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Abstract

Many studies have found that combining forecasts improves predictive accuracy.
An often-used approach developed by Granger and Ramanathan (GR, 1984) utilises
a linear-Gaussian regression model to combine point forecasts. This paper generalises
their approach for an asymmetrically distributed target variable. Our copula point
forecast combination methodology involves fitting marginal distributions for the target
variable and the individual forecasts being combined; and then estimating the corre-
lation parameters capturing linear dependence between the target and the experts’
predictions. If the target variable and experts’ predictions are individually Gaussian
distributed, our copula point combination reproduces the GR combination. We il-
lustrate our methodology with two applications examining quarterly forecasts for the
Federal Funds rate and for US output growth, respectively. The copula point com-
binations outperform the forecasts from the individual experts in both applications,
with gains in root mean squared forecast error in the region of 40% for the Federal
Funds rate and 4% for output growth relative to the GR combination. The fitted
marginal distribution for the interest rate exhibits strong asymmetry.
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1 Introduction

Policymakers and (some) survey respondents often communicate the conditional asym-

metric risks for macroeconomic variables. Prominent examples include the Federal Open

Market Committee discussions of risks, and the forecast densities provided by both the

Blue Chip Economic Survey of economists and the Federal Reserve Bank of Philadelphia’s

Survey of Professional Forecasters. There has also been renewed interest recently in quan-

tifying the asymmetries in conditional risk assessments for US macroeconomic variables.

Among others, Salgado, Guvenen and Bloom (2016), Giglio, Kelly and Pruitt (2016),

Smith and Vahey (2016) and Adrian, Boyarchenko and Giannone (2018) provide recent

examples.

A distinct literature has considered the scope for predictive combinations to improve

the accuracy of point forecasts. Granger and Ramanathan (GR, 1984) proposed using a

linear-Gaussian regression framework to combine point forecasts from individual experts.

Their approach built on earlier work by (among others) Bates and Granger (1969) which

proposed the use of weighted averages for forecast combination. In the GR framework,

the decision maker performing the combination only has point forecasts from the experts

to combine.

In this paper, we modify the GR point combination framework to a setting with

an asymmetrically distributed target variable. Our decision maker fits well-calibrated

non-parametric marginal distributions to the target variable and the individual forecast

from each expert to construct the Probability Integral Transforms, PITS. (Among oth-

ers) Rosenblatt (1952), Diebold, Gunther and Tay (1998), Ranjan and Gneiting (2010),

Galbraith and van Norden (2012) and Rossi and Sekhposyan (2018) discuss properties

of the PITS and probabilistic calibration. Our decision maker transforms the (univari-

ate) PITS to be normally distributed—following the intuition of Berkowitz (2001)—and
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uses a pseudo regression (either with or without restrictions) to estimate the dependence

parameters. This copula point combination approach nests the conventional GR regres-

sion in the sense that restricting the fitted marginal distributions delivers exactly the GR

combination.

We analyse two applications in depth to illustrate our copula point combination method-

ology, with individual experts predicting macroeconomic variables through the Global Fi-

nancial Crisis and its aftermath. In the first application, we predict the Federal Funds

rate, where the experts produce point forecasts based on real-time measurements for the

output gap and inflation. An advantage of our copula modelling strategy is that no auxil-

iary assumptions are required about the existence of a fixed (or time-varying) lower bound

for interest rates. Considering a quarterly evaluation sample from 2000:2 to 2015:1, we

find strong evidence of interest rate predictability, with our copula point combination out-

performing the conventional GR combination in terms of root mean squared forecast error.

The copula combination provides accurate predictions when interest rates are unusually

low but positive after the crisis, benefitting from the bimodal marginal fitted distribution

for the target variable.

In the second application, we consider a target macroeconomic variable with a fitted

marginal distribution that is closer to symmetric. We analyse predictions for US real

output growth, where the experts’ predictions are based on copula time series models.

Motivated by earlier work documenting the skewness in the conditional predictive distri-

butions for quarterly US economic growth by Adrian, Boyarchenko and Giannone (2018),

our two experts exploit the dependence between real activity and financial conditions.

One expert utilises an autoregressive copula model with linear dependence and the other

uses credit spreads with stronger left-tail dependence than at the mean—asymmetric de-

pendence. Considering a quarterly evaluation sample from 1992:4 to 2017:1, we again find
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that our methodology produces lower root mean squared forecast errors than the conven-

tional GR combination and the individual experts through the Global Financial Crisis and

the recovery years.

Copulas are an appealing route to extend the GR regression methodology for point

forecast combinations. They provide a flexible econometric modelling strategy, separating

marginal distributions from dependence. Earlier econometrics papers in macroeconomics

and finance using copula modelling methods include Patton (2006, 2012), Scotti (2011)

and Smith and Vahey (2016). To estimate the parameters of the combination dependence

structure, we follow Smith and Maneesoonthorn (2018) by deploying an “inversion” ap-

proach. Loaiza-Maya and Smith (2018) provide a recent multivariate application based

on real-time US macroeconomic variables.

A useful feature shared by both GR and our framework is that the combinations only

require point forecasts from the experts. A related but distinct literature focuses on opinion

(prediction) pooling via density combination, where the experts report forecast densities.

Jore, Mitchell and Vahey (2010), Geweke and Amisano (2011), Waggoner and Zha (2012),

Billio, Casarin, Ravazzolo, and van Dijk (2013), Del Negro, Hasegawa and Schorfheide

(2016) and Bassetti, Casarin and Ravazzolo (2018) provide recent macroeconomic and

finance applications. In contrast, Jouini and Clemen (1996) and Meucci (2005) explore

copula opinion pools, which combine forecast densities from experts, modelling dependence

and the marginal distributions separately. In this paper, we combine point forecasts from

experts in the Granger-Ramanathan tradition.

Unlike many applied studies considering forecast combination, recursively updating

the point combination weights aids forecast performance in both applications. In applied

work, simple equally weighted combinations often perform better in practice. For discus-

sions of this “forecast combination puzzle” or “equal weights puzzle” see (among others)
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Clemen and Winkler (1986), Timmermann (2006), Capistrian and Timmermann (2009),

Bjørnland, Gerdrup, Jore, Smith and Thorsrud (2011), Conflitti, De Mol and Giannone

(2015) and Diebold and Shin (2018). Existing explanations for the puzzle emphasise the

estimation error in the weights, the potential gain from forecast combination (related to ex-

pert selection), truncation (discarding experts) and the potential for shrinkage. The scope

for asymmetrically distributed macroeconomic variables constitutes a neglected issue in

the forecast combination puzzle.

The remainder of this paper is structured as follows. In Section 2, we set out our copula

point combination framework. In Sections 3 and 4, we consider the two applications, one

based on forecasting the Federal Funds rate and the other on predicting US economic

growth. We draw some conclusions and ideas for extending the analysis in the final

section.

2 A Framework for Copula Point Combinations

In this section, we generalise the GR approach to deal with an asymmetrically distributed

target variable utilising a copula modelling strategy.

2.1 The GR Combination Regression

The underlying idea is that the decision maker combines the forecasts produced by individ-

ual experts; see Barnard (1963) and Bates and Granger (1969). The regression approach,

developed by GR, involves estimation of a linear-Gaussian model with the predictions of

experts as regressors:

Zt = a + b1Z
p
1,t + b2Z

p
2,t + · · ·+ bRZ

p
R,t + et, t = 1, . . . , T, (1)
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where there are r = 1, . . . , R experts, Zt is the target variable of interest (eg the Federal

Funds rate), Zp
r,t is expert r’s point prediction, and the combination disturbance term, et,

is usually taken to be Gaussian (or a generalisation of that distribution). Although GR

explored a frequentist route to inference, Bayesian methods are also feasible. Degrees of

freedom issues arise when the number of experts is large relative to the number of time

series observations. Nevertheless, if the focus of the decision maker lies in forecasting—

rather than estimating the “true” weights—collinearity amongst the experts may not be

a concern.

Common modifications explored in practice include: restricting the b coe�cients to sum

to one and dropping the intercept; inequality constraints on the parameters, 0  br  1;

various selection criteria based weights; model averaging and shrinkage; and restricting

the weights to be equal for all experts.

A related combination strategy to improve probabilistic calibration in weather fore-

casting applications (with probabilistic forecasts) is known as Ensemble Model Output

Statistics; see Gneiting, Raftery, Westveld and Goldman (2005). Schefzik, Thorarinsdot-

tir and Gneiting (2013) develop Ensemble Copula Coupling to extend consideration to

multivariate dependence in meteorology.

This paper is concerned with cases in which the target macroeconomic variable, Zt,

is asymmetrically distributed and the decision maker wishes to combine point forecasts.

This includes applications where the experts do not report forecast densities.

2.2 The Copula Point Combination

We extend the GR approach by exploiting Sklar’s Theorem to seperate the marginal

distributions from the underlying dependence structure.

For a multivariate time series, Z, comprising the target variable and the R forecasts
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from experts (where S = R+ 1), applying Sklar’s Theorem (Nelsen, 2006) suggests there

exists a copula function C such that the joint distribution function can be written:

F (z) = C(u) (2)

where z = (z0
1, . . . , z

0
T )

0, u = (u0
1, . . . ,u

0
T )

0, zt = (z01,t, . . . , z
0
M,t)

0, ut = (u01,t, . . . , u
0
M,t)

0,

us,t = Fzs(zs,t) with s = r + 1.

The target variable and the predictions from the experts are assumed to be stationary

and in our applications the margins are taken to be time invariant. The copula function

C itself is a distribution function on the unit cube [0, 1]S , and all margins are strictly

uniform. Dependence between elements of Z is captured by the copula function.

By di↵erentiating the distribution function, Equation (2), we obtain the density of Z

as:

f(z) = c(u)
TY

t=1

SY

s=1

fzs(zs,t) s = r + 1 (3)

where fzs(zs,t) is the marginal density of zs,t, Fzs(zs,t) is the corresponding distri-

bution function, and c(u) = @
@uC(u) is usually referred to as a copula density, where

u = (u1, . . . , uS)0.

From Sklar’s Theorem, a copula density always exists but it is unknown and has to be

selected in practice. Assuming a Gaussian copula facilitates likelihood-based estimation

and corresponds to the linear dependence case considered in the GR regression.

Denoting the normal distribution function as �(·), the Gaussian copula density is:

c(u) = cGa(u;⌦) = |⌦|�1/2 exp

⇢
�1

2
⇣0(⌦�1 � IS)⇣

�
, (4)

with u = (u1, . . . , uS), ⇣ = (��1(u1), . . . ,��1(uS))0, and a correlation matrix ⌦ as depen-
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dence parameters.

2.3 Estimation and Prediction with Copula Point Combinations

In our applied work, the process of fitting a copula model involves four steps taken by

the decision maker. First, fit a cumulative distribution function (CDF), FZs(Zs,t), to each

of the S margins—for the experts’ forecasts and the target variable. Second, compute

the Probability Integral Transforms, PITS, for each time series from the (time-invariant)

marginal distribution. That is, compute the time series of PITS, FZs(zs,t) = Pr(Zs  zs,t),

for each of the S = R + 1 margins. Third, following Smith and Maneesoonthorn (2018),

transform each PITS series (on the unit interval) using an inverse normal CDF to give a

multivariate pseudo time series, with each variable individually normally distributed. The

fourth step involves modelling the dependence structure. Given that the dependence in

the GR regression is linear, the decision maker carries out inference via a linear-Gaussian

regression on the pseudo time series representation:

⇣t = ↵ + �1⇣
p
1,t + �2⇣

p
2,t + · · ·+ �R⇣

p
R,t + ✏t, t = 1, . . . , T (5)

where ⇣t is the pseudo time series counterpart to Zt, and the pseudo predictions of the

r = 1, . . . , R experts to be combined are denoted ⇣pr,t. The pseudo combination error term,

✏t, is normally distributed.

With inference conditional on the fitted marginal, this limited information estimation

strategy, sometimes known as “inference for margins”, is slightly less e�cient than full

information; see Joe (2006). Inference can be carried out by Bayesian or frequentist

methods as for the conventional GR regression.

Prediction by the decision maker with the copula combination involves reversing the

process for the predictand. First, construct the predicted values for the pseudo target
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variable, ⇣̂, based on Equation (5). Second, compute the PITS from the Gaussian marginal

distribution, F⇣(⇣t) = �⇣(⇣t) = Pr(⇣  ⇣t). Third, use the inverse marginal distribution,

F�1
Z1

(Z1,t) = F�1
Z (Zt), to generate predictions from the copula combination with the same

marginal distribution as the target variable.

In our applied work, all estimation and prediction steps are carried out recursively to

mimic real-time forecasting by the decision maker.

2.4 Fitting Marginal Distributions

The decision maker must fit (time-invariant) margins to the sample data. A special case

occurs where Zt follows a Gaussian distribution, as do the forecasts from the experts,

the Zp
t ’s. Then, the operations through the CDFs and inverse CDFs cause the pseudo

regression to coincide with the original GR regression. In this case the copula point

combination forecast is the GR regression point forecast.

More generally, where the target variable follows an unknown asymmetric distribution,

non-parametric fitting of the Empirical CDF (ECDF) to Zt via a kernel smoother provides

a pragmatic route to selecting marginals. (Parametric marginal fitting is also feasible.) In

our applied work, we follow the non-parametric approach, fitting an ECDF to each Zp
s,t

in turn. In e↵ect, we treat the forecasts as explanatory variables in the pseudo regression.

This requires S marginals to be fitted—one for each of the R experts, plus one for the

target variable.

Alternatively, since the experts are predicting the target variable, the decision maker

could use the same marginal distribution fitted to Zt for the forecasts from the individual

experts, the Zp
t ’s. In our applications, this second homogeneous marginals approach pro-

duces slightly weaker forecast performance in terms of root mean squared forecast error.

We report below the heterogeneous marginals case and report the homogeneous marginals
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case in the not for publication appendix.

3 Application: Federal Funds Rate Predictions

In the first application, we consider point forecast combinations by a decision maker for

the quarterly Federal Funds rate for the target dates from 2000:2 to 2015:1.

3.1 Forecasts from the Experts

Our experts predict nominal US interest rates using real-time measurements for the output

gap and inflation.1 Both experts forecast with specifications discussed by Bernanke (2015).

The experts are di↵erentiated by the importance of the output gap, with the first expert

favouring a greater weight on this consideration than the second. Both experts predict

the end-quarter Federal Funds rate based on real-time measurements available within the

current quarter.

The experts utilise a linear dependence approach to capture the contemporaneous

relationship between the Federal Funds rate and output gap and inflation. The first

expert uses the following specification:

FFRt = INFt + 1.0GAPt + 0.5 (INFt � 2) + 2 (6)

where FFRt, INFt and GAPt denote the Federal Funds rate, inflation and the output

gap in time t, respectively. The second expert has a smaller weight on the output gap

than the first—a coe�cient of 0.5 rather than 1.0 for the variable GAPt.

For convenience in presenting the copula forecast combination results, we will refer to

1Taylor (1993) and Henderson and McKibbin (1993) provide analysis of monetary feedback rules. Taylor
(1999) notes the e↵ectiveness of this single equation approach as a predictive tool. Carlstrom and Jacobson
(2015) note that many close variants have been used for forecasting in practice.
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the first expert as Bernanke, and the second as Taylor. We emphasise that we do not imply

that either Bernanke or Taylor would endorse forecasting interest rates in this automated

fashion in practice. We note that Yellen (2012) argues for a specification similar to the

Bernanke expert and that Taylor (1999) proposes a variant in which the coe�cient on

the output gap is greater than zero. Among others, Johanssen and Mertens (2016) model

a lower bound using a shadow interest rate. That approach treats the price of money

as an asymmetrically distributed variable but without separating the margins from the

dependence.

As described in the data appendix, we assume that both experts use the “real-time”

macroeconomic data provided by Bernanke (2015) to forecast. There are minor di↵erences

in the measures for inflation and the output gap used by each expert.

Our two experts make quarterly predictions for the target variable for 2000:2 to 2015:1.

Figure 1 plots the real-time predictions from the experts, along with the target variable,

the Federal Funds rate (black line). The Taylor expert (red line) performs poorly during

the Greenspan boom, 2004 through 2006, when it predicts higher interest rates than seen in

the data. In contrast, the Bernanke expert (blue line) tracks the Federal Funds rate fairly

closely through the same observations. In the aftermath of the Global Financial Crisis,

both experts predict spells of negative nominal interest rates, and as a result there are large

forecast errors from both. Of the two, the Taylor expert predicts higher rates throughout

the post-2008 sample, with interest rates in excess of zero forecast from early 2011. The

predictions from the Bernanke expert do not imply until the end of the evaluation sample.

Given the slow recovery experienced by the US economy in the aftermath of the fi-

nancial crisis, it is unsurprising that systematic forecast errors are made by both experts.

There is scope for recalibration to improve the performance of the experts. We shall return

to this issue subsequently.
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3.2 Forecast Combination by the Decision Maker

The decision maker recursively combines the forecasts from the experts using an expanding

window for parameter (weight) estimation from 1996:2 to 2014:4, with weight training from

1996:2 to 2000:1. Prior to combination, the decision maker must fit marginal distributions.

In the heterogenous marginals case, the decision maker fits a distinct marginal distribution

to the forecasts produced by each expert, and to the target variable. We assume that in

practice the decision maker uses a kernel-smoothed non-parametric ECDF approach for

all margins, recursively fitting each marginal distribution through the expanding window

used for estimation. Non-parametric kernel fitting uses the MATLAB function ksdensity.2

The (smoothed) Probability Density Function (PDF) for the Federal Funds rate plotted

in Figure 2 (black solid line) displays an asymmetric distribution, and is based on the

sample of data considered for the last forecast target, 2015:1. Our forecast evaluations use

recursively fitted marginal distributions based on expanding windows of data. Hence the

fitted marginals for each variable vary by forecast origin. For the last origin, the PDF for

the Federal Funds rate is bimodal with the peak around zero reflecting the lower interest

rates from 2009:1.

The PDFs corresponding to the marginal distributions for the Taylor expert (red line)

and the Bernanke expert (blue line) are also shown in Figure 2. Both display high-

order moments that depart from a symmetric Gaussian distribution. Furthermore, the

marginals for the experts display considerable di↵erences from each other, and from the

fitted marginal distributions for the target variable. In particular, the Bernanke expert

has more mass in the lower tail than the Taylor expert, a feature consistent with the

two variants of the Taylor rule in the aftermath of the financial crisis, as displayed in

Figure 1. The three marginal distributions are relatively close in the upper tail. For the

2The not for publication appendix discusses robustness to the choice of bandwidth.
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target variable, and the two experts, the null hypothesis of normality is rejected at the

1% significance level for the Shapiro-Wilk test.

3.2.1 Recalibrated Experts

Given the forecast combination setup, where the predictions from the experts are sub-

sequently combined by the decision maker, the experts might prefer to recalibrate prior

to combination. Madansky (1964) and Genest and Zidek (1986) discuss related concepts

about group rationality and the externally Bayesian property of pooled opinions. Here,

we consider recalibrated predictions based on the marginal distribution fitted to the target

variable by the decision maker. Whether the decision maker performs the recalibration

or the expert is not germane, given the setup of the combination step in the GR frame-

work. In our application, to recalibrate the forecasts, the predictions from each expert

were transformed using the (real-time) fitted marginal distribution for the target variable.

The predictions from the recalibrated experts are plotted in Figure A1 in the not for

publication appendices.

3.2.2 Estimation and Prediction by the Decision Maker

We now turn to the estimation of the dependence parameters, shown in Equation (5). For

each forecast origin, the decision maker computes the PITS conditional on the respective

fitted marginals and then constructs the pseudo time series, as discussed in the previous

section, via the inverse CDF. The pseudo regression is then estimated by maximum likeli-

hood. In this manner, the decision maker estimates the linear dependence parameters (of

a Gaussian copula). The predicted value for each period is converted from the unit interval

using the inverse (kernel-smoothed) ECDF to give the mean forecasts for the observable

target variable, FFRt.
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As for the conventional GR regression, a number of restrictions on the parameters are

feasible, including equal weights, which are explored in the next section.

3.3 Results

The forecast evaluations use data for 2000:2 to 2015:1, with all forecast combinations and

predictions from the experts being real-time quarterly predictions. The decision maker

estimates point combination weights using an expanding window from 1996:2 to t � 1 to

produce the forecast for observation t.

Figure 3 displays the predictions from the copula point combination (red solid line),

together with the unrestricted GR regression benchmark (blue solid line) with recursive

weights and its equal weighted counterpart (blue dashed line). In this application, the

restricted GR outperforms the unrestricted GR by around 2%, in terms of root mean

squared forecast error (RMSFE) over the whole evaluation sample. The copula point

combination has a zero intercept, bounded weights (estimated recursively) on the unit

interval and weights that sum to one across experts. (The unrestricted copula point

combination performs around 20% worse than the restricted equivalent for the full sample

in terms of RMSFE.) The copula methodology provides accurate point predictions of

the Federal Funds rate (black line), especially in the aftermath of the Global Financial

Crisis. As one might expect with “real-time” interest rate projections, the target variable

falls faster than the combination prediction during the onset of the crisis, leading to

persistent forecast errors. The Bernanke and Taylor expert predictions both share this

characteristic; see Figure 1. Elsewhere, the copula point combination tracks the actual

interest rate relatively well. Given the controversy around the relative strengths of equal

and recursively estimated weights, it is interesting to note that the performance of the GR

regression combination varies little with weight type.
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Figure 4 displays the recursively estimated weights from the copula point combination

(solid lines) and the benchmark GR regression (dotted lines). In each case, the weights

on the Taylor expert (red lines) and the Bernanke expert (blue lines) exhibit considerable

time variation, with the Bernanke expert receiving the greater weight for much of the

evaluation sample, for both the benchmark and the copula point combinations. For the

copula combination, however, the weight on the Bernanke expert exhibits relative stability

prior to the financial crisis. For the GR regression, the weight on the Bernanke expert

is low at the start of the evaluation sample, but reaches over 50% by the onset of the

crisis. After 2009, the weights shift towards the Bernanke expert for the GR regression,

but in contrast the copula combination suggests that the Bernanke weights decline. The

relatively modest variation in the target variable after the Financial Crisis contributes to

the weight imprecision in this era.

Table 1 displays end-evaluation relative RMSFE results for a variety of combinations

and experts, with the conventional GR regression as a benchmark (with unrestricted re-

cursively estimated parameters and naive experts). The equally-weighted conventional

GR regression, row 3, has a 2% higher RMSFE than the benchmark, row 2. The copula

point combination, row 4, provides the best RMSFE, with a performance gain of nearly

45% over the benchmark. Recall that this version of the copula point combination has

restricted coe�cients (zero intercept, bounded weights, weights sum to one).3 The copula

point combination with equal weights, row 5, performs less well, but still improves on the

benchmark by around 34%. Hence, equal weights are not as e↵ective as recursive weights

with the copula point combination methodology.

The Taylor and Bernanke experts, rows 6 and 7, fail to outperform the GR regression.

Individually, the experts are around 6% and 62% worse than the benchmark combination,

3The unrestricted variant (not reported in the table) lifts the relative RMSFE slightly closer to the
benchmark at 0.72.
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Table 1: Relative RMSFE, Federal Funds Rate

Expert/Combination

Granger-Ramanathan (GR) 1.0000
GR Equal Weight 1.0320
Copula Combination (CC) 0.5569 ⇤⇤
CC Equal Weight (EW) 0.6690 ⇤
Taylor 1.0570
Bernanke 1.6199
Recalibrated Taylor 1.0086
Recalibrated Bernanke 0.6493 ⇤
GR Recalibrated Experts 0.6635 ⇤
GR Recalibrated Experts EW 0.7064

As a rough guide, using the Harvey et al. (1997) small-sample adjustment of the Diebold and Mariano
(1995) test, ⇤ denotes 5% and ⇤⇤ 1% significance in the two-sided test against the GR benchmark,

respectively.

respectively.

In contrast, the recalibrated experts, rows 8 and 9, perform considerably better than

the naive experts. The recalibrated Taylor expert matches approximately the benchmark

and the recalibrated Bernanke expert is around 35% better than the benchmark. Recali-

bration is e�cient in terms of maximising the performance of each individual expert.

Turning to the GR regression results with the recalibrated experts, the recursive weight

combination, row 10, performs well with around a 33% improvement over the benchmark.

The equal weight GR regression with recalibrated experts, row 11, has a slightly weaker

performance at around 30% better than the benchmark. Regardless of the weights, neither

GR regression combination based on recalibrated experts matches the performance of the

recalibrated Bernanke expert.

Digging deeper into the real-time performance, Table 2 displays recursively computed

RMSFE (not relative to the benchmark) for the expanding evaluation sample from 2000:2
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to the dates shown in the first column. For example, row 2 shows the RMSFE computed

using data from 2000:2 to 2001:1 for various combinations. The consecutive columns (left

to right) refer to the GR Regression, the GR Regression with Equal Weights (GR EW),

the Copula Combination (CC) and the Copula Combination with Equal Weights (CC

EW). The best performing combination for each row is marked in bold. (Figure A2 in the

not for publication appendix plots the RMSFE for the four combinations shown in Table

2.) There are three main findings. First, the copula point combinations dominate the

GR regressions, with (recursive) gains in performance over the benchmark occurring both

before and after the financial crisis. The GR approach is the best combination method

only for the sample to 2001:1; thereafter the copula combination is superior. Second,

copula combination performs less well with equal weights than with recursive weights

throughout, with little time variation after 2003 in the performance gap between the two.

Third, the equal weights GR regression outperforms the recursive weights variant for much

of the evaluation sample, although the recursive weights benchmark performs relatively

well from 2013.

The recursively computed RMSFE for the recalibrated experts are displayed in Table

3, with the second column displaying the results from the copula combination to facilitate

comparisons. The subsequent columns (left to right) refer to the recalibrated Taylor

expert, the recalibrated Bernanke expert, the GR regression with recalibrated experts

and recursive weights and the GR regression with recalibrated experts and equal weights.

(Figure A3 in the not for publication appendix plots the RMSFE for the five combinations

shown in Table 3.) For all recursive evaluations ending in the dates shown in the first

column, the copula point combination dominates the GR regression with recalibrated

experts, regardless of whether the latter uses recursive or equal weights. The GR regression

with recursive weights and recalibrated experts performs better than the variant with equal
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Table 2: Recursive RMSFE, Federal Funds Rate, by Combination

GR GR EW CC CC EW

2001:1 0.5502 0.8407 0.7289 0.8943
2002:1 1.0653 0.7737 0.6593 0.7977
2003:1 0.9080 0.6644 0.5519 0.6613
2004:1 0.7961 0.6126 0.4873 0.5849
2005:1 0.7533 0.6711 0.4661 0.5457
2006:1 0.6974 0.6216 0.5046 0.6226
2007:1 0.6583 0.5847 0.4715 0.5873
2008:1 0.6721 0.5992 0.5270 0.6422
2009:1 0.9323 0.9115 0.8147 0.9807
2010:1 1.2655 1.1286 0.7737 0.9325
2011:1 1.2433 1.2226 0.7388 0.8898
2012:1 1.2091 1.2209 0.7075 0.8521
2013:1 1.1647 1.2028 0.6799 0.8190
2014:1 1.1284 1.1765 0.6556 0.7893
2015:1 1.1408 1.1558 0.6353 0.7632

weights in the aftermath of the financial crisis but otherwise they are fairly evenly matched

in general. The recalibrated Bernanke expert performs particularly well—nearly always

superior to the GR regression with recursive weights and recalibrated experts. This expert

also outperforms the GR combinations shown in the previous table.

Summarising the results based on recursive RMSFE, the copula point combinations

perform consistently well, with strong evidence that equal weights gives weaker predictive

performance. Whether the GR regression uses equal or recursive weights with naive ex-

perts makes little di↵erence by the end of the evaluation, but there are times when the

equal weights variant is the better of the two. When using recalibrated experts, the GR

regression does better, but not as well as the recalibrated Bernanke expert typically, and

not as well as the copula point combination.
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Table 3: Recursive RMSFE, Federal Funds Rate, Recalibrated Experts and Combinations

CC Recal Taylor Recal Berna GR Recal GR Recal EW

2001:1 0.7289 0.3732 0.7571 0.3865 0.4809
2002:1 0.6593 1.3931 0.8045 1.0306 1.0386
2003:1 0.5519 1.1458 0.8796 0.9748 0.9064
2004:1 0.4873 1.0452 0.7636 0.8501 0.8060
2005:1 0.4661 1.2151 0.7062 0.7784 0.8049
2006:1 0.5046 1.3483 0.7109 0.7269 0.7815
2007:1 0.4715 1.3268 0.6649 0.6755 0.7484
2008:1 0.5270 1.3105 0.6798 0.6987 0.7791
2009:1 0.8147 1.4761 0.9288 0.9544 1.0226
2010:1 0.7737 1.4006 0.8815 0.9056 0.9704
2011:1 0.7388 1.3357 0.8406 0.8636 0.9253
2012:1 0.7075 1.2803 0.8057 0.8278 0.8871
2013:1 0.6799 1.2302 0.7750 0.7959 0.8526
2014:1 0.6556 1.1860 0.7493 0.7690 0.8231
2015:1 0.6353 1.1506 0.7407 0.7570 0.8059
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4 Application: Real US GDP Growth Predictions

In the second application, we consider point combinations by the decision maker for quar-

terly real US GDP growth for the target dates 1992:4 to 2017:1, based on the predictions

of two experts.

4.1 Forecasts from the Experts

Motivated by earlier research by Adrian, Boyarchenko and Giannone (2018) on vulnerable

growth, the experts use variants of the following model:

Y Gt = �i,1 + �i,FCFCt�1 + �i,Y GY Gt�1 + ⌘i,t (7)

where Y Gt and FCt denote real output growth (annualised, quarter on quarter) and an in-

dicator of financial conditions in time t, respectively. The first of the two experts, indexed

by i = 1, uses credit spreads to capture financial conditions and ignores the autoregressive

term, so that �1,Y G = 0. We refer to this expert as Expert FC. The second expert,

indexed by i = 2, ignores financial conditions but allows for persistence in output growth,

with �2,FC = 0. We refer to this as Expert AR. The unrestricted parameters for each

expert were calibrated using a copula modelling approach. In both cases, the param-

eters were based on sample data from 1973:1 to 2017:1, with (kernel-smoothed) ECDF

marginals for the target and the explanatory variable. For Expert AR, the dependence

between the target variable and the explanatory variable was fitted with a Gaussian cop-

ula, giving an estimated (linear, Spearman’s) dependence parameter of 0.3575. For Expert

FC, dependence was fitted using a rotated Clayton copula, with parameter 0.3358. This

Archimedean copula gives asymmetric dependence, with stronger (negative) dependence

in the left tail. Put di↵erently, Expert FC allows the fitted dependence between output
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growth and financial conditions to be stronger during instances of low output growth. The

forecasts from both experts were recalibrated using the (full sample) marginal distribu-

tion for the target variable. In contrast, Adrian, Boyarchenko and Giannone (2018) use a

quantile regression framework to capture asymmetry in the forecast densities for output

growth conditional on financial conditions and do not consider forecast combinations of

experts who separate dependence from marginal distributions.

We emphasise that, unlike our previous application but like the analysis by Adrian,

Boyarchenko and Giannone, (2018) this is not a real-time forecasting exercise. Neverthe-

less, our forecast evaluation uses recursively computed RMSFE. Data considerations are

discussed in the data appendix.

Our two experts make quarterly predictions for forecast target dates from 1992:4 to

2017:1. All forecasts are one step ahead—predictions made for the t observation based on

information sets containing observations dated time t�1 and earlier. (The decision maker

estimates combination weights based on evaluations to t� 1.) Figure 5 plots the recursive

predictions, together with the target variable, real US output growth (black line). Both

experts track the conditional mean of the series, but with considerable volatility in the case

of Expert AR (blue line). Expert FC (red line) captures the low frequency movements

in the target variable particularly well and responds to the onset of the recent financial

crisis in a timely manner. Expert AR captures the depth of the trough but the forecasts

(naturally) lag the target variable.

4.2 Forecast Combination and Estimation

The decision maker recursively combines the forecasts from the two experts using an ex-

panding window for combination weight estimation from 1992:4 to 2016:4, with weight

training from 1973:2 to 1992:3. The heterogeneous marginal distributions for the target
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variable and the individual forecasts from the two experts are fitted using the respective

kernel-smoothed ECDFs using an expanding window.4 For illustrative purposes, Figure

6 plots the corresponding Probability Density Function (PDF, black line) based on the

output growth data to 2016:4. Figure 6 also plots the PDFs for Expert FC (red line)

and Expert AR (blue line). The marginal for output growth displays a number of charac-

teristics identified by Adrian, Boyarchenko and Giannone (2018). In particular, there is

evidence of non-normality in the upper (right) tail and the lower (left) tail, with the latter

being relatively high mass and revealing the impact of sharp contractions—vulnerability.

The upper tail is somewhat sparse, with a noticeable bulge slightly to the right of the

mode—reflecting the pronounced upswing of the business cycle in the sample data. The

marginal for Expert AR matches the tails for the target variable, but with less mass near

the peak, and little sign of non-normality. The marginal for Expert FC has left skew but

less mass in both tails than for output growth. For the target variable and the predictions

from Expert FC, the null hypothesis of normality is rejected at the 1% significance level

for the Shapiro-Wilk test. The predictions from Expert AR are approximately normally

distributed.

Recall that for each forecast origin, the decision maker constructs the (univariate)

Probability Integral Transforms (PITS) and converts each PITS series to be a Gaussian-

distributed pseudo variable via the inverse CDF. Then, the dependence parameters (of

the Gaussian copula) are estimated from the pseudo regression, Equation (5). The copula

point combination is mapped onto the unit interval using the normal CDF and then onto

the observable scale for output growth using the inverse of the kernel-smoothed ECDF.

4The not for publication appendix contains results for the homogeneous marginals case.
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4.3 Results

The forecast evaluations use target data for US real quarterly output growth from 1992:4

to 2017:1. Figure 7 displays the predictions from the copula point combination (red line),

together with the GR regression benchmark (blue line). The copula point combination has

a zero intercept, bounded weights (estimated recursively, on the unit interval) and weights

that sum to one across experts. Eyeballing the forecasts, the copula methodology provides

fairly accurate point predictions of the low frequency shifts in the conditional mean of US

output growth (black line). During the financial crisis, the magnitude of the slump in the

observed data is just over twice the size of the copula point combination forecast. The

GR regression benchmark performs slightly less well throughout the evaluation sample,

with a tendency towards greater volatility for moderate sized fluctuations than from the

copula combination. Nevertheless, the two combination forecasts are fairly closely matched

throughout the evaluation. In contrast, the two approaches gave very di↵erent forecasts for

the Federal Funds rate application considered previously, where the marginal distributions

exhibited stronger departures from symmetry.

Figure 8 displays the recursively estimated weights from the copula point combination

(solid lines) and the benchmark GR regression (dotted lines). The GR regression weights

for Expert FC (red dotted line) display greater time variation than for the same expert

with the copula point combination (solid red line). There is a pronounced step up in the

benchmark combination weight on this expert during the financial crisis, reflecting the

importance of financial conditions during that era. In general, the copula point combi-

nation weights exhibit greater stability, with greater weight on Expert FC, and with the

weight on this expert increasing non-monontonically throughout the sample from around

60% to 67%. Regardless of the point combination methodology, the weight on Expert FC

typically exceeds 50%.
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Table 4: Relative RMSFE, Output Growth

Expert/Combination

Granger-Ramanathan (GR) 1.0000
GR Equal Weight (EW) 1.0105
Copula Combination 0.9584 ⇤
Copula Combination EW 0.9697
Expert FC 0.9751
Expert AR 1.2885

As a rough guide, using the Harvey et al. (1997) small-sample adjustment of the Diebold and Mariano
(1995) test, ⇤ denotes 5% and ⇤⇤ 1% significance in the two-sided test against the GR benchmark,

respectively.

Table 4 displays end-evaluation relative RMSFE results for the combinations and ex-

perts, with the GR regression as a benchmark (with unrestricted recursively estimated

parameters). The equal weight GR regression, row 3, has a 1% higher RMSFE than the

benchmark. The copula point combination, row 4, provides the best RMSFE, with a

performance gain of just over 4% relative to the benchmark. Recall that this version of

the copula point combination has restricted coe�cients. Relaxing these restrictions lifts

the relative RMSFE by around 5% relative to the benchmark. The equal weight copula

combination, row 5, is slightly less e↵ective than the recursive weight equivalent, with

a performance gap of around 1%. Expert FC, row 6, outperforms the GR regression

by around 2.5%. Expert AR, row 7, is inferior to the benchmark, with a performance

di↵erence of approximately 29%. In this forecasting output growth application, the re-

cursive copula combination is the best of this set of experts and combinations, but the

performance gain is modest.

Table 5 displays the recursively computed RMSFEs (not normalised) for expanding

window forecast evaluations, starting in 1992:4 and ending in the dates shown in the

first column. The remaining four columns refer to the benchmark GR Regression, the
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GR Regression with Equal Weights (GR EW), the Copula Combination (CC) and the

Copula Combination with Equal Weights (CC EW), respectively. The best performing

combination for each row is marked in bold. (Figure A4 in the not for publication appendix

plots the four combinations shown in Table 5.) There are three main findings. First, the

recursive weight copula point combination typically provides the lowest RMSFE but the

performance gain is often modest—around 1% for much of the pre-crisis sample, rising to

around 4% by the end of the evaluation. Second, the equal weight copula combination

performs less well than the recursive weight version for most of the evaluation. Third,

by the end of the sample, recursive weights dominate their equal weight counterparts for

both the copula point combinations and the GR regressions.

Summarising the results based on recursive RMSFE for this forecasting output growth

application, the copula point combinations perform somewhat better than the benchmark,

with recursive weights typically giving better predictive performance than equal weights.

But the performance gain over the benchmark GR regression is much smaller than for the

Federal Funds rate application.

5 Conclusions

Our methodology for copula point combinations builds directly on the GR regression

approach by allowing for asymmetrically distributed variables. More general dependence

structures between the experts’ forecasts and the target variable are feasible and should be

explored in subsequent research with copula combinations. One such appealing extension

would be to allow the combination dependence to vary in the tails of the distributions.

Hierarchical Archimedean copulas o↵er a feasible route in that direction, extending the

framework proposed in this paper.
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Table 5: Recursive RMSFE, Economic Growth, by Combination

GR GR EW CC CC EW

1993:1 2.5852 2.6180 2.4998 2.4740

1994:1 1.8850 1.9829 1.8358 1.8393
1995:1 1.9997 2.1682 1.9560 1.9898
1996:1 1.7704 1.9086 1.7582 1.7656
1997:1 1.8565 2.0061 1.8310 1.8617
1998:1 1.8036 1.9482 1.7769 1.8126
1999:1 1.7791 1.8975 1.7604 1.7843
2000:1 1.8737 1.9991 1.8531 1.8894
2001:1 2.2337 2.4029 2.1989 2.2658
2002:1 2.2441 2.4080 2.2149 2.2681
2003:1 2.1638 2.3086 2.1327 2.1837
2004:1 2.1615 2.3100 2.1394 2.1818
2005:1 2.0759 2.2183 2.0547 2.0956
2006:1 2.0330 2.1790 2.0104 2.0555
2007:1 2.0534 2.1951 2.0250 2.0723
2008:1 2.0877 2.1974 2.0560 2.0987
2009:1 2.3618 2.3363 2.2465 2.2624
2010:1 2.3122 2.3024 2.1998 2.2209
2011:1 2.3212 2.3122 2.2124 2.2312
2012:1 2.3008 2.3100 2.1905 2.2164
2013:1 2.2599 2.2661 2.1573 2.1804
2014:1 2.2911 2.3054 2.1917 2.2152
2015:1 2.2556 2.2802 2.1556 2.1851
2016:1 2.2095 2.2321 2.1149 2.1429
2017:1 2.1805 2.2034 2.0898 2.1145
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Data Appendix

A. Federal Funds Rate Application

We use the same data as Bernanke (2015). The data can be downloaded from

Brookings. The quarterly seasonally adjusted real GDP, nominal GDP, PCE and core

PCE variables come from the Federal Reserve Bank of Philadelphia’s Real-Time Data

Center for Macroeconomists, which maintains the database containing historical vintages

of these series. Inflation is the year-on-year change between t� 5 and t� 1 corresponding

to the latest available vintage of data.

The Center also publishes the Federal Reserve Greenbook estimates of the output gap

for 1987 to 2006. For 2007 to 2009, Bernanke uses the Greenbook output gap estimates

available from Federal Reserve Board of Governors. Bernanke uses the output gap es-

timates prepared for the first FOMC meeting of each quarter. For the post-2009 data,

Bernanke calculates a real-time output gap using the CBO’s estimates of potential output

and the first estimates of real GDP from the Bureau of Economic Analysis. For the 1996:1

vintage, the observation for 1995:1 is missing, due to a delayed data release caused by a

US federal government shutdown. In addition, the revised estimate is used rather than

the real-time estimates for 2013:3 to 2013:4, due to comprehensive revisions by the BEA.

The Federal Reserve Bank of St Louis’ database, ALFRED, provides di↵erent vintages of

estimates of potential output from the Congressional Budget O�ce (CBO). These vintages

are compiled from the historical releases of the CBO’s Budget and Economic Outlook.

The quarterly Federal Funds rate can be downloaded from FRED and is the average

of the daily e↵ective rate (not seasonally adjusted) in percent.

The Taylor expert uses the GDP deflator as the measure of inflation. The Bernanke

expert, however, uses the FOMC’s preferred real-time measure of inflation which is based
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on core personal consumption expenditure (PCE), excluding volatile food and energy

prices. In addition, the Bernanke expert also uses a higher weight on the output gap, a

coe�cient of 1 rather than 0.5 used by the Taylor expert.

B. GDP Growth Application

The (revised) measure of economic activity for the target variable, following Adrian et

al (2018), is the quarterly seasonally adjusted Real Gross Domestic Product as a percentage

change from preceding period (annualised).

Our two experts use di↵erent explanatory variables to predict real output growth.

Expert FC uses the spread between the Baa and Aaa corporate bonds, available from the

Federal Reserve Bank of St Louis’ FRED database (the observation from the third month

of each quarter). Expert AR uses lagged real output growth as the explanatory variable.
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