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Abstract

We develop a dynamic model of liquidity provision, in which hedgers can trade multiple

risky assets with arbitrageurs. We compute the equilibrium in closed form when arbitrageurs’

utility over consumption is logarithmic or risk-neutral with a non-negativity constraint. Ar-

bitrageurs increase their positions following high asset returns, and can choose to provide less

insurance when hedgers are more risk-averse. The stationary distribution of arbitrageur wealth

is bimodal when hedging needs are strong. Liquidity is increasing in arbitrageur wealth, while

asset volatilities, correlations, and expected returns are hump-shaped. Assets that suffer the

most when aggregate liquidity decreases offer the highest expected returns. This is because the

arbitrageurs’ portfolio is a pricing factor, and aggregate liquidity captures exactly that factor.
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1 Introduction

Liquidity in financial markets is often provided by specialized agents, such as market makers,

trading desks in investment banks, and hedge funds. Adverse shocks to the capital of these agents

cause liquidity to decline and risk premia to increase. Conversely, movements in the prices of assets

held by liquidity providers feed back into these agents’ capital.1

In this paper we study the dynamics of liquidity providers’ capital, the liquidity that these

agents provide to other participants, and assets’ risk premia. We strip out all frictions from our

model except for the implicit constraint that liquidity providers cannot raise equity capital from

other investors when returns are high. Our model yields closed-form solutions in two cases of

interest, and these solutions reveal new insights on the dynamics of risk-sharing and asset prices.

Moreover, while our model involves no explicit frictions, it can help provide a unified explanation

for a number of puzzling empirical facts about liquidity, for which such frictions have been viewed

as essential.

We assume a continuous-time infinite-horizon economy with two sets of competitive agents:

hedgers, who receive a risky income flow and seek to reduce their risk by participating in financial

markets, and arbitrageurs. Arbitrageurs take the other side of the trades that hedgers initiate,

and in that sense provide liquidity to them. They also provide insurance because they absorb part

of the hedgers’ risk. Arbitrageurs in our model can be interpreted, for example, as speculators

in futures markets or as sellers of catastrophe insurance. We assume that hedgers’ demand for

insurance is independent of their wealth. Because on the other hand, we endow arbitrageurs with

constant relative risk aversion (CRRA) utility over consumption, the supply of insurance depends

on their wealth, and wealth becomes the key state variable affecting risk-sharing and asset prices.

The market in our model consists of a riskless asset and multiple risky assets. We determine the

prices of the risky assets endogenously in equilibrium, but fix the return on the riskless asset to an

exogenous constant. Hence, price movements are driven purely by risk premia. Studying movements

in risk premia in isolation from those in the riskless rate is a plausible simplification when movements

concern one asset class, as in our applications, rather than the entire asset universe. Because we

1A growing empirical literature documents the relationship between the capital of liquidity providers, the liquidity
that these agents provide to other participants, and assets’ risk premia. For example, Comerton-Forde, Hendershott,
Jones, Moulton, and Seasholes (2010) find that bid-ask spreads quoted by specialists in the New York Stock Exchange
widen when specialists experience losses. Aragon and Strahan (2012) find that following the collapse of Lehman
Brothers in 2008, hedge funds doing business with Lehman experienced a higher probability of failure, and the liquidity
of the stocks that they were trading declined. Jylha and Suominen (2011) find that outflows from hedge funds that
perform the carry trade predict poor performance of that trade, with low interest-rate currencies appreciating and
high-interest rate ones depreciating. Acharya, Lochstoer, and Ramadorai (2013) find that risk premia in commodity-
futures markets are larger when broker-dealer balance sheets are shrinking.
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fix the riskless rate rather than aggregate consumption, we cannot use standard methodologies of

consumption-based asset-pricing models to compute risk-sharing and asset prices. Yet, our multi-

asset setting delivers more tractability than what is typical in these models. We show all our results

analytically, using closed-form solutions that we derive in two special cases of arbitrageur CRRA

utility: risk-neutral with non-negative consumption, and logarithmic.

Our model yields new insights on the dynamics of risk-sharing and insurance provision. The

risk aversion of arbitrageurs is driven not only by the static coefficient of risk aversion in their

utility function, but also by a forward-looking component that reflects the equilibrium relationship

between their wealth and asset prices. Arbitrageurs realize that in states where their portfolio

performs poorly other arbitrageurs also perform poorly and insurance provision becomes more

profitable. Limiting their investment in the risky assets enables them to have more wealth in those

states and earn higher profits. This effect is the sole determinant of risk aversion in the case where

arbitrageur utility is risk neutral and negative consumption is not allowed. We show that in that

case risk aversion increases when hedgers become more risk averse or asset cashflows become more

volatile. Our results have the surprising implication that more risk-averse hedgers may receive less

insurance from arbitrageurs in equilibrium.

Our model yields additionally a new understanding of liquidity risk and its relationship with

expected asset returns. A large empirical literature has documented that liquidity varies over time

and in a correlated manner across assets. Moreover, aggregate liquidity appears to be a priced risk

factor and carry a positive premium: assets that underperform the most during times of low ag-

gregate liquidity earn higher expected returns than assets with otherwise identical characteristics.2

We define liquidity based on the impact that hedgers have on prices, following similar definitions

in asset-pricing settings by Kyle and Xiong (2001), Xiong (2001), and Johnson (2008). We show

that liquidity has a cross-sectional and a time-series dimension. In the cross-section, liquidity is

lower for assets with more volatile cashflows. In the time-series, liquidity decreases following losses

by arbitrageurs. Hence, liquidity varies over time in response to changes in arbitrageur wealth, and

this variation is common across assets.

Expected returns in the cross-section of assets are proportional to the covariance with the

2Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001), and Huberman and Halka (2001) doc-
ument the time-variation of liquidity and its correlation across assets. Amihud (2002) and Hameed, Kang, and
Viswanathan (2010) link time-variation in aggregate liquidity to the returns of the aggregate stock market. Pastor
and Stambaugh (2003) and Acharya and Pedersen (2005) find that aggregate liquidity is a priced risk factor in the
stock market and carries a positive premium. Sadka (2010) and Franzoni, Nowak, and Phalippou (2012) find similar
results for hedge-fund and private-equity returns, respectively. For more references, see Vayanos and Wang (2013)
who survey the theoretical and empirical literature on market liquidity.
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portfolio of arbitrageurs, which is the single pricing factor in our model. That factor may be hard to

measure empirically: the portfolio of arbitrageurs is unobservable, and may differ from the market

portfolio, consisting of the supply coming from asset issuers, because of the additional supply

coming from hedgers. We show, however, that aggregate liquidity captures exactly that factor.

Indeed, because arbitrageurs sell a fraction of their portfolio following losses, assets that covary the

most with their portfolio suffer the most when liquidity decreases. Thus, an asset’s covariance with

aggregate liquidity is proportional to its covariance with the portfolio of arbitrageurs, which in turn

is proportional to the asset’s expected return. We show additionally that other liquidity-related

covariances used in empirical work, such as between an asset’s liquidity and aggregate liquidity or

return, do not explain expected returns as well. This is because those covariances are proportional

to the volatility of an asset’s cashflows rather than to the asset’s covariance with the arbitrageurs’

portfolio.

Our model yields a number of additional results concerning the dynamics of asset prices and

of arbitrageur wealth and positions. We show that arbitrageurs behave as momentum traders,

increasing their positions following high asset returns. This is because when returns are high,

arbitrageurs become wealthier, and their risk aversion decreases. We also show that the feedback

effects between arbitrageur wealth and asset prices cause the volatility of asset returns to be hump-

shaped in wealth. When wealth is small, shocks to wealth are small in absolute terms, and so is

the price volatility that they generate. When instead wealth is large, arbitrageurs provide perfect

liquidity to hedgers and prices are not sensitive to changes in wealth. This yields the hump-shaped

pattern for volatility, from which those for correlations and expected returns follow. We show

additionally that the term structure of risk premia depends on arbitrageur wealth, with its slope

steepening (becoming more positive) when wealth increases. These results can help shed light on

a number of empirical findings, discussed in later sections.

We finally show that the stationary distribution of arbitrageur wealth can be bimodal (as in

Brunnermeier and Sannikov (2014)), with wealth less likely to take intermediate values than large

or very small ones. The wealth of arbitrageurs reaches a non-degenerate stationary distribution

because arbitrage activity is self-correcting. For example, when wealth is large, arbitrageurs hold

large positions, offering more insurance to hedgers. As a consequence, equilibrium risk premia

decrease, and this renders arbitrage less profitable, causing wealth to decrease. The stationary

density becomes bimodal when hedging needs are strong. Intuitively, with strong hedging needs

insurance provision is more profitable. Therefore, arbitrageur wealth grows fast, and large values

of wealth can be more likely in steady state than intermediate values. At the same time, while
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profitability (per unit of wealth) is highest when wealth is small, wealth grows away from small

values slowly in absolute terms. Therefore, small values are more likely than intermediate values.

Our paper relates to a number of literatures. A first group of related papers are those studying

the pricing of liquidity risk in the cross-section of assets. In Holmstrom and Tirole (2001), liquidity

is defined in terms of firms’ financial constraints. Firms avoid assets whose return is low when

constraints are severe, and these assets offer high expected returns in equilibrium. Our result that

arbitrageurs avoid assets whose return is low when liquidity provision becomes more profitable has

a similar flavor. The covariance between asset returns and liquidity, however, is endogenous in our

model because prices depend on arbitrageur wealth. In Amihud (2002) and Acharya and Pedersen

(2005), illiquidity takes the form of exogenous time-varying transaction costs. An increase in the

costs of trading an asset raises the expected return that investors require to hold it and lowers its

price. A negative covariance between illiquidity and asset prices arises also in our model but because

of an entirely different mechanism: low liquidity and low prices are endogenous symptoms of low

arbitrageur wealth. The endogenous variation in liquidity is also what drives the cross-sectional

relationship between expected returns and liquidity-related covariances.

A second group of related papers link arbitrage capital to liquidity and asset prices. Some of

these papers emphasize margin constraints. In Gromb and Vayanos (2002), arbitrageurs intermedi-

ate trade between investors in segmented markets, and are subject to margin constraints. Because

of the constraints, the liquidity that arbitrageurs provide to investors increases in their wealth. In

Brunnermeier and Pedersen (2009), margin-constrained arbitrageurs intermediate trade in multi-

ple assets across time periods. Assets with more volatile cashflows are more sensitive to changes

in arbitrageur wealth. Garleanu and Pedersen (2011) introduce margin constraints in an infinite-

horizon setting with multiple assets. They show that assets with higher margin requirements earn

higher expected returns and are more sensitive to changes in the wealth of the margin-constrained

agents. This result is suggestive of a priced liquidity factor. In our model cross-sectional differences

in assets’ covariance with aggregate liquidity arise because of differences in cashflow volatility and

hedger supply rather than in margin constraints.

Other papers assume constraints on equity capital, which may be implicit (as in our paper)

or explicit. In Xiong (2001) and Kyle and Xiong (2001), arbitrageurs with logarithmic utility over

consumption can trade with long-term traders and noise traders over an infinite horizon. The

liquidity that arbitrageurs can provide is increasing in their wealth, and asset volatilities are hump-

shaped.3 In He and Krishnamurthy (2013), arbitrageurs can raise capital from other investors to

3Isaenko (2008) studies a related model in which long-term traders are utility maximizers, with constant absolute
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invest in a risky asset over an infinite horizon, but this capital cannot exceed a fixed multiple of their

internal capital. When arbitrageur wealth decreases, the constraint binds, and asset volatility and

expected returns increase. In Brunnermeier and Sannikov (2014), arbitrageurs are more efficient

holders of productive capital. The long-run stationary distribution of their wealth can have a

decreasing or a bimodal density. These papers mostly focus on the case of one risky asset (two

assets in Kyle and Xiong (2001)).

Finally, our paper is related to the literature on consumption-based asset pricing with hetero-

geneous agents, e.g., Dumas (1989), Wang (1996), Chan and Kogan (2002), Bhamra and Uppal

(2009), Basak and Pavlova (2013), Chabakauri (2013), Ehling and Heyerdahl-Larsen (2013), Gar-

leanu and Panageas (2014), and Longstaff and Wang (2014). In these papers, agents have CRRA

utility and differ in their risk aversion. As the wealth of the less risk-averse agents increases, Sharpe

ratios decrease, and this can cause volatilities and correlations to be hump-shaped. In contrast to

these papers, we assume that only one set of agents has wealth-dependent risk aversion. This allows

us to focus more sharply on the wealth effects of liquidity providers. We also fix the riskless rate,

which in these papers is instead determined by aggregate consumption.

A methodological contribution relative to the above groups of papers is that we provide an an-

alytically tractable model with multiple assets, dynamics, heterogeneous agents, and wealth effects.

With a few exceptions, the dynamic models cited above compute the equilibrium by solving differ-

ential equations numerically. By contrast, we derive closed-form solutions and prove analytically

each of our main results.4

We proceed as follows. In Section 2 we present the model. In Section 3 we derive risk-

sharing, market prices of risk, and wealth dynamics. For expositional convenience we perform these

derivations assuming that the risky assets are “short-lived” claims on the next instant’s cashflow.

In Section 4 we show that the results with short-lived assets carry through identical when assets

are “long-lived” cashflow streams. We also compute expected returns, volatilities, and correlations

of long-lived assets. In Section 5 we explore the implications of our model for liquidity risk. In

Section 6 we explore additional applications and extensions of our model. Section 7 concludes.

risk aversion utility, and there are transaction costs.
4Closed-form solutions are also derived in Danielsson, Shin, and Zigrand (2012) and Gromb and Vayanos (2015).

In the former paper, risk-neutral arbitrageurs are subject to a VaR constraint and can trade with long-term traders,
modeled as in Kyle and Xiong (2001). In the latter paper, arbitrageurs intermediate trade across segmented markets
and are subject to margin constraints. Their activity is self-correcting, but involves no risk because the different legs
of their trades cancel.
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2 Model

Time t is continuous and goes from zero to infinity. Uncertainty is described by the N -dimensional

Brownian motion Bt. There is a riskless asset whose instantaneous return is constant over time

and equal to r. There are also N risky assets with cashflows

dDt = D̄dt+ σ>dBt, (2.1)

and D̄ is a constant N × 1 vector, σ is a constant and invertible N × N matrix, and > denotes

transpose. The cashflows (2.1) are i.i.d. The i.i.d. assumption is for simplicity, and we can introduce

persistence without significant changes to our analysis. We denote by St the N × 1 vector of risky-

asset prices at time t, and by s the N × 1 vector consisting of asset supplies measured in terms of

number of shares. We set Σ ≡ σ>σ.

There are two sets of agents, hedgers and arbitrageurs. Each set forms a continuum with

measure one. Hedgers choose asset positions at time t to maximize the mean-variance objective

Et(dvt)−
α

2
Vart(dvt), (2.2)

where dvt is the change in wealth between t and t + dt, and α is a risk-aversion coefficient. To

introduce hedging needs, we assume that hedgers receive a random endowment u>dDt at t + dt,

where u is a constant N×1 vector. This endowment is added to dvt. Since the hedgers’ risk-aversion

coefficient α and endowment variance u>Σu are constant over time, their demand for insurance,

derived in the next section, is also constant. We intentionally simplify the model in this respect, so

that we can focus on the supply of insurance, which is time-varying because of the wealth-dependent

risk aversion of arbitrageurs.

One interpretation of the hedgers is as generations living over infinitesimal periods. The gener-

ation born at time t is endowed with initial wealth v̄, and receives the additional endowment u>dDt

at t + dt. It consumes all its wealth at t + dt and dies. (In a discrete-time version of our model,

each generation would be born in one period and die in the next.) If preferences over consumption

are described by the VNM utility U , this yields the objective (2.2) with the risk-aversion coefficient

α = −U ′′(v̄)
U ′(v̄) , which is constant over time.

In Section 6.3 we relax the assumption that hedgers maximize instantaneous mean-variance

utility, and allow them instead to maximize expected utility of intertemporal consumption. We
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assume that utility is time-additive with constant absolute risk aversion (CARA) α
r
:

−Et

(
∫ ∞

t

e−
α
r
c̄se−ρ̄(s−t)ds

)

, (2.3)

where c̄s is consumption at s ≥ t and ρ̄ is a subjective discount rate. CARA utility preserves the

property of mean-variance utility that the hedgers’ demand for insurance is independent of their

wealth. We assume that the coefficient of absolute risk aversion over consumption is α
r
so that its

counterpart coefficient over wealth is α (as shown in Section 6.3), identical to that under mean-

variance utility. Under CARA utility, our main results remain the same but we lose the closed-form

solutions.

Arbitrageurs maximize expected utility of intertemporal consumption. We assume that utility

is time-additive with constant relative risk aversion (CRRA) γ ≥ 0. When γ 6= 1, the arbitrageurs’

objective at time t is

Et

(

∫ ∞

t

c
1−γ
s

1− γ
e−ρ(s−t)ds

)

, (2.4)

where cs is consumption at s ≥ t and ρ is a subjective discount rate. When γ = 1, the objective

becomes

Et

(∫ ∞

t

log(cs)e
−ρ(s−t)ds

)

. (2.5)

Implicit in the definition of the arbitrageurs’ objective for γ > 0, is that consumption is non-

negative. The objective for γ = 0 can be defined for negative consumption, but we impose non-

negativity as a constraint. Since negative consumption can be interpreted as a costly activity

that arbitrageurs undertake to repay a loan, the non-negativity constraint can be interpreted as a

collateral constraint: arbitrageurs cannot commit to engage in the costly activity, and can hence

walk away from a loan not backed by collateral.

We solve for the equilibrium in steps. In Section 3 we derive risk-sharing, market prices of

risk, and wealth dynamics. These derivations can be performed independently of those for price

dynamics. Indeed, in Section 3 we replace the risky assets paying a infinite stream of cashflows by

“short-lived” assets paying the next instant’s cashflow. Short-lived assets are a useful expositional

device: risk-sharing, market prices of risk, and wealth dynamics are identical as with long-lived

assets, as we show in Section 4, but the derivations are simpler because there are no price dynamics.

In Section 4 we compute the price dynamics of long-lived assets, and these assets’ expected returns,
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volatilities, and correlations. In both Sections 3 and 4 we assume that risky assets are in zero supply,

i.e., s = 0. Even with zero supply, there is aggregate risk because of the hedgers’ endowment, and

risk premia are non-zero. We allow supply to be positive in Section 6, and show that our main

results remain the same but we lose the closed-form solutions.

For zero supply our model could represent futures markets, with the assets being futures con-

tracts and the arbitrageurs being the speculators. It could also represent the market for insurance

against aggregate risks, e.g., weather or earthquakes, with the assets being insurance contracts and

the arbitrageurs being the insurers. For positive supply, our model could represent stock or bond

markets, with the arbitrageurs being hedge funds or other agents absorbing demand or supply

imbalances.

3 Risk-Sharing

3.1 Equilibrium with Short-Lived Assets

At each time t, a new set of N short-lived risky assets can be traded. The assets available for trade

at time t pay dDt at t + dt. We denote by πtdt the N × 1 vector of prices at which the assets

trade at t, and by dRt ≡ dDt −πtdt the N × 1 vector of returns that the assets earn between t and

t + dt. (In a discrete-time version of our model, short-lived assets would be available for trade in

one period and pay off in the next.) Eq. (2.1) implies that the instantaneous expected returns of

the short-lived risky assets are

Et(dRt)

dt
= D̄ − πt, (3.1)

and the instantaneous covariance matrix of returns is

Vart(dRt)

dt
=

Et(dRtdR
>
t )

dt
= σ>σ = Σ. (3.2)

Note that dRt is also a return in excess of the riskless asset since investing πtdt in the riskless asset

yields return rπt(dt)
2, which is negligible relative to dRt.

We next compute the equilibrium with short-lived risky assets, and for simplicity refer to these

assets as risky assets for the rest of this section. We first solve the hedgers’ maximization problem.

Consider a hedger who holds a position xt in the risky assets at time t. The change in the hedger’s
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wealth between t and t+ dt is

dvt = rvtdt+ x>t (dDt − πtdt) + u>dDt. (3.3)

The first term in the right-hand side of (3.3) is the return from investing in the riskless asset, the

second term is the return from investing in the risky assets, and the third term is the endowment.

Substituting dDt from (2.1) into (3.3), and the result into (2.2), we find the hedger’s optimal asset

demand.

Proposition 3.1 The optimal policy of a hedger at time t is to hold a position

xt =
Σ−1(D̄ − πt)

α
− u (3.4)

in the risky assets.

The hedger’s optimal demand for the risky assets consists of two components, which correspond

to the two terms in the right-hand side of (3.4). The first term is the demand in the absence of

the hedging motive. This demand consists of an investment in the tangent portfolio, scaled by the

hedger’s risk aversion coefficient α. The tangent portfolio is the inverse of the covariance matrix

Σ of asset returns times the vector D̄ − πt of expected returns. The second term is the demand

generated by the hedging motive. This demand consists of a short position in the portfolio u, which

characterizes the sensitivity of hedgers’ endowment to asset returns. Selling short an asset n for

which un is positive hedges endowment risk.

We next study the arbitrageurs’ maximization problem. Consider an arbitrageur who has

wealth wt at time t and holds a position yt in the risky assets. The arbitrageur’s budget constraint

is

dwt = rwtdt+ y>t (dDt − πtdt)− ctdt. (3.5)

The first term in the right-hand side of (3.5) is the return from investing in the riskless asset, the

second term is the return from investing in the risky assets, and the third term is consumption.

The arbitrageur’s value function depends not only on his own wealth wt, but also on the total

wealth of all arbitrageurs since the latter affects asset prices πt. In equilibrium own wealth and

total wealth coincide because all arbitrageurs hold the same portfolio and are in measure one. For

the purposes of optimization, however, we need to make the distinction. We reserve the notation

wt for total wealth and denote own wealth by ŵt. We likewise use (ct, yt) for total consumption
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and position in the assets, and denote own consumption and position by (ĉt, ŷt). We conjecture

that the arbitrageur’s value function is

V (ŵt, wt) = q(wt)
ŵ

1−γ
t

1− γ
(3.6)

for γ 6= 1, and

V (ŵt, wt) =
1

ρ
log(ŵt) + q1(wt) (3.7)

for γ = 1, where q(wt) and q1(wt) are scalar functions of wt. We set q(wt) = 1
ρ
for γ = 1.

Substituting dDt from (2.1) into (3.5), and the result into the arbitrageur’s Bellman equation, we

find the arbitrageur’s optimal consumption and asset demand.

Proposition 3.2 Given the value function (3.6) and (3.7), the optimal policy of an arbitrageur at

time t is to consume

ĉt = q(wt)
− 1

γ ŵt (3.8)

and hold a position

ŷt =
ŵt

γ

(

Σ−1(D̄ − πt) +
q′(wt)yt
q(wt)

)

(3.9)

in the risky assets.

The arbitrageur’s optimal consumption is proportional to his wealth ŵt, with the proportion-

ality coefficient q(wt)
− 1

γ being a function of total arbitrageur wealth wt. The arbitrageur’s optimal

demand for the risky assets consists of two components, as for the hedgers. The first component

is the demand in the absence of a hedging motive, and consists of an investment in the tangent

portfolio, scaled by the arbitrageur’s coefficient of absolute risk aversion γ
ŵt
. The second compo-

nent is the demand generated by intertemporal hedging (Merton (1973)). The arbitrageur hedges

against changes in his investment opportunity set, and does so by holding a portfolio with weights

proportional to the sensitivity of that set to asset returns. In our model the investment opportunity

set is fully characterized by total arbitrageur wealth, and the sensitivity of that variable to asset

returns is the average portfolio yt of all arbitrageurs. Hence, the arbitrageur’s hedging demand is

a scaled version of yt, as the second term in the right-hand side of (3.9) shows.
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Since in equilibrium all arbitrageurs hold the same portfolio, both components of asset demand

consist of an investment in the tangent portfolio. Setting ŷt = yt and ŵt = wt in (3.9), we find that

the total asset demand of arbitrageurs is

yt =
Σ−1(D̄ − πt)

A(wt)
, (3.10)

where

A(wt) ≡
γ

wt
− q′(wt)

q(wt)
. (3.11)

Arbitrageurs’ investment in the tangent portfolio is thus scaled by the coefficient A(wt), which

measures effective risk aversion. Effective risk aversion is the sum of the static coefficient of absolute

risk aversion γ
wt
, and of the term − q′(wt)

q(wt)
which corresponds to the intertemporal hedging demand.

Substituting the asset demand (3.4) of the hedgers and (3.10) of the arbitrageurs into the

market-clearing equation

xt + yt = 0, (3.12)

we find that asset prices πt are

πt = D̄ − αA(wt)

α+A(wt)
Σu. (3.13)

Substituting (3.13) back into (3.10), we find that the arbitrageurs’ position in the risky assets in

equilibrium is

yt =
α

α+A(wt)
u. (3.14)

Intuitively, hedgers want to sell the portfolio u to hedge their endowment. Arbitrageurs buy a frac-

tion of that portfolio, and the rest remains with the hedgers. The fraction bought by arbitrageurs

decreases in their effective risk aversion A(wt) and increases in the hedgers’ risk aversion α, ac-

cording to optimal risk-sharing. Expected asset returns are proportional to the covariance with the

portfolio u, which is the single pricing factor in our model. The risk premium αA(wt)
α+A(wt)

of that factor

increases in the arbitrageurs’ effective risk aversion, and is hence time-varying. The arbitrageurs’

Sharpe ratio, defined as the expected return of their portfolio divided by the portfolio’s standard
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deviation, also increases in their effective risk aversion. Using (3.13) and (3.14), we find that the

Sharpe ratio is

SRt ≡
y>t (D̄ − πt)
√

y>t Σyt

=
αA(wt)

α+A(wt)

√
u>Σu. (3.15)

Substituting the arbitrageurs’ optimal policy from Proposition (3.2) into the Bellman equation,

we can derive an ordinary differential equation (ODE) that the arbitrageurs’ value function must

satisfy.

Proposition 3.3 If (3.6) is the value function for γ 6= 1, then q(wt) must solve the ODE

ρq = γq
1− 1

γ +
(

r − q
− 1

γ

)

q′w+rq(1−γ)+
1

2

(

q′′ +
2q′γ

w
− 2q′2

q
+

q(1− γ)γ

w2

)

α2

(

α+ γ
w
− q′

q

)2u
>Σu.

(3.16)

If (3.7) is the value function for γ = 1, then q1(wt) must solve the ODE

ρq1 = log(ρ) +
r − ρ

ρ
+ (r − ρ)q′1 +

1

2

(

q′′1 +
2q′1
w

+
1

ρw2

)

α2

(

α+ 1
w

)2u
>Σu. (3.17)

3.2 Closed-Form Solutions

We next characterize the equilibrium more fully in two special cases: arbitrageurs have logarithmic

preferences (γ = 1) and arbitrageurs are risk-neutral (γ = 0). A useful parameter in both cases is

z ≡ α2u>Σu

2(ρ− r)
. (3.18)

The parameter z is larger when hedgers are more risk averse (large α), or their endowment is riskier

(large u>Σu), or arbitrageurs are more patient (small ρ).

When γ = 1, (3.8) and q(wt) = 1
ρ
imply that arbitrageur consumption is equal to ρ times

wealth. Eq. (3.11) implies that arbitrageur effective risk-aversion A(wt) is

A(wt) =
1

wt
. (3.19)
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Effective risk aversion is equal to the static coefficient of absolute risk aversion because the in-

tertemporal hedging demand is zero.

When γ = 0, (3.8) implies that arbitrageur consumption is equal to zero in the region q(wt) > 1

since 1
γ
= ∞. Moreover, q(wt) ≥ 1 since an arbitrageur can always consume his entire wealth ŵt

instantly and achieve utility ŵt. Therefore, there are two regions, one in which q(wt) > 1 and

arbitrageurs do not consume, and in which q(wt) = 1 and arbitrageurs consume instantly until

their total wealth wt reaches the other region. The two regions are separated by a threshold w̄ > 0:

for wt < w̄ arbitrageurs do not consume, and for wt > w̄ they consume instantly until wt decreases

to w̄. The marginal utility q(wt) of an arbitrageur’s wealth is high when the total wealth wt of

all arbitrageurs is low because insurance provision is then more profitable. Arbitrageur effective

risk-aversion A(wt) is the solution to a first-order ODE derived from (3.16). Proposition 3.20 solves

this ODE in closed form in the limit when the riskless rate r goes to zero. For ease of exposition,

we refer from now on to the r → 0 limit in the risk-neutral case as the “limit risk-neutral case.” In

subsequent sections we occasionally also take the r → 0 limit in the logarithmic case, and refer to

it as the “limit logarithmic case.”

Proposition 3.4 In the limit risk-neutral case (γ = 0, r → 0), arbitrageur effective risk aversion

is given by

A(wt) =
α

1 + z

(√
z cot

(

αwt√
z

)

− 1

)

(3.20)

for wt < w̄, and A(wt) = 0 for wt ≥ w̄, where the threshold w̄ is given by

cot

(

αw̄√
z

)

=
1√
z
. (3.21)

The marginal utility of arbitrageur wealth is given by

q(wt) = exp

{

z

1 + z

[

log sin

(

αw̄√
z

)

− log sin

(

αwt√
z

)

− α

1 + z
(w̄ − wt)

]}

(3.22)

for wt < w̄, and q(wt) = 1 for wt ≥ w̄.

Although arbitrageurs are risk-neutral, their effective risk aversion is positive in the region

wt < w̄. This is because of the intertemporal hedging demand, which is the sole determinant of
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effective risk aversion because the static coefficient of absolute risk aversion is zero. Intuitively,

arbitrageurs realize that in states where their portfolio performs poorly, other arbitrageurs also

perform poorly, and hence insurance provision becomes more profitable. To have more wealth to

provide insurance in those states, arbitrageurs limit their investment in the risky assets, hence

behaving as risk-averse.

Figure 1 plots arbitrageur effective risk aversion A(wt) as a function of wealth wt. To choose

values for α and u>Σu, we set hedgers’ initial wealth v̄ to one: this is without loss of generality

because we can redefine the numeraire. Since v̄ = 1, the parameter α = −u′′(v̄)
u′(v̄) coincides with

the hedgers’ relative risk aversion coefficient, and we set it to 2. Moreover, the parameter
√
u>Σu

coincides with the annualized standard deviation of the hedgers’ endowment as a function of their

initial wealth, and we set it to 15%. We set the arbitrageurs’ subjective discount rate ρ to 4%, and

the riskless rate r to 2%.
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Figure 1: Arbitrageur effective risk aversion as a function of wealth in the logarithmic
case (dashed line) and the risk-neutral case (solid line). The dotted vertical line hits
the x-axis at w̄ and pertains to the risk-neutral case. Parameter values are α = 2,√
u>Σu = 15%, ρ = 4%, and r = 2%.

Figure 1 shows that in both the logarithmic and the risk-neutral cases, effective risk aversion

A(wt) is decreasing and convex in arbitrageur wealth, and converges to infinity when wealth goes

to zero. Moreover, effective risk aversion is smaller in the risk-neutral case than in the logarithmic

case. These properties hold for all parameter values in the logarithmic case since A(wt) =
1
wt
. They

also hold for all values of α, u>Σu, and ρ in the limit risk-neutral case (r → 0), as we show in the

proof of Proposition 3.4.
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We next examine how changes in arbitrageur wealth affect expected asset returns and the

arbitrageurs’ positions and Sharpe ratio. When arbitrageurs are wealthier, they have lower effective

risk aversion, and absorb a larger fraction of the portfolio u that hedgers want to sell. Arbitrageur

positions are thus larger in absolute value: more positive for positive elements of u, which correspond

to assets that hedgers want to sell, and more negative for negative elements of u, which correspond

to assets that hedgers want to buy. Since arbitrageurs are less risk averse, they require smaller

compensation for providing insurance to hedgers. Expected asset returns, which measure that

compensation, are thus smaller in absolute value: less positive for positive elements of u and less

negative for negative elements of u. The same is true for the market prices of the Brownian risks,

i.e., the expected returns per unit of risk exposure, and for the arbitrageurs’ Sharpe ratio.

Proposition 3.5 In both the logarithmic (γ = 1) and the limit risk-neutral (γ = 0, r → 0) cases,

an increase in arbitrageur wealth wt:

(i) Raises the position of arbitrageurs in each asset in absolute value.

(ii) Lowers the expected return of each asset in absolute value.

(iii) Lowers the market price of each Brownian risk in absolute value.

(iv) Lowers the arbitrageurs’ Sharpe ratio.

The results of Proposition 3.5 are consistent with the empirical findings of Kang, Rouwenhorst,

and Tang (2015). That paper finds that speculators in commodity futures markets act as momentum

traders, buying when prices go up and selling when they go down. Moreover, following purchases

by speculators expected returns are low, while they are high following speculator sales. These

findings are consistent with Proposition 3.5, provided that arbitrageurs hold long positions in the

risky assets, which is the case when u has positive elements. Indeed, when arbitrageurs are long,

their wealth increases when assets earn high returns. Kang, Rouwenhorst, and Tang (2015) show

that speculators are long on average for almost all of the commodities in their sample. Proposition

3.5 has the additional implication that when prices of some commodities go up speculators should

buy all commodities and the expected returns on all commodities should decrease. This prediction

is not tested in Kang, Rouwenhorst, and Tang (2015), but could perhaps be investigated as well.

We next derive the stationary distribution of arbitrageur wealth. Using that distribution,

we can compute unconditional averages of endogenous variables, e.g., arbitrageurs’ positions and

Sharpe ratio.
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Proposition 3.6 If z > 1, then the stationary distribution of arbitrageur wealth has density

d(wt) =
(αwt + 1)2w

− 1
z

t exp
(

− 1
2z

(

α2w2
t + 4αwt

))

∫∞
0 (αw + 1)2w− 1

z exp
(

− 1
2z (α

2w2 + 4αw)
)

dw
(3.23)

over the support (0,∞) in the logarithmic case (γ = 1), and density

d(wt) =

(

α+A(wt)
q(wt)

)2

∫ w̄

0

(

α+A(w)
q(w)

)2
dw

(3.24)

over the support (0, w̄) in the limit risk-neutral case (γ = 0, r → 0), where A(wt) and q(wt) are

given by (3.20) and (3.22), respectively. If 0 < z < 1, then wealth converges to zero in the long

run, in both cases. If in the logarithmic case z < 0, then wealth converges to infinity in the long

run.

The stationary distribution has a non-degenerate density if the parameter z defined by (3.18)

is larger than one. This is the case when the hedgers’ risk aversion α and endowment variance

u>Σu are large, and the arbitrageurs’ subjective discount rate ρ is small but exceeds the riskless

rate r.

To provide an intuition for Proposition 3.6, we recall the standard Merton (1971) portfolio

optimization problem in which an infinitely lived investor with CRRA coefficient γ can invest in a

riskless asset with instantaneous return r and in N risky assets with instantaneous expected excess

return vector µ and covariance matrix Σ. The investor’s wealth converges to infinity in the long

run when

r +
1

2
µ>Σ−1µ > ρ, (3.25)

i.e., when the riskless rate plus one-half of the squared Sharpe ratio achieved from investing in

the risky assets exceeds the investor’s subjective discount rate ρ. When instead (3.25) holds in

the opposite direction, wealth converges to zero. Intuitively, wealth converges to infinity when the

investor accumulates wealth at a rate that exceeds sufficiently the rate at which he consumes.

Our model differs from the Merton problem because the arbitrageurs’ Sharpe ratio is endoge-

nously determined in equilibrium and decreases in their wealth (Proposition 3.5). Using (3.15) to

substitute for the arbitrageurs’ Sharpe ratio, we can write (3.25) as

r +
1

2

(

αA(wt)

α+A(wt)

)2

u>Σu > ρ. (3.26)
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Transposing the result from the Merton problem thus suggests that there are three possibilities for

the long-run dynamics. If (3.26) is satisfied for all values of wt, then wealth converges to infinity.

If (3.26) is violated for all values of wt, then wealth converges to zero. If, finally, (3.26) is violated

for large values but is satisfied for values close to zero, neither convergence occurs and wealth

has a non-degenerate stationary density. Intuitively, a density can exist because the dynamics of

arbitrageur wealth are self-correcting: when wealth becomes close to zero the Sharpe ratio increases

and (3.26) becomes satisfied, and when wealth becomes large the Sharpe ratio decreases and (3.26)

becomes violated.

When ρ < r, and so z < 0, (3.26) is satisfied for all values of wt. Therefore, wt converges to

infinity. When ρ > r, and so z > 0, (3.26) is violated for values of wt close to its upper bound

(infinity in the logarithmic case and w̄ in the risk-neutral case) because A(wt) is close to zero for

those values. Therefore, wt either converges to zero or has a non-degenerate stationary density.

Convergence to zero occurs if (3.26) is violated for wt close to zero because it is then violated for all

values of wt. Since A(wt) is close to infinity for wt close to zero, wt converges to zero exactly when

z < 1. Intuitively, wealth converges to zero when α and u>Σu are small because then arbitrageurs

earn low expected returns for providing insurance to hedgers. When instead z > 1, wt has a

non-degenerate stationary density. Proposition 3.7 characterizes the shape of that density.

Proposition 3.7 Suppose that z > 1. The density d(wt) of the stationary distribution:

(i) Is decreasing in wt if z < 27
8 in the logarithmic case (γ = 1) and if z < 4 in the limit

risk-neutral case (γ = 0, r → 0).

(ii) Is bimodal in wt otherwise. That is, it is decreasing in wt for 0 < wt < w̄1, increasing in

wt for w̄1 < wt < w̄2, and again decreasing in wt for wt > w̄2. In the logarithmic case, the

thresholds w̄1 < w̄2 are the two positive roots of

(αw)3 + 3(αw)2 + (3− 2z)αw + 1 = 0. (3.27)

In the limit risk-neutral case, they are given by

A(w̄1) ≡ α
z − 2 +

√

z(z − 4)

2
, (3.28)

A(w̄2) ≡ α
z − 2−

√

z(z − 4)

2
, (3.29)

where A(wt) is given by (3.20), and they satisfy 0 < w̄1 < w̄2 < w̄.
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(iii) Shifts to the right in the monotone likelihood ratio sense when α or u>Σu increase, in both

the logarithmic and the limit risk-neutral cases.

The shape of the stationary density is fully determined by the parameter z. When z is not much

larger than one, the density is decreasing, and so values close to zero are more likely than larger

values. When instead z is sufficiently larger than one, the density becomes bimodal, with the two

maxima being zero and an interior point w̄2 of the support. Values close to these maxima are more

likely than intermediate values, meaning that the system spends more time at these values than in

the middle. The intuition is that when the hedgers’ risk aversion α and endowment variance u>Σu

are large, arbitrageurs earn high expected returns for providing insurance, and their wealth grows

fast. Therefore, large values of wt are more likely in steady state than intermediate values. At the

same time, while expected returns are highest when wealth is small, wealth grows away from small

values slowly in absolute terms. Therefore, small values of wt are more likely than intermediate

values.

Figure 2 plots the stationary density in the logarithmic and risk-neutral cases. The solid lines

are drawn for the same parameter values as in Figure 1. The dashed lines are drawn for the same

values except that hedger risk aversion α is raised from 2 to 4. The solid lines are decreasing in

wealth, while the dashed lines are bimodal. These patterns are consistent with Proposition 3.7

since z is equal to 2.25 for the solid lines and to 9 for the dashed lines.
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Figure 2: Stationary density of arbitrageur wealth in the logarithmic case (right
panel) and the risk-neutral case (left panel). The solid lines are drawn for α = 2,√
u>Σu = 15%, ρ = 4%, and r = 2%. The dashed lines are drawn for the same values

except that α = 4.

We next perform comparative statics with respect to the hedgers’ risk aversion α and en-

dowment variance u>Σu. We perform “conditional” comparative statics, where we compute how
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changes in α and u>Σu affect endogenous variables, conditionally on a given level of arbitrageur

wealth. We also perform “unconditional” comparative statics, where we compute how changes

in α and u>Σu affect unconditional averages of the endogenous variables under the stationary

distribution of wealth. The two types of comparative statics differ sharply.

Proposition 3.8 Conditionally on a given level wt of arbitrageur wealth, the following comparative

statics hold:

(i) An increase in the hedgers’ risk aversion α raises the arbitrageurs’ Sharpe ratio. In the

logarithmic case (γ = 1), the position of arbitrageurs in each asset increases in absolute

value. In the limit risk-neutral case (γ = 0, r → 0), the position of arbitrageurs in each asset

decreases in absolute value, except when wt is below a threshold, which is negative if z < 1.

(ii) An increase in the variance u>Σu of hedgers’ endowment raises the arbitrageurs’ Sharpe ratio.

In the logarithmic case, arbitrageur positions do not change. In the limit risk-neutral case,

the position of arbitrageurs in each asset decreases in absolute value.

Result (i) of Proposition 3.8 concerns changes in hedger risk aversion. One would expect

that when hedgers become more risk averse, they transfer more risk to arbitrageurs. This result

holds in the logarithmic case, but the opposite result can hold in the risk-neutral case. This is

because an increase in hedger risk aversion can generate an even larger increase in arbitrageur

effective risk aversion through an increase in the intertemporal hedging demand. Recall that risk-

neutral arbitrageurs behave as risk-averse because they seek to preserve wealth in states where other

arbitrageurs realize losses and insurance provision becomes more profitable. When hedgers are more

risk averse, this effect becomes stronger because insurance provision becomes more profitable for

each level of arbitrageur wealth and more sensitive to changes in wealth. The effect is not present

in the logarithmic case because effective risk aversion is equal to the static coefficient of absolute

risk aversion, which depends only on wealth. In both the logarithmic and the risk-neutral cases, an

increase in hedger risk aversion raises the Sharpe ratio of arbitrageurs because the expected return

on their portfolio increases.

Result (ii) of Proposition 3.8 concerns changes in the variance of hedgers’ endowment. In the

logarithmic case, such changes do not affect arbitrageur effective risk aversion and positions. In the

risk-neutral case, however, there is an effect, which parallels that of hedger risk aversion. When the

variance is high, e.g., because asset cashflows dDt are more volatile, liquidity provision becomes

more profitable. As a consequence, arbitrageurs have higher effective risk aversion and hold smaller
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positions. In both the logarithmic and the risk-neutral cases, an increase in variance raises the

arbitrageurs’ Sharpe ratio.

We next turn to unconditional comparative statics. Figure 3 plots the unconditional Sharpe

ratio of arbitrageurs as a function of α (left panel) and u>Σu (right panel). The results are in

sharp contrast to the conditional comparative statics. While an increase in α and u>Σu raises

the Sharpe ratio conditionally on a given level of wealth (Proposition 3.8), it can lower it when

comparing unconditional averages. Intuitively, for larger values of α and u>Σu, arbitrageur wealth

grows faster, and its stationary density shifts to the right (Proposition 3.7). Therefore, while

the conditional Sharpe ratio increases, the unconditional one can decrease because high values of

wealth, which yield low Sharpe ratios, become more likely.
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Figure 3: The unconditional Sharpe ratio of arbitrageurs as a function of α (left panel)
and u>Σu (right panel), for the logarithmic case (dashed lines) and the risk-neutral

case (solid lines). When α varies, the remaining parameters are set to
√
u>Σu = 15%,

ρ = 4%, and r = 2%. When u>Σu varies, the remaining parameters are set to α = 2,
ρ = 4%, and r = 2%. The left-most vertical bar is the threshold z = 1 beyond which
the stationary distribution has a non-degenerate density. The vertical bars to the right
are the thresholds z = 27

8
and z = 4 beyond which the density becomes bimodal in

the logarithmic and in the limit risk-neutral cases, respectively.

4 Asset Prices

4.1 Equilibrium with Long-Lived Assets

We conjecture that in equilibrium the price vector St of the long-lived assets (introduced at the

beginning of Section 2) follows the Ito process

dSt = µStdt+ σ>
StdBt, (4.1)
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where µSt is a N × 1 vector and σSt is a N ×N matrix. We denote by dRt ≡ dSt+ dDt− rStdt the

N × 1 vector of returns that the long-lived assets earn between t and t+ dt in excess of the riskless

asset. Eqs. (2.1) and (4.1) imply that the instantaneous expected returns of the long-lived assets

are

Et(dRt)

dt
= µSt + D̄ − rSt, (4.2)

and the instantaneous covariance matrix of returns is

Vart(dRt)

dt
= (σSt + σ)>(σSt + σ). (4.3)

With long-lived assets, a hedger’s budget constraint (3.3) becomes

dvt = rvtdt+X>
t (dSt + dDt − rStdt) + u>dDt, (4.4)

where Xt denotes the hedger’s position in the long-lived assets. An arbitrageur’s budget constraint

(3.5) becomes similarly

dwt = (rwt − ct)dt+ Y >
t (dSt + dDt − rStdt), (4.5)

where Yt denotes the arbitrageur’s position. Because the market is complete under long-lived assets,

as it is under short-lived assets, the two asset structures generate the same allocation of risk.

Lemma 4.1 An equilibrium (St,Xt, Yt) with long-lived assets can be constructed from an equilib-

rium (πt, xt, yt) with short-lived assets by:

(i) Choosing the price process St such that

(

σ>
)−1

(D̄ − πt) =
(

(σSt + σ)>
)−1

(µSt + D̄ − rSt). (4.6)

(ii) Choosing the asset positions Xt of hedgers and Yt of arbitrageurs such that

σxt = (σSt + σ)Xt, (4.7)

σyt = (σSt + σ)Yt. (4.8)

In the equilibrium with long-lived assets the dynamics of arbitrageur wealth, the exposures of

hedgers and arbitrageurs to the Brownian shocks, the market prices of the Brownian risks, and the

arbitrageurs’ Sharpe ratio are the same as in the equilibrium with short-lived assets.
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Eqs. (4.7) and (4.8) construct positions of hedgers and arbitrageurs in the long-lived assets so

that the exposures to the underlying Brownian shocks are the same as with short-lived assets. Eq.

(4.6) constructs a price process such that the market prices of the Brownian risks are also the same.

Given this price process, agents choose optimally the risk exposures in (4.7) and (4.8), and markets

clear.

The price St of the long-lived assets is a function of arbitrageur wealth wt only. Using Ito’s

lemma to compute the drift µSt and diffusion σSt of the price process as a function of the dynamics

of wt, and substituting into (4.6), we can determine S(wt) up to an ODE.

Proposition 4.1 The price of the long-lived assets is given by

S(wt) =
D̄ − αΣu

r
+ g(wt)Σu, (4.9)

where the scalar function g(wt) satisfies the ODE

(

r − q
− 1

γ

)

wg′ +
α2

2(α+A)2
u>Σug′′ − rg = − α2

α+A
. (4.10)

The price in (4.9) is the sum of two terms. The first term, D̄−αΣu
r

, is the price that would

prevail in the absence of arbitrageurs. Indeed, if hedgers were the only traders in a market with

short-lived assets, their demand (3.4) would equal the asset supply, which is zero. Solving for the

market-clearing price yields πt = D̄ − αΣu. Long-lived assets would trade at the present value of

the infinite stream of these prices discounted at the riskless rate r, which is D̄−αΣu
r

. The second

term, g(wt)Σu, measures the price impact of arbitrageurs. Since arbitrageurs buy a fraction of the

portfolio u that hedgers want to sell, they cause assets covarying positively with that portfolio to

become more expensive. Therefore, the function g(wt) should be positive, and equal to zero for

wt = 0. Moreover, since arbitrageurs have a larger impact the wealthier they are, g(wt) should be

increasing in wt, as we confirm in the special cases studied in Section 4.2.

Expected asset returns and the covariance matrix of returns are driven by the sensitivity of the

price to changes in arbitrageur wealth wt. Therefore, they are driven by the term g(wt)Σu and do

not depend on D̄−αΣu
r

. In the proof of Proposition 4.1 we show that expected returns are

Et(dRt)

dt
=

αA(wt)

α+A(wt)

[

f(wt)u
>Σu+ 1

]

Σu, (4.11)
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and the covariance matrix of returns is

Vart(dRt)

dt
= f(wt)

[

f(wt)u
>Σu+ 2

]

Σuu>Σ+ Σ, (4.12)

where

f(wt) ≡
αg′(wt)

α+A(wt)
. (4.13)

The covariance matrix (4.12) is the sum of a “fundamental” component Σ, driven purely by

shocks to assets’ underlying cashflows dDt, and an “endogenous” component f(wt)
[

f(wt)u
>Σu+ 2

]

Σuu>Σ,

introduced because cashflow shocks affect arbitrageur wealth wt which affects prices. Endogenous

risk is zero in the case of short-lived assets because their payoff dDt is not sensitive to changes in

wt. Changes in wt, however, affect the payoff dDt + St+dt of long-lived assets because they affect

the price St+dt. Therefore, endogenous risk arises only with long-lived assets, and we show that it

drives the patterns of volatilities, correlations, and expected returns.

The effect of wt on prices is proportional to the covariance Σu with the portfolio u. Therefore,

the endogenous covariance between assets n and n′ is proportional to the product between the

elements n and n′ of the vector Σu. Expected returns are proportional to Σu, as in the case of

short-lived assets. The proportionality coefficient is different than in that case, however, because

it is influenced by the endogenous covariance.

4.2 Closed-Form Solutions

We next characterize the equilibrium more fully in the logarithmic case (γ = 1) and the risk-

neutral case (γ = 0). We compute the function g′(wt) that characterizes the sensitivity of the price

to changes in arbitrageur wealth in closed form in the limit when the riskless rate r goes to zero. In

that limit the price is not well defined because the constant term D̄−αΣu
r

converges to infinity. The

function g(wt) is well-defined, however, and so are expected asset returns and the covariance matrix

of returns, which depend on the price only through g′(wt). Hence, as long as g′(wt) is continuous

with respect to r, our results are informative about the properties of these quantities close to the

limit, where the price is well defined.
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Proposition 4.2 The function g′(wt) is given by

g′(wt) =
2w

1
z
t exp

(

1
2z

(

α2w2
t + 4αwt

))

u>Σu

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw (4.14)

for wt ∈ (0,∞) in the limit logarithmic case (γ = 1, r → 0), and by

g′(wt) =
2z

(1 + z)u>Σu

[

log sin

(

αw̄√
z

)

− log sin

(

αwt√
z

)

+ α(w̄ − wt)

]

(4.15)

for wt ∈ (0, w̄) in the limit risk-neutral case (γ = 0, r → 0). In both cases g′(wt) > 0.

We next examine how changes in arbitrageur wealth affect expected asset returns, volatilities,

correlations, and arbitrageur positions.

Proposition 4.3 An increase in arbitrageur wealth wt has the following effects in both the limit

logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases:

(i) A hump-shaped effect on the expected return of each asset, in absolute value, except when

z < 1
2 in the logarithmic case, where the effect is decreasing. The hump peaks at a value w̄a

that is common to all assets.

(ii) A hump-shaped effect on the volatility of the return of each asset. The hump peaks at a value

w̄b that is common to all assets and is larger than the corresponding value w̄a for the expected

return.

(iii) The same hump-shaped effect as in Part (ii) on the covariance between the returns of each

asset pair (n, n′) if (Σu)n(Σu)n′ > 0, and the opposite, i.e., inverse hump-shaped effect, if

(Σu)n(Σu)n′ < 0.

(iv) The same hump-shaped effect as in Part (ii) on the correlation between the returns of each

asset pair (n, n′) if

(Σu)n(Σu)n′Σnn − (Σu)2nΣnn′

f(wt) [f(wt)u>Σu+ 2] (Σu)2n +Σnn
+

(Σu)n(Σu)n′Σn′n′ − (Σu)2n′Σnn′

f(wt) [f(wt)u>Σu+ 2] (Σu)2n′ +Σn′n′

> 0, (4.16)

and the opposite, i.e., inverse hump-shaped, effect if (4.16) holds in the opposite direction.

(v) An increasing effect on the position of arbitrageurs in each asset, in absolute value.
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Since the fundamental component Σ of the covariance matrix is independent of arbitrageur

wealth, the hump-shaped patterns of volatilities, covariances, and correlations are driven by the

endogenous component. The intuition for the hump shape in the case of volatilities can be seen

by computing the diffusion of the price process. Ito’s lemma implies that σSt = σwtS
′(wt)

>, i.e.,

price volatility (diffusion) is equal to the volatility of arbitrageur wealth times the sensitivity of

the price to changes in wealth. The volatility of wealth is increasing in wealth, and converges to

zero when wealth goes to zero. Intuitively, when arbitrageurs are poor, they hold small positions

and take almost no risk. The sensitivity of price to changes in wealth is instead decreasing in

wealth, and converges to zero when wealth becomes large (close to infinity in the logarithmic case

and to w̄ in the risk-neutral case). Intuitively, when arbitrageurs are wealthy, they provide full

insurance to hedgers, and changes to their wealth have no impact on the price. Therefore, price

volatility converges to zero at both extremes of the wealth distribution, and this accounts for the

hump-shaped pattern of return volatilities.5

The intuition for the hump shape in the case of covariances is similar to that for volatilities.

Price movements caused by changes in arbitrageur wealth are small at the extremes of the wealth

distribution and larger in the middle. This yields a hump-shaped pattern for the covariance between

two assets n and n′, if the prices of these assets move in the same direction. Movements are in the

same direction when the term (n, n′) of the endogenous covariance matrix is positive. This term is

equal to (Σu)n(Σu)n′ , and is likely to be positive when the corresponding components of the vector

u have the same sign, i.e., arbitrageurs either buy both assets from the hedgers or sell both assets

to them. When, for example, both assets are bought by arbitrageurs, they both appreciate when

arbitrageur wealth go up, yielding a positive covariance.

The effect on correlations is more complicated than that on covariances because it includes

the effect on volatilities. Suppose that changes in arbitrageur wealth move the prices of assets n

and n′ in the same direction, and hence have a hump-shaped effect on their covariance. Because,

however, the effect on volatilities, which are in the denominator, is also hump-shaped, the overall

effect on the correlation can be inverse hump-shaped. Intuitively, arbitrageurs can cause assets to

become less correlated because the increase in volatilities that they cause can swamp the increase

in covariance.

5Price volatility converges to zero at the extremes of the wealth distribution because we are assuming for simplicity
i.i.d. cashflows dDt. Under i.i.d. cashflows, a cashflow shock does not have a direct effect on prices, i.e., does not
affect prices holding arbitrageur wealth constant. Return volatility remains positive even at the extremes of the
wealth distribution because a cashflow shock has a direct effect on returns. Under a persistent cashflow process, price
volatility would not converge to zero at the extremes, but would remain hump-shaped.
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The hump-shaped pattern of expected returns derives from that of volatilities. Expected returns

per unit of risk exposure, i.e., the market prices of the Brownian risks, are the same as in the

equilibrium with short-term assets, and are hence decreasing in wealth (Proposition 3.5). But

because the volatility of long-term assets is hump-shaped in wealth, their expected returns are

generally also hump-shaped.

Figures 4 and 5 illustrate the behavior of assets’ Sharpe ratios, expected returns, volatilities,

and correlations as a function of arbitrageur wealth in the logarithmic and risk-neutral cases,

respectively. The figures are drawn for the same parameter values as in Figure 2.
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Figure 4: Assets’ Sharpe ratios, expected returns, volatilities, and correlations as a
function of arbitrageur wealth in the logarithmic case. The solid lines are drawn for

α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ22 = 10%. The dashed lines are drawn for the same values
except that α = 4.

Using Figures 4 and 5, we can compare the logarithmic and risk-neutral cases. The assets’

Sharpe ratios are higher in the logarithmic case, as one would expect since risk aversion is higher.

Expected returns, however, can be higher in the risk-neutral case (as the figures show more clearly

for α = 4). This surprising result derives from volatilities, whose endogenous component can be

higher in the risk-neutral case.
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Figure 5: Assets’ Sharpe ratios, expected returns, volatilities, and correlations as a
function of arbitrageur wealth in the risk-neutral case. The solid lines are drawn for

α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ22 = 10%. The dashed lines are drawn for the same values
except that α = 4.

5 Liquidity Risk

In this section we explore the implications of our model for liquidity risk. We assume long-lived

assets, as in the previous section. We define liquidity based on the impact that hedgers have on

prices. Consider an increase in the parameter un that characterizes hedgers’ willingness to sell asset

n. This triggers a decrease ∂Xnt

∂un
in the quantity of the asset held by the hedgers, and a decrease

∂Snt

∂un
in the asset price. Asset n has low liquidity if the price change per unit of quantity traded is

large. That is, the illiquidity of asset n is defined by

λnt ≡
r ∂Snt

∂un

∂Xnt

∂un

, (5.1)

where we multiply by r to ensure a well-behaved limit for our closed-form solutions. Defining

illiquidity as price impact follows Kyle (1985). Kyle and Xiong (2001), Xiong (2001), and Johnson

(2008) perform similar constructions to ours in asset-pricing settings by defining illiquidity as the

derivative of price with respect to supply.6

6A drawback of the measure (5.1) in the context of our model is that un is constant over time, and hence λnt

cannot be computed by an empiricist. One interpretation of (5.1) is that there are small shocks to un, which an
empiricist can observe and use to compute λnt. In the Conclusion we sketch how our analysis can be extended to
stochastic u.
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Proposition 5.1 Illiquidity λnt is equal to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

(α− rg(wt)) Σnn. (5.2)

An increase in arbitrageur wealth wt lowers illiquidity in both the limit logarithmic (γ = 1, r → 0)

and the limit risk-neutral (γ = 0, r → 0) cases.

Proposition 5.1 identifies a time-series and a cross-sectional dimension of illiquidity. In the

time-series, illiquidity varies in response to changes in arbitrageur wealth, and is a decreasing

function of wealth. This variation is common across assets and corresponds to the two terms in

parentheses in (5.2). In the cross-section, illiquidity is higher for assets with more volatile cashflows.

The dependence of illiquidity on the asset index n is through the asset’s cashflow variance Σnn, the

last term in (5.2). The time-series and cross-sectional dimensions of illiquidity interact: assets with

more volatile cashflows have higher illiquidity for any given level of wealth, and the time-variation

of their illiquidity is more pronounced.

Using Proposition 5.1, we can compute the covariance between asset returns and aggregate

illiquidity. Since illiquidity varies over time because of arbitrageur wealth, and with an inverse

relationship, the covariance of the return vector with illiquidity is equal to the covariance with

wealth times a negative coefficient. Proposition 4.1 implies, in turn, that the covariance of the

return vector with wealth is proportional to Σu. This is the covariance between asset cashflows

and the cashflows of the portfolio u, which characterizes hedgers’ supply. The intuition for the

proportionality is that when arbitrageurs realize losses, they sell a fraction of u, and this lowers

asset prices according to the covariance with u. Therefore, the covariance between asset returns

and aggregate illiquidity Λt ≡
∑N

n=1 λnt

N
is

Covt(dΛt, dRt)

dt
= CΛ(wt)Σu, (5.3)

where CΛ(wt) is a negative coefficient. Assets that suffer the most when aggregate illiquidity

increases and arbitrageurs sell a fraction of the portfolio u, are those corresponding to large com-

ponents (Σu)n of Σu. They have volatile cashflows (high Σnn), or are in high supply by hedgers

(high un), or correlate highly with assets with those characteristics.

Using Proposition 5.1, we can compute two additional liquidity-related covariances: the co-

variance between an asset’s illiquidity and aggregate illiquidity, and the covariance between an
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asset’s illiquidity and aggregate return. We take the aggregate return to be that of the portfolio

u, which characterizes hedgers’ supply. Acharya and Pedersen (2005) show theoretically, within a

model with exogenous transaction costs, that both covariances are linked to expected returns in the

cross-section. In our model, the time-variation of an asset’s illiquidity is proportional to the asset’s

cashflow variance Σnn. Therefore, the covariances between the asset’s illiquidity on one hand, and

aggregate illiquidity or return on the other, are proportional to Σnn.

Corollary 5.1 In the cross-section of assets:

(i) The covariance between asset n’s return dRnt and aggregate illiquidity Λt is proportional to

the covariance (Σu)n between the asset’s cashflows and the cashflows of the hedger-supplied

portfolio u.

(ii) The covariance between asset n’s illiquidity λnt and aggregate illiquidity Λt is proportional to

the variance Σnn of the asset’s cashflows.

(iii) The covariance between asset n’s illiquidity λnt and aggregate return u>dRt is proportional

to the variance Σnn of the asset’s cashflows.

The proportionality coefficients are negative, positive, and negative, respectively, in both the

limit logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases.

We next determine the link between liquidity-related covariances and expected returns. Recall

from (4.11) that the expected return of asset n is proportional to (Σu)n. This is exactly pro-

portional to the covariance between the asset’s return and aggregate illiquidity. Thus, aggregate

illiquidity is a priced risk factor that explains expected returns perfectly. Intuitively, assets are

priced by the portfolio of arbitrageurs, who are the marginal agents. Moreover, the covariance

between asset returns and aggregate illiquidity identifies that portfolio perfectly. This is because

(i) changes in aggregate illiquidity are driven by arbitrageur wealth, and (ii) the portfolio of trades

that arbitrageurs perform when their wealth changes is proportional to their existing portfolio and

impacts returns proportionately to the covariance with that portfolio.

The covariances between an asset’s illiquidity on one hand, and aggregate illiquidity or returns

on the other, are less informative about expected returns. Indeed, these covariances are proportional

to cashflow variance Σnn, which is only a component of (Σu)n. Thus, these covariances proxy for

the true pricing factor but imperfectly so.
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Corollary 5.2 In the cross-section of assets, expected returns are proportional to the covariance

between returns and aggregate illiquidity. The proportionality coefficient is negative, in both the

limit logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ = 0, r → 0) cases.

The premium associated to the illiquidity risk factor is the expected return per unit of covari-

ance with the factor. We denote it by ΠΛ(wt):

Et(dRt)

dt
≡ ΠΛ(wt)

Covt(dΛt, dRt)

dt
. (5.4)

Eqs. (4.2) and (5.3) imply that ΠΛ(wt) is related to the common component CΛ(wt) of assets’

covariance with aggregate illiquidity through

ΠΛ(wt) =
αA(wt)

[

f(wt)u
>Σu+ 1

]

[α+A(wt)]CΛ(wt)
. (5.5)

The quantities ΠΛ(wt) and CΛ(wt) vary over time in response to changes in arbitrageur wealth.

When wealth is low, illiquidity is high and highly sensitive to changes in wealth. Because of this

effect, assets’ covariance with illiquidity is large and decreases when wealth increases. Conversely,

because the premium of the illiquidity risk factor is the expected return per unit of covariance,

it is low when wealth is low and increases when wealth increases. For large values of wealth, the

premium can decrease again because the decrease in expected returns can dominate the decrease

in covariance. Proposition 5.2 derives these results in the limit when r goes to zero, and Figure 6

illustrates them in a numerical example.

Proposition 5.2 In both the limit logarithmic (γ = 1, r → 0) and the limit risk-neutral (γ =

0, r → 0) cases:

(i) The common component CΛ(wt) < 0 of assets’ covariance with aggregate illiquidity converges

to minus infinity when arbitrageur wealth wt goes to zero. It remains negative when wealth

reaches w̄ in the limit risk-neutral case, and converges to zero when wealth goes to infinity in

the limit logarithmic case.

(ii) The premium ΠΛ(wt) < 0 of the illiquidity risk factor converges to zero when arbitrageur

wealth wt goes to zero. In the limit risk-neutral case, it is inverse-hump shaped in wealth

and reaches zero when wealth reaches w̄. In the limit logarithmic case, it converges to minus

infinity when wealth goes to infinity.
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Figure 6: Assets’ covariance with aggregate illiquidity (left panel) and premium of
illiquidity risk factor (right panel) as a function of arbitrageur wealth, in the logarith-
mic case (dashed lines) and the risk-neutral case (solid lines). The premium of the
illiquidity risk factor is the expected return per unit of covariance. Parameter values

are α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2 symmetric assets with independent

cashflows, and Σ11 = Σ22 = 10%.

6 Other Applications and Extensions

6.1 Term Structure of Risk Premia

Section 3 derives the cost of obtaining insurance against risks that transpire in the immediate

future. This cost is characterized by the expected returns D̄ − πt of the short-lived assets trading

at time t: when expected returns are high in absolute value, insurance costs more. We can also

compute the cost of obtaining insurance against risks that transpire in the more distant future. For

this, we compute the price πt,t′ at which agents would agree at time t to trade at a future time

t′ > t the short-lived assets paying at time t′+dt. The expected returns D̄−πt,t′ associated to these

forward contracts characterize the time-t cost of obtaining insurance against risks that transpire

at time t′ + dt. We refer to the function t′ → |D̄n − πn,t,t′ | as the time-t term structure of the risk

premia associated to long-lived asset n. We define the slope of the term structure as the difference

between its values at the long end (t′ = ∞) and the short end (t′ = t).

An agreement at time t to buy at time t′ the short-lived assets paying off at t′ + dt yields net

payoff πt′ − πt,t′ . Since this payoff has zero expectation under the risk-neutral measure,

πt,t′ = E∗
t (πt′) = D̄ − E∗

t

(

αA(wt′)

α+A(wt′)

)

Σu, (6.1)

where the second equality follows from (3.13) and the superscript * denotes the risk-neutral measure.
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Proposition 6.1 In the logarithmic (γ = 1) case with z > 0, and in the limit risk-neutral (γ =

0, r → 0) case, the term structure of the risk premia associated to long-lived asset n:

(i) Is upward-sloping and converges to |α(Σu)n| when t′ goes to ∞.

(ii) Becomes steeper (higher slope) when arbitrageur wealth wt increases.

The result that the term structure of risk premia is upward-sloping for all values of arbitrageur

wealth may seem surprising. Indeed, when wealth is low, the cost of insurance is expected to decline

over time because wealth is expected to rise. One would expect, in the spirit of the expectations

hypothesis, that the decline in expected cost yields a downward-sloping term structure. Countering

this effect, however, is that the term structure is given by the expected cost under the risk-neutral

measure, which is higher than under the physical measure. This is because the cost goes up in states

where wealth goes down, and these states are given larger weight by the risk-neutral measure than

by the physical measure. The adjustment to the risk-neutral measure lowers arbitrageurs’ expected

return on wealth to the riskless rate, and this causes expected wealth to decline over time in both

the logarithmic and the limit risk-neutral cases. Expected wealth converges to zero in the long

run under the risk-neutral measure, causing the long end of the term structure to be equal to the

maximum cost of insurance. When wealth wt increases, the term structure steepens because the

short end shifts down.

Binsbergen, Hueskes, Koijen, and Vrugt (2013) find empirically that the term structure of risk

premia in the aggregate stock market was upward-sloping in the years preceding the recent financial

crisis but became downward-sloping during the crisis. Our model can generate the decline in slope

under the assumption that the crisis was accompanied by a reduction in wealth. It cannot generate,

however, a negative slope. An extension of the model where there is entry by new arbitrageurs could

perhaps generate a negative slope because wealth would increase more rapidly following crises.

6.2 Positive Supply

Our analysis so far assumes that the risky assets are in zero supply and that hedgers maximize

instantaneous mean-variance utility. In this section we relax the first assumption, allowing supply

to be positive. In Section 6.3 we relax both assumptions, allowing both for positive supply and for

infinitely lived hedgers with CARA utility over intertemporal consumption.
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Proposition 6.2 Suppose that long-lived assets are in positive supply s. Then, their price is given

by

S(wt) =
D̄ − αΣ(s+ u)

r
+ g(wt)Σ(s+ u), (6.2)

where the scalar function g(wt) solves the ODE (A.120).

The equation for the price is the same as (4.9), derived in the case of zero supply, except that

the function g(wt) is given by a different ODE (not solvable in closed form), and that u is replaced

by s+ u. Thus, the effect of the supply s coming from asset issuers on cross-sectional asset pricing

is the same as of the supply u coming from hedgers, and it is only the aggregate supply s+ u that

matters. The same conclusion holds for expected returns: in the proof of Proposition 6.2 we show

that expected returns are

Et(dRt)

dt
=

αA(wt)
[

α+A(wt) + αg′(wt)(s + u)>Σu
]

[α+A(wt)− αg′(wt)(s+ u)>Σs]2
Σ(s+ u). (6.3)

Expected returns in the cross-section are thus proportional to the covariance with the aggregate

supply s+u. Since the effect of changes in arbitrageur wealth on asset prices is also proportional to

that covariance, aggregate illiquidity is a priced risk factor and explains expected returns perfectly,

as in the case of zero supply.

6.3 Infinitely Lived CARA Hedgers

Proposition 6.3 Suppose that long-lived assets are in positive supply s and hedgers are infinitely

lived with the CARA utility (2.3) over intertemporal consumption. Then, the hedgers’ value function

is given by

V (vt, wt) = −e−[αvt+F (wt)] (6.4)

and the price of the long-lived assets is given by (6.2), where the scalar functions (F (wt), g(wt))

solve the ODEs (A.138) and (A.141).

When hedgers are infinitely lived with CARA utility over intertemporal consumption, their

demand includes an intertemporal hedging component. The intertemporal hedging demand de-

pends only on arbitrageur wealth because wealth is the only variable that affects the investment
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opportunity set. In the proof of Proposition 6.3 we show that because of the intertemporal hedging

demand, the hedgers’ effective risk aversion becomes α − F ′(wt). The term α is the coefficient of

absolute risk aversion over changes in wealth, and the term F ′(wt) (for the function F (wt) defined

in Proposition 6.3) is the contribution of the intertemporal hedging demand.

Assuming infinitely-lived CARA hedgers does not affect the characterization of price and ex-

pected returns. The equation for the price is (6.2), derived for mean-variance hedgers, except that

the function g(wt) is given by a different ODE. The equation for expected returns is

Et(dRt)

dt
=

αA(wt)
[

α+A(wt)− F ′(wt) + αg′(wt)(s + u)>Σu
]

[α+A(wt)− F ′(wt)− αg′(wt)(s+ u)>Σs]2
Σ(s+ u). (6.5)

and has the same form as (6.3), except that it also includes the term F ′(wt) corresponding to the

intertemporal hedging demand. The price and expected returns in the cross section depend only

on the covariance with aggregate supply. Hence, aggregate illiquidity is a priced risk factor and

explains expected returns perfectly.

Figure 7 illustrates the behavior of assets’ Sharpe ratios, expected returns, volatilities, correla-

tions, illiquidity, and the premium of the illiquidity risk factor, as a function of arbitrageur wealth in

three cases: zero supply and mean-variance hedgers (baseline), positive supply and mean-variance

hedgers (Section 6.2), and positive supply and CARA hedgers (Section 6.3). For simplicity we con-

sider only the case of logarithmic arbitrageurs. The parameter values for Figure 7 are the same as

for Figure 4, and when the supply s is positive it is set equal to u
2 . Figure 7 shows that introducing

positive supply and infinitely lived CARA hedgers does not change the way equilibrium quantities

depend on arbitrageur wealth, although the effects can differ in magnitude.

7 Concluding Remarks

We develop a dynamic model of liquidity provision, in which hedgers can trade multiple risky assets

with arbitrageurs. Arbitrageurs have CRRA utility over consumption, and their wealth is a state

variable affecting risk sharing and asset prices in equilibrium. We compute equilibrium prices and

quantities in closed form when arbitrageurs’ utility function is logarithmic or risk-neutral with a

non-negativity constraint. Our multi-asset setting delivers more tractability than what is typical

in consumption-based asset pricing models, while also incorporating wealth effects.

Our model yields a new understanding of liquidity risk and its relationship with expected
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2
and infinitely lived CARA hedgers.

The remaining parameter values are α = 2,
√
u>Σu = 15%, ρ = 4%, r = 2%, N = 2

symmetric assets with independent cashflows, and Σ11 = Σ22 = 10%.

asset returns. We show that aggregate liquidity is a priced risk factor in the cross-section of

assets because it captures information about the arbitrageurs’ portfolio. Because arbitrageurs sell

a fraction of their portfolio following losses, assets that covary the most with their portfolio are

those that suffer the most when liquidity decreases. Our model yields a number of additional

results concerning the dynamics of risk sharing, asset prices, and arbitrageur wealth. For example,
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we show that arbitrageurs may choose to provide less insurance when hedgers are more risk averse;

arbitrageurs behave as momentum traders, increasing their positions following high asset returns;

the stationary distribution of arbitrageur wealth can be bimodal, with wealth less likely to take

intermediate values than large or very small ones; expected returns, volatilities and correlations are

hump-shaped functions of wealth; and the term structure of risk premia depends on wealth, with

its slope steepening (becoming more positive) when wealth increases.

Throughout our analysis we assume that the supply u coming from hedgers is constant over

time. Our model can be extended to stochastic supply without loss of tractability: this can be

accomplished by restricting the variance u>Σu of hedgers’ endowment to remain constant over time.

Such a restriction is possible because u is a N × 1 vector and u>Σu is a one-dimensional statistic.

The extension to stochastic supply gives our measure of illiquidity (5.1) stronger empirical content

because that measure is based on changes in u. In future research, we plan to use that extension

to compute measures of illiquidity commonly used in empirical work, such as those proposed by

Amihud (2002) and Pastor and Stambaugh (2003), and compare them to our measure. We can also

examine the behavior of the measures within our model, e.g., whether they capture mainly shocks

to hedger demand or to arbitrageur wealth, compute their correlation over different frequencies,

etc.

Extending our model to stochastic u can not only sharpen our measure of illiquidity but also

strengthen our interpretation of arbitrageurs as specialized liquidity providers. Indeed, a common

view of liquidity providers (e.g., Grossman and Miller (1988)) is that they absorb temporary im-

balances between demand and supply. Such imbalances can correspond to shocks to u. In the

presence of these shocks, liquidity provision becomes distinct from sharing the total risk in the

economy, which also includes the supply s coming from issuers. The supply s may be absorbed

by many agents in the economy, but arbitrageurs may be uniquely able to absorb shocks to u. To

model this idea, we can introduce an additional class of investors who can trade only the portfolio

s. Such investors can be interpreted as “indexers,” and the constraint that they can trade only s

may reflect an institutional friction or a lack of information to identify shocks to u. Under this

extension, the result of Section 6 that s and u are symmetric in terms of their effects on prices

and expected returns breaks down: shocks to u have a large effect on prices that depends strongly

on arbitrageur wealth, while shocks to s can have a smaller effect that is more stable over time.

Moreover, illiquidity concerns mainly the effect of shocks to u, and it is the effect of these shocks

that is tied to arbitrageur wealth.
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APPENDIX—Proofs

Proof of Proposition 3.1: Substituting dDt from (2.1), we can write (3.3) as

dvt = rvtdt+ x>t (D̄ − πt)dt+ u>D̄dt+ (xt + u)>σ>dBt. (A.1)

Substituting dvt from (A.1) into (2.2), we can write the hedger’s maximization problem as

max
xt

{

x>t (D̄ − πt)−
α

2
(xt + u)>Σ(xt + u)

}

. (A.2)

The first-order condition is

D̄ − πt − αΣ(xt + u). (A.3)

Solving for xt, we find (3.4).

Proof of Proposition 3.2: The Bellman equation is

ρV = max
ĉt,ŷt

{

u(ĉt) + Vŵµŵt +
1

2
Vŵŵσ

>
ŵtσŵt + Vwµwt +

1

2
Vwwσ

>
wtσwt + Vŵwσ

>
ŵtσwt

}

, (A.4)

where u(ĉt) =
ĉ
1−γ
t

1−γ
for γ 6= 1 and u(ĉt) = log(ĉt) for γ = 1, (µŵt, σŵt) are the drift and diffusion

of the arbitrageur’s own wealth ŵt, and (µwt, σwt) are the drift and diffusion of the arbitrageurs’

total wealth. Substituting dDt from (2.1), we can write (3.5) as

dwt = (rwt − ct)dt+ y>t (D̄ − πt)dt+ y>t σ
>dBt. (A.5)

Eq. (A.5) written for own wealth implies that

µŵt = rŵt − ĉt + ŷ>t (D̄ − πt), (A.6)

σŵt = σŷt, (A.7)

and written for total wealth implies that

µwt = rwt − ct + y>t (D̄ − πt), (A.8)

σwt = σyt. (A.9)
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When γ 6= 1, we substitute (3.6) and (A.6)-(A.9) into (A.4) to write it as

ρq(wt)
ŵ

1−γ
t

1− γ
= max

ĉt,ŷt

{

ĉ
1−γ
t

1− γ
+ q(wt)ŵ

−γ
t

(

rŵt − ĉt + ŷ>t (D̄ − πt)
)

− 1

2
q(wt)γŵ

−γ−1
t ŷ>t Σŷt

+q′(wt)
ŵ

1−γ
t

1− γ

(

rwt − ct + y>t (D̄ − πt)
)

+
1

2
q′′(wt)

ŵ
1−γ
t

1− γ
y>t Σyt + q′(wt)ŵ

−γ
t ŷ>t Σyt

}

. (A.10)

The first-order conditions with respect to ĉt and ŷt are (3.8) and (3.9), respectively.

When γ = 1, we substitute (3.7), (A.6), (A.7), (A.8), and (A.9) into (A.4) to write it as

ρ

(

1

ρ
log(ŵt) + q1(wt)

)

= max
ĉt,ŷt

{

log(ĉt) +
1

ρŵt

(

rŵt − ĉt + ŷ>t (D̄ − πt)
)

− 1

2ρŵ2
t

ŷ>t Σŷt

+q′1(wt)
(

rwt − ct + y>t (D̄ − πt)
)

+
1

2
q′′1(wt)y

>
t Σyt

}

. (A.11)

The first-order conditions with respect to ĉt and ŷt are (3.8) and (3.9) for q(wt) =
1
ρ
.

Proof of Proposition 3.3: Since in equilibrium ĉt = ct and ŵt = wt, (3.8) implies that

ct = q(wt)
− 1

γwt. (A.12)

Substituting (3.13) and (3.14) into (3.9) and using the definition of A(wt) from (3.11), we find

ŷt =
αŵt

(α+A(wt))wt
u. (A.13)

When γ 6= 1, we substitute (3.8), (3.13), (3.14), (A.12), and (A.13) into (A.10). The terms in

ŵt cancel, and the resulting equation is

ρq(wt) =q(wt)
1− 1

γ +

(

q′(wt) +
q(wt)(1 − γ)

wt

)(

rwt − q(wt)
− 1

γwt +
α2A(wt)

(α+A(wt))2
u>Σu

)

+
1

2

(

q′′(wt)−
q(wt)γ(1− γ)

w2
t

+
2q′(wt)(1 − γ)

wt

)

α2

(α+A(wt))2
u>Σu. (A.14)

Using the definition of A(wt) and rearranging, we find (3.16).

When γ = 1, we substitute (3.8), (3.13), (3.14), (A.12), and (A.13) into (A.11), setting q(wt) =

1
ρ
. (Note that this value of q(wt) solves (3.16) for γ = 1.) The terms in ŵt cancel, and the resulting
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equation is

ρq1(wt) = log(ρ) +

(

q′1(wt) +
1

ρwt

)(

rwt − ρwt +
α2A(wt)

(α+A(wt))2
u>Σu

)

+
1

2

(

q′′1 (wt)−
1

ρw2
t

)

α2

(α+A(wt))2
u>Σu. (A.15)

Using the definition of A(wt) and rearranging, we find (3.17).

Lemma A.1 recalls some useful properties of the cotangent function.

Lemma A.1 The function x cot(x) is decreasing for x ∈ [0, π2 ]. Its asymptotic behavior for x close

to zero is

x cot(x) = 1− x2

3
+ o(x2). (A.16)

Proof: Differentiating x cot(x) with respect to x, we find

d

dx
[x cot(x)] = cot(x)− x

[

1 + cot2(x)
]

= cot(x)

[

1− x

sin(x) cos(x)

]

= cot(x)

[

1− 2x

sin(2x)

]

. (A.17)

The function x − sin(x) is equal to zero for x = 0, and its derivative 1 − cos(x) is positive for

x ∈ (0, π). Therefore, x > sin(x) for x ∈ (0, π). Since, in addition, sin(x) > 0 for x ∈ (0, π) and

cot(x) > 0 for x ∈ (0, π2 ), (A.17) is negative for x ∈ (0, π2 ) and so x cot(x) is decreasing. Using the

asymptotic behavior of sin(x) and cos(x) for x close to zero, we find

cot(x) =
cos(x)

sin(x)
=

1− x2

2 + o(x2)

x− x3

6 + o(x3)
=

1

x

(

1− x2

3
+ o(x2)

)

,

which implies (A.16).

Proof of Proposition 3.4: For γ = 0 and wt < w̄, (3.16) becomes

(ρ− r)q = rq′w +
1

2

(

q′′ − 2q′2

q

)

α2

(

α− q′

q

)2u
>Σu. (A.18)
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Dividing both sides by q(wt), and noting that A(wt) = − q′(wt)
q(wt)

for γ = 0, we can write (A.18) as

ρ− r = −rAw − 1

2

(

A′ +A2
) α2

(α+A)2
u>Σu. (A.19)

Eq. (A.19) is a first-order ODE in the function A(wt). It must be solved with the boundary

condition limwt→0A(wt) = ∞. This is because when wt goes to zero, arbitrageurs’ position yt in

the risky assets should go to zero so that wt remains non-negative, and yt is given by (3.14).

In the limit when r goes to zero, (A.19) becomes

ρ = −1

2

(

A′ +A2
) α2

(α+A)2
u>Σu

⇔ 1 = −
(

A′ +A2
) z

(α+A)2
(A.20)

⇔ − zA′

zA2 + (α+A)2
= 1

⇔ −
zA′

1+z
(

A+ α
1+z

)2
+ zα2

(1+z)2

= 1, (A.21)

where (A.20) follows from the definition of z. Setting

Â(wt) ≡
1 + z

α
√
z

(

A(wt) +
α

1 + z

)

,

we can write (A.21) as

− Â′

Â2 + 1
=

α√
z
. (A.22)

Eq. (A.22) integrates to

arccot
(

Â(wt)
)

− arccot
(

Â(0)
)

=
αwt√

z
. (A.23)

The boundary condition limwt→0A(wt) = ∞ implies limwt→0 Â(wt) = ∞ and hence

arccot
(

Â(0)
)

= 0.
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Substituting into (A.23), we find

Â(wt) = cot

(

αwt√
z

)

. (A.24)

Eq. (A.24) and the definition of Â(wt) imply that A(wt) is given by (3.20) for wt < w̄. Since

q(wt) = 1 for wt ≥ w̄, A(wt) = − q′(wt)
q(wt)

implies that A(wt) = 0 for wt ≥ w̄. Smooth-pasting implies

that A(wt) given by (3.20) must be equal to zero for wt = w̄. This yields (3.21).

To determine q(wt), we solve

q′

q
= −A (A.25)

with the boundary condition q(w̄) = 1. Eq. (A.25) integrates to

log q(wt)− log q(w̄) =

∫ w̄

wt

A(w)dw

⇒ log q(wt) =

∫ w̄

wt

A(w)dw, (A.26)

where the second step follows from the boundary condition. Substituting A(wt) from (3.20) into

(A.26) and integrating, we find (3.22).

We finally show that A(wt) is decreasing and convex, converges to ∞ when wt goes to zero,

and is smaller than 1
wt
. Since the right-hand side of (3.21) is positive, αw̄√

z
< π

2 . Since cot(x) is

decreasing for x ∈ (0, π2 ), (3.20) implies that A(wt) is decreasing for wt ∈ (0, w̄]. Differentiating

(3.20) with respect to wt yields

A′(wt) = − α2

1 + z

(

1 + cot2
(

αwt√
z

))

. (A.27)

Since cot(x) is positive and decreasing for x ∈ (0, π2 ), A
′(wt) is increasing for wt ∈ (0, w̄]. Therefore,

A(wt) is convex. Since cot(x) converges to ∞ when x goes to zero, (3.20) implies that A(wt)

converges to ∞ when wt goes to zero. Since the function x cot(x) is decreasing, it is smaller than

one, its limit when x goes to zero (Lemma A.1). Therefore, (3.20) implies that

wtA(wt) =
αwt

1 + z

(√
z cot

(

αwt√
z

)

− 1

)

<
α
√
zwt

1 + z
cot

(

αwt√
z

)

<
z

1 + z
< 1,
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and hence A(wt) <
1
wt
.

Proof of Proposition 3.5: In both the logarithmic and the limit risk-neutral cases, A(wt) is

decreasing in wt. Part (i) follows from this property, (3.1) and (3.13). Part (ii) follows from the

same property and (3.14). Part (iii) follows from the same property and because (3.13) implies

that the market prices of risk are given by

ηt ≡
(

σ>
)−1

(D̄ − πt) =
αA(wt)

α+A(wt)
σu. (A.28)

Part (iv) follows from the same property and (3.15).

Proof of Proposition 3.6: Substituting (3.13), (3.14), and (A.12) into (A.5) we can write the

dynamics of arbitrageur wealth wt as

dwt = µwtdt+ σ>
wtdBt, (A.29)

where

µwt =
(

r − q(wt)
− 1

γ

)

wt +
α2A(wt)

(α+A(wt))2
u>Σu, (A.30)

σwt =
α

α+A(wt)
σu. (A.31)

We first determine the stationary distribution in the limit risk-neutral case. Wealth evolves in

(0, w̄), with an upper reflecting barrier at w̄. Since the consumption rate q(wt)
− 1

γ is equal to zero

in (0, w̄) and r is equal to zero in the limit risk-neutral case, we can write the drift (A.30) as

µwt =
α2A(wt)

(α+A(wt))2
u>Σu. (A.32)

If the stationary distribution has density d(wt), then d(wt) satisfies the ODE

−(µwd)
′ +

1

2
(σT

wσwd)
′′ = 0 (A.33)

over (0, w̄), and the boundary condition

−µwd+
1

2
(σT

wσwd)
′ = 0 (A.34)
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at the reflecting barrier w̄. Integrating (A.33) using (A.34) yields the ODE

−µwd+
1

2
(σT

wσwd)
′ = 0. (A.35)

Setting D(wt) ≡ σT
wtσwtd(wt), we can write (A.35) as

D′

D
=

2µw

σT
wσw

. (A.36)

Eq. (A.36) integrates to

D(wt) = D(w̄) exp

(

−
∫ w̄

wt

2µw

σT
wσw

dw

)

,

yielding

d(wt) = D(w̄)
exp

(

−
∫ w̄

wt

2µw

σT
wσw

dw
)

σT
wtσwt

. (A.37)

We can determine the multiplicative constant D(w̄) by the requirement that d(wt) must integrate

to one, i.e.,

∫ w̄

0
d(wt)dwt = D(w̄)

∫ w̄

0

exp
(

−
∫ w̄

wt

2µw

σT
wσw

dw
)

σT
wtσwt

dwt = 1. (A.38)

Eq. (A.38) determines a positive D(w̄), and hence a positive d(wt), if the integral multiplying

D(w̄) is finite. If the integral is infinite, then (A.38) implies that D(w̄) = 0, and the stationary

distribution does not have a density but is concentrated at zero. The integral multiplying D(w̄) is

infinite when the integrand converges to infinity at a fast enough rate when wt goes to zero.

Substituting µwt and σwt from (A.32) and (A.31), respectively, into (A.37), we find

d(wt) =
D(w̄)

α2u>Σu
(α+A(wt))

2 exp

(

−2

∫ w̄

wt

A(w)dw

)

=
D(w̄)

α2u>Σu

(

α+A(wt)

q(wt)

)2

, (A.39)

where the second step follows from (A.26). Eqs. (A.38) and (A.39) imply (3.24). Eqs. (3.20) and

(3.22), and Lemma A.1, imply that when wt is close to zero,

(

α+A(wt)

q(wt)

)2

≈ Γ





1
wt

exp
(

− z
1+z

log(wt)
)





2

= Γ





w
z

1+z

t

wt





2

= Γw
− 2

1+z

t ,
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where Γ is a positive constant. Therefore, the integral multiplying D(w̄) in (A.38) is finite when

2

1 + z
< 1 ⇔ z > 1.

We next determine the stationary distribution in the logarithmic case. Wealth evolves in (0,∞).

Noting that ct = ρwt and A(wt) =
1
wt
, we can write the drift (A.30) and the diffusion (A.31) as

µwt ≡ (r − ρ)wt +
α2wt

(αwt + 1)2
u>Σu, (A.40)

σwt ≡
αwt

αwt + 1
σu, (A.41)

respectively. In the logarithmic case there is no reflecting barrier, but (A.35) still holds. Intuitively,

(A.35) holds for any reflecting barrier, and the effect of a reflecting barrier on the stationary

distribution converges to zero when the barrier goes to infinity. To compute the density d(wt) of

the stationary distribution, we thus need to integrate (A.36). Integrating between an arbitrary

value w̄0 and wt, we find

d(wt) = D(w̄0)
exp

(

−
∫ w̄0

wt

2µw

σT
wσw

dw
)

σT
wtσwt

. (A.42)

We can determine the multiplicative constant D(w̄0) by the requirement that d(wt) must integrate

to one, i.e.,

∫ ∞

0
d(wt)dwt = D(w̄0)

∫ ∞

0

exp
(

−
∫ w̄0

wt

2µw

σT
wσw

dw
)

σT
wtσwt

dwt = 1. (A.43)

Substituting µwt and σwt from (A.40) and (A.41) into (A.42), we find

d(wt) = D(w̄0)

exp

(

−
∫ w̄0

wt

(

−w(α+ 1
w )

2

z
+ 2

w

)

dw

)

α2u>Σu
(

α+ 1
wt

)2

= C(w̄0)
exp

(

−1
z

(

1
2α

2w2
t + 2αwt + log(wt)

)

+ 2 log(wt)
)

α2u>Σuw2
t

(αwt+1)2

=
C(w̄0)

α2u>Σu
(αwt + 1)2w

− 1
z

t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

, (A.44)
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where

C(w̄0) ≡ D(w̄0) exp

(

1

z

(

1

2
α2w̄2

0 + 2αw̄0 + log(w̄0)

)

− 2 log(w̄0)

)

.

Eqs. (A.43) and (A.44) imply (3.23). If z < 0, then the integral multiplying D(w̄0) is infinite

because of the behavior of the integrand when z goes to ∞. If z > 0, then the integral can be

infinite because of the behavior of the integrand when wt is close to zero. Since

(αwt + 1)2w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

≈ w
− 1

z
t

when wt is close to zero, the integral multiplying D(w̄) in (A.43) is finite when z > 1.

Proof of Proposition 3.7: Eq. (3.23) implies that in the logarithmic case, the derivative of d(wt)

with respect to wt has the same sign as the derivative of

(αwt + 1)2w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

.

The latter derivative is

1

z
(αwt + 1)w

− 1
z
−1

t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

[2αzwt − (αwt + 1)− (αwt + 1)αwt(αwt + 2)]

and has the same sign as

−
[

(αwt)
3 + 3(αwt)

2 + (3− 2z)αwt + 1
]

.

The function

F (x) ≡ x3 + 3x2 + (3− 2z)x+ 1

is equal to 1 for x = 0, and its derivative with respect to x is

F ′(x) = 3x2 + 6x+ (3− 2z).

If z < 3
2 , then F ′(x) > 0 for all x > 0, and hence F (x) > 0 for all x > 0. If z > 3

2 , then F ′(x) has

the positive root

x′1 ≡ −1 +

√

2z

3
,
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and is negative for 0 < x < x′1 and positive for x > x′1. Therefore, if F (x′1) > 0 then F (x) > 0 for

all x > 0, and if F (x′1) < 0 then F (x) has two positive roots x1 < x′1 < x2 and is positive outside

the roots and negative inside. Since

F (x′1) =

(

−1 +

√

2z

3

)3

+3

(

−1 +

√

2z

3

)2

+(3− 2z)

(

−1 +

√

2z

3

)

+1 =
2z

3

(

3− 2

√

2z

3

)

,

F (x′1) is positive if

3− 2

√

2z

3
> 0 ≡ z <

27

8
,

and is negative if z > 27
8 . Therefore, if z < 27

8 then the derivative of d(wt) is negative, and if z > 27
8

then the derivative of d(wt) is negative for wt ∈ (0, w̄1) ∪ (w̄2,∞) and positive for wt ∈ (w̄1, w̄2),

where w̄i ≡ xi

α
for i = 1, 2. This proves Part (i).

Eq. (3.24) implies that in the limit risk-neutral case, the derivative of d(wt) with respect to wt

has the same sign as the derivative of α+A(wt)
q(wt)

. The latter derivative is

d

dwt

(

α+A(wt)

q(wt)

)

=
A′(wt)q(wt)− (α+A(wt))q

′(wt)

q(wt)2

=
A′(wt) +A(wt)(α+A(wt))

q(wt)

=
− (α+A(wt))2

z
+ αA(wt)

q(wt)
,

where the second step follows from (A.25) and the third from (A.20). Therefore, the derivative of

d(wt) with respect to wt has the same sign as

−
[

α2 +A(wt)
2 − (z − 2)αA(wt)

]

. (A.45)

The term in square brackets is a quadratic function of A(wt) and is always positive if

(z − 2)2 − 4 < 0 ⇔ z < 4.

Therefore, if z < 4, then the derivative of d(wt) is negative. If z > 4, then the quadratic function

has two positive roots, given by

z − 2±
√

z(z − 4)

2
,
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and is positive outside the roots and negative inside. We define the thresholds w̄1 and w̄2 such that

A(w̄1) is equal to the smaller root and A(w̄2) is equal to the larger root. Since A(wt) decreases from

infinity to zero when w increases from zero to w̄, the thresholds w̄1 and w̄2 are uniquely defined and

satisfy 0 < w̄1 < w̄2 < w̄. Moreover, the derivative of d(wt) is negative for wt ∈ (0, w̄1) ∪ (w̄2, w̄)

and positive for wt ∈ (w̄1, w̄2). This proves Part (ii).

The density d(wt) shifts to the right in the monotone likelihood ratio sense when a parameter

θ increases if

∂2 log (d(wt, θ))

∂θ∂wt
> 0. (A.46)

Using (3.23), we find that in the logarithmic case,

∂ log(d(wt))

∂wt
=

2α

αwt + 1
− 1

zwt
− 1

z

(

α2wt + 2α
)

. (A.47)

An increase in α (which also affects z) raises the right-hand side of (A.47). Therefore, d(wt) satisfies

(A.46) with respect to α. An increase in z also raises the right-hand side of (A.47). Therefore,

d(wt) satisfies (A.46) with respect to u>Σu. Using (3.24), we find that in the limit risk-neutral

case,

∂ log(d(wt))

∂wt
=

2A′(wt)

α+A(wt)
− 2q′(wt)

q(wt)

=
2A′(wt)

α+A(wt)
+ 2A(wt), (A.48)

where the second step follows from (A.25). Eqs. (3.20) and (A.27) imply that

A′(wt)

α+A(wt)
= −

1 + cot2
(

αwt√
z

)

√
z
(

cot
(

αwt√
z

)

+
√
z
) . (A.49)

An increase in α (which also affects z) raises the right-hand side of (A.49). Since it also raises A(wt)

(Part (i) of Lemma 3.4), (A.48) implies that d(wt) satisfies (A.46) with respect to α. Differentiating

(A.49) with respect to
√
z, we find

∂

∂
√
z

(

A′(wt)

α+A(wt)

)

=

(

1 + cot2
(

αwt√
z

)) [(

2
√
z + cot

(

αwt√
z

))(

1− αwt√
z
cot
(

αwt√
z

))

+ αwt√
z

]

z
(

cot
(

αwt√
z

)

+
√
z
)2 .
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Since the function x cot(x) is smaller than one (Lemma A.1), the term in square brackets is positive.

Therefore, an increase in z raises the right-hand side of (A.49). Since it also raises A(wt) (Part (iii)

of Lemma 3.4), (A.48) implies that d(wt) satisfies (A.46) with respect to u>Σu. This proves Part

(iii).

Lemma A.2 shows some useful properties of A(wt).

Lemma A.2 Suppose that γ = r = 0.

(i) An increase in α raises A(wt).

(ii) An increase in α raises A(wt)
α

except when wt is below a threshold, which is negative if z < 1.

(iii) An increase in u>Σu
ρ

raises A(wt).

Proof: We first prove Part (i). Differentiating (3.20) with respect to α, and noting that α also

affects z, we find

∂A(wt)

∂α
=

2
√
z cot

(

αwt√
z

)

− 1

1 + z
−

2z
(√

z cot
(

αwt√
z

)

− 1
)

(1 + z)2

=
2
√
z cot

(

αwt√
z

)

+ z − 1

(1 + z)2
. (A.50)

(All partial derivatives with respect to α in this and subsequent proofs take into account the

dependence of z on α, instead of treating z as a constant.) Since cot(x) is decreasing for x ∈ (0, π2 ),

the numerator in (A.50) is larger than

2
√
z cot

(

αw̄√
z

)

+ z − 1 = 1 + z > 0,

where the first step follows from (3.21). Therefore, an increase in α raises A(wt).

We next prove Part (ii). Using (3.20), we find

∂
A(wt)

α

∂α
=

√
z(1− z) cot

(

αwt√
z

)

+ 2z

α(1 + z)2
. (A.51)

The numerator in (A.51) is positive for z < 1. For z > 1, the numerator is increasing in wt,

converges to −∞ when wt goes to zero, and is equal to 1 + z > 0 for wt = w̄ because of (3.21).
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Therefore, for z > 1, the numerator is negative for wt below a threshold w̄2 < w̄ and is positive for

wt > w̄2. The effect of α on A(wt)
α

is thus as in the lemma.

We finally prove Part (iii). Differentiating (3.20) with respect to u>Σu
ρ

is equivalent to differen-

tiating with respect to z holding α constant. We compute the derivative with respect to
√
z, which

has the same sign as that with respect to z. We find

∂A(wt)

∂
√
z

= α
(1 − z) cot

(

αwt√
z

)

+ 2
√
z + α(1+z)wt√

z

(

1 + cot2
(

αwt√
z

))

(1 + z)2
. (A.52)

We set ŵ ≡ αwt√
z
and write the numerator in (A.52) as

N(ŵ, z) ≡ (1− z) cot(ŵ) + 2
√
z + (1 + z)ŵ

(

1 + cot2(ŵ)
)

.

The function N(ŵ, z) is positive for z ≤ 1. Therefore, it is positive for all z > 0 if its derivative

with respect to z

∂N(ŵ, z)

∂z
= − cot(ŵ) +

1√
z
+ ŵ

(

1 + cot2(ŵ)
)

is positive. Eq. (A.16) implies that for ŵ close to zero,

∂N(ŵ, z)

∂z
= − 1

ŵ

(

1− ŵ2

3

)

+
1√
z
+ ŵ

(

1 +
1

ŵ2

(

1− ŵ2

3

)2
)

+ o(ŵ) =
1√
z
+ o(1) > 0.

Therefore, ∂N(ŵ,z)
∂z

is positive if its derivative with respect to ŵ

∂2N(ŵ, z)

∂ŵ∂z
= 2

(

1 + cot2(ŵ)
)

− 2ŵ cot(ŵ)
(

1 + cot2(ŵ)
)

= 2 (1− ŵ cot(ŵ))
(

1 + cot2(ŵ)
)

is positive. Since the function x cot(x) is decreasing, it is smaller than one, its limit when x goes

to zero (Lemma A.1). Therefore, ∂2N(ŵ,z)
∂ŵ∂z

is positive, and so is N(ŵ, z), implying that an increase

in z raises A(wt).

Proof of Proposition 3.8: The results for the logarithmic case follow from (3.14), (3.15), and

A(wt) =
1
wt
. We next prove the results for the limit risk-neutral case. The result for the Sharpe

ratio in Part (i) follows from (3.15) and because an increase in α raises αA(wt)
α+A(wt)

. The latter property
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follows from

∂

∂α

(

αA(wt)

α+A(wt)

)

=
A(wt)

2 + α2 ∂A(wt)
∂α

(α+A(wt))
2

and Part (i) of Lemma A.2. The result for arbitrageur positions in Part (i) follows from (3.14) and

Part (ii) of Lemma A.2. The result for the Sharpe ratio in Part (ii) follows from (3.15) and Part

(iii) of Lemma A.2. The result for arbitrageur positions in Part (ii) follows from (3.14) and Part

(iii) of Lemma A.2.

Proof of Lemma 4.1: Using (2.1) and (4.1), we can write (4.4) and (4.5) as

dvt = rvtdt+X>
t (µSt + D̄ − rSt)dt+ u>D̄dt+

(

X>
t (σSt + σ)> + u>σ>

)

dBt, (A.53)

dwt = (rwt − ct)dt+ Y >
t (µSt + D̄ − rSt)dt+ Y >

t (σSt + σ)>dBt, (A.54)

respectively. If St, Xt, and Yt satisfy (4.6), (4.7), and (4.8), then (A.53) is identical to (A.1), and

(A.54) to (A.5). Therefore, if xt and yt maximize the objective of hedgers and of arbitrageurs,

respectively, given πt, then the same is true for Xt and Yt, given St. Moreover, if xt and yt satisfy

the market-clearing equation (3.12), then Xt and Yt satisfy the market-clearing equation

Xt + Yt = 0 (A.55)

because of (4.7) and (4.8). Since (A.53) is identical to (A.1), and (A.54) to (A.5), the dynamics

of arbitrageur wealth and the exposures of hedgers and arbitrageurs to the Brownian shocks are

the same in the equilibrium (St,Xt, Yt) as in (πt, xt, yt). The market prices ηt of the Brownian

risks in the two equilibria are (σ>)−1(D̄ − πt) and
(

(σSt + σ)>
)−1

(µSt + D̄ − rSt), and are the

same because of (4.6). The arbitrageurs’ Sharpe ratios in the two equilibria are
y>t (D̄−πt)√
y>t σ>σyt

and

Y >
t (µSt+D̄−rSt)√

Y >
t (σSt+σ)>(σSt+σ)Yt

, and are the same because of (4.6) and (4.8).

Proof of Proposition 4.1: Setting St = S(wt) and combining Ito’s lemma with (4.1), we find

µSt = µwtS
′(wt) +

1

2
σ>
wtσwtS

′′(wt)

=
(

r − q(wt)
− 1

γ

)

wtS
′(wt) +

α2

(α+A(wt))2
u>Σu

(

A(wt)S
′(wt) +

1

2
S′′(wt)

)

, (A.56)
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where the second step follows from (A.30), and

σSt = σwtS
′(wt)

>

=
α

α+A(wt)
σuS′(wt)

>, (A.57)

where the second step follows from (A.31).

Multiplying (4.6) from the left by (σSt + σ)>, and using (3.13), we find

µSt + D̄ − rSt =
αA(wt)

α+A(wt)
(σSt + σ)>σu. (A.58)

Substituting (µSt, σSt) from (A.56) and (A.57) into (A.58), we find the ODE

(

r − q
− 1

γ

)

wS′ +
α2

2(α +A)2
u>ΣuS′′ + D̄ − rS =

αA

α+A
Σu. (A.59)

A solution S(wt) to (A.59) must be of the form (4.9). Substituting (4.9) into (A.59), we find that

g(wt) solves the ODE (4.10).

Substituting µSt from (A.56) into (4.2), and using (4.9) and (4.10), we can write expected

returns as (4.11). Substituting σSt from (A.57) into (4.3), and using (4.9), we can write the

covariance matrix of returns as (4.12).

Proof of Proposition 4.2: We first compute g(wt) in the limit logarithmic case. Noting that

q(wt) =
1
ρ
and A(wt) =

1
wt
, and taking the limit when r goes to zero, we can write (4.10) as

− ρwg′ +
α2w2

2(αw + 1)2
u>Σug′′ = − α2w

αw + 1

⇔ −(αw + 1)2

zw
g′ + g′′ = −2(αw + 1)

u>Σuw
. (A.60)

Multiplying both sides of (A.60) by the integrating factor

exp

(

−
∫

(αw + 1)2

zw
dw

)

= w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

,

we find

[

g′w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)]′
= −2(αw + 1)

u>Σuw
w− 1

z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

. (A.61)
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Integrating (A.61) once with the boundary condition that g′(wt) = 0 remains bounded when wt

goes to ∞, we find

g′(wt)w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

=
2

u>Σu

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw,

which yields (4.14).

We next compute g′(wt) in the limit risk-neutral case. Noting that q(wt)
− 1

γ is equal to zero in

(0, w̄), and taking the limit when r goes to zero, we can write (4.10) as

α2

2(α +A)2
u>Σug′′ = − α2

α+A

⇔ g′′ = −2(α+A)

u>Σu
. (A.62)

Integrating (A.62) once with the boundary condition g′(w̄) = 0, we find

g′(wt) =
2

u>Σu

∫ w̄

wt

(α+A(w))dw. (A.63)

The boundary condition is implied by smooth-pasting and because g(wt) is independent of wt for

wt ≥ w̄. Using (3.20) to compute the integral in (A.63), we find (4.15).

Proof of Proposition 4.3: We first show the results in the limit risk-neutral case. Eq. (4.11)

implies that Part (i) holds if the function

K(wt) ≡
αA(wt)

α+A(wt)

[

f(wt)u
>Σu+ 1

]

(A.64)

is increasing in wt for wt < w̄a and decreasing for wt > w̄a. The derivative of K(wt) with respect

to wt is

K ′(wt) =
α2

(α+A(wt))2

{

A′(wt)

[

(α−A(wt))g
′(wt)

α+A(wt)
u>Σu+ 1

]

+A(wt)g
′′(wt)u

>Σu

}

(A.65)

=
α2

(α+A(wt))2

{

A′(wt)

[

(α−A(wt))g
′(wt)

α+A(wt)
u>Σu+ 1

]

− 2A(wt)(α+A(wt))

}

,

(A.66)

where (A.65) follows from (4.13), and (A.66) because (A.63) implies that

g′′(wt) = −2(α+A(wt))

u>Σu
. (A.67)
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Since A′(wt) < 0, the term A(wt) − α is positive when wt is below the threshold w̄c defined by

A(w̄c) = α and is negative when w > w̄c. Therefore, (A.66) implies that K ′(wt) < 0 for wt ≥ w̄c.

For wt < w̄c, K
′(wt) has the same sign as

K1(wt) ≡ g′(wt)u
>Σu− α+A(wt)

A(wt)− α
+

2A(wt)(α+A(wt))
2

A′(wt)(A(wt)− α)

= g′(wt)u
>Σu− α+A(wt)

A(wt)− α
− 2A(wt)(α +A(wt))

2

(

A(wt)2 +
(α+A(wt))2

z

)

(A(wt)− α)
, (A.68)

where the second step follows from (A.20). The function K1(wt) converges to ∞ when wt goes to

zero because g′(wt) and A(wt) converge to ∞, and converges to −∞ when wt goes to w̄c from below.

If, therefore, K1(wt) is decreasing in wt, it is positive when wt is below a threshold w̄a ∈ (0, w̄c)

and is negative when wt > w̄a. The first term in (A.68) is decreasing in wt because (A.67) implies

that g′(wt) is decreasing. The second term is increasing in wt because A(wt) is decreasing in wt

and the function

x → α+ x

x− α

is decreasing in x for x ∈ (α,∞). Likewise, the third term is increasing in wt if the function

x → 2x(α+ x)2
(

x2 + (α+x)2

z

)

(x− α)

is decreasing in x for x ∈ (α,∞). The derivative of the latter function with respect to x has the

same sign as

[

(α+ x)2 + 2x(α+ x)
]

(

x2 +
(α+ x)2

z

)

(x− α)

− x(α+ x)2
[

2

(

x+
α+ x

z

)

(x− α) +

(

x2 +
(α+ x)2

z

)]

=α(α + x)

[

x2(α− 3x)− (α+ x)3

z

]

,

which is negative for x ∈ (α,∞). Therefore, K1(wt) is decreasing in wt, and so K(wt) is increasing

in wt for wt < w̄a and decreasing for wt > w̄a.

Eq. (4.12) implies that Parts (ii) and (iii) hold if f(wt) is increasing in wt for wt < w̄b and

decreasing for wt > w̄b. If, in particular, such a threshold w̄b exists, it is larger than the threshold w̄a
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in Part (i) because K(wt) is the product of
αA(wt)
α+A(wt)

, which is decreasing in wt, times f(wt)u
>Σu+1.

The derivative of f(wt) with respect to wt is

f ′(wt) =
α

(α +A(wt))2
[

−A′(wt)g
′(wt) + g′′(wt)(α+A(wt))

]

(A.69)

= − α

(α+A(wt))2

[

A′(wt)g
′(wt) +

2(α+A(wt))
2

u>Σu

]

, (A.70)

where (A.69) follows from the definition of f(wt), and (A.70) from (A.67). Since A′(wt) < 0, (A.70)

implies that f ′(wt) has the same sign as

H1(wt) ≡ g′(wt)u
>Σu+

2(α +A(wt))
2

A′(wt)

= g′(wt)u
>Σu− 2(α+A(wt))

2

A(wt)2 +
(α+A(wt))2

z

= g′(wt)u
>Σu− 2z

z
[

A(wt)
α+A(wt)

]2
+ 1

, (A.71)

where the second step follows from (A.20). The function H1(wt) converges to ∞ when wt goes to

zero because g′(wt) and A(wt) converge to ∞, and converges to −2z < 0 when wt goes to w̄ because

g′(wt) and A(wt) converge to zero. If, therefore, H1(wt) is decreasing in wt, it is positive when wt

is below a threshold w̄b and is negative when wt > w̄b. The first term in (A.71) is decreasing in

wt because g′(wt) is decreasing. The second term is increasing in wt because A(wt) is decreasing.

Therefore, H1(wt) is decreasing in wt, and so f(wt) is increasing in wt for wt < w̄b and decreasing

for wt > w̄b.

To show Part (iv), we use (4.12) to write the correlation as

Corrt(dRnt, dRn′t) =
f(wt)

[

f(wt)u
>Σu+ 2

]

(Σu)n(Σu)n′ +Σnn′

√

{f(wt) [f(wt)u>Σu+ 2] (Σu)2n +Σnn}
{

f(wt) [f(wt)u>Σu+ 2] (Σu)2n′ +Σn′n′

}

.

(A.72)

Differentiating (A.72) with respect to f(wt), we find that Corrt(dRnt, dRn′t) is increasing in f(wt)

if (4.16) holds and is decreasing in f(wt) if (4.16) holds in the opposite direction. Part (iv) then

follows from the behavior of f(wt) shown in the proof of Parts (ii) and (iii).
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To show Part (v), we use (4.9) and (A.57) to write (4.8) as

σyt = σ
(

I + f(wt)uu
>Σ
)

Yt

⇔ yt =
(

I + f(wt)uu
>Σ
)

Yt

⇔ Yt + f(wt)u
>ΣYtu =

α

α+A(wt)
u, (A.73)

where I is the N × N identity matrix, and the third step follows from (3.14). Eq. (A.73) implies

that Yt is collinear with u. Setting Yt = νu in (A.73), we find

α

α+A(wt)
= ν + f(wt)νu

>Σu ⇒ ν =
α

(α+A(wt))(1 + f(wt)u>Σu)
,

and so

Yt =
α

(α+A(wt))(1 + f(wt)u>Σu)
u =

α

α+A(wt) + αg′(wt)u>Σu
u. (A.74)

Part (v) follows from (A.74) and because A(wt) and g′(wt) are decreasing in wt.

We next show the results in the limit logarithmic case. We start by determining the asymptotic

behavior of g′(wt) for wt close to zero and wt close to ∞. For w close to zero, the integrand in

(4.14) is

w−1− 1
z + o

(

w−1− 1
z

)

.

Hence, for wt close to zero, the integral in (4.14) is

zw
− 1

z
t + o

(

w
− 1

z
t

)

,

and (4.14) implies that

lim
wt→0

g′(wt) =
2z

u>Σu
. (A.75)

To determine the asymptotic behavior for wt close to ∞, we set w = wt + x and write the integral

55



in (4.14) as

∫ ∞

0

(

α+
1

wt + x

)

(wt + x)−
1
z exp

(

− 1

2z

(

α2(wt + x)2 + 4α(wt + x)
)

)

dx

= w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

×
∫ ∞

0

(

α+
1

wt + x

)

(1 +
x

wt
)−

1
z exp

(

− 1

2z

(

2α2wtx+ α2x2 + 4αx
)

)

dx. (A.76)

We can further write the integral in (A.76) as

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx, (A.77)

where

Q(x, y) ≡
(

α+
y

1 + xy

)

(1 + xy)−
1
z exp

(

− 1

2z

(

α2x2 + 4αx
)

)

,

R ≡ α2

z
.

Because of the term exp(−Rwtx), the behavior of the integral (A.77) for large wt is determined by

the behavior of the function Q(x, y) for (x, y) close to zero. We set

Q(x, y) = Q(0, 0) +
∂Q

∂x
(0, 0)x +

∂Q

∂y
(0, 0)y + Q̂(x, y), (A.78)

where Q̂(x, y) involves terms of order two and higher in (x, y). Substituting (A.78) into (A.77),

and integrating, we find

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx

= Q(0, 0)
1

Rwt
+

∂Q

∂x
(0, 0)

1

R2w2
t

+
∂Q

∂y
(0, 0)

1

Rw2
t

+

∫ ∞

0
Q̂

(

x,
1

wt

)

exp(−Rwtx)dx. (A.79)

Since

Q(0, 0) = α,

∂Q

∂x
(0, 0) = −2α2

z
,

∂Q

∂y
(0, 0) = 1,
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and the integral in Q̂ yields terms of order smaller than 1
w2

t
for large wt, (A.79) implies that

∫ ∞

0
Q

(

x,
1

wt

)

exp(−Rwtx)dx =
z

αwt
− z

α2w2
t

+ o

(

1

w2
t

)

. (A.80)

Substituting back into (A.76) and then back into (4.14), we find that for wt close to ∞,

g′(wt) =
2z

u>Σuαwt
− 2z

u>Σuα2w2
t

+ o

(

1

w2
t

)

. (A.81)

We next show that g′(wt) is decreasing in wt. Assume, by contradiction, that there exists w

such that g′′(w) ≥ 0. Since g′(wt) is positive and converges to zero when wt converges to ∞, there

exists w > w such that g′′(w) < 0. Therefore, the function g′′(wt) must cross the x-axis from above

in [w,w), i.e., there must exist ŵ ∈ [w,w) such that g′′(ŵ) = 0 and g′′′(ŵ) ≤ 0. Since g′(wt) satisfies

the ODE (A.60), it also satisfies

−α

z
g′ − αw + 1

z
g′′ +

d

dw

(

w

αw + 1

)

g′′ +
w

αw + 1
g′′′ = 0, (A.82)

which follows from (A.60) by multiplying both sides by w
αw+1 and differentiating with respect to

w. Eq. (A.82) cannot hold at ŵ because g′(ŵ) > 0, g′′(ŵ) = 0, and g′′′(ŵ) ≤ 0, a contradiction.

Therefore, g′′(wt) < 0 for all wt.

Part (v) follows from the arguments in the limit risk-neutral case and because the functions

A(wt) =
1
wt

and g′(wt) are positive and decreasing in wt. Part (i) also follows from the arguments

in that case if the function K(wt) defined by (A.64) is decreasing in wt in the case z < 1
2 , and is

increasing in wt for wt < w̄a and decreasing for wt > w̄a in the case z > 1
2 . Using A(wt) =

1
wt
, we

can write the derivative of K(wt) with respect to wt, given by (A.65), as

K ′(wt) =
α2

(αwt + 1)2

[

(1− αwt)g
′(wt)

αwt + 1
u>Σu− 1 + wtg

′′(wt)u
>Σu

]

(A.83)

=
α2

(αwt + 1)3

[(

1− αwt +
(αwt + 1)3

z

)

g′(wt)u
>Σu− (2αwt + 3)(αwt + 1)

]

,

(A.84)

where the second step follows by substituting g′′(wt) from (A.60). Eqs. (A.83) and g′(wt) < 0 imply
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that K ′(wt) < 0 for wt ≥ 1
α
. For wt <

1
α
, (4.14) and (A.84) imply that K ′(wt) has the same sign as

K2(wt) ≡ 2

∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw

− (2αwt + 3)(αwt + 1)w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

1− αwt +
(αwt+1)3

z

.

The derivative of K2(wt) with respect to wt is

K ′
2(wt) =− 2

(

α+
1

wt

)

w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

− w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(

1− αwt +
(αwt+1)3

z

)2

×
[(

α(4αwt + 5)− (2αwt + 3)(αwt + 1)3

zwt

)(

1− αwt +
(αwt + 1)3

z

)

−α

(

−1 +
3(αwt + 1)2

z

)

(2αwt + 3)(αwt + 1)

]

,

and has the same sign as

K3(wt) ≡ −2(α2w2
t + 3αwt + 1)

(αwt + 1)3
+

4α2w2
t + 3αwt − 1

z
+

(αwt + 1)3

z2
.

The function K3(wt) is equal to

K3(0) = −2− 1

z
+

1

z2
=

(1− 2z)(1 + z)

z2

for wt = 0, and is increasing in wt because the function
α2w2

t+3αwt+1
(αwt+1)3 is decreasing in wt. The

function K2(wt) is equal to

K2(wt) = 2zw
− 1

z
t − 3z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

=
(2z − 1)z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

for wt close to zero. Moreover, K2

(

1
α

)

< 0 because the functions K ′(wt) and K2(wt) have the same

sign for wt ≤ 1
α
and (A.83) implies that K ′ ( 1

α

)

< 0.

• When z < 1
2 , K3(0) > 0 and K3(wt) increasing in wt imply that K3(wt) > 0. Therefore,

K2(wt) is increasing in wt. Since K2

(

1
α

)

< 0, K2(wt) is negative for wt < 1
α
. Therefore,

K(wt) is decreasing in wt for all wt ∈ (0,∞).
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• When z > 1
2 , K3(0) < 0 and K3(wt) increasing in wt imply that K3(wt) < 0 for wt ∈ (0, 1

α
)

except possibly in an interval ending at 1
α
. Therefore,K2(wt) is decreasing in wt for wt ∈ (0, 1

α
)

except possibly in an interval ending at 1
α
where it is increasing. Since K2(wt) is positive for

wt close to zero and K2

(

1
α

)

< 0, K2(wt) is positive when wt is below a threshold w̄a ∈ (0, 1
α
)

and negative when wt ∈ (w̄a,
1
α
). Therefore, K(wt) is increasing in wt for wt ∈ (0, w̄a) and

decreasing for wt ∈ (w̄a,∞).

Parts (ii), (iii), and (iv) follow from the arguments in the limit risk-neutral case if the function

f(wt) is increasing in wt for wt < w̄b and decreasing for wt > w̄b. Using A(wt) =
1
wt

and substituting

g′′(wt) from (A.60), we can write the derivative of f(wt) with respect to wt, given by (A.69), as

f ′(wt) =
α

(αwt + 1)2

[(

(αwt + 1)3

z
+ 1

)

g′(wt)−
2(αwt + 1)2

u>Σu

]

. (A.85)

Eqs. (4.14) and (A.85) imply that f ′(wt) has the same sign as

H2(wt) ≡
∫ ∞

wt

(

α+
1

w

)

w− 1
z exp

(

− 1

2z

(

α2w2 + 4αw
)

)

dw−(αwt + 1)2w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(αwt+1)3

z
+ 1

.

The derivative of H2(wt) with respect to wt is

H ′
2(wt) =−

(

α+
1

wt

)

w
− 1

z
t exp

(

− 1

2z

(

α2w2
t + 4αwt

)

)

− w
− 1

z
t exp

(

− 1
2z

(

α2w2
t + 4αwt

))

(

(αwt+1)3

z
+ 1
)2

×
[(

2α(αwt + 1)− (αwt + 1)4

zwt

)(

(αwt + 1)3

z
+ 1

)

− 3α(αwt + 1)4

z

]

,

and has the same sign as

H3(wt) ≡ − 2αwt + 1

(αwt + 1)3
+

αwt − 1

z
.

The function H3(wt) is negative for wt = 0 and converges to ∞ when wt goes to ∞. Moreover, it is

increasing in wt because the function 2αwt+1
(αwt+1)3

is decreasing in wt. Therefore, H3(wt) < 0 when wt

is below a threshold w̄d and H3(wt) > 0 when wt > w̄d. For wt close to zero, the function H2(wt)

is equal to

H2(wt) = zw
− 1

z
t − z

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

=
z2

1 + z
w

− 1
z

t + o

(

w
− 1

z
t

)

,
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and hence is positive. Moreover, H2(wt) converges to zero when wt goes to ∞. Since H2(wt)

is decreasing in wt for wt < w̄d and increasing for wt > w̄d, it is positive when wt is below a

threshold w̄b < w̄d and negative when wt > w̄b. Therefore, f(wt) is increasing in wt for wt < w̄b

and decreasing for wt > w̄b.

Proof of Proposition 5.1: Using (4.9), (A.55), and (A.74) to compute the partial derivatives in

(5.1), we find (5.2). In the limit when r goes to zero, λnt converges to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

αΣnn.

This expression is decreasing in wt because A(wt) is decreasing (shown in the proof of Proposition

3.4 for the limit risk-neutral case) and g′(wt) is decreasing (shown in the proof of Proposition 4.3).

Proof of Corollary 5.1: We set

λnt =

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

(α− rg(wt)) Σnn ≡ L(wt)Σnn. (A.86)

Using (A.86) and Ito’s lemma, we find

Covt(dΛt, dRt) = L′(wt)

∑N
n′=1Σn′n′

N
Covt(dwt, dRt), (A.87)

Covt(dΛt, dλnt) =
(

L′(wt)
)2 Σnn

∑N
n′=1 Σn′n′

N
Vart(dwt), (A.88)

Covt(d(u
>dRt), dλnt) = L′(wt)Σnnu

>Covt(dwt, dRt). (A.89)

The diffusion matrix of the return vector dRt is

(σSt + σ)> =

(

α

α+A(wt)
σuS′(wt)

> + σ

)>

=

(

αg′(wt)

α+A(wt)
σuu>Σ+ σ

)>
, (A.90)

where the first step follows from (A.57) and the second from (4.9). The covariance between wealth

and the return vector dRt is

Covt(dwt, dRt) = (σSt + σ)>σwt

=

(

αg′(wt)

α+A(wt)
σuu>Σ+ σ

)>
α

α+A(wt)
σu

=
α

α+A(wt)

[

f(wt)u
>Σu+ 1

]

Σu, (A.91)
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where the second step follows from (A.31) and (A.90). Part (i) of the corollary follows by substi-

tuting (A.91) into (A.87). The proportionality coefficient is

CΛ(wt) = L′(wt)
α
∑N

n′=1Σn′n′

N (α+A(wt))

[

f(wt)u
>Σu+ 1

]

, (A.92)

and is negative in the limit when r goes to zero because L(wt) is decreasing in wt. Part (ii) of the

corollary follows from (A.88). The proportionality coefficient is positive for any r. Part (iii) of the

corollary follows by substituting (A.91) into (A.89). The proportionality coefficient is negative in

the limit when r goes to zero because L(wt) is decreasing in wt.

Proof of Corollary 5.2: The proportionality result follows from (4.11), (A.87), and (A.91). These

equations imply that the proportionality coefficient is

ΠΛ(wt) =
A(wt)

L′(wt)
∑N

n′=1 Σn′n′

N

. (A.93)

This coefficient is negative in the limit when r goes to zero because L(wt) is decreasing in wt.

Proof of Proposition 5.2: In the limit when r goes to zero, (A.86) implies that L(wt) converges

to

(

1 +
A(wt)

α
+ g′(wt)u

>Σu

)

α.

Substituting into (A.92) and (A.93), we find

CΛ(wt) =

(

A′(wt)

α
+ g′′(wt)u

>Σu

)

α2
∑N

n′=1Σn′n′

N (α+A(wt))

[

f(wt)u
>Σu+ 1

]

, (A.94)

ΠΛ(wt) =
A(wt)

(

A′(wt)
α

+ g′′(wt)u>Σu
)

α
∑N

n′=1
Σn′n′

N

. (A.95)

We first show the properties of CΛ(wt) and ΠΛ(wt) in the limit risk-neutral case. Using (4.13),

(A.20), (A.62), and (A.63), we can write (A.94) and (A.95) as

CΛ(wt) = −
[

A(wt)
2 + (α+A(wt))2

z

α
+ 2 (α+A(wt))

]

α2
∑N

n′=1 Σn′n′

N (α+A(wt))

[

2α
∫ w̄

wt
(α+A(w))dw

α+A(wt)
+ 1

]

,

(A.96)

ΠΛ(wt) = − A(wt)
[

A(wt)2+
(α+A(wt))

2

z

α
+ 2 (α+A(wt))

]

α
∑N

n′=1
Σn′n′

N

. (A.97)
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When wt goes to zero, A(wt) converges to ∞. Therefore, (A.96) implies that CΛ(wt) converges to

−∞, and (A.97) implies that ΠΛ(wt) converges to zero. For wt = w̄, A(w̄) = 0. Therefore, (A.96)

implies that

CΛ(w̄) = −
(

1

z
+ 2

)

α2
∑N

n′=1 Σn′n′

N
< 0

and (A.97) implies that ΠΛ(w̄) = 0. To show the inverse hump shape of ΠΛ(wt), we write (A.97)

as

ΠΛ(wt) = − 1
[

A(wt)
α

(

1 + 1
z

)

+ 2
(

1 + 1
z

)

+ α
A(wt)

(

2 + 1
z

)

]

α
∑N

n′=1
Σn′n′

N

. (A.98)

The term in square brackets in the denominator of (A.98) is an inverse hump-shaped function of

A(wt). Since A(wt) is decreasing in wt, Π
Λ(wt) is an inverse hump-shaped function of wt.

We next show the properties of CΛ(wt) and ΠΛ(wt) in the limit logarithmic case. Using

A(wt) =
1
wt
, (4.13), and (A.60), we can write (A.94) and (A.95) as

CΛ(wt) =

[

− 1

αw2
t

+
αwt + 1

wt

(

(αwt + 1)u>Σu

z
g′(wt)− 2

)]

α2
∑N

n′=1Σn′n′

N
(

α+ 1
wt

)

[

αg′(wt)

α+ 1
wt

u>Σu+ 1

]

,

(A.99)

ΠΛ(wt) =
1
wt

[

− 1
αw2

t
+ αwt+1

wt

(

(αwt+1)u>Σu
z

g′(wt)− 2
)]

α
∑N

n′=1 Σn′n′

N

. (A.100)

When wt goes to zero, g′(wt) converges to the positive limit (A.75). Therefore, (A.99) implies that

CΛ(wt) converges to −∞, and (A.100) implies that ΠΛ(wt) converges to zero. When wt goes to ∞,

(A.81) implies that g′(wt) is of order
1
wt

and

(αwt + 1)u>Σu

z
g′(wt)− 2 = − 2

α2w2
t

+ o

(

1

w2
t

)

.

Therefore, (A.99) implies that CΛ(wt) converges to zero, and (A.100) implies that ΠΛ(wt) converges

to −∞.

Proof of Proposition 6.1: The dynamics of arbitrageur wealth wt under the risk-neutral measure

are

dwt =
(

µwt − σ>
wtηt

)

dt+ σ>
wtdB

∗
t ≡ µ∗

wtdt+ σ>
wtdB

∗
t , (A.101)
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where (µwt, σwt) are the drift and diffusion under the physical measure, ηt is the vector of market

prices of risk, and B∗
t is a N -dimensional Brownian motion under the risk-neutral measure. Using

(A.28), (A.30), and (A.31) to substitute for (ηt, µwt, σwt), we find

µ∗
wt =

(

r − q(wt)
− 1

γ

)

wt.

Eq. (3.13) implies that

|D̄n − πn,t,t′ | = E∗
t

(

αA(wt′)

α+A(wt′)

)

|(Σu)n| . (A.102)

To determine the shape of the term structure, we thus need to derive the dynamics of αA(wt)
α+A(wt)

under the risk-neutral measure. Eq. (A.101) and Ito’s lemma imply that

dA(wt) = µ∗
Atdt+ σ>

AtdB
∗
t , (A.103)

where

µ∗
At ≡ A′(wt)µ

∗
wt +

1

2
A′′(wt)σ

>
wtσwt,

σAt ≡ A′(wt)σwt.

Eq. (A.103) and Ito’s lemma imply in turn that

d

(

αA(wt)

α+A(wt)

)

= −d

(

α2

α+A(wt)

)

= µ∗
t dt+ σ>

t dB
∗
t , (A.104)

where

µ∗
t ≡

α2

(α+A(wt))2
µ∗
At −

α2

(α+A(wt))3
σ>
AtσAt,

σt ≡
α2

(α+A(wt))2
σAt.

Using the definitions of (µ∗
At, σAt), we can write µ∗

t as

µ∗
t =

α2

(α+A(wt))2

[

A′(wt)µ
∗
wt +

(

1

2
A′′(wt)−

A′(wt)
2

α+A(wt)

)

σ>
wtσwt

]

. (A.105)

Suppose that γ = r = 0. Rewriting (A.20) as

A′ = −A2 − (α+A)2

z
(A.106)
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and differentiating, we find

A′′ = −2

(

A+
α+A

z

)

A′. (A.107)

Using (A.31), (A.106), (A.107), and µ∗
wt = 0, we can write (A.105) as

µ∗
t =

α5A(wt)

(α+A(wt))5

(

A(wt)
2 +

(α+A(wt))
2

z

)

u>Σu > 0.

Since µ∗
t > 0, (A.102) implies that the term structure is upward-sloping. When t′ goes to ∞, the

term structure converges to E∗
(

αA(wt′ )
α+A(wt′)

)

|(Σu)n|, where the expectation is under the stationary

distribution that prevails under the risk-neutral measure. Retracing the calculations in Proposition

3.6, we find that the stationary distribution is concentrated at zero. Hence A(wt′) is infinite and

the limit of the term structure is as in the proposition. When wt increases, the slope of the term

structure increases because πn,t,t = πn,t decreases while πn,t,∞ does not change.

Suppose next that γ = 1 and z > 0. Since A(wt) =
1
wt

and µ∗
wt = (r − ρ)wt,

µ∗
t =

α2

(

α+ 1
wt

)2







ρ− r

wt
+

α3

(

α+ 1
wt

)3
w3
t

u>Σu






> 0.

Since µ∗
t > 0, the term structure slopes up. The rest of the proof is as in the case γ = r = 0.

Proof of Proposition 6.2: Positive supply does not change the asset demands (3.4) and (3.10)

of hedgers and arbitrageurs. We write these demands in terms of the long-lived assets, using the

mapping derived in Lemma 4.1. (That is, we use (4.6) to replace D̄ − πt by µSt + D̄ − rSt, and

(4.7) and (4.8) to replace (xt, yt) by (Xt, Yt).) Equations (3.4) and (3.10) become

Xt =

[

(σSt + σ)>(σSt + σ)
]−1

(µSt + D̄ − rSt)

α
− (σSt + σ)−1σu, (A.108)

Yt =

[

(σSt + σ)>(σSt + σ)
]−1

(µSt + D̄ − rSt)

A(wt)
, (A.109)

respectively. Substituting (Xt, Yt) into the market-clearing equation

Xt + Yt = s, (A.110)
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we find that expected returns are

µSt + D̄ − rSt =
αA(wt)

α+A(wt)
(σSt + σ)>bt, (A.111)

where

bt ≡ (σSt + σ)s+ σu. (A.112)

Substituting µSt + D̄ − rSt from (A.111) into (A.109), we find that the arbitrageurs’ position in

equilibrium is

Yt =
α

α+A(wt)
(σSt + σ)−1bt. (A.113)

Substituting ct from (A.12), µSt + D̄ − rSt from (A.111), and Yt from (A.113) into (A.54), we

find that the dynamics of arbitrageur wealth are given by (A.29) with

µwt =
(

r − q(wt)
− 1

γ

)

wt +
α2A(wt)

(α+A(wt))2
b>t bt, (A.114)

σwt =
α

α+A(wt)
bt. (A.115)

Using (A.114) and (A.115), we find the following counterparts of (A.56) and (A.57):

µSt =
(

r − q(wt)
− 1

γ

)

wtS
′(wt) +

α2

(α+A(wt))2
b>t bt

(

A(wt)S
′(wt) +

1

2
S′′(wt)

)

, (A.116)

σSt =
α

α+A(wt)
btS

′(wt)
>. (A.117)

Substituting σSt from (A.117) into (A.112) and solving for bt, we find

bt =
σ(s + u)

1− α
α+A(wt)

S′(wt)>s
. (A.118)

Substituting (µSt, σSt) from (A.116) and (A.117) into (A.111), we find

(

r − q
− 1

γ

)

wS′ +
α2

2(α +A)2
b>t btS

′′ + D̄ − rS =
αA

α+A
σ>bt

⇔
(

r − q
− 1

γ

)

wS′ +
α2(s + u)>Σ(s+ u)

2 (α+A− αS′>s)2
S′′ + D̄ − rS =

αAΣ(s + u)

α+A− αS′>s
, (A.119)
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where the second step follows from (A.118). A solution S(wt) to (A.119) must be of the form (6.2).

Substituting (6.2) into (A.119), we find that g(wt) solves the ODE

(

r − q
− 1

γ

)

wg′ +
α2(s+ u)>Σ(s+ u)

2 (α+A− αg′(s+ u)>Σs)2
g′′ − rg =

α2
(

g′(s+ u)>Σs− 1
)

α+A− αg′(s+ u)>Σs
. (A.120)

Substituting (σSt, bt) from (A.117) and (A.118) into (A.111) and using (6.2), we find that expected

returns dEt(dRt)
dt

= µSt + D̄ − rSt are given by (6.3).

Proceeding as in the proof of Proposition 3.3 we find the following counterparts of the Bellman

equations (3.16) and (3.17):

ρq =γq
1− 1

γ +
(

r − q
− 1

γ

)

q′w + rq(1− γ)

+
1

2

(

q′′ +
2q′γ

w
− 2q′2

q
+

q(1− γ)γ

w2

)

α2(s+ u)>Σ(s+ u)
(

α+ γ
w
− q′

q
− αg′(s+ u)>Σs

)2 , (A.121)

ρq1 =log(ρ) +
r − ρ

ρ
+ (r − ρ)q′1 +

1

2

(

q′′1 +
2q′1
w

+
1

ρw2

)

α2(s+ u)>Σ(s+ u)
(

α+ 1
w
− αg′(s+ u)>Σs

)2 .

(A.122)

Solving for equilibrium for γ 6= 1 amounts to solving the system of (A.120) and (A.121), where A

in (A.120) is set to γ
w
− q′

q
. Solving for equilibrium for γ = 1 amounts to solving (A.120), where A

is set to 1
w
.

Proof of Proposition 6.3: We first solve the optimization problem of a hedger. The Bellman

equation is

ρ̄V = max
c̄t,xt

{

u(c̄t) + Vvµvt +
1

2
Vvvσ

>
vtσvt + Vwµwt +

1

2
Vwwσ

>
wtσwt + Vvwσ

>
vtσwt

}

, (A.123)

where u(c̄t) = e−
α
r
c̄t, (µvt, σvt) are the drift and diffusion of the hedger’s wealth vt, and (µwt, σwt)

are the drift and diffusion of arbitrageur wealth. The drifts and diffusions are

µvt = rvt − c̄t +X>
t (µSt + D̄ − rSt) + u>D̄, (A.124)

σvt = (σSt + σ)Xt + σu, (A.125)

for the hedger, and

µwt = rwt − ct + Y >
t (µSt + D̄ − rSt), (A.126)

σwt = (σSt + σ)Yt, (A.127)
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for arbitrageurs. Substituting (6.4) and (A.124)-(A.127) into (A.123), we can write the latter

equation as

− ρ̄e−[αvt+F (wt)] = max
c̄t,Xt

{

−e−
α
r
c̄t + αe−[αvt+F (wt)]

[

rvt − c̄t +X>
t (µSt + D̄ − rSt) + u>D̄

]

− 1

2
α2e−[αvt+F (wt)]

[

X>
t (σSt + σ)> + u>σ>

]

[(σSt + σ)Xt + σu]

+ F ′(wt)e
−[αvt+F (wt)]

[

rwt − ct + Y >
t (µSt + D̄ − rSt)

]

+
1

2

[

F ′′(wt)− F ′(wt)
2
]

e−[αvt+F (wt)]Y >
t (σSt + σ)>(σSt + σ)Yt

−αF ′(wt)e
−[αvt+F (wt)]

[

X>
t (σSt + σ)> + u>σ>

]

(σSt + σ)Yt

}

. (A.128)

The first-order conditions with respect to c̄t and Xt are

α

r
e−

α
r
c̄t = αe−[αvt+F (wt)], (A.129)

µSt + D̄ − rSt = α(σSt + σ)> [(σSt + σ)Xt + σu] + F ′(wt)(σSt + σ)>(σSt + σ)Yt, (A.130)

respectively. Eqs. (A.129) and (A.130) imply that

c̄t = rvt +
rF (wt)

α
− r log(r)

α
, (A.131)

Xt =

[

(σSt + σ)>(σSt + σ)
]−1

(µSt + D̄ − rSt)

α
− (σSt + σ)−1σu− F ′(wt)

α
Yt, (A.132)

respectively. Combining (A.132) with (A.55) and (A.109), we find that expected returns are

µSt + D̄ − rSt =
αA(wt)

α+A(wt)− F ′(wt)
(σSt + σ)>bt, (A.133)

and the arbitrageurs’ position is

Yt =
α

α+A(wt)− F ′(wt)
(σSt + σ)−1bt. (A.134)

To determine asset prices, we use (A.133) and (A.134), and proceed as in Proposition 6.2. The
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counterparts of (A.116)-(A.118) are

µSt =
(

r − q(wt)
− 1

γ

)

wtS
′(wt) +

α2

(α+A(wt)− F ′(wt))2
b>t bt

(

A(wt)S
′(wt) +

1

2
S′′(wt)

)

,

(A.135)

σSt =
α

α+A(wt)− F ′(wt)
btS

′(wt)
>, (A.136)

bt =
σ(s + u)

1− α
α+A(wt)−F ′(wt)

S′(wt)>s
, (A.137)

respectively, and the counterparts of (A.119) and (A.120) as

(

r − q
− 1

γ

)

wS′ +
α2(s+ u)>Σ(s+ u)

2 (α+A− F ′ − αS′>s)2
S′′ + D̄ − rS =

αAΣ(s + u)

α+A− F ′ − αS′>s
,

and

(

r − q
− 1

γ

)

wg′+
α2(s+ u)>Σ(s+ u)

2 (α+A− F ′ − αg′(s+ u)>Σs)2
g′′−rg =

α
(

F ′ + αg′(s+ u)>Σs− α
)

α+A− F ′ − αg′(s+ u)>Σs
, (A.138)

respectively. Expected returns dEt(dRt)
dt

= µSt + D̄ − rSt are given by (6.5).

Using (A.129), (A.131), and (A.132), we can write the terms in the first line of the hedger

Bellman equation (A.128) as

− e−
α
r
c̄t + αe−[αvt+F (wt)]

[

rvt − c̄t +X>
t (µSt + D̄ − rSt) + u>D̄

]

= −re−[αvt+F (wt)] + αe−[αvt+F (wt)]

×
[

r log(r)

α
− rF (wt)

α
+ αX>

t (σSt + σ)> [(σSt + σ)Xt + σu] + F ′(wt)X
>
t (σSt + σ)>(σSt + σ)Yt

]

.

Substituting back into (A.128), we can write that equation as

0 =ρ̄− r + r log(r)− rF (wt) + αu>D̄ +
1

2
α2
[

X>
t (σSt + σ)> − u>σ>

]

[(σSt + σ)Xt + σu]

+ F ′(wt)
[

rwt − ct + Y >
t (µSt + D̄ − rSt)

]

+
1

2

[

F ′′(wt)− F ′(wt)
2
]

Y >
t (σSt + σ)>(σSt + σ)Yt − αF ′(wt)u

>σ>(σSt + σ)Yt. (A.139)

To further simplify (A.139), we use

µSt + D̄ − rSt = A(wt)(σSt + σ)>(σSt + σ)Yt,
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which follows from (A.109), and

(σSt + σ)Xt + σu = (σSt + σ)(s− Yt) + σu = bt − (σSt + σ)Yt =
A(wt)− F ′(wt)

α
(σSt + σ)Yt,

(σSt + σ)Xt − σu = (σSt + σ)Xt + σu− 2σu =
A(wt)− F ′(wt)

α
(σSt + σ)Yt − 2σu,

which follow from (A.55), (A.112), and (A.137). Substituting into (A.139) and simplifying, we find

0 =ρ̄− r + r log(r)− rF (wt) + αu>D̄ + F ′(wt)(rwt − ct)

+
1

2
(A(wt)

2 + F ′′(wt))Y
>
t (σSt + σ)>(σSt + σ)Yt − αA(wt)u

>σ>(σSt + σ)Yt. (A.140)

Substituting ct from (A.12), Yt from (A.134), and bt from (A.137), we can write (A.140) as

0 =ρ̄− r + r log(r)− rF + αu>D̄ +
(

r − q
− 1

γ

)

F ′w

+
α2(A2 + F ′′)(s+ u)>Σ(s+ u)

2 (α+A− F ′ − αg′(s+ u)>Σs)2
− α2A(s+ u)>Σu

α+A− F ′ − αg′(s+ u)>Σs
. (A.141)

Proceeding as in the proof of Proposition 3.3 we find the following counterparts of the arbi-

trageur Bellman equations (3.16) and (3.17):

ρq =γq
1− 1

γ +
(

r − q
− 1

γ

)

q′w + rq(1− γ)

+
1

2

(

q′′ +
2q′γ

w
− 2q′2

q
+

q(1− γ)γ

w2

)

α2(s + u)>Σ(s+ u)
(

α+ γ
w
− q′

q
− F ′ − αg′(s+ u)>Σs

)2 , (A.142)

ρq1 =log(ρ) +
r − ρ

ρ
+ (r − ρ)q′1 +

1

2

(

q′′1 +
2q′1
w

+
1

ρw2

)

α2(s+ u)>Σ(s+ u)
(

α+ 1
w
− F ′ − αg′(s+ u)>Σs

)2 .

(A.143)

Solving for equilibrium for γ 6= 1 amounts to solving the system of (A.138), (A.141), and (A.142),

where A in (A.138) and (A.141) is set to γ
w
− q′

q
. Solving for equilibrium for γ = 1 amounts to

solving the system of (A.138) and (A.141), where A is set to 1
w
.
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