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Market participants and researchers routinely use observable prices to make inferences about

the risk-neutral probability distribution. Before Hansen and Scheinkman (2009) and the seminal

recovery theorem of Ross (2015), the formal conversion from the risk-neutral to the physical

world had assumed strong conditions on the underlying market in the form of stochastic processes

and preferences of participating agents. The growing field of studies on recovery have distilled a

set of less strict sufficient conditions to extract physical beliefs and pricing kernels from Arrow-

Debreu prices alone. In this pursuit, the majority of existing recovery approaches still assumes

a representative agent in a complete Markov economy with a unique risk-neutral measure that

is defined solely over the market returns as proxy for economic states. Thus, the typical set of

assumptions is quite restrictive and is hard to reconcile with reality.

This paper claims three contributions: First, we significantly relax assumptions commonly

made in the recovery literature. We jointly recover risk-neutral and physical probability distri-

butions for agents with heterogeneous beliefs without specifying processes of fundamentals, not

using a particular set of preferences, and generally not requiring a complete market. Second,

we show quantitatively that agents’ sentiment towards the economy is crucial for the recovered

quantities; and, hence, standard procedures that do not explicitly model time-varying beliefs of

the representative agent forego important information. Last, we explicitly augment volatility

dynamics in the definition of an economic state. Since the market volatility index (VIX) is com-

monly dubbed the ”fear index,” this second dimension allows us to treat the same market states

differently conditional on the expected future market dynamics. For example, a -10% market

movement does not necessarily represent a highly priced state if the expected future volatility is

relatively low and economic agents anticipate a rapid recovery. It adjusts the agents’ recognition

of “good” and “bad” states, regularizes the recovery procedure, leading to less noisy estimates

and more balanced optimal investment strategies.

We acknowledge that it is not possible to recover a subjective physical distribution from

asset prices without making assumptions (Borovička, Hansen, and Scheinkman, 2016; Schneider

and Trojani, 2019). Rather then imposing technical assumptions on the underlying processes,

we engineer our approach from economic assumptions in the following steps: first, we devise

an algorithm to extract a risk-neutral (Q) and a corresponding subjective physical (P ) joint
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distribution of the market index and its future volatility consistent with particular sentiment to-

wards the future market performance and expected volatility dynamics from the quotes of traded

options. This algorithm is consistent with bid-ask spreads from all observed instruments, and

recovers these distributions under economic constraints. The title ’sentimental recovery’ stems

from the particular assumptions we make about the sentiment of the agents, while the procedure

is otherwise model-free. We choose the bivariate index return and index expected volatility dis-

tribution, because a liquid option market for both underlying instruments exists, and because (as

is shown in Chabi-Yo, Garcia, and Renault, 2008), jointly, market index and expected volatility

contain economically relevant information that is not contained in the respective marginal distri-

butions. Second, we put our algorithm to work using S&P 500 and VIX option quotes to extract

subjective risk-neutral and physical measures for agents with implicit beliefs covering the whole

range of realistic market sentiments from extremely bullish to extremely bearish. We suggest a

very simple procedure to combine the recovered sentiment-specific distributions into an aggre-

gate one, so that an ”aggregate agent” inherits a mixture of these distributions in time-varying

proportions and demonstrates sensible beliefs regarding future market and expected volatility

dynamics. Adding the second (volatility) dimension to the recovered subjective distributions

plays a crucial role in how agents treat ”good” and ”bad” states: in the presence of the second

dimension, the Arrow-Debreu prices change considerably stronger across volatility states than

across market index states, and overall the joint state space of market and volatility regularizes

the recovery procedure. Depending on subjective beliefs, agents pursue very different optimal

trading strategies, and the consideration of the two-dimensional distribution overall leads to

more balanced investments. Lastly, we show empirically that dispersion of market-compatible

beliefs about future market performance and its volatility are linked to the current economic

regime and future investment opportunities. In particular, we highlight that the dispersion

of beliefs about expected volatility, which is pivotal in forming heterogeneous pricing kernels,

predicts the future state of the real economy.

Literature: Our curiosity is driven by recent advances on recovery, a new field in financial

economics started by Ross (2015). Recovery is concerned with saying as much as possible

about the conditional physical distribution, assuming as little as possible about the underlying
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economy, and making inference using only a cross section of asset prices, such as options. In the

original approach, Ross (2015) assumes a discrete-time, discrete-state Markov economy together

with a state-independent pricing kernel to achieve this task. Jensen, Lando, and Pedersen

(2019) discard the first assumption, while maintaining the second. Borovička, Hansen, and

Scheinkman (2016) criticize the assumption of a state-independent pricing kernel as economically

and econometrically unjustified.

The recovery approach closest to ours is explored by Schneider and Trojani (2019). They ac-

knowledge that market incompleteness allows the co-existence of many distributions compatible

with observed prices, and suggest to use economically justified constraints on expected profits of

tradings strategies for identification of candidate physical distributions. Ignoring any time series

information, and with trading strategies in mind, they propose to use the distribution implying

the lowest Hansen and Jagannathan (1991) asset pricing bound out of those. Our approach is

similar to theirs in that we employ economic constraints and a good-deal bound. However, it is

different with respect to many important dimensions. On top of considering a bivariate market,

our approach is compatible with all observed options, and not just a small number of moments

implied by them. Furthermore, we recover also a pricing distribution, jointly with the physical,

rather than assuming it to be fixed. These choices turn out to be economically relevant.

There is also literature developing bounds on moments of individual stocks, and market in-

dices, rather than trying to recover the full distribution. These studies comprise, for example,

Martin (2017) and Chabi-Yo and Loudis (2019) for the market expected return, Martin and

Wagner (forthcoming) and Kadan and Tang (forthcoming) for bounds on individual stock ex-

pected returns. Our framework can accommodate these bounds, and others, as input that goes

into the determination of the recovered distributions.

We naturally extend the area of research dealing with determining expected higher moments

of return and their risk premiums. For example, Martin (2017) and Britten-Jones and Neuberger

(2000) for model-free variances, Bakshi, Kapadia, and Madan (2003) for skewness and higher

moments, Carr and Wu (2009) for variance risk premium, Kozhan, Neuberger, and Schneider

(2012) for skewness and Schneider (2015) for generalized risk premiums, Andersen, Fusari, and

Todorov (2015), Bollerslev, Todorov, and Xu (2015), and Bates (2019) for tail (jump) risk premi-
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ums, Driessen, Maenhout, and Vilkov (2005, 2009), and Buss and Vilkov (2012) for risk-neutral

correlations and their risk premiums. Expected realized moments and their decomposition into

building components have been studied extensively, e.g., Andersen, Bollerslev, Diebold, and

Labys (2003), Andersen, Bollerslev, and Diebold (2007), among others. Because we identify full

bivariate distributions of the market index and its volatility, we can use them to compute any

expected moment of index return and its volatility, under both physical and risk-neutral mea-

sures, and, consequently, their risk premiums. An important difference between our method and

the existing ones is that our estimates are based on agents with particular sentiment towards

market dynamics and, thus, allows to study the effect of differences in beliefs on the mentioned

quantities.

None of the above mentioned papers considers the joint distribution of index returns and

index volatility. There are only few studies that do. Song and Xiu (2016) choose a non-

parametric approach using time-series information to investigate the marginal pricing kernel of

the S&P 500 index, and employ a fully parametric model to investigate the joint S&P 500 and

VIX kernel. Similarly, Bardgett, Gourier, and Leippold (2019) employ a parametric approach

using an affine stochastic volatility model for the same purpose. Jackwerth and Vilkov (2018) use

information in short-term market index and index volatility options to model a copula-based

bivariate distribution, which is calibrated then using longer-term market index options. Our

paper combines this literature with the one on recovery to explore the effects of agent sentiment

on trading without assuming a time-series model, and to relate dispersion of (reasonable) beliefs

to macroeconomic time series.

We also relate to the literature on heterogeneous agents, which are essential for explaining

and matching stylized empirical facts about the economy, financial markets, and the behaviour

of households. A number of papers study the implications of heterogeneous beliefs for asset

allocation and asset pricing. From the point of vocabulary for defining the agents with stable

(but heterogeneous beliefs), and some trading implications, the closest study to us is Martin

and Papadimitriou (2018), in which the heterogeneity in beliefs leads to sentiment and makes

extreme states of nature especially valuable, and also gives rise to variance fluctuations and the

variance risk premium. Other studies include Scheinkman and Xiong (2003), Gallmeyer and
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Hollifield (2008), Xiong and Yan (2010), Chabakauri (2013), and Bhamra and Uppal (2014), to

name just a few. In contrast to these papers we do not solve for a general equilibrium generating

asset pricing and asset allocation implications based on fundamentals; instead, we rather go in

the opposite direction: we take observed quotes of traded assets as given and solve jointly for the

agent-specific physical and pricing probability measures and associated optimal portfolios. The

source of heterogeneity in our case are different sentiments towards the most probable region of

the future values of market index and its volatility, and we do not restrict the other parameters

of an agent, except for imposing a good-deal bound on her likelihood ratio.

The rest of the paper is organized as follows. Section 1 introduces the economic setup

and discusses our identification approach, and subsequently the dimensions along which we

can investigate empirically. Section 2 deals with data content, sources, processing rules, and

preliminary statistics. Section 3 delivers empirical results and analyzes several features of the

output, including the variety of market views of various agents, their one and two-dimensional

probability distributions, likelihood measures and the resulting optimal trading, and, lastly, the

link between dispersion of beliefs and economic conditions. Section 4 gives concluding remarks

and directions of further research.

1 Technology

This section introduces the modeling setup and identification approach in Subsection 1.1, and

then defines in Subsection 1.2 the notions of an aggregate agent and dispersion of beliefs in our

model. Subsection 1.3 discusses the importance of the second (volatility) dimension both for

the initial recovery problem and for the field analysis of the recovered probability distributions

and likelihood ratios. Subsection 1.4 looks at the economic interpretation of the likelihood ratio

of the pricing distribution with respect to the subjective one.

1.1 Setup and Identification Approach

We take the markets with observed quotes as given, and look for both physical and equivalent

martingale probability measures defined over a state space Ω := ωM × ωσ with ωM ⊂ R+ being
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the state space of the S&P 500 market index FM,t, and ωσ ⊂ R+ the state space of the VIX

futures contract Fσ,t. We work with discrete and bounded state spaces, reflecting the convention

of market quotation. For ease of notation, to avoid clutter, we use continuous notation below,

despite the discrete formulation. The states are defined relative to the current forward (futures)

price of the assets.1 Thus, the future state (1, 1) corresponds to the state, in which FM,T = FM,t,

and Fσ,T = Fσ,t. For the market index, it indicates a realized return over T − t; for the VIX,

which can not be replicated without significant transaction costs, it is equivalent to the realized

basis of the selected futures (which in our sample is around +10% per month). We identify

all i = 1, . . . , n observed VIX and S&P 500 options on a given date with their payoff function

xi : Ω 7→ R and their bid (bi) and ask (ai) quotes.

The martingale distribution prices the assets. In incomplete markets such as ours, it can

be made unique only through selection, despite highly informative option quotes. The physical

distribution originates from the sentiment of the agents, under the assumption that it can not

be too far away from the martingale distribution. Otherwise, the martingale and the physical

distribution taken together would imply unreasonable risk premiums and Sharpe ratios.

We assume different economic agents, each carrying an index l = 1, . . . , L. The agents differ

through heterogeneous beliefs, and we describe the beliefs by the region Ωl ⊆ Ω of the underlying

state space Ω, in which the agents seek to concentrate probability mass corresponding to their

beliefs. If the agents were otherwise unconstrained, they would concentrate all probability in

their target region Ωl, but observing the market, this could not be reconciled with observed bid-

ask spreads. Concretely, any subjective martingale measure Ql supported on Ω must generate

option prices yi within option bid-ask spreads [bi, ai]:

yi =

∫
Ω
xi(s)dQ

l(s), yi ∈ [bi, ai], i = 1, . . . , n, (1)

1For this we assume that VIX futures prices are approximately equivalent to forward prices.
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and any pair P l, Ql must exclude unreasonable Sharpe ratios, which we specify in terms of a

good-deal bound α:

∫
Ω

(
dQl

dP l

)2

dP l ≤ α. (2)

In addition, following empirical facts about the skewness risk premium, we look for distributions

Ql and P l, such that the risk-neutral skewness of market returns is smaller than the subjective

physical skewness,

SkewQ
l ≤ SkewP l

, (3)

where tradable skewness under a particular measure Z is computed following Schneider and

Trojani (2018) as

SkewZ =

∫
ωM

(
4(R− 1−

√
R logR)

)
dZ(R). (4)

We denote the set of distributions P and Q that satisfy the constraints (1) to (3) by C. With

this set at hand we are able to state the definition of the P and Q distributions subjective to

agent l as

P l, Ql := arg max
P,Q∈C

∫
Ω
1s∈ΩldP (s), (5)

where 1A denotes the indicator associated with the event A. The resulting program is high-

dimensional, but convex, and can be solved rapidly.

As a consequence of market incompleteness, each agent has her own pricing (martingale)

distribution Ql. This would be true even in the case where bi = ai for i = 1, . . . , n. Contrary

to widely accepted practice, we do not attempt to find the risk-neutral distribution pricing all

available assets with the smallest error (where the error is typically defined relative to the mid-

price); instead, we identify for each agent l the risk-neutral measure Ql, such that (i) it prices

available assets within observed bid-ask spreads, (ii) the good-deal bound given by a limit on a
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likelihood ratio is satisfied, and (iii) the risk-neutral market return skewness is smaller than its

physical counterpart. In addition to the full optimization on the joint state space, we perform

the analogous exercise on the marginal state space ωM , pricing only the options on the market

index.

We define a set of agents with views ranging from extreme bearish to extreme bullish, to

cover the whole range of realistic sentiments on the market.2 For example, a bullish agent

believes that the market index will go up, and, consequently, that the market volatility will

be below the current level (a well-known asymmetric volatility effect, e.g., Bekaert and Wu

(2000); Carr and Wu (2017)). A bearish agent, on the contrary, believes that the market index

will most probably go down, and that future expected volatility will be at least as high as the

current expectation. One can build agents with time-varying views, for example, linked to the

current economic situation, a sentiment index, and other variables. In the empirical section we

describe several agent definitions, study the decision such agents make in trading, and analyze

their revealed characteristics. Note that in general, to build a joint non-parametric risk-neutral

distribution between the market index and its future expected volatility, one should observe

prices of derivatives written on a function of both index and its volatility, e.g., on a sum or a

ratio of two variables. Such instruments are not traded. We choose a distinct path and identify

such distributions by explicitly maximizing its mass in view-consistent regions, such that the

resulting risk-neutral distribution produces prices within observed bid-ask spreads for both asset

classes. See Figure 1 for a stylized example of relatively bullish and bearish views.

Now we quickly discuss, along which dimensions we plan to carry out the analysis.

1.2 Market-Compatible Disagreement, or, Difference in Beliefs

While stipulating particular views of agents, we do not a-priori know how different assump-

tions about beliefs will affect the recovered distributions. When observed bid-ask spreads for

available options are very narrow, and the traded strikes cover a wide range of possible market

index and expected volatility values, the distributions will be very similar. In the limit, when

markets are complete, we arrive at the same (unique) risk-neutral distribution for all agents,

2One can certainly imagine agents with even more extreme and completely ”crazy” sentiments, but the relative
weight of such agents should be negligible for the economy.
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ωM

ωσ

Bearish views

Bullish views

(0, 0)

(1, 1)

Figure 1: This figure illustrates a two-dimensional state space ωSP×ωV IX with two shaded regions, corresponding
to ”bullish” (in red) and ”bearish” (in green) views. The center of the state space with point (1, 1) corresponds
to the level of market index and its expected volatility equal to the S&P 500 forward and VIX futures levels.

and then, depending on the good-deal bound and specification of an agent’s sentiment, we end

up with a number of a agent-specific physical distributions. All three factors will affect the

output: admissible risk-neutral distribution, agent’s sentiment, and good-deal bound. Thus,

the difference between the subjective physical distributions informs us about current deviations

of market conditions from the ideal ”model” world, namely, the degree of incompleteness and

difference in beliefs with respect to market index and its future volatility. Analyzing these dif-

ferences provides a way to analyze how these market imperfections are related to the state of

economy, and even allows us to split the effect along market and volatility dimensions.

Since we have full risk-neutral and physical subjective distributions for all underlying states of

nature as an output from our optimization routine, we can analyze the differences between these

distributions, or ”disagreement,” in numerous ways, and some choices need to be made. First of

all, we can compare the distributions pairwise and come up with some metric of disagreement, or

we can aggregate them into a benchmark, call it ”aggregate agent,” and analyze then deviations

from this benchmark. Second, we can look at deviations in terms of either individual state prices

or some aggregate quantity, for example, expected returns. We proceed by combining agents

into an aggregate one, and then use as a measure of difference in beliefs the weighted dispersion

of agents’ expected returns from the benchmark expected return.
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To identify the aggregate agent weights we use only the pricing information (that is, risk-

neutral distributions) and find weights of the agents such that the weighted average of agent-

specific asset prices is as close as possible to the observed market (read, mid) prices. Using only

pricing reduces the effect of the potential model misspecification. Thus, we will be looking for

agent weights w that minimize the mean-squared pricing error:

wt = arg min
wt

1

N

∑
i=1,...,N

(
P observedi,t − w>

t P
agent
i,t

)2
(6)

s.t. |wt|> × 1 = w>
t × 1 = 1.0,

where P observedi,t is the observed price of asset i, and P agenti,t is the vector of agent-specific prices

of asset i. The restriction on the sum of absolute weights is equivalent to a non-negativity

constraint. While initially the agents are specified in a way to cover the most reasonable range

of sentiments, aggregation of agents shall reveal the current prevailing (or, average) sentiment

on the market. Using the weighted subjective physical P l and risk-neutral Ql measures, we

can also analyze the prevailing physical and risk-neutral distributions, change of measure, and

optimal trading strategies.

After constructing an aggregate agent, we will analyze the dispersion of beliefs defined as the

weighted standard deviation of agent-specific expected returns defined for an underlying asset j

at time t as

DOBj,t =
√
w>
t (µj,t − w>

t µj,t)
2, (7)

where µj,t is the L × 1 vector of agent-specific expected returns for asset j at a given point in

time, and wt is as before the L× 1 vector of aggregate agent weights.

1.3 Importance of Volatility Dimension

There are two angles from which we can analyze volatility-related instruments. First, the choice

of a source of information to extract the view-specific likelihood ratios, and, second, the risk

premiums and risk-return trade-off assigned by the respective agents to the dimension in the
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payoff space. That is, we analyze recovery using more or less data, and then we see how it affects

the perception of trading opportunities with and without volatility as instrument.

We already mention above that for forming view-specific distributions, in addition to tra-

ditionally used derivatives on the market index, we explicitly account for information from the

volatility markets. An interesting question arises, whether the volatility dimension is important

for information purposes, that is, if the 2-dimensional state space calibrated to both market

index and its future expected volatility better identifies economic states and makes agents bet-

ter off after portfolios pay off (in terms of any suitable performance metric, in our case the

Sharpe ratio). Note that market index and consumption states, which matter for asset pricing,

generally do not coincide; though an assumption about their approximate equivalence is often

made in the recovery literature. To address this question, we first assume that only the mar-

ket index states matter, calibrate one-dimensional probability measures and the corresponding

likelihood ratios (1-D problem), and study the resulting pricing of market states and optimal

trading strategies. We then proceed to experiments with the 2-dimensional state space (2-D

problem) to see if adding the future expected volatility markets helps identifying ”expensive”

states more precisely.

One can always claim that more information is better; however, one should be careful in an-

swering this question unequivocally. While theoretically even a small amount of non-redundant

and precise information helps making a more qualified decision, practically (or empirically, in

our case), any non-redundant information we extract will be plagued with noise, affecting the

investment decisions and potentially over-weighting the positives from adding the extra dimen-

sion.

The payoff space that we use to replicate the likelihood ratios helps to determine the re-

dundancy of volatility-based instruments. Theoretically, one can trade volatility and the yield

risk premium for variance risk by trading options on the market index [Dumas (1995), Britten-

Jones and Neuberger (2000), among others]; practically, however, the expected variance or

volatility (for example, VIX) indices cannot be replicated due to market frictions. Trading

volatility directly through futures or even volatility-of-volatility (approximately) through VIX

futures options can be beneficial. We address this question by comparing the likelihood ratio
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swap projections using payoff space configurations with and without volatility-based products,

as discussed below.

1.4 Change of Measure and its Economic Meaning

The result of solving the above identification problem is a set of risk-neutral and physical joint

distributions for the market index and its future volatility, consistent with a particular agent’s

views, and the corresponding likelihood ratio Ll = dQl

dP l for each specification of agent l.

While we cannot observe directly the positions each agent l takes in the financial markets,

we know from Schneider (2015) what her trading strategy maximizing the Sharpe ratio is, using

available assets—a so-called likelihood ratio swap. Such a strategy is given by the projection

of the likelihood ratio Ll on the space of gross returns of available k trading instruments with

payoffs yj(ω), j = 1, . . . , k for ω ∈ Ω. The basic idea is that the change of measure is shifting

the expected return of traded assets by the risk premium, and its projection on the payoff space

yields this risk premium from a particular dimension of risk in an optimal, with respect to the

Sharpe ratio, fashion. Concretely, we find an optimal composition θ?1, . . . , θ
?
k of a portfolio of k

selected assets by solving the following convex problem for payoffs y1, . . . , yk across all states of

nature ω ∈ Ω:

(θ?1, . . . , θ
?
k) = arg min

(θ0,...,θk)

∫
Ω

(
dQl

dP l
− θ0 − θ1y1(ω)− . . .− θkyk(ω)

)2

dω (8)

subject to



∫
Ω

(θ0 − θ1y1 − . . .− θkyk) dP l = 1

∫
Ω

(yi(θ0 − θ1y1 − . . .− θkyk) dP l =

∫
Ω
yidQ

l, i = 1, . . . , k.

We can select any combination of assets that have defined payoffs across our state space. How-

ever, due to the fact that a projection is akin to an ordinary least squares multivariate regression

(with some constraints though), we should be careful not to include assets with extremely cor-

related payoffs.
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Thus, obtaining the view-specific risk-neutral and physical probability measures and the

likelihood ratio giving the change of measure, we can directly study the consequences of the

particular views for a trading strategy that is optimal with respect to the Sharpe ratio criterion.

In Section 3 below, we consider different portfolios of payoffs such as S&P500 and VIX futures.

2 Data and Procedures

2.1 Data Sources and Filters

The data for the study comprise the S&P500 index, the Chicago Board Options Exchange

(CBOE) volatility index VIX, futures on VIX, and options on both S&P500 index and VIX

futures. The options data come from the Ivy DB OptionMetrics database for the period from

March 2006 to December 2017.3 We consider call and put options written on the S&P500 index

and the VIX futures with the standard monthly maturity (expiring on the third Friday of a month

for S&P500, and (usually) on the Wednesday before the third Friday for VIX). We sample these

options at the monthly frequency to have approximately one month to maturity. We take all

out-the-money (OTM) options (using absolute delta less or equal than 0.5), apply standard

filters (remove options with negative bid-ask spreads, zero bids and zero volume), and then

keep the maximum number of options compatible with no-arbitrage restrictions.4 The forward

level of S&P500 is determined at the close of each day following the CBOE VIX methodology

described in CBOE (2018); and the futures level of VIX is collected as daily closing prices from

CBOE Futures Exchange (CFE). As discussed in Section 1, we define the market and future

volatility states relative to S&P500 forward and VIX futures levels. For computing payoffs and

returns on S&P500-based forwards and options we use the closing index level on the payment

date, while for VIX-based futures and options the final settlement value is a Special Opening

Quotation (SOQ) of the VIX Index, computed in morning of the expiration. The SOQ levels

for our sample are obtained from the CFE web-site.

3Note that the data for the S&P500 index and many other underlying assets are available from 1996; however,
CBOE introduced VIX options only in 2006, and the first several months, until March 2006, the markets were
very thin and did not provide enough data for analysis.

4We apply for each set of options on each day the package DIconvex developed by Karagyaur and Schneider
and available at https://CRAN.R-project.org/package=DIconvex.
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We use monthly data on the following economic data series are from the Federal Reserve

Bank of St. Louis (FRED): Economic activity is measured by Chicago Fed National Activity

Index (CFNAI) and the Leading Index (USSLIND), real output is measured by the Indus-

trial Production Index (INDPRO), employment is measured by the logarithm of Total Non-

farm Payrolls (PAYEMS), the recession probability by the smoothed US recession probabilities

(RECPROUSM156N).

We use the following financial variables: The term spread is defined as the difference between

the 10-Year and one-year Treasury Constant Maturity rates, the default spread is the spread

between Moody’s Seasoned Baa Corporate Bond and 10-Year Treasury Constant Maturity, the

dividend yield is the trailing 12-month S&P500 dividend yield from Standard&Poors and Robert

Shiller’s data.5. The risk-free rate and the market factor are from Kenneth French’s website.

For comparison, we also include other sentiment measures in our analysis. Uncertainty is

measured as the US Economic Policy Uncertainty Index of Baker, Bloom, and Davis (2016)

from the FRED database (USEPUINDXM). Sentiment is the investor sentiment of Baker and

Wurgler (2006) from Jeffrey Wurgler’s website.

2.2 Data Summary Statistics

Table 1 gives an overview of the data used for calibration. Due to the filtering procedures

outlined above, we select 141 dates, such that the average time to maturity is around 31 days

for both market index and VIX options. The S&P500 options are vastly more liquid, and we

generally have many more options on the OTM put side (105 options with up to 38% out-the

money) compared to the OTM call side (37 options only up to 14% out-the-money); for VIX we

have far fewer options and they are mostly traded on the OTM call side (14 calls vs. 5 puts on

average) with the most remote strikes traded at +130% relative to the futures level.

Thus, from the data availability we expect to have more degrees of freedom in the volatility

dimension. That is, in the market index dimension the markets seem to be more complete

(informally), and agents should select more similar risk-neutral measures, while there are so

few reference (pricing) points in the volatility markets that agents’ risk-neutral measures in the

5See www.multpl.com/s-p-500-dividend-yield
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S&P 500 VIX

Days to Maturity 31.23 30.85
Number of calls 36.98 14.11
Number of puts 104.75 5.03
Moneyness, min 0.62 0.77
Moneyness, max 1.14 2.32
Futures basis, % -0.082 10.040
Mean return, % p.a. 9.93 -61.36
Volatility, % p.a. 17.36 81.98
Skewness -1.74 2.77

Table 1: The table reports summary statistics for the options and the underlying forward/futures contracts used
in the paper. The reported numbers are the time-series means for 141 trading days from March 2006 to December
2017. Moneyness is the ratio of strike to underlying price. Futures basis is the difference between the front-month
forward (S&P 500) or futures (VIX) price and the underlying price relative to the underlying price. The mean
return and volatility for the underlying forwards/futures are annualized.

volatility dimension can be very different. We get back to this observation in the empirical

section.

Futures price behavior is without surprises: the basis values are around zero for the S&P500,

and 10% for VIX. Mean returns, volatilities, and skewness correspond to values expected for the

considered period.

3 Empirical Analysis

Subsection 3.1 analyzes the output from the identification problem in terms of moments of

subjective distributions; Subsection 3.2 looks in detail at the changes of measure and discussed

the differences between 1-D and 2-D problem results. Subsection 3.3 links the beliefs and optimal

trading strategies for agents individually, while Subsection 3.4 constructs an aggregate agent,

and analyzes the dispersion of beliefs of individuals.

3.1 Market Views

For the empirical analysis we select several types of agents (from ”Extreme Bear” to ”Extreme

Bull”), with the respective one- and two-dimensional sentiment. The one-dimensional sentiment

bounds are specified regarding the future S&P 500 index return, and the two-dimensional sen-

timent bounds are just a combination of the S&P and VIX futures returns, that is, the changes

in the underlying index or its expected volatility (VIX) relative to the respective current futures
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Market index Future volatility
Agent label sentiment from to sentiment from to

Extreme Bear � -15.0 0.0 � 0.0 1.0
Moderate Bear ↓ -10.0 5.0 ↑ 0.0 50.0
Flat � -3.0 3.0 � -10.0 10.0
Moderate Bull ↑ -5.0 10.0 ↓ -15.0 0.0
Extreme Bull � 0.0 15.0 � -25.0 -10.0

Table 2: This table provides the summary of agents types differentiated by the sentiment towards market and its
future volatility. The from/to bounds indicate the ends of a range of the distribution domain, over which an agent
maximizes the probability mass under her subjective measure. The numbers are given in terms of percentage
deviations from the current forward (for the market index) and from the current futures (for VIX) levels, and,
thus, are given in (approximately) monthly terms.

levels. For the S&P500 index it almost coincides with the monthly index return, and for the

VIX it depends on the VIX evolution and initial futures basis. One-dimensional bounds always

correspond to the two-dimensional ones with integrated out volatility dimension. A summary

of the different ranges defining the agents is provided in Table 2. While our definition of the

agents is rather ad hoc, it is reasonable, and covers all spectra of views on the market from

extremely bearish to extremely bullish, with the middle point being the ”Flat” agent seeing the

market bouncing in a narrow range with relatively stable expected volatility. The joint expected

dynamics is roughly compatible with the non-linear asymmetric volatility effect documented for

S&P500 and VIX by Jackwerth and Vilkov (2018).

We solve the optimization problem (5) subject to the pricing (1) and good-deal (2) constraints

on each date; for the good-deal bound we use α = 1.01, which corresponds to the maximal

Sharpe ratio of 0.3464 p.a.6 In addition, we impose a constraint that the skewness premium

on the S&P 500 is positive. This constraint reflects the pricing of the leverage effect, negative

correlation between index returns and index volatility, which results in implied skewness being

more negative than its subjective counterpart. We use for this purpose the definition of skewness

from Schneider and Trojani (2018) as defined in equation (4). We solve both the one-dimensional

problem considering only market states (on ωM ), and the two-dimensional problem with state

space defined by both market and its future expected volatility (Ω = ωM × ωσ). Our algorithm

yields both risk-neutral Ql and subjective physical P l conditional distributions for each agent.

In Figure 2 we show (for one representative day) the difference in fitted option prices across

6The Sharpe ratio for the monthly likelihood ratio swap is computed as
√
α− 1×

√
12, see Schneider (2015).
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agents, for both market index and VIX futures. The S&P 500 bid-ask spreads are extremely

narrow, and one can barely distinguish between the option prices of different agents. The market

for options on VIX futures is less liquid, with a substantially wider bid-ask spread. This allows

the agents to have more different opinions about the true option prices, and the risk-neutral

distributions are then ”more different” in the volatility dimension. We can observe, which agent

prices VIX options of different moneyness ranges closer to their bid or their ask prices. For

example, Moderate Bear values especially high slightly OTM calls and OTM puts, while the

Flat agent values far OTM calls highly, and, thus, will be hedging extreme volatility at prices

lower than the current ask price.

A: S&P 500 Options Fit
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B: VIX Futures Options Fit
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Figure 2: The figure shows an illustration of the 2-D model fit to observed quotes for out-the-money S&P500 and
VIX futures options, calibrated on February 19, 2016. Moneyness and prices are defined relative to the forward/
futures level.

The unconditional moments of the resulting distributions (for the 2-D version we report

moments in each dimension integrating the second one) are provided in Table 3, and the time-

series of market index expected returns under subjective probability measures are provided in

Figure 3.

Inspecting unconditional moments, several interesting observations emerge: First, as antici-

pated, expected market returns go from negative to positive and expected volatility changes go
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Agent label µP σP SkewP µQ σQ SkewQ

1-D problem: S&P 500 moments
Extreme Bear -3.64 18.42 -1.95 0.00 18.67 -2.11
Moderate Bear 0.07 17.24 -1.45 0.00 18.66 -1.87
Flat 0.82 17.51 -1.64 0.00 18.67 -1.87
Moderate Bull 3.26 17.09 -1.44 0.00 18.64 -1.88
Extreme Bull 4.47 17.80 -1.62 0.00 18.60 -1.89

2-D problem: S&P 500 moments
Extreme Bear -2.61 18.36 -1.86 0.00 18.66 -1.98
Moderate Bear -0.10 18.26 -1.80 0.00 18.68 -1.93
Flat 0.72 18.04 -1.82 0.00 18.64 -1.98
Moderate Bull 1.54 18.05 -1.77 0.00 18.68 -1.95
Extreme Bull 2.75 18.06 -1.77 0.00 18.67 -1.94

2-D problem: VIX moments
Extreme Bear 22.14 109.56 22.66 0.00 108.84 17.81
Moderate Bear 15.99 107.91 19.25 0.00 110.05 17.68
Flat -2.06 105.59 22.56 0.00 109.92 22.51
Moderate Bull -10.44 104.33 17.12 0.00 109.88 18.59
Extreme Bull -19.02 105.43 21.39 0.00 109.50 24.87

Table 3: The table reports the selected moments (mean µ, volatility σ, and skewness Skew) of subjective P and
risk-neutral Q distributions for agents defined in Table 2, for the market index S&P 500 (for both 1-D and 2-D
problems) and its expected volatility VIX (for 2-D problem only). The mean (µ) and volatility (σ) are annualized
and given in percentages. Skew is computed in non-normalized version using formula (4) and is scaled up by 1e4
for convenience.

from positive to negative at the same time when views change from bearish to bullish. While

each agent by definition maximizes probability mass in a very wide region of the subjective

physical distribution (see Table 2 for the ranges in monthly terms), the expected returns under

the subjective physical measures are relatively modest. For example, Extreme Bear believes that

the market index loses up to 15% in a month, while her recovered expected return is -3.64% p.a.

for 1-D and -2.61% p.a. for 2-D problems, respectively. Second, observed bid-ask quotes of the

market and volatility futures options are compatible with an extremely wide range of expected

returns and volatility changes. The range for market returns is more than 8% p.a. and 5%

for 1-D and 2-D, respectively, and for volatility, agents’ expectations differ by more than 40%.

For the 1-D case there is also considerable disagreement in subjective physical higher moments

(for the market only, surely), while risk-neutral moments look more alike (except for a slightly

more negative risk-neutral skewness of the Extreme Bear compared to other agents). When

we include the volatility dimension in estimation, the dispersion of their beliefs with respect to
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A: S&P500 Return, 1-D Problem
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B: S&P500 Return, 2-D Problem
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C: VIX Return, 2-D Problem
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Figure 3: The figure provides the time-series of ex ante expected returns for the market index (S&P 500) and
VIX futures, implied by the solution of 1-D and 2-D problems. The lines are smoothed using MA(5). The agents’
sentiments are defined in Table 2.

both physical and risk-neutral moments of the market index goes down, so agents are more in

agreement with respect to higher-order market dynamics; however, there is now a lot of disper-

sion of beliefs with respect to the future volatility states. Agents disagree on both risk-neutral

and physical moments, with the largest effects observed in skewness ranging from 17.12 to 22.66

under P , and from 17.68 to 24.87 under individual subjective Q measures; expected volatilities

(i.e., vol-of-vol) under the risk-neutral measures are quite similar across agents, though under

subjective physical measures they still ranges from 104% p.a. to almost 110% p.a. Note that all

the agents end up finding the distributions with the investment opportunities hitting the same

good-deal bound corresponding to a Sharpe ratio of 0.35 p.a., that is, the long-term Sharpe ratio

of the aggregate market index.
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The series of expected returns in Figure 3 show a lot of dynamics over time coming from

changing market conditions. It is the case for all agent types, though for the Flat agent with

relatively narrow sentiment bounds, the range of expected returns is also narrower compared

to the other agents. The agents with opposite sentiments end up with negatively correlated

expected return predictions, and, surprisingly, the Flat agent is well in agreement with bullish-

sentiment agents (correlations of 0.4 to 0.5); the correlations for the 2-D problem are given in

Table 4. The expectations of VIX changes are mostly positively correlated amongst agents,

even though the levels of these changes are very different, as can be seen from the bottom

panel of Figure 3. We also observe that the expected returns extracted from S&P500 options

only are typically more extreme compared to the returns from the 2-D problem, when we allow

agents to use sentiment towards volatility. For the Flat agent, the expected returns for 1- and

2-D problems almost coincide for most of the sample period, and diverge after 2016, with 1-D

problem solution being considerably more bullish.

These differences in expected returns for 1- and 2-D problems are intriguing. Theoretically,

we understand that a particular change in financial wealth (say, by −5%) may correspond to

very different states of the world. Solving the 1-D problem, we cannot distinguish between

future investment opportunities in a given state and the 5% loss of financial wealth will always

correspond to a high marginal utility state. However, by adding the volatility dimension to

recovery, we now differentiate between −5% and low future volatility and −5% and high future

volatility, with the former state considered better than the latter. Thus, sentimental recovery

takes into account future states in a sense of the ICAPM [Merton (1973)]. Market index options

on their own do not provide enough information for it.

Any of the distributions we consider is compatible with the entire option surface. For this

reason it is not possible to ex-ante disqualify any of them as unreasonable. From this it fol-

lows that any recovery procedure crucially necessitates a choice of subjective beliefs, despite its

theoretical motivation to say as much as possible assuming as little as possible. Adding the

volatility dimension to the model regularizes the estimates of the market dynamics under both

the physical and risk-neutral measures, and allows to differentiate market states by not only
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Extreme Bear Moderate Bear Flat Moderate Bull Extreme Bull
Correlations of S&P500 Expected Returns
Extreme Bear - 0.40 0.42 -0.70 -0.76
Moderate Bear 0.40 - 0.45 -0.06 -0.17
Flat 0.42 0.45 - -0.08 -0.18
Moderate Bull -0.70 -0.06 -0.08 - 0.86
Extreme Bull -0.76 -0.17 -0.18 0.86 -

Correlations of VIX Futures Returns
Extreme Bear - 0.69 0.23 0.29 -0.07
Moderate Bear 0.69 - 0.24 0.20 0.01
Flat 0.23 0.24 - 0.41 -0.13
Moderate Bull 0.29 0.20 0.41 - -0.19
Extreme Bull -0.07 0.01 -0.13 -0.19 -

Table 4: This table provides the time-series correlations between the model-implied market index expected
returns and between the returns on VIX futures for the agents with different sentiment. The expected returns
are based on the 2-D problem solution.

realized wealth dynamics, but also by the future investment opportunities (expected volatility

in our case).

We will now analyze in more detail the pricing of states by looking at the likelihood ratios,

or, in other words, at the change of measure from subjective physical P to a risk-neutral Q.

3.2 Probability Measures and Pricing Kernels

To understand the differences in subjective distributions, we now look at the valuation of states,

defined in one dimension in terms of the S&P500 return, or in two dimensions as the joint

distribution of the S&P500 return and changes in future expected volatility. While the pricing

distributions look quite similar (as expected from the fitted option prices on S&P and VIX futures

in Figure 2), major differences can be observed from the likelihood ratios, or, in other words,

from pricing kernels used by each agent to value particular states. Recall that the likelihood ratio

dQ
dP normalized by the riskfree rate represents the collection of state prices, which in equilibrium

models are equal to the marginal utility of an optimizing agent. Bad states are more expensive,

because consumption is valued higher when it is scarce.
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Figure 4: The figure shows the unconditional likelihood ratio dQ
dP

for the 1-D problem, evaluated at the state
space of the the market index (S&P 500) for agents with different views defined in Table 2. Data preparation
procedures are described in footnote 7.

Figure 4 shows the time-series average likelihood ratios for all agents for the states defined

by the market monthly realizations from −20% to 20%.7 All the pricing kernels are U-shaped,

confirming existing findings. (see for example, Song and Xiu, 2016; Schneider and Trojani,

2019) Two facts are worth noting: First, the ”cheapest” states for each agent l are located in

the region, over which she maximizes the probability mass under the subjective physical measure

P l. Second, for the Flat agent both tails are equally expensive, that is, the pricing kernel is

absolutely symmetric around moneyness of one. For most other agents the left tail represents far

more expensive states of the world, compared to the right tail, and the left-to-right tail relative

value increases with the more optimistic (bullish) sentiment. Overall, there is great heterogeneity

in how states of nature, defined by the market index return, are valued, and how the likelihood

ratio of particular states can differ by orders of magnitude. It stresses the importance of stating

the precise assumptions behind any recovery procedures.

To investigate likelihood ratios adding the volatility dimension to the definition of a state of

nature, we need to visualise three-dimensional data. In Figure 5 we plot the the likelihood ratios

7We first linearly interpolate the subjective physical P and risk-neutral Q probabilities (on each date and for
each agent) to fill in standard moneyness grid points (from 0 to 1.5 with a 0.01 step), smooth them using Gaussian
filter with σ = 2, then compute the likelihood ratio for each date as the ratio of subjective risk-neutral to physical
probability for each state on the grid; we average the likelihood ratios over time for these standard moneyness
points, and plot the resulting function after extra smoothing it with Gaussian filter with σ = 0.5.
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Figure 5: The figure provides the unconditional likelihood ratios L = dQ
dP

for the 2-D problem, along the market
index (S&P 500) and volatility (VIX futures) states for agents with different views defined in Table 2. Data
preparation procedures are described in footnote 8.

for all agents as functions of the volatility (VIX) states for three predetermined market states

(S&P500 states 0.8, 1.0, and 1.2), and as a function of market states for three predetermined

volatility states (VIX states 0.8, 1.0, and 1.2).8 The results are striking for two reasons: First,

we observe again that initial beliefs, or sentiments, towards the future state of the economy

play a crucial role in defining the change of measure. Second, in the 2-D problem, where agents

evaluate joint market and future volatility states, the market dimension is important for the

state price only when the volatility state is close to the ATM (that is, to the current futures)

level. Interestingly, all agents consider market states deviating from the current futures level

more expensive (for a given volatility state) compared to the S&P500 state of 1.0. Changes in

volatility states command much higher changes in state prices than the equivalent changes in

market states. Taking into account that the expected volatility is far more agile compared to

the market (with volatility of VIX futures being 3-5 times higher than the volatility of S&P500),

8Similar to the procedure used to generate the 1-D unconditional likelihood ratios and described in footnote 7,
we perform a two-dimensional linear interpolation of 2-dimensional P and Q in market and volatility dimensions,
evaluate at standard moneyness grid points, then select all points along volatility (market) states for a given level
of market (volatility), smooth the resulting vectors of probabilities using Gaussian filter with σ = 2, compute the
likelihood ratios, average the result over time and plot it.
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such difference in state pricing is remarkable. Conditional on VIX states being −20% and 20%

from the current futures level, the market states barely matter anymore. The results seem logical

ex post, because the volatility dimension represents the expectation of how calm or turbulent the

situation is expected to be in the next period after the realization of the market ”state” and thus

allows agents to ”look into the future.” Even a very bad market realization with low expected

volatility is not that bad, because the agents anticipate a quick reversal; however, a bad market

realization with high expected volatility is really bad. Thus, the expected volatility dimension

provides additional information to rank the market states, especially under extreme conditions.

The results stress the importance of including the second (expected volatility) dimension into

the recovery procedure.

3.3 Beliefs, Trading, and Performance

Each likelihood ratio we extract from data satisfies the same good-deal bound, because the

constraint is binding. Likelihood ratios across agents therefore promise the same Sharpe ratio

of around 0.35 p.a.

To understand the difference in likelihood ratios in terms of information content (risk pre-

miums and amount of risk), we can also look at the optimal trading strategies that exploit such

information. Schneider (2015) shows how the subjective Sharpe ratio-maximizing strategy for

an agent with particular physical and risk-neutral measures can be projected on the space of

traded asset returns.

We analyze the effects of (1) the source of information for extracting the subjective physical

and risk-neutral measures (that is, 1-D vs. 2-D problems), and, (2) the payoff space, which is

used in the trading strategy (only S&P500, or both S&P500 and VIX futures).

Projecting a given likelihood ratio on a particular payoff space defined by payoffs to either

S&P500 forwards, or both S&P500 and VIX futures, as formalized by equation (8) in Subsec-

tion 1.4, we obtain on each calibration date the optimal investments (θj number of notional

units) in the relevant instruments. We create a portfolio such that on each rebalancing (cali-

bration) date its initial value is set to 100, and we invest 10 × θj notional in each of the risky

instruments j. Table 5 shows the performance of such a portfolio for all agents for the 1-D prob-
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lem (with projection on the S&P500 only), and for the 2-D problem (with projection on just

the S&P500, and on both the S&P500 and the VIX). Several observations emerge. First, quite

1-D 2-D 2-D, S&P500 and VIX
Agent label Metric S&P500 S&P500 S&P500 VIX Portfolio

Extreme Bear Return, % p.a. -23.22 -16.56 -10.91 -7.82 -18.67
(0.000) (0.000) (0.000) (0.181) (0.005)

Volatility, % p.a. 15.48 11.11 6.77 15.24 19.12
Sharpe Ratio -1.50 -1.49 -1.61 -0.51 -0.98
Investment, # units -1.32 -0.95 -0.59 0.16 -

(0.000) (0.000) (0.000) (0.000) -
Moderate Bear Return, % p.a. 5.49 -1.36 0.59 -9.64 -8.98

(0.000) (0.003) (0.110) (0.045) (0.053)
Volatility, % p.a. 4.58 1.26 1.44 12.02 11.62
Sharpe Ratio 1.20 -1.08 0.41 -0.80 -0.77
Investment, # units 0.26 -0.03 0.08 0.15 -

(0.006) (0.016) (0.000) (0.000) -
Flat Return, % p.a. 10.40 6.67 6.14 0.56 6.70

(0.000) (0.000) (0.000) (0.611) (0.000)
Volatility, % p.a. 6.24 4.20 3.88 3.22 5.65
Sharpe Ratio 1.67 1.59 1.58 0.18 1.19
Investment, # units 0.52 0.35 0.33 -0.02 -

(0.000) (0.000) (0.000) (0.000) -
Moderate Bull Return, % p.a. 22.08 8.72 6.04 9.02 14.99

(0.000) (0.000) (0.000) (0.000) (0.000)
Volatility, % p.a. 16.13 6.58 5.34 6.44 10.40
Sharpe Ratio 1.37 1.32 1.13 1.40 1.44
Investment, # units 1.38 0.57 0.44 -0.10 -

(0.000 (0.000) (0.000) (0.000) -
Extreme Bull Return, % p.a. 28.00 16.64 10.25 12.53 22.69

(0.000) (0.000) (0.000) (0.001) (0.000)
Volatility, % p.a. 19.96 11.88 8.33 10.12 16.68
Sharpe Ratio 1.40 1.40 1.23 1.24 1.36
Investment, # units 1.67 1.02 0.71 -0.15 -

(0.000) (0.000) (0.000) (0.000) -

Table 5: This table reports realized performance measures for the portfolio (and its parts) resulting from the
projection of likelihood ratios of agents defined in Table 2 on the space of S&P500 futures returns (for both 1-D
and 2-D problems), and on the space of S&P500 and VIX futures returns (for 2-D problem). The portfolio is
rebalanced on each calibration date so that the starting value of the portfolio is always 100, and the notional of
each risky portfolio part is equal to 10× Investment, # units.

naturally with the bullish market from 2006 to 2018, the agents with flat or bullish sentiments

outperform the bearish ones. Thus, comparing average returns or even Sharpe ratios is not very

useful. It is worth noting however that for all agent types the 1-D problem solution produces

far more aggressive trading strategies compared to the ones based on the 2-D state space. The

investments in the market index are larger and returns are larger in magnitude as well. Second,
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the 2-D problem solution produces more balanced and less risky portfolios. Comparing strate-

gies that invest only in the market index, for example, we observe comparable Sharpe ratios,

and volatilities in the 2-D case of 1.5 to 3 times lower compared to the ones in the 1-D case. For

the Moderate Bear we also observe a ”reversion” of strategy, so that she goes long the market

index on average in the 1-D case, and goes short the index in the 2-D case when projected on

the S&P500 space alone. The portfolio valuation over time is depicted in Figure 6. Visually, the
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B: Portfolio: 2-D (only S&P500)
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C: Portfolio: 2-D (S&P500 + VIX)
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Figure 6: This figure depicts the valuation of the portfolios resulting from the projection of likelihood ratios of
agents defined in Table 2 on the space of S&P500 futures returns (for both 1-D and 2-D problems) and on the
space of S&P500 and VIX futures returns (for 2-D problem). The portfolio is rebalanced on each calibration date
so that the starting value of the portfolio is always 100, and notional of each risky portfolio part is equal to 10×
Investment, # units. The accumulated P&L is added to the portfolio value.

performance is extremely smooth for all agents, positive for agents with bullish sentiment, and

negative—for bearish sentiment. During the 2007-2009 downmarket, bullish portfolios slightly

underperform, while bearish portfolios recover, especially the ones invested in both S&P500

and VIX futures. The dynamics of the portfolio composition in Figure 7 reveal that in general
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A: Investment in S&P500, 1-D
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B: Investment in S&P500: 2-D (only S&P500)
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C: Investment in S&P500, 2-D (S&P500 + VIX)
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Figure 7: This figure depicts the time series of risky asset investments in the portfolio resulting from the
projection of likelihood ratios of agents defined in Table 2 on the space of S&P500 futures returns (for both 1-D
and 2-D problems) and on the space of S&P500 and VIX futures returns (for 2-D problem). The portfolio is
rebalanced on each calibration date so that the starting value of the portfolio is always 100, and notional of each
risky portfolio part is equal to 10× Investment, # units. Investments are smoothed using MA(5).

the weights of agents of the same type are correlated across different setups, and that bullish

agents correctly reduce market exposure starting in 2007 with the lowest levels reached around

beginning of 2009, after which the market investment again increases. Very intriguingly, the

comparison of market index weights and model-implied expected returns in Figure 3 shows: in

2009 when the market investments for bullish agents are at the lows, the expected returns for

Extreme Bull are the highest, and for Moderate Bull close to the highest levels. Extreme Bear

starts covering market shorts at the same time while her expectation of market return turns

more negative. Effectively, agents balance risk and return, and while the expected return has a

first-order effect on the portfolio weights, increasing the amount of market risk captured by the

projection of likelihood ratio leads to reduced exposure to the S&P500 index.
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By executing trading on both S&P500 and VIX futures markets, the optimal strategy does

not improve, and in some cases suffers from slightly higher volatility. Investments are typically

positive for bearish, and negative for bullish agents. Especially long VIX futures positions of

bearish agents in 2009 result in gains during the market crash and the subsequent high volatility

regime.

Thus, for proper recovery it is important not only to specify sentiment of an agent correctly,

but also to use a well-specified state space, augmenting the expected volatility dimension in

addition to traditionally used market index states. Information from volatility markets leads to

less noisy and more balanced parameters of subjective physical and risk-neutral distributions,

likelihood ratios, and the resulting optimal strategy. Subsequent execution of the optimal strat-

egy can be carried out using only market instruments. It is not our goal to produce a functional

and profitable trading strategy, and we do not allow for state-dependent sentiment. However,

a logical continuation of our analysis in the direction of trading would be to mix our agents in

state-dependent proportions depending, for example, on any existing sentiment measure, and

analyze the resulting trading strategy. Below we discuss one of the ways to aggregate agents

into a aggregate agent.

3.4 Aggregation of Agents and Dispersion of Beliefs

As we admit freely, we define agents to cover a relatively wide range of sentiments towards market

conditions. Each agent’s expectations and the resulting behavior are not that interesting per

se; in relative terms, however, the degree of heterogeneity of beliefs, and the market-implied

average sentiment can provide us with additional insights.

First, we split all market participants into groups according to their sentiment, or, in other

words, we find the composition of an aggregate agent in terms of five agent types with sentiments

specified in Table 2. Second, we analyze the dynamics of weights, of average beliefs, and of the

dispersion of beliefs defined as the weighted standard deviation of expected returns as seen by

our agents on each calibration date.
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Figure 8: This figure depicts the time series of aggregate agent weights defined through equation (9). The last
panel shows the time-series of aggregate agent beliefs with respect to S&P500 and VIX future returns, computed
on each date as the weighted expected return for a given asset, using aggregate agent weights and agent-specific
expected returns for each asset. All series are smoothed using MA(5).

To construct an aggregate agent from our agents we follow the procedure outlined in Sec-

tion 1.2 and solve problem in equation (6) to find the weights wt of the agents on each day t.9

Because agents by construction agree on the current prices of S&P500 and VIX futures, we

fit only the agent-weighted prices of observed options on S&P500 and VIX futures to the true

prices, assumed to be equal to the mid-point quotes observed on a given day. To avoid the effect

of small prices ”unimportance,” instead of using prices, we minimize the mean squared pricing

error in terms of relative implied volatility deviations:

w = arg min
w

1

N

∑
i=1...N

(
IV mid

i,SP

w>IVi,SP
− 1

)2

+
1

M

∑
i=1...M

(
IV mid

i,V IX

w>IVi,V IX
− 1

)2

, (9)

s.t. |w|> × 1 = w> × 1 = 1.0,

9We omit the time subscript for brevity in the following.
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where IV mid
i,j is the implied volatility of an option i on asset j computed from its mid-price, IVi,j

is the vector of implied volatilities computed from agent-specific option prices, and N and M

are the number of available options on a particular date for each underlying.

The resulting aggregate agent weights are depicted in Figure 8, where the last panel also

shows the aggregate expected return on each asset computed from the aggregate agent weights

and agent-specific expected returns. Over the last 12 years, the weights of agents with bearish

views decline, moderate bullish sentiment also plays less of a role, while agents with flat and

extreme bullish sentiments have considerably gained in importance. The last panel of the figure

shows the dynamics of aggregate agent expected returns, with an increase on average for the

S&P500 and a decrease for VIX futures. Interestingly, during the downmarket period 2008-2009

the expected market return has decreased rapidly at the beginning of 2009 and stayed at these

low levels until the end of 2010. At the same time the volatility index VIX was at the highest

expected return levels. Aggregate expectations of market and its expected volatility are on

average negatively correlated, consistent with the asymmetric volatility effect.

Aggregate levels of expected returns appear plausible, and, hence, serve as additional support

for our idea to construct a trading strategy using aggregated beliefs. We form an aggregate agent

by weighting respective probability measures of individual agents by the weights derived in (9):

dP agg =
∑
L

wl × dP l, dQagg =
∑
L

wl × dQl, (10)

and then get her optimal portfolio weights by projecting the resulting likelihood ratio dQagg

dPagg onto

the selected payoff space as we did in the previous section for individual agents. The resulting

investments and the portfolio performance are given in Figure 9. Visually, the performance in

all cases matches the performance of the ”most lucky” individual agent (see Figure 6), and the

aggregate agent definitely behaves very intelligently in terms of portfolio composition. In the

1-D case the trading is far more aggressive than in both 2-D projections, and in the 2-D case

with two instruments she correctly goes long volatility in the turbulent market periods. Being

mostly long in VIX futures helps aggregate agent during 2008-2010 period, and slightly lowers
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absolute returns in the later bullish markets. The Sharpe ratios are around 1.50 for the 1-D case

and 1.15 for both 2-D cases.

A: Investment in S&P500, 1-D and 2-D
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C: Portfolio value, 1-D and 2-D
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Figure 9: This figure depicts the time series of risky asset investments and the portfolios performance resulting
from the projection of the aggregate agent’s likelihood ratio on the space of S&P500 futures returns (for both
1-D and 2-D problems) and on the space of S&P500 and VIX futures returns (for 2-D problem). The portfolio is
rebalanced on each calibration date so that the starting value of the portfolio is always 100, and notional of each
risky portfolio part is equal to 10× Investment, # units. Investments are smoothed using MA(5).

Now, we are interested in the how agents agree or disagree on their subjective expectations,

and we compute a dispersion of beliefs measure (DOB), applying equation (7) to both S&P500

and VIX futures.

The dynamics of both measures are provided in Figure 10, and the contemporaneous corre-

lation with a number of financial, macroeconomic, and sentiment-type variables is provided in

Table 6. Intuitively, dispersion of beliefs reflects the degree of disagreement about the future

economic state, which can come along due to differential information, uncertainty, or sentiment.

As we discover already above by analyzing 2-D likelihood ratios, expected volatility changes are
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A: Dispersion of Beliefs (S&P500)

2008 2010 2012 2014 2016 2018
Year

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Le
ve

l
B: Dispersion of Beliefs (VIX)

2008 2010 2012 2014 2016 2018
Year

0.14

0.16

0.18

0.20

0.22

Le
ve

l

Figure 10: This figure depicts the time series of dispersion of expectations of S&P500 and VIX futures returns,
defined at each point in time as the aggregate agent-weighted standard deviation of expected returns from their
weighted mean. Both series are smoothed using MA(5).

priced much stronger than market index states. Thus, potentially, we expect to have stronger

implications for differences of beliefs regarding VIX for the future economic state compared to

the difference of beliefs about the market index. First, both DOB’s are positively correlated at

Dispersion of Beliefs (S&P500) Dispersion of Beliefs (VIX)

Financial Variables
Riskfree Rate -0.01 0.35
Yield, 10 years 0.12 0.21
Term Spread 0.19 -0.34
Default Spread 0.63 -0.01
Market Factor -0.31 -0.17
Dividend Yield 0.56 -0.05
VIX 0.75 0.12

Macroeconomic Variables
Industrial Production Index -0.50 0.06
Economic Activity -0.61 -0.09
Nonfarm Payrolls -0.42 -0.10
Leading Indicator -0.62 -0.08
Recession Probability (smoothed) 0.54 0.04

Sentiment Variables
Sentiment -0.22 0.19
Economic Policy Uncertainty 0.36 -0.02
Dispersion of Beliefs (S&P500P) 1.00 0.45
Dispersion of Beliefs (VIX) 0.45 1.00

Table 6: This table shows the contemporaneous correlations between Dispersion of Beliefs measures defined in
equation (7), for S&P500 and VIX futures markets, and a number of indicators and economic variables.

a level of 0.45, even though only the DOB(S&P500) is positively correlated to Economic Policy

32



Uncertainty. Both DOB’s are correlated with Baker and Wurgler (2006) Sentiment, though

the correlation is negative for DOB(S&P500) and flips sign for DOB(VIX). The Dispersion of

Beliefs regarding the market index clearly goes up in bad economic conditions and market down-

turns: it has very negative correlations with most macroeconomic variables and with the market

factor, and a positive one with the recession probability and default spread. Thus, increasing

DOB(S&P500) is clearly considered bad news. Dispersion of Beliefs regarding VIX has a dif-

ferent connotation: it has very low correlations with macro variables. Aside from a negative

correlation with inflation, it has a negative correlation with the term spread, but positive with

both short- and long-term interest rates. A positive correlation with interest rate levels indicates

that high DOB(VIX) reduces demand for precautionary savings, thus expecting better economic

conditions in the future.

To understand if the difference of beliefs in S&P500 and VIX markets anticipates changes in

economic conditions, we also perform a number of predictive regressions as follows:

V art+m = DOBj,t + V art + Controlst, (11)

where V art+m and V art are the future and current values of a variable of interest (we exclude

the current value of the variable for cumulative market returns), DOBj,t is the current value

of dispersion of beliefs about either the market index or its future volatility, and Controlst

are the controls including VIX, the current level of the riskfree rate, the last month realization

of market factor, default and term spreads, and the Sentiment indicator by Baker and Wur-

gler (2006).10 The results are provided for horizons from one to 24 months for a a number

of variables (cumulative market factor over the horizon, future dividend yield, future industrial

production, and economic activity) only in terms of significance of coefficients for DOB(S&P500)

and DOB(VIX) in Figure 11. We observe that DOB(S&P500) works at intermediate horizon,

while DOB(VIX) effect is rather long-run. A high level of dispersion of beliefs regarding market

negatively predicts market returns at around annual horizon, and positively (due to lower mar-

ket valuation) – dividend yield. DOB(VIX) has no short-term predictability for the market, but

10We do not include both DOB variables into one regression due to potential multicollinearity issues; moreover,
we exclude VIX as control for regression with DOB(S&P500) due to their high correlation (0.75).
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Figure 11: This figure depicts the t-statistic for one of of the Dispersion of Beliefs from regressing future value
of variable of interest (or cumulative value over time for market factor) on DOB(S&P500), DOB(VIX), lagged
variable, and controls, as specified in equation (11). Standard errors are corrected using Newey and West (1987)
with number of lags equal to horizon (months) -1.

predicts it positively for the long horizons (18 months and beyond). Market DOB negatively

predicts industrial production (mostly beyond one year horizon) and economic activity (six to

17 months) with borderline significance. DOB(VIX), positively predicts industrial production
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for longer horizons and has mostly insignificant (though positive) relation to economic activ-

ity. Thus, even though contemporaneously both DOB variables are positively correlated, they

posses quite distinct relation to the future economy: DOB(S&P500) has medium-term negative

predictability, while DOB(VIX) shows longer-term positive predictability.

4 Conclusion

In this paper, we recover subjective physical and risk-neutral distributions using only observed

option quotes on the S&P 500 and VIX futures. We make assumptions about agent’s sentiment

towards market and its volatility, and a good-deal bound. Our assumptions concern the location

in the state space where the agents concentrate probability mass. None of our assumptions could

ex-ante be verified to be unreasonable. In particular they yield distributions that price all options

into their respective bid-ask spreads.

The recovered subjective distributions show rich heterogeneity, stressing the importance of

sentiments towards the economy in the recovery procedures. While existing literature concen-

trates on using the market index as the only variable describing the consumption state, we

provide evidence that expected index volatility is an important information source that is not

spanned by the market index, and should not be omitted. It results in lower dispersion of beliefs

about the future market growth, and in a less extreme optimal trading strategies.

Both, the physical, as well as the risk-neutral distributions are subjective to the agents.

Their ratio is a change of measure and informative about risk premiums the agents attach

to the states. Analyzing agent-specific changes of measure for the case of using only market

index options for recovery (1-D problem), we document very disperse (depending on initial

sentiments), but always U-shaped pricing kernels in the market index dimension. In the 2-

D case (using both market index and volatility) we observe almost flat pricing kernels in the

market index dimension for volatility states different from the current futures level; in general

most heterogeneity in pricing of economic states coming from future volatility dimension. It

stresses the importance of expected volatility as a priced state variable in the ICAPM (Merton,

1973) sense.

35



The dispersion of beliefs about future market returns and expected volatility between the

agents is related to the current state of the economy. It is also able to predict future macroeco-

nomic variables. High dispersion of beliefs regarding the market indicates bad news contempora-

neously, and also predicts worsening economic conditions in the medium term. High dispersion

of beliefs regarding volatility brings more positive news, coincides with lower interest rates and

predicts market and industrial production growth in the long run. Thus, our study emphasizes

a role of option-implied information in macro-finance research and underscores the potential for

incorporating volatility sentiment to enhance asset pricing models/theories.
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