neighborhood. One

can think of this neighborhood as a county or a township. A key feature of the model

is that the housing market is not only a place for households to trade housing but also a

platform to aggregate private information about the unobservable strength or quality of the

neighborhood. In addition to its direct role in a¤ecting housing supply in the neighborhood,

supply elasticity also indirectly a¤ects the informational noise in the housing prices.

3.1 Model setting

There are two types of agents in the economy: households looking to buy homes in the

neighborhood and home builders. Suppose that the neighborhood is new and all households

purchase houses from home builders in a centralized market at t = 1 and consume both

housing and consumption goods at t = 2.3

Each household cares about the strength of the neighborhood, as its utility depends on

not only its own housing consumption but also the housing consumption of other households

in their neighborhood. This assumption is motivated by the empirical �ndings of Ioannides

and Zabel (2003) and leads to strategic complementarity in each household�s housing de-

mand.4 The strength of this closed neighborhood is re�ected by the aggregate productivity

of its households. A strong aggregate productivity implies greater output by all households,

and thus greater housing demand by them as well. In the presence of realistic informa-

tional frictions in gauging the strength of the neighborhood, the housing market provides

an important platform for aggregating information about this aggregate productivity. As a

consequence, the resulting housing price serves as a useful signal about the neighborhood�s

strength.

3For simplicity, we do not consider the endogenous decision of households choosing their neighborhood
and instead take the pool of households in the neighborhood as given. See Van Nieuwerburgh and Weill
(2010) for a systematic treatment of moving decisions by households across neighborhoods.

4There are other types of social interactions between households living in a neighborhood, which are
explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2003).
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3.1.1 Demand side

There is a continuum of households, indexed by i 2 [0; 1]. Household i has a Cobb-Douglas
utility function over its own housing Hi, consumption good Ci, and the housing consumption

of all other households in the neighborhood fHjgj2[0;1]:5

U
�
fHjgj2[0;1] ; Ci

�
=

(
1

1� �H

�
Hi

1� �c

�1��c  R
[0;1]=i

Hjdj

�c

!�c
)1��H �

1

�H
Ci

��H
: (1)

The parameters �H 2 (0; 1) and �c 2 (0; 1) measure the weights of di¤erent consumption
components in the utility function. A higher �H means a stronger complementarity between

housing consumption and goods consumption, while a higher �c means a stronger comple-

mentarity between the housing of household i and housing of the composite house
R
[0;1]=i

Hjdj

purchased by the other households in the neighborhood.

The production function of household i is eAili; where li is the household�s labor choice

and Ai is its productivity. Ai is comprised of a component A common to all households in

the neighborhood and an idiosyncratic component "i:

Ai = A+ "i;

where A s N
�
�A; ��1A

�
and "i s N (0; ��1" ) are both normally distributed. The common

productivity A represents the strength of the neighborhood, as a higher A implies a more

productive neighborhood. As A determines the households�aggregate demand for housing,

it represents the demand-side fundamental.

As a result of realistic informational frictions, neither A nor Ai is observable to the

households. Instead, each household observes a noisy private signal about A at t = 1.

Speci�cally, household i observes

�i = A+ �i;

where �i s N
�
0; ��1�

�
is signal noise independent across households. The parameter � �

measures the precision of the private signal. As � � ! 1, the households�signals become
in�nitely precise and the informational frictions about A vanish.

While our model setting is static and focuses on a closed neighborhood, one can provide

a broad interpretation of the uncertainly in the neighborhood strength A. In relating this

5Our modeling choice of non-separable preferences for housing and consumption is similar to the CES
speci�cation of Piazzesi, Schneider, and Tuzel (2007).
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setting to the recent housing cycle, we interpret the uncertainty in A as being induced by

a nationwide shock to credit expansion for homeowners in the 2000�s due to the factors

mentioned in Section 2. While this shock a¤ected the whole country, its potential impact

on individual neighborhoods was di¤erent. Some neighborhoods might attract migrants

with high productivity from other neighborhoods as a result of the national shock, while

others might lose their high-quality residents who could now more easily relocate to other

neighborhoods. As a result, home buyers faced a realistic problem in inferring how this

national shock might have in�uenced the strength of an individual neighborhood when buying

a home.

Households care about the strength of the neighborhood A not only because it determines

their own productivity, but also because of complementarity in their housing demand. Since

households want to live in similar-sized houses to their neighbors, they need to learn about

A because it a¤ects their neighbors�housing decisions. Consequently, while a household may

have a fairly good understanding of its own productivity when moving into a neighborhood,

complementarity in housing demand motivates it to pay attention to housing prices to learn

about the average level A for the neighborhood.

We assume that each household experiences a disutility for labor l1+ i

1+ 
, and that it maxi-

mizes its expected utility at t = 1 by choosing its housing demand Hi and labor li:

max
fHi;lig

E

"
U
�
fHjgj2[0;1] ; Ci

�
� l1+ i

1 +  

����� Ii
#

(2)

such that Ci = eAili � PHi +�i:

We assume for simplicity that the home builder for household i is part of the household and

that the builder brings home its pro�t �i = PHi to the household after construction has

taken place. Furthermore, we normalize the interest rate from t = 1 to t = 2 to be zero. As

a result, at t = 2; household i�s budget constraint satis�es Ci = eAili: The choices of labor

and housing are made at t = 1 subject to each household�s information set Ii = f�i; Pg ;
which includes its private signal �i and the housing price P .6

6We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
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3.1.2 Supply side

Home builders face a convex labor cost

k

1 + k
e��S

1+k
k

H

in supplying housing, where SH is the quantity of housing supplied, k 2 (0;1) is a constant
parameter, and � represents a shock to the building cost. We assume that � is observed by

builders but not households,7 and that from the perspective of households � s N
�
��; 1
�
, i.e.,

a normal distribution with �� as the mean and unit variance.

Builders at t = 1 maximize their pro�t subject to their supply curve

�(SH) = max
SH

PSH �
k

1 + k
e��S

1+k
k

H : (3)

It is easy to determine the builders�optimal supply curve:

SH = P ke�; (4)

where � = k� is interpretated as being a supply shock with normal distribution � s N
�
��; k2

�
;

where �� = k��: The parameter k measures the supply elasticity of the neighborhood. A more

elastic neighborhood has a larger supply shock, i.e., the supply shock has greater mean and

variance. In the housing market equilibrium, the supply shock � not only a¤ects the supply

side but also the demand side, as it acts as informational noise in the price signal when the

households use the price to learn about the common productivity A.

We also incorporate a behavioral feature that households may underestimate the supply

elasticity in the neighborhood and incorrectly believe it to be �k rather than k; where

� � 1: This feature is motivated by the observation made by Glaeser (2013) that agents tend
to underestimate supply shocks during various episodes of real-estate speculation observed

in U.S. history. Speci�cally, Glaeser identi�es the under-appreciation of the supply response

by buyers as a systematic, cognitive limitation that helps explain historical boom and bust

episodes of real-estate speculation. As a result of this behavioral feature, households may

put too much weight on housing prices in their housing decisions because they overestimate

the precision of prices as a signal about the neighborhood strength A:

7Even though we assume that builders perfectly observe the supply shock, a more realistic setting would
have builders each observing part of the supply and thus needing to aggregate their respective information
in order to fully observe the supply-side shock. We have explored this more general setting, which entails an
additional layer of information aggregation on the builder side of the housing market. Nevertheless, it gives
qualitatively similar insights as our current setting.
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This overweighting is reminiscent of extrapolative beliefs, which, as referenced in the

introduction, have been recognized in the literature as important for understanding housing

cycles. It is useful to note that while extrapolative beliefs amplify housing price volatility,

they nevertheless imply price volatility monotonically decreases in supply elasticity. The

overweighting of prices highlighted in our model anchors on a characteristic of neighbor-

hoods that allows for it to explain the hump-shaped pattern in price volatility across supply

elasticity.

3.2 The equilibrium

Our model features a noisy rational expectations equilibrium, which requires clearing of the

housing market that is consistent with the optimal behavior of both households and home

builders:

� Household optimization:
n
fHigi2[0;1] ; li

o
solves each household�s maximization prob-

lem in (2).

� Builder optimization: SH solves the builders�maximization problem in (3).

� At t = 1; the housing market clears:Z 1

�1
Hi (�i; P ) d� (�i) = P ke�;

where each household�s housing demand Hi (�i; P ) depends on its private signal �i and

the housing price P: The demand from households is integrated over the idiosyncratic

component of their private signals f�igi2[0;1] :

We �rst solve for the optimal labor and housing choices for a household given its utility

function and budget constraint in (2), which are characterized in the following proposition.

Proposition 1 Household i�s optimal labor choice depends on its expected productivity:

li =

8<:�HE
24( 1

1� �H

�
Hi

1� �c

�1��c  R
[0;1]=i

Hjdj

�c

!�c
)1��H �

1

�H
eAi
��H ������ Ii

359=;
1

1+ ��H

;
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and its demand for housing is

logHi =
2 +  � �H

 + (1� �H) �c
logE

"�Z
[0;1]

Hjdj

��c(1��H)
e�HAi

����� Ii
#
� 1 +  � �H
 + (1� �H) �c

logP

� 1 +  � �H
 + (1� �H) �c

logE

"�Z
[0;1]

Hjdj

��c(1��H)
e(�H�1)Ai

����� Ii
#

+
 

 + (1� �H) �c
log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A : (5)

Proposition 1 demonstrates that the labor chosen by a household is determined by its

expected productivity and that its housing demand is determined by not only its own pro-

ductivity eAi but also the aggregate housing consumption of other households. This latter

component arises from the complementarity in the utility function of the household.

By clearing the aggregate housing demand of the households with the supply from the

builders, we derive the housing market equilibrium. Despite the nonlinearity in each house-

hold�s demand and in the supply from builders, we obtain a tractable unique log-linear

equilibrium. The following proposition summarizes the housing price and each household�s

housing demand in this equilibrium.

Proposition 2 At t = 1; the housing market has a unique log-linear equilibrium: 1) The

housing price is a log-linear function of A and �:

logP = pAA+ p�� + p0; (6)

with the coe¢ cients pA and p� given by

pA =
1 +  

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1� �Ab > 0; (7)

p� = �  

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1�

�
b

�k

�2
< 0; (8)

where b 2
"
0; 1+ 

 
���

1+
(1��H)�c

 

�
�A+��

#
is the unique positive, real root of equation (29), and

p0 is given in equation (34).

2) The housing demand of household i is a log-linear function of its private signal �i and

logP :

logHi = h��i + hP logP + h0; (9)
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with the coe¢ cients h� and hP given by

h� = b > 0; (10)

hP = �1 +  � �H
 

+
1 +  + �c (1� �H) b

 

�
b
�k

�2
�A + � � +

�
b
�k

�2 1pA ; (11)

and h0 given by equation (23).

Proposition 2 establishes that the housing price P is a log-linear function of the neighbor-

hood strength A and the housing supply shock �; and that each household�s housing demand

is a log-linear function of its private signal �i and the log housing price logP: Similar to

Hellwig (1980), the housing price aggregates the households�dispersed private information

to partially reveal A: The price does not depend on the idiosyncratic noise in any individual

household�s signal because of the Law of Large Numbers. This last observation is key to

the tractability of our model and ensures that the housing demand from the households re-

tains a log-normal distribution after aggregation. This insight has been used by Sockin and

Xiong (2015) to derive a tractable log-linear equilibrium for analyzing e¤ects of informational

frictions in commodity markets.

In the presence of informational frictions, the housing supply shock � serves the same

role as noise trading in standard models of asset market trading with dispersed information.

This feature is new to the housing literature and highlights an important channel for supply

shocks to a¤ect the expectations of potential home buyers. Since households cannot perfectly

disentangle changes in housing prices caused by supply shocks from those brought about by

shocks to demand, they partially confuse a housing price change caused by a supply shock

to be a signal about the strength of the neighborhood.

To facilitate our discussion of the impact of learning, it will be useful to introduce a

perfect-information benchmark in which all households perfectly observe the strength of the

neighborhood A: The following proposition characterizes this benchmark equilibrium.

Proposition 3 Consider a benchmark setting, in which households perfectly observe A (i.e.,

�i = A, 8i:) There is also a log-linear equilibrium, in which the housing price is

logP =
1 +  

1 +  (1 + k)� �H
A�  

1 +  (1 + k)� �H
� +

(1 +  ) �H � (1� �H) (1 +  � �H)

2 (1 +  (1 + k)� �H)
��1"

+
 

1 +  (1 + k)� �H
log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A :
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and all households have the same housing demand

logH =
1 +  

 
A� 1 +  � �H

 
logP +

(1 +  ) �H � (1� �H) (1 +  � �H)

2 
��1"

+ log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A :

Furthermore, the housing market equilibrium with informational frictions characterized in

Proposition 2 converges to this benchmark equilibrium as � � % 1; and the variance of the

housing price V ar [logP ] has a U-shaped relationship with the supply elasticity k:

It is reassuring that as the households�private information becomes in�nitely precise, the

housing market equilibrium converges to the perfect-information benchmark. In this perfect-

information benchmark, the housing price is also a log-linear function of the demand-side

fundamental A and the supply shock �; and each household�s identical demand is a log-linear

function of the perfectly observedA and the housing price logP: Consistent with the standard

intuition, a higher A increases both the housing price and aggregate housing demand, while

a larger supply shock � reduces the housing price but increases aggregate housing demand.

It is also easy to see that in this benchmark setting, as the supply elasticity k rises from zero

to in�nity, the weight of A (the demand-side fundamental) in the housing price decreases,

while the weight of � (the supply-side shock) increases.

Furthermore, in the perfect-information benchmark, the housing price variance has a

U-shaped relationship with the housing supply elasticity k. This is because, as k varies, it

causes the housing price to assign di¤erent weights to the demand-side fundamental and the

supply-side shock. The standard intuition from diversi�cation implies that the price has the

lowest variance when the weights of the two factors are balanced, i.e., the supply elasticity

takes an intermediate value. This U-shaped price variance serves a benchmark to evaluate

the housing price variance in the presence of informational frictions.

3.3 Impact of learning

In the presence of informational frictions about the strength of the neighborhood A, each

household needs to use its private signal �i and the publicly observed housing price logP

to learn about A: As the housing price logP is a linear combination of the demand-side

fundamental A and the housing supply shock �; the supply shock interferes with this learning

process. A larger supply shock �; by depressing the housing price, will have an additional
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e¤ect of reducing the households�expectations of A: This, in turn, reduces their housing

demand and consequently further depresses the housing price. This learning e¤ect thus

causes the supply shock to have a larger negative e¤ect on the equilibrium housing price

than it would in the perfect-information benchmark. Similarly, this learning e¤ect also causes

the demand-side fundamental A to have a smaller positive e¤ect on the price than in the

perfect-information benchmark because informational frictions cause households to partially

discount the value of A. The following proposition formally establishes this learning e¤ect

on the housing price.

Proposition 4 In the presence of informational frictions, coe¢ cients pA > 0 and p� <

0 derived in Proposition 2 are both lower than their corresponding values in the perfect-

information benchmark.

The precision of the households� private information � � determines the informational

frictions they face. The next proposition establishes that an increase in � � mitigates the in-

formational frictions and brings the coe¢ cient pA closer to its value in the perfect-information

benchmark. In fact, as � � goes to in�nity, the housing market equilibrium converges to the

perfect-information benchmark (Proposition 3).

Proposition 5 pA monotonically increases with the precision � � of each household�s private

signal and decreases with the degree of complementarity in households�housing consumption

�c:

Each household�s housing demand also reveals how the households learn from the housing

price. In the presence of informational frictions about A, housing price is not only the cost of

acquiring shelter but also a signal about A. The housing demand of each household derived

in (9) re�ects both of these e¤ects. Speci�cally, we can decompose the price elasticity of each

household�s housing demand hP in equation (11) into two components. The �rst component

�1+ ��H
 

is negative and represents the standard cost e¤ect (i.e., downward sloping demand

curve), as in the perfect-information benchmark in Proposition 3, and the second component
1+ +�c(1��H)b

 

( b
�k)

2

�A+��+( b
�k)

2
1
pA
is positive and represents the learning e¤ect.

A higher housing price raises the household�s expectation of A and induces it to consume

more housing through two related but distinct learning channels. First, a higher A implies a

higher productivity for the household itself. Second, a higher A also implies that other house-

holds demand more housing, which in turn induces each household to demand more housing.
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As a re�ection of this complementarity e¤ect, the second component in the price elasticity of

housing demand increases with �c, the degree of complementarity in the household�s utility

of its own housing consumption and other households�housing consumption.

As a result of the presence of the complementarity channel, �c also a¤ects the impact of

learning on the housing price. As �c increases, each household puts a greater weight on the

housing price in its learning of A and a smaller weight on its own private signal. This in

turn makes the housing price less informative of A. In this way, a larger �c exacerbates the

informational frictions faced by households. Indeed, Proposition 5 shows that the loading of

logP on A decreases with �c.

Housing supply elasticity k plays an important role in determining the informational

frictions faced by the households, in addition to its standard supply e¤ect. To illustrate this

learning e¤ect of supply elasticity, we consider two limiting economies as k goes to 0 and1,
which are characterized in the following proposition.

Proposition 6 As k ! 1 ; the housing price and each household�s housing demand con-

verge to

logP = ��;

and

logHi =
1 +  

 

� �

�A + � � +
(1��H)�c

 
�A
�i �

1 +  � �H
 

logP + h0:

As k ! 0; the housing price and each household�s housing demand converge to

logP =
1 +  

1 +  � �H
A+

1

2

(1 +  ) �H � (1� �H) (1 +  � �H)

1 +  � �H
��1"

+
 

1 +  � �H
log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A ;

and logHi = 0:

At one end, as supply elasticity goes to zero, the housing price is completely driven

by A and thus fully reveals it. In this case, each household precisely learns A from the

price, and as a result, both the housing price and each household�s housing demand coincide

with their corresponding values in the prefect-information benchmark. At the other end,

as supply elasticity goes to in�nity, the housing price is completely driven by the supply

shock � and contains no information about A. In this case, each household has to rely on
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its own private signal to infer A. But as the housing price is fully determined by the supply

shock and independent of the demand-side fundamental, informational frictions about A do

not matter for the housing price. Consequently, the housing price also coincides with that

in the perfect-information benchmark, even though informational frictions still a¤ect each

household�s housing demand. Taken together, when housing supply is either perfectly elastic

or inelastic, housing price is not a¤ected by informational frictions and coincides with that

in the perfect-information benchmark.

The following proposition characterizes the housing price at an intermediate supply elas-

ticity and, in particular, analyzes the role of the households�underestimation � of supply

elasticity.

Proposition 7 Consider an intermediate level of supply elasticity k 2 (0;1) : 1) In the
presence of informational frictions, both pA and jp�j monotonically decrease with �: 2) When
� = 1; the housing price variance with informational frictions is lower than that of the perfect-

information benchmark. 3) The variance of the housing price logP monotonically decreases

with �; and a su¢ cient condition 1 �  
 +(1��H)�c

��
�A
� �2 � 1

2
ensures the price variance to

be at least as large as its corresponding value in the perfect-information benchmark.

Proposition 7 shows that, at an intermediate supply elasticity, the households�underes-

timation of supply elasticity causes them to overinterpret the information contained in the

price signal and thus overreact to the price signal. Consequently, the positive loading of

the equilibrium housing price pA on the demand-side fundamental A becomes larger and the

negative loading p� on the supply shock becomes more negative. That is, the housing price

becomes more responsive to both demand and supply shocks.

Proposition 7 also shows that, in the absence of the households� underestimation of

supply elasticity, the presence of informational frictions reduces the housing price variance.

This is because informational frictions make households less responsive to demand shocks,

causing the housing price to load less on demand shocks. When households underestimate

the supply elasticity (� < 1), their overreaction to the price signal ampli�es the price e¤ects

of both supply and demand shocks, and implies that the housing price variance monotonically

decreases with �. In fact, Proposition 7 shows that when � is su¢ ciently small, the housing

price variance is at least as large as its value in the perfect-information benchmark.

Interestingly, the volatility ampli�cation induced by the households�overreaction to the

housing price is most pronounced when the supply elasticity is in an intermediate range.
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This follows from our earlier discussion of the two limiting cases when the elasticity goes

to either zero or in�nity. At one end, when the supply is in�nitely elastic, the households�

learning about the demand side is irrelevant for the price. At the other end, when the supply

is in�nitely inelastic, the price fully reveals the demand-side fundamental and there is no

room for the households to overreact. In between these two limiting cases, the demand-side

fundamental plays a signi�cant role in determining the housing price and at the same time

households face substantial uncertainty about the demand-side fundamental, which leaves

room for their overreaction to amplify the price volatility.

In Figure 6, we provide a numerical example to illustrate how informational frictions and

households�overreaction jointly a¤ect the housing price variance. The �gure depicts the

log-price variance V ar [logP ] against the supply elasticity under the following parameter

values:

� � = 0:1; �A = 1; � = 0:1;  = 0:6; �c = 0:5; �H = 0:9:

For comparison, it also depicts the log-price variance in the perfect-information benchmark,

which is obtained as � � ! 1. As the supply elasticity k rises from 0 to 1 (i.e., from

in�nitely inelastic to more elastic), the log-price variance decreases with the supply elasticity.

In contrast, when the households face informational frictions with � � = 1, Figure 6 shows

that the log-price variance �rst increases with k; when k is lower than an intermediate level

around 0:1; and then decreases with k.8 The di¤erence between this humped shape and the

monotonically decreasing curve in the perfect-information benchmark illustrates the joint

e¤ect of informational frictions and the households�overreaction to the price signal.

The humped log-price variance illustrated in Figure 6 provides an explanation for the

aforementioned, non-monotonic relationship between the housing boom and bust cycles ex-

perienced by di¤erent U.S. counties in the 2000s and supply elasticity.

4 Elasticity and Housing Speculation

In this section, we further explore the e¤ects of household learning on housing speculation.

We �rst extend the baseline model presented in the last section to incorporate secondary

homes and, in particular, to show that the same learning e¤ect discussed earlier leads to new

predictions regarding the relationship between housing speculation and supply elasticity.

8Outside the range of k depicted in the �gure, both of these two lines decrease and eventually converge
to each other as k !1; as derived in Proposition 6.
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Then, we examine these predictions in the data and provide some supportive evidence.

4.1 A model extension

We extend the model presented in the previous section to incorporate three types of agents

in the economy: households, home builders, and immigrants looking to move into the neigh-

borhood. The immigrants are the new addition to this extension. Suppose that these

immigrants make their decision at t = 1 on whether to move into the neighborhood, based

on the expected strength of the neighborhood. The immigrants arrive in the neighborhood

at t = 2 and then buy the secondary homes initially owned by the households.

Households At t = 1; households purchase two types of homes, one as their primary

residence and the other as a secondary home to sell at t = 2 to the immigrants. Home builders

build and sell these two types of homes in two separate housing markets. This separate

treatment of primary and secondary homes is consistent with the fact that, in practice,

primary homes tend to be single houses, while secondary homes tend to be apartments

and condominiums. Another advantage of giving separate supply curves to primary and

secondary homes is that it ensures a tractable log-linear equilibrium.

When making their decisions at t = 1, households again receive a private signal �i about

the strength of the neighborhood. Like before, the demand of household i for a primary

home is Hi; but now, in addition, the household has a demand for a secondary home,Mi: For

simplicity, suppose that households have no initial wealth and must �nance their purchases

by borrowing debt Di from home builders.9 We also normalize the interest rate on the loans

to be zero. Then, the budget constraint of household i at t = 1 is

PHi +Q1Mi = Di; (12)

where P is the price of primary homes and Q1 is the price of secondary homes.

At t = 2; households decide how much of their goods to produce, sell their secondary

homes at a price Q2 to the immigrants that have moved into the neighborhood, and repay

their debt to home builders. Household i again employs its own labor li as an input to

production with production function eAili: As in the baseline model, household i earns income

9This assumption is innocuous as our main interest is not to study the e¤ects of the households�credit
constraints.
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�Hi from the home builder of their primary home, who is part of the household. Thus, in

equilibrium, �Hi = PHi:

The budget constraint of household i at t = 2 is then

Ci = �Di + eAili +Q2Mi +�Hi; (13)

where Ci is the goods consumption of household i: Households have the same Cobb-Douglas

preferences as in the baseline model for consuming their primary housing and non-housing

consumption at t = 2.

At t = 1; each household maximizes

max
fHi;Mi;lig

E

"
U
�
fHjgj2[0;1] ; Ci

�
� l1+ i

1 +  

����� Ii
#

(14)

under its information set Ii = f�i; P;Q1g ; which includes its private signal �i and the housing
prices P and Q1. The household�s consumption Ci is determined by its budget constraint at

t = 2 given in (13), which in turn depends on its budget constraint at t = 1 given in (12).

Home builders Home builders face separate production processes for building primary

and secondary homes. Speci�cally, they face the following convex labor cost for building

each type of home:
k

1 + k
e��jS

1+k
k

j

where j 2 fH;Mg indicates the type of home with H representing primary homes and M

representing secondary homes, Sj is the quantity of type-j homes supplied, and �j represents

a supply shock. We assume that �j is observed by builders but not households. From the

perspective of households, there are two components in the supply shock of type-j homes:

�j = � + ej; j 2 fH;Mg :

The �rst component � is common to the two types of homes. It has a normal distribution

with �� as the mean and unit variance. The second component ej is idiosyncratic to type-j

homes. It has a normal distribution with zero mean and � as its standard deviation.

The builders�optimization determines their supply curves for both primary and secondary

homes:

SH = P ke�H and SM = Qk
1e
�M ;

where, for j 2 fH;Mg, �j s N
�
��; (1 + �2) k2

�
and �� = k��:
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Immigrants Immigrants decide whether they want to move into the neighborhood at

t = 1; although they move into the neighborhood only at t = 2 and thus purchase secondary

homes from the initial households at t = 2. This is realistic as it takes time for immigrants to

move families from one area to another. As such, immigrants have to make their migration

decisions based on their expectations of the strength of a neighborhood at t = 1, rather than

the realized strength at t = 2: As immigrants are from outside of the neighborhood, it is

reasonable to assume that they do not receive any private information and have to rely on

Ic = fP;Q1g ; which contains the publicly observable housing prices at t = 1, to form their

expectations. Like the households, the immigrants also underestimate the housing supply

elasticity by the same factor � � 1.
It is intuitive that when immigrants hold a higher expectation about the strength of a

neighborhood, the neighborhood will attract a larger number of immigrants. This is because

immigrants also enjoy living and working in a stronger neighborhood. Consequently, there

will be a greater demand for secondary homes at t = 2: For simplicity, we adopt a reduced

form to capture the immigrants�housing demand by assuming that the aggregate wealth W

they bring to buy homes is proportional to their expected strength of the neighborhood:

W = E
�
eA
�� Ic� : (15)

This form allows us to maintain the tractable log-linear equilibrium.10

Anticipating the arrival of immigrants at t = 2, the initial households act as intermediaries

by buying secondary homes at t = 1 and selling them to immigrants at t = 2. To the extent

that the households can perfectly predict the future housing demand of the immigrants

based on the public information available at t = 1, they do not bear any risk in speculating

in secondary homes. This feature serves to simplify our analysis and to highlight the key

insight that the households�demand for secondary homes is crucially in�uenced by housing

prices P and Q1 traded at t = 1 through their impact on the immigrants�expectation of the

neighborhood strength.

10One may micro-found this form in di¤erent ways. One possibility is that the number of immigrants
increases with their expectation of the strength of neighborhood and each immigrant arrives with a �xed
amount of wealth to acquire housing. Another possibility, which we have explicitly worked out in an earlier
draft, is to let the immigrants supply labor to the initial households based on their expectations of the
strength of the neighborhood, which determines the productivity of the households.
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Equilibrium We derive the noisy rational expectations equilibrium as in the baseline

model. The equilibrium features the clearing of both primary and secondary homes at t = 1:Z 1

�1
Hi (�i; P;Q1) d� (vi) = P ke�H ;Z 1

�1
Mi (�i; P;Q1) d� (vi) = Qk

1e
�M ;

and the households�learning from the prices of both primary and secondary homes. We also

impose clearing in the market for secondary homes at t = 2; which requires the immigrants

to spend all their wealth W to purchase secondary homes:

Q2

Z 1

�1
Mi (�i; P;Q1) d� (vi) =W:

As the nature of the equilibrium and the key steps of deriving the equilibrium are similar

to the baseline model, we leave the detailed description and derivation of the equilibrium to

an Internet Appendix. Instead, we brie�y summarize the key features of the equilibrium in

the extended model here.

There is a unique log-linear equilibrium where the primary home price is a log-linear

function of A, �H , and logQ1:

logP = pAA+ p��H + pQ logQ1 + p0;

and the prices of secondary homes at t = 1 and t = 2 are identical and equal to a log-linear

function of �M and logP :

logQ1 = logQ2 = q��M + qP logP + q0:

All coe¢ cients are given in the Internet Appendix. As the immigrants�demand at t = 2 for

secondary homes is determined by the public information available at t = 1, the households

can fully anticipate the price of secondary homes Q2 at t = 2. Competitive pressure ensures

that they earn zero pro�t by buying secondary homes at t = 1 and then selling them at

t = 2. As a result, the price of secondary homes Q1 at t = 1 is equal to Q2.

As a result of the separate supply shocks in the primary and secondary home markets,

the prices of primary and secondary homes are not perfectly correlated. The price of primary

homes P serves to aggregate the private information of households regarding the strength

of the neighborhood A, while the price of secondary homes simply re�ects P , together with

another supply component q��M , which in turn reveals the supply shock �M . Each household,
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say household i, treats both prices P and Q1 as useful signals, in addition to its private signal

�i, in forming its expectation of A.

Like the baseline model, through this informational channel, informational frictions and

households�overreaction to the price signals can jointly lead to a hump-shaped relationship

between the log-price variance of both primary and secondary homes and the supply elastic-

ity. To illustrate this relationship, we again use a numerical example based on the following

parameter choices:

� � = 0:1; �A = 1; � = 0:1;  = 0:6; �c = 0:5; �H = 0:9; � = 1; � " = 0:1: (16)

The top two panels of Figure 7 depict the log-price variance of both primary and secondary

homes against supply elasticity. It shows humped-shapes for both curves in the presence of

informational frictions, consistent with that in Figure 6 for the baseline model.

The households�demand for secondary homes is ultimately driven by the immigrants�

learning about the neighborhood strength through the housing prices. As a consequence, the

learning e¤ects are particularly important to the households�demand for secondary homes.

Thus, in this extended model, the households� demand for secondary homes provides an

additional dimension to examine learning e¤ects. Speci�cally, the demand of household i for

primary homes is a log-linear function of its private signal �i and housing prices logP and

logQ1; while its demand for secondary homes is a log-linear function of logP and logQ1:

logHi = h��i + hP logP + hQ logQ1 + h0;

logMi = logM = mP logP +mQ logQ1 +m0;

with all coe¢ cients given in the Internet Appendix. As all households agree on the housing

demand of immigrants at t = 2; they choose an identical demand schedule for secondary

homes. We are particularly interested in the fraction of demand for secondary homes relative

to the total housing demand Mi

Hi+Mi
, as this ratio is directly measurable in the data.

Empirical predictions The bottom-left panel of Figure 7 depicts the variance of Mi

Hi+Mi
;

which measures the variability of the share of investment-driven housing demand in total

housing demand with respect to supply elasticity in the presence and absence of informational

frictions. In the absence of informational frictions, V ar
h

Mi

Hi+Mi

i
monotonically decreases

with supply elasticity. This pattern is intuitive and re�ects how the cost e¤ect of a higher

housing price impacts primary home purchases more than secondary home purchases. As
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seen in the Internet Appendix, the loading of primary home demand logH (which is identical

across all households) on the supply shock �H is
k(1+ ��H)
1+k�H

; where �H 2 (0; 1) is the degree
of housing-consumption complementarity, while for secondary home demand logM it is
k
1+k

: The primary home demand is, therefore, more variable than secondary home demand

for a given supply shock, and this di¤erence increases with the supply elasticity of the

neighborhood. Consequently, in areas with more elastic supply, the fraction of secondary

home purchases is less variable.

Interestingly, in the presence of informational frictions, Figure 7 shows a hump-shaped

pattern of V ar
h

Mi

Hi+Mi

i
with respect to supply elasticity. This humped shape highlights

the learning e¤ects on the households�demand for secondary homes. Building on the same

insight from our earlier discussion, the demand for secondary homes is most variable in an

intermediate range of supply elasticity because the joint e¤ects of informational frictions and

the overreaction of the households and immigrants to the price signals are most in�uential

in a¤ecting their expectations of the neighborhood strength.

The non-monotonic relationship between the variability of the fraction of secondary-home

demand relative to total demand and housing supply elasticity is again in sharp contrast

to the monotonic relationship in the perfect-information benchmark. This non-monotonic

relationship provides a new prediction for us to explore in the data.

Figure 7 also highlights a second salient feature in the presence of informational frictions.

The variance of housing prices and the variance of the share of secondary-home demand

exhibit similar hump-shaped patterns across supply elasticity, which suggests a positive

correlation between them. The bottom-right panel of Figure 7, by displaying a scatter plot

of these two variances across supply elasticities, illustrates this positive correlation, which

provides a second new prediction for us to test in the data.

4.2 Empirical evidence

In this subsection, we examine the two empirical predictions provided by the model extension

using data from the recent U.S. housing boom: 1) whether during the boom period of 2004-

2006 the share of non-owner-occupied home purchases in the total home purchases had the

greatest increases relative to the pre-boom period of 2001-2003 in counties with intermediate

supply elasticities, and 2) whether counties with greater increases in the share of non-owner-

occupied home purchases during the boom also experienced larger price increases in 2004-
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2006 and larger price decreases during the bust period of 2007-2009.

We construct the share of non-owner-occupied home purchases at the county level from

the �Home Mortgage Disclosure Act� (HMDA) dataset. The HMDA has comprehensive

coverage for mortgage applications and originations in the U.S. We use mortgages originated

for home purchases. HMDA data identify owner occupancy for each individual mortgage.

We then aggregate the HMDA data to the county level and calculate the fraction of mortgage

origination for non-owner-occupied homes in the total mortgage origination as our measure

of the share of secondary home purchases.

Figure 8 depicts the share of non-owner-occupied home purchases for the U.S. and for

three cities, New York, Las Vegas, and Charlotte. At a national level, the share of non-

owner-occupied home purchases rose steadily from a modest level of 7% in 2000 to peak at

a level above 15% in 2005. It then fell gradually to less than 10% in 2010. The peak of the

share of non-owner-occupied home purchases in 2005 was slightly in advance of the peak of

the national home price index in 2006, as shown in Figure 1. Nevertheless, the rise and fall

of the share of non-owner-occupied home purchases were roughly in sync with the boom and

bust of home prices.

Across the three cities, it is interesting to note that Las Vegas had the most dramatic rise

and fall in the share of non-owner-occupied home purchases, followed by Charlotte, with New

York having the most modest rise and fall. The most variable share of non-owner-occupied

home purchases experienced by Las Vegas is particularly interesting as Las Vegas also had

the most dramatic price cycle among these cities.

We now systematically examine the share of non-owner-occupied home purchases across

counties with di¤erent housing supply elasticities. We focus on the change in the fraction

of non-owner-occupied home purchases from the pre-boom period of 2001-2003 to the boom

period of 2004-2006.

In Figure 9, we sort the counties in our sample into three groups in the top panel and

ten groups in the bottom panel using the Saiz�s supply elasticity measure, with each group

having the same number of counties. The top panel shows that the change in the share of

non-owner-occupied home purchases is almost the same between the inelastic and the middle

groups, and smaller in the elastic group. As we discussed before, this coarse grouping might

hide �ner non-monotonicity. Indeed, the bottom panel shows that the change in the fraction

of non-owner-occupied home purchases displays a non-monotonic pattern across ten elasticity
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groups with the largest share of non-owner-occupied home purchases in groups 3 and 4. This

non-monotonic pattern is consistent with the �rst prediction of the extended model.

In Figure 10, we sort the counties into elasticity groups each with an equal population

rather than number of counties. Across either the three groups shown in the top panel or

the ten groups shown in the bottom panel, there is a non-monotonic pattern in the change

of the share of non-owner-occupied home purchases across the elasticity groups, with the

change peaking in the middle of the groups.

To further examine whether the largest change in the share of non-owner-occupied home

purchases in the middle elasticity groups is robust to controlling for other fundamental

factors, we also adopt a regression approach in Table 2. Similar to the regressions reported

in Table 1, we regress the change in the share of non-owner-occupied home purchases from

2001-2003 to 2004-2006 on two dummy variables that indicate whether a county is in the

middle elastic group or the elastic group, which are constructed in the top panel of Figure

10, together with a list of control variables. This regression implicitly uses the inelastic

group as the benchmark for the middle and elastic groups. The control variables include the

fraction of subprime households in the county in 2005, annualized population change, and

annualized per capita income change. Columns 1 and 2 of Table 2 report the regressions

without and with the controls. In either regression speci�cation, we observe the middle

group has a signi�cantly larger change in the share of non-owner-occupied home purchases

than the other groups. Furthermore, none of the control variables is signi�cant except the

annualized per capita income change in 2004-2006.

Taken together, Figures 9-10 and Table 2 con�rm the �rst prediction of the extended

model that there is a non-monotonic relationship between the variability of the share of

non-owner-occupied home purchases and housing supply elasticity.

Figure 11 and Table 3 provide evidence for the second prediction. The regressions in Table

3 show that change in the share of non-owner occupied home purchases from 2001-2003 to

2004-2006 is positively correlated with the size of the housing price boom in 2004-2006, and

negatively correlated with the size of the housing price bust in 2007-2009. These results

are robust to the inclusion of the control variables that are included in the test of the �rst

prediction. The two panels of Figure 11 graphically illustrate these correlations by providing

scatter plots of the size of the housing price boom in 2004-2006 and the housing price bust

in 2007-2009 against the change in the share of non-owner-occupied home purchases from
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2001-2003 to 2004-2006. These plots show that these correlations are a broad feature of the

data rather than driven by a few outlying counties. Our empirical analysis thus con�rms

the second prediction of the extended model that there is a positive correlation between

the volatility of housing prices and the variability of the share of non-owner occupied home

purchases during the recent U.S. housing cycle.

5 Conclusion

This paper highlights a non-monotonic relationship between the magnitude of housing cycles

and housing supply elasticity in the cross-section of U.S. county data during the U.S. housing

cycle of the 2000s. We develop a model of information aggregation and learning in housing

markets to explain this phenomenon. In the presence of pervasive informational frictions

regarding economic strength and housing supply of a neighborhood, households face a real-

istic problem in learning about these fundamental variables with housing prices serving as

important signals. Our model highlights how the households�learning interacts with char-

acteristics endemic to local housing supply and demand to impact housing price dynamics.

In particular, supply elasticity a¤ects not only housing supply but also the informational

noise in the price signal for the households� learning of the neighborhood strength. Our

model predicts that housing price and share of investment home purchases are both most

variable in areas with intermediate supply elasticities and that these variances are positively

correlated. Our empirical analysis also provides evidence that supports these predictions.

Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The �rst order conditions for household i�s choices of Hi and li at an interior point are

(1� �c) (1� �H)

Hi

E
h
U
�
fHjgj2[0;1] ; Ci

���� Iii = PE

�
�H
Ci
U
�
fHjgj2[0;1] ; Ci

����� Ii� ; (17)
l i = E

�
�H
Ci
U
�
fHjgj2[0;1] ; Ci

�
eAi
���� Ii� :(18)
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Imposing Ci = eAili in equation (17), one arrives at

PHi =
(1� �c) (1� �H)

�H

E

��R
[0;1]=i

Hjdj
��c(1��H)

e�HAi
���� Ii�

E

��R
[0;1]=i

Hjdj
��c(1��H)

e(�H�1)Ai

���� Ii� li:
From equation (18), it follows that

li =

8<:�HE
24( 1

1� �H

�
Hi

1� �c

�1��c  R
[0;1]=i

Hjdj

�c

!�c
)1��H �

1

�H
eAi
��H ������ Ii

359=;
1

1+ ��H

;

from which we see that

logHi =
2 +  � �H

 + (1� �H) �c
logE

"�Z
[0;1]=i

Hjdj

��c(1��H)
e�HAi

����� Ii
#
� 1 +  � �H
 + (1� �H) �c

logP

� 1 +  � �H
 + (1� �H) �c

logE

"�Z
[0;1]=i

Hjdj

��c(1��H)
e(�H�1)Ai

����� Ii
#

+
 

 + (1� �H) �c
log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A :

Note that integrating over the continuum of other households� housing choices does not

change when sets of measure zero are substracted from it. We then obtain equation (5).

A.2 Proof of Proposition 2

We �rst conjecture that each household�s housing purchasing and the housing price take the

following log-linear forms:

logHi = hP logP + h��i + h0; (19)

logP = pAA+ p�� + p0; (20)

where the coe¢ cients h0; hP ; h�; p0; pA; and p� will be determined by equilibrium conditions.

Given the conjectured functional form for Hi; we can expand equation (5). It follows

that

E

"�Z
[0;1]

Hjdj

��c(1��H)
e�HAi

����� Ii
#

= e�c(1��H)(h0+hP logP+
1
2
h2��

�1
� )+

1
2
�2H�

�1
" E

�
e(�H+�c(1��H)h�)A

�� Ii� ;
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where we use the fact that A is independent of "j and exploit the Law of Large Numbers for

the continuum when integrating over households, which still holds if we subtract sets of mea-

sure 0 from the integral. A similar expression obtains forE
��R

[0;1]
Hjdj

��c(1��H)
e(�H�1)Ai

���� Ii�
De�ne

q � logP � p0 � p���

pA
= A+

p�
pA

�
� � ��

�
;

which is a su¢ cient statistic of information contained in P: Then, conditional on observing

its own signal �i and the housing price P; household i�s expectation of A is

E [A j �i; logP ] = E [A j �i; q] =
1

�A + � � +
p2A
p2�

1
(�k)2

 
�A �A+ � ��i +

p2A
p2�

1

(�k)2
q

!
;

and its conditional variance of A is

V ar [A j �i; logP ] =
 
�A + � � +

p2A
p2�

1

(�k)2

!�1
:

Therefore,

logE
�
e(�H+�c(1��H)h�)A

�� Ii�
= (�H + �c (1� �H)h�)

 
�A + � � +

p2A
p2�

1

(�k)2

!�1 
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+
1

2
(�H + �c (1� �H)h�)

2
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p2A
p2�

1

(�k)2

!�1
:

Then,

logE

"�Z
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��c(1��H)
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����� Ii
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2
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�
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1
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�1
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1
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�A + � � +
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1

(�k)2
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:

Substituting this expression into equation (5) and matching coe¢ cients with the conjectured
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log-linear form in (19), it follows that

h� =
1 +  + �c (1� �H)h�

 + (1� �H) �c

 
�A + � � +

p2A
p2�

1

(�k)2
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�c
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1A : (23)

By aggregating households�housing demand and the builders�supply and imposing market

clearing in the housing market, we have

h0 + hP (p0 + pAA+ p��) + h�A+
1

2
h2��

�1
� = � + k (p0 + pAA+ p��) :

Matching coe¢ cients of the two sides of the equation leads to the following three conditions:

h0 + hPp0 +
1

2
h2��

�1
� = kp0; (24)

hPpA + h� = kpA; (25)

hPp� = 1 + kp�: (26)

It follows from equation (26) that

p� = �
1

k � hP
; (27)

and further from equation (25) that

pA =
h�

k � hP
: (28)

Thus, by taking the ratio of equations (28) and (27), we arrive at

pA
p�
= �h�:
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Substituting pA
p�
= �h� into equation (21), and de�ning b = �pA

p�
; we arrive at

1

(�k)2
b3 +

�
�A +

 

 + (1� �H) �c
� �

�
b� 1 +  

 + (1� �H) �c
� � = 0: (29)

We see from equation (29) that b has at most one positive root since the above third order

polynomial has only one sign change, by Descartes�Rule of Signs. By setting b ! �b; we
see that there is no sign change, and therefore b has no negative root. Furthermore, by the

Fundamental Theorem of Algebra, the roots of the polynomial (29) exist. Thus, it follows

that equation (29) has only one real, nonnegative root b � 0 and 2 complex roots.11

Furthermore, by dropping the cubic term from equation (29), one arrives at an upper

bound for b :

b � 1 +  

 

� ��
1 + (1��H)�c

 

�
�A + � �

:

Since h� = �pA
p�
= b; we can recover h� = b > 0 and p� = �1

b
pA < 0. From equation (22)

and b = �pA
p�
; it follows that

hP = �
1 +  � �H

 
+
1 +  + �c (1� �H) b

 

�
b
�k

�2
�A + � � +

�
b
�k

�2 1pA : (30)

From equation (26), one also has that hP = k + p�1� : Since p� � 0; it follows that hP < k

whenever k > 0:

From h� = b and equations (28) and (30), we arrive at

pA =
 

1 +  (1 + k)� �H

0B@b+ 1 +  + �c (1� �H) b

 

�
b
�k

�2
�A + � � +

�
b
�k
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1CA > 0: (31)

One arrives at p� from recognizing that p� = �1
b
pA:Manipulating equation (29), we recognize

that
1 +  + �c (1� �H) b

 
=
 + (1� �H) �c

 

 
�A + � � +

�
b

�k

�2!
b��1� : (32)

Substituting equation (32) into equation (31), and invoking equation (29) to replace 1
(�k)2

b3;

one arrives at

pA =
1 +  

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1� �Ab: (33)

11The uniqueness of the positive, real root also follows from the fact that the LHS of the polynomial
equation monotonically increases in b:
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and from equation (31), equation (32). and p� = �1
b
pA; one also has that

p� = �
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From h� = b; b = �pA
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; and equations (30), (24) and (23), one also �nds that
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1A :

Given p0; pA; and b = �pA
p�
; we can recover h0 from equation (23).

Since we have explicit expressions for all other equilibrium objects as functions of b; and

b exists and is unique, it follows that an equilibrium in the economy exists and is unique.

A.3 Proof of Proposition 3

When all households observe A directly, there are no longer information frictions in the

economy. Since the households� idiosyncratic productivity components are unobservable,

they are now symmetric. Then, it follows that Hj = Hi = H: Imposing this symmetry in

equation (5), we see that each household�s housing demand is then given by

logH =
1 +  

 
A� 1 +  � �H
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By market clearing, logH = � + k logP; it follows that
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This characterizes the economy in the limit as information frictions dissipate.

To see that the economy with information frictions (�nite � �) converges to this perfect-

information limit, we consider a sequence of � � that converges to 1: From equation (29), it

follows that, as � � %1; b! 1+ 
 
: Since h� = b; it follows that

h� !
1 +  

 
:

Taking the limit � � % 1 in equation (31), recognizing that h� = b remains �nite in the

limit, we see that

pA !
1 +  

1 +  (1 + k)� �H
:

Since p� = �1
b
pA; it follows that

p� ! �  

1 +  (1 + k)� �H
:

In addition, from equation (30), we �nd that as � � %1;

hP ! �1 +  � �H
 

Finally, from equations (34) and (23), it follows that
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�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A
+
1

2

(1 +  ) �H � (1� �H) (1 +  � �H)

1 +  (1 + k)� �H
��1" ;

h0 ! log

0@(1� �c)

�
1� �H
�H

��
1� �c
�c

� �c(1��H)
 

1A+ (1 +  ) �H � (1� �H) (1 +  � �H)

2 
��1" :

Thus, we see that the economy with information frictions converges to the perfect-information

benchmark as � � %1:

Furthermore, the variance of the log housing price is given by

V ar [logP ] =

�
 k

1 +  (1 + k)� �H

�2 
1 +

�
1 +  

 k

�2
��1A

!
;

from which follows that

@V ar [logP ]

@k
=

2 2k

(1 +  (1 + k)� �H)
3

(
1 +  � �H �

(1 +  )2

 k
��1A

)
:

For k < 1+ 
 

1+ 
1+ ��H

��1A ; @V ar[logP ]
@k

< 0: For k > 1+ 
 

1+ 
1+ ��H

��1A ; @V ar[logP ]
@k

> 0: Thus it

follows that the log housing price is U-shaped in k:
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A.4 Proof of Proposition 4

From equation (33), it is clear that

pA =
1 +  

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1� �Ab <
1 +  

1 +  (1 + k)� �H
:

Thus, it follows that pA is always lower than its corresponding value in the perfect-information

benchmark.

Similarly, since p� = �1
b
pA; it follows from equation (31) that we can express p� as

p� = �
 

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1�

�
b

�k

�2
< �  

1 +  (1 + k)� �H
;

which is the corresponding value of p� in the perfect-information benchmark.

A.5 Proof of Proposition 5

Note that b is determined by the polynomial equation (29). We de�ne the LHS of the

equation as G (b). By using the Implicit Function Theorem and invoking equation (29), we

have
@b

@�c
= �@G=@�c

@G=@b
= � (1� �H) � �

3 1
(�k)2

b2 + �A +
 

 +(1��H)�c
� �

1 +  �  b

( + (1� �H) �c)
2 :

Since, from Proposition 2, 0 � b � 1+ 
 

���
1+

(1��H)�c
 

�
�A+��

� 1+ 
 
; it follows that

1 +  

 
� b � 0

Thus @b
@�c

< 0: Similarly,

@b

@� �
= �@G=@� �

@G=@b
=

1

3 1
(�k)2

b2 + �A +
 

 +(1��H)�c
� �

1 +  �  b

 + (1� �H) �c
> 0:

From the expression for pA in Proposition 2,

@pA
@�c

= � 1� �H
1 +  (1 + k)� �H

��1� �Ab�
 + (1� �H) �c
1 +  (1 + k)� �H

��1� �A
@b

@�c
:

Then, it follows, subtituting with equation (29), that

@pA
@�c

= � (1� �H) �
�1
� �Ab

1 +  (1 + k)� �H

2 1
(�k)2

b3 +  b
 +(1��H)�c
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2 1
(�k)2

b3 + 1+ 
 +(1��H)�c

� �
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Similarly, with respect to � �; we have

@pA
@� �

=
 + (1� �H) �c
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��2� �Ab

�
1� � �

1

b
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�
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A.6 Proof of Proposition 6

We �rst consider the limiting case for the economy as k !1: Rewrite equation (29) as�
b

�k

�3
+

�
�A +

 

 + (1� �H) �c
� �

�
b

�k
� 1 +  

 + (1� �H) �c

1

�k
� � = 0: (35)

Then it is apparent from equation (35) that, as k ! 1; that either b
�k
= 0 or b

�k
=

�i
q
�A +

 
 +(1��H)�c

� �: Thus, as k ! 1; one has that b
�k
! 0; and therefore b

k
! 0:

Consequently, from equation (33), pA ! 0 and the housing price is completely driven by the

supply shock �: From Proposition 2, one has that

p�k = �
 k

1 +  (1 + k)� �H
�  + (1� �H) �c
1 +  (1 + k)� �H

��1�
1

�

�
b

�k

�
b! �1;

since b is bounded from above by 1+ 
 
: Thus, logP = ��:

In addition, from equation (22), then, since b
k
! 0 and b is bounded from above by 1+ 

 
;

and from below by 0; one has that

hP = �
1 +  + �c (1� �H) b

� 

 
�A + � � +

�
b

�k

�2!�1
b

�k

1
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�1 +  � �H

 
! �1 +  � �H

 
:

From equation (21), it is straightforward to see that, as k !1;

h� = b! 1 +  

 

� �

�A + � � +
(1��H)�c

 
�A
:

Since h� remains bounded in the limit, it is easy to see from equation (34) that p0 ! 0 as

k !1: It further follows from equation (23) that in the limit

h0 =
1 +  

 

�
1 +
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In the case k ! 0; it follows from equation (35) that b ! 0 and b
k
! 1: From equation

(21), it follows that as k ! 0 one has that h� = b ! 0: Furthermore, from equation (33),

one has that

pA !
1 +  

1 +  � �H
:

Since h� ! 0; and pA remain bounded as k ! 0; we also see from equation (25), subsituting

for the limiting pA; that hP ! 0: Substituting for pA in p� = �1
b
pA with equation (31), it

follows that

p�k = �
 k

1 +  (1 + k)� �H
� 1 +  + �c (1� �H) b

1 +  (1 + k)� �H

1
�2

b
k

�A + � � +
�

b
�k

�2 ! 0;

and the demand shock A completely drives the housing price.

Since h� remains bounded in the limit, it is easy to see from equation (34) that as k ! 0;

p0 =
1

2

(1 +  ) �H � (1� �H) (1 +  � �H)

1 +  � �H
��1"
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1 +  � �H
log
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�
1� �H
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��
1� �c
�c

� �c(1��H)
 

1A : (37)

It further follows from equation (24) that in the limit h0 ! 0:

A.7 Proof of Proposition 7

We �rst prove that pA decreases with � and p� < 0 increases with �. Note that b is determined

by the polynomial equation (29). We de�ne the LHS of the equation as G (b). Comparative

statics of b with respect to � reveal, by the Implicit Function Theorem and invoking equation

(29), that

@b

@�
= �@G=@�

@G=@b
=

2 1
(�k)2

b3

3 1
(�k)2

b2 + �A +
 

 +(1��H)�c
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=
2 1
(�k)2
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(�k)2

b3 + 1+ 
 +(1��H)�c
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1

�
> 0:

From the expression for pA in Proposition 2,

@pA
@�

= �  + (1� �H) �c
1 +  (1 + k)� �H

��1� �A
@b

@�
< 0:
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Furthermore, by the Implicit Function Theorem, it follows that
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= �2
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:

Since � 2 [0; 1] ; it follows that @p�
@�

> 0:

The variance of the housing price V ar [logP ] is given by

V ar [logP ] = p2A�
�1
A + p2�k

2;

from which follows that
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From Proposition 3, the variance of the housing price in the perfect-information bench-

mark is
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It then follows, substituting for pA and p� with Proposition 2, that
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from which follows, substituting with equation (29), that V ar [logP ] � V ar
�
logP perf

�
� 0

whenever

b �
��
�2 � 1

�
��1� �A +

 

 + (1� �H) �c

��1 �
2�2 � 1

� 1 +  

 + (1� �H) �c
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Since b � 0; it is thus su¢ cient for 1 �  
 +(1��H)�c

��
�A
� �2 � 1

2
for the condition in (38) to

be satis�ed.

41



When � = 1; then the condition in (38) becomes b � 1+ 
 
: Since

0 � b � 1 +  

 

� ��
1 + (1��H)�c

 

�
�A + � �

� 1 +  

 

from Proposition 2, this condition can be satis�ed only when b = 1+ 
 
; which is the value

of b in the perfect-information benchmark, in which case V ar [logP ] = V ar
�
logP perf

�
:

Thus, when � = 1; variance with informational frictions is always less than that of the

perfect-information benchmark.
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Figure 1: Case-Shiller Home Price Index 

This figure plots the Case-Shiller home price index for the U.S. and three cities, New York, Las 

Vegas, and Charlotte. The price index is deflated by the CPI and normalized to 100 in 2000. 
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Figure 2: Housing Cycle across Three Elasticity Groups with an Equal Number of Counties 

This figure is constructed from sorting the counties in the U.S. into three groups based on Saiz’s 

(2010) housing supply elasticity measure, with each group holding an equal number of counties. 

The top panel depicts the average housing price expansion during the boom period of 2004-2006 

and the average housing price contraction during the bust period of 2007-2009 in each of the 

groups.  The bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 3: Housing Cycle across Ten Elasticity Groups with an Equal Number of Counties 

This figure is constructed from sorting the counties in the U.S. into ten groups based on Saiz’s 

(2010) housing supply elasticity measure, with each group holding an equal number of counties. 

The top panel depicts the average housing price expansion during the boom period of 2004-2006 

and the average housing price contraction during the bust period of 2007-2009 in each of the 

groups.  The bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 4: Housing Cycle across Three Elasticity Groups with an Equal Population 

This figure is constructed from sorting the counties in the U.S. into three groups based on Saiz’s 

(2010) housing supply elasticity measure, with each group holding an equal population. The top 

panel depicts the average housing price expansion during the boom period of 2004-2006 and the 

average housing price contraction during the bust period of 2007-2009 in each of the groups.  The 

bottom panel depicts the population in each group in the 2000 U.S. census. 
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 Figure 5: Housing Cycle across Ten Elasticity Groups with an Equal Population 

This figure is constructed from sorting the counties in the U.S. into ten groups based on Saiz’s 

(2010) housing supply elasticity measure, with each group holding an equal population. The top 

panel depicts the average housing price expansion during the boom period of 2004-2006 and the 

average housing price contraction during the bust period of 2007-2009 in each of the groups.  The 

bottom panel depicts the population in each group in the 2000 U.S. census. 
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Figure 6: Housing Price Variance in the Baseline Model 

This figure depicts the log-price variance in the baseline model against the supply elasticity, 

based on the following parameters: 𝜏𝜃 = 0.1, 𝜏𝐴 = 1,𝜙 = 0.1, 𝜂𝑐 = 0.5,𝜓 = 0.6, 𝜂𝐻 = 0.9. The 

solid line depicts the log-price variance in the presence of informational frictions, while the 

dashed line depicts the log-price variance in the perfect-information benchmark. 

 

 

 

 

 

 

 

 

  



Figure 7: Variance of Primary and Secondary Housing Prices and Fraction of Secondary 

Homes in the Extended Model 

This figure depicts the log-price variance of both primary and secondary homes in the extended 

model in the top two panels, the variance of the fraction of secondary home demand in the bottom 

left panel, and a scatter plot of the variance of the fraction and the variance of the secondary 

housing price in the bottom right panel based on the following parameters: 𝜏𝜃 = 0.1, 𝜏𝐴 = 1,𝜙 =

0.1, 𝜂𝑐 = 0.5, 𝜓 = 0.6, 𝜂𝐻 = 0.9, 𝛼 = 1, 𝜏𝜀 = 0.1.  

 

 

 

 

 

  



Figure 8: The Share of Non-Owner-Occupied Home Purchases 

This figure plots the share of non-owner-occupied home purchases for the U.S. and three cities, 

New York, Las Vegas, and Charlotte.  
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Figure 9: Change in the Fraction of Non-Owner-Occupied Home Purchases from 2001-2003 

to 2004-2006 across Elasticity Groups with an Equal Number of Counties 

We use Saiz’s (2010) supply elasticity measure to sort the counties in our sample into three 

groups in the top panel and ten groups in the bottom panel, with each group holding the same 

number of counties.  Each bar measures the change of fraction of non-owner occupied home 

purchases from 2001-2003 to 2004-2006 in each group. The fraction of non-owner-occupied 

home purchases in each county is computed from the “Home Mortgage Disclosure Act” data set. 
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Figure 10: Change in the Fraction of Non-Owner-Occupied Home Purchases from 2001-

2003 to 2004-2006 across Elasticity Groups with an Equal Population 

We use Saiz’s (2010) supply elasticity measure to sort the counties in our sample into three 

groups in the top panel and ten groups in the bottom panel, with each group holding the same 

population.  Each bar measures the change of fraction of non-owner occupied home purchases 

from 2001-2003 to 2004-2006 in each group. The fraction of non-owner-occupied home 

purchases in each county is computed from the “Home Mortgage Disclosure Act” data set. 
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Figure 11: Change in the Fraction of Non-Owner-Occupied Home Purchases from 2001-

2003 to 2004-2006 and the Recent Housing Cycle 

The top panel plots the average housing price expansion during the boom period of 2004-2006 

against the change of fraction of non-owner occupied home purchases from 2001-2003 to 2004-

2006; the bottom panel plots the average housing price contraction during the bust period of 

2007-2009 against the change of fraction of non-owner occupied home from 2001-2003 to 2004-

2006. 
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Table 1: Housing Boom and Bust during the Recent Cycle 

This table presents coefficient estimates from regressing the change in real house price during 2004-2006 (housing boom period) and during 2007-

2009 (housing bust period) on the dummies indicating whether a county is in the middle-elasticity group or the elastic group, with the inelastic 

group as the benchmark and a list of control variables. Robust standard errors are in parentheses. ***, **, * indicate coefficient estimates 

statistically distinct from 0 at the 1%, 5%, and 10% levels, respectively. 

 
 (1) (2) (3) (4) 

 Annualized real house price change  

in 2004-2006 

Annualized real house price change  

in 2007-2009 

     

Middle group dummy 0.0145* 0.0233*** -0.00559 -0.0387*** 

 (0.00871) (0.00857) (0.0119) (0.0107) 

Elastic group dummy -0.0308*** -0.0173** 0.0591*** 0.0125 

 (0.00798) (0.00834) (0.0105) (0.0102) 

Fraction of subprime households in 

2005 

 0.173*** 

(0.0475) 

 -0.605*** 

(0.0636) 

     

Annualized population change in 

2004-2006 

 0.00325 

(0.00696) 

  

     

Annualized per capita income 

change in 2004-2006 

 -0.0346 

(0.0286) 

  

     

Annualized population change in 

2007-2009 

   -0.00254 

(0.00954) 

     

Annualized per capita income 

change in 2007-2009 

   0.0171 

(0.0431) 

     

Constant 0.0677*** 0.0297** -0.118*** 0.0150 

 (0.00700) (0.0119) (0.00907) (0.0153) 

     

Observations 326 322 326 322 

R-squared 0.146 0.209 0.160 0.476 



Table 2: Change in the Fraction of Non-Owner-Occupied Home Purchases from 2001-2003 to 2004-2006 

This table presents coefficient estimates from regressing the fraction of non-owner occupied home purchases from 2001-2003 to 2004-2006 on the 

dummies indicating whether a county is in the middle-elasticity group or the elastic group, with the inelastic group as the benchmark and a list of 

control variables. Robust standard errors are in parentheses. ***, **, * indicate coefficient estimates statistically distinct from 0 at the 1%, 5%, and 

10% levels, respectively. 

 
 (1) (2) 

 Change in the fraction of non-owner occupied home purchases from 2001-03 to 2004-06 

   

Middle group dummy 0.0249*** 0.0242*** 

 (0.00424) (0.00432) 

Elastic group dummy 0.0145*** 0.0124*** 

 (0.00348) (0.00389) 

Fraction of subprime households in 2005  -0.0318 

  (0.0237) 

Annualized population change  0.00647 

in 2004-2006  (0.00444) 

Annualized per capita income change  -0.0385** 

in 2004-2006  (0.0173) 

Constant 0.0190*** 0.0257*** 

 (0.00283) (0.00593) 

   

Observations 323 319 

R-squared 0.071 0.093 

   

 
  



Table 3: Change in the Fraction of Non-Owner-Occupied Home Purchases from 2001-2003 to 2004-2006 and the Recent 

Housing Cycle 

This table presents coefficient estimates from regressing the change in real house price in 2004-2006 (housing boom period) and in 2007-2009 

(housing bust period) on the change of fraction of non-owner occupied home purchases from 2001-2003 to 2004-2006 and a list of control 

variables. Robust standard errors are in parentheses. ***, **, * indicate coefficient estimates statistically distinct from 0 at the 1%, 5%, and 10% 

levels, respectively. 

 

 (1) (2) (3) (4) 

 Annualized real house price change  

in 2004-2006 
Annualized real house price change  

in 2007-2009 

     
Change in the fraction of non-owner occupied  0.636*** 0.681*** -0.494*** -0.628*** 

home purchases from 2001-2003 to 2004-2006 (0.115) (0.120) (0.165) (0.138) 

Annualized population change  -0.00202   

in 2004-2006  (0.00772)   

Annualized per capita income  0.0136   

in 2004-2006  (0.0299)   

Annualized population change    0.00791 

in 2007-2009    (0.00991) 

Annualized per capita income change    -0.0593 

in 2007-2009    (0.0442) 

Fraction of subprime households in 2005  0.241***  -0.679*** 

  (0.0429)  (0.0550) 

Constant 0.0336*** -0.00717 -0.0704*** 0.0432*** 

 (0.00475) (0.00830) (0.00693) (0.00951) 

     

Observations 323 319 323 319 

R-squared 0.116 0.227 0.034 0.446 

 
 


