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mesh of the observation grid shrinks to zero asymptotically. In a first step we recover the Laplace
transform of the volatility occupation measure from the discrete observations of the process and
then in a second step we invert the Laplace transform via a regularized kernel to estimate the
(stochastic) volatility occupation measure. We derive the order of magnitude of the estimation
error locally uniformly in space and we use the result to estimate nonparametrically the quan-
tiles associated with the volatility occupation measure.

Keywords: Occupation time, Laplace transform, stochastic volatility, ill-posed problems, reg-
ularization, quantiles, nonparametric estimation, high-frequency data, stable convergence.

§

We would like to thank Tim Bollerslev, Nathalie Eisenbaum, Jean Jacod, Andrew Patton and Philip Protter for

helpful discussions. Todorov’s work was partially supported by NSF grant SES-0957330.

†

Department of Economics, Duke University, Durham, NC 27708; e-mail: jl410@duke.edu.

‡

Department of Finance, Kellogg School of Management, Northwestern University, Evanston, IL 60208; e-mail:

v-todorov@northwestern.edu.

§

Department of Economics, Duke University, Durham, NC 27708; e-mail: george.tauchen@duke.edu.



1 Introduction

Continuous-time Itô semimartingales are used widely to model stochastic processes in various areas

such as finance. The general Itô semimartingale process is given by

X
t

= X0 +
Z

t

0
Æ

s

ds +
Z

t

0
æ

s

dW
s

+ J
t

, (1)

where Æ
t

and æ
t

are processes with càdlàg paths, W
t

is a Brownian motion and J
t

is a jump process;

formal conditions are given in the next section. Inference for the model in (1) in the general case

(either in a parametric or nonparametric context) is quite complicated because of the many “layers

of latency”, e.g., as typical in financial applications, æ
t

and J
t

can have randomness not captured

by X
t

.

When X is sampled discretely but with mesh of the observation grid shrinking to zero, i.e., high-

frequency data on X are available, then the pathwise diÆerences in the behavior of the diÆerent

components in (1) can be used to nonparametrically separate them. Indeed, various techniques

have been already proposed to estimate nonparametrically the integrated variance,
R

T

0 æ2
s

ds over

a specific interval [0, T ], see e.g., BarndorÆ-Nielsen and Shephard (2006) and Mancini (2009), and

more generally integrated variance measures of the form
R

T

0 g(æ2
s

)ds, where g(·) is a continuous

function with polynomial growth (and there are much more smoothness requirements on g(·) needed

to determine the rate of convergence); see Theorems 3.4.1 and 9.4.1 in Jacod and Protter (2012).

This paper extends the existing literature on high-frequency nonparametric volatility estimation

by developing and applying a nonparametric jump-robust estimate of the occupation time of the

latent variance process (V
t

)
t∏0 ¥ (æ2

t

)
t∏0 where the variance occupation time is defined by

F
t

(x) =
Z

t

0
1
{V

s

∑x}

ds, 8x > 0, t 2 [0, T ] . (2)

Evidently, the right-hand side of (2) is of the form
R

t

0 g(V
s

)ds with g(u) = 1
{u∑x}

, which unlike

earlier work is a discontinuous function.

If F
t

(·) is absolutely continuous with respect to the Lebesgue measure, its derivative f
t

(·), i.e.

the volatility occupation density, is well defined. By the Lebesgue diÆerentiation theorem, the

occupation density can be equivalently defined as

f
t

(x) = lim
≤#0

1
2≤

(F
t

(x + ≤)° F
t

(x° ≤)) . (3)

The occupation time of the volatility process “summarizes” in a convenient way information

regarding the volatility behavior over the given interval of time. Indeed, for any bounded (or
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non-negative) Borel function g(·), see e.g., Theorem 6.4 of Geman and Horowitz (1980), we have
Z

t

0
g(V

s

)ds =
Z

R+

g(x)f
t

(x)dx =
Z

R+

g(x)dF
t

(x). (4)

Thus, the occupation time can be considered as the pathwise analogue of the cumulative distribu-

tion function. We can further invert the volatility occupation time and compute estimates of the

quantiles of the trajectory of volatility process over the interval of time.

Our interest in occupation times stems from the fact that they are natural measures of risk, par-

ticularly in nonstationary settings where invariant distributions do not exist, see e.g., the discussion

in Bandi and Phillips (2003). Indeed, there has been a significant interest (both theoretically and in

practice) in pricing options based on the occupation times of an underlying asset, see e.g., Dassios

(1995) and Yor (1995) and references therein. Here, we show how to measure nonparametrically

occupation times associated with the volatility risk of the price process.

The nonparametric estimation can be summarized as follows. First, we aggregate the high-

frequency data on a fixed time interval into the realized Laplace transform, a function that provides

a consistent (and asymptotically mixture normal) estimate of the empirical Laplace transform of

the spot variance over the given interval. This statistic eÆectively deconvolutes the hidden volatility

process from the Gaussian noise (the Brownian motion W
t

in (1)) as well as the drift and jump

components Æ
t

and J
t

. On a second step we use a regularized kernel to invert the realized Laplace

transform, which in turn yields a nonparametric estimate of the volatility occupation time. As

a by-product, we can compute estimates of the corresponding quantiles of the actual path of the

volatility process over the fixed time interval.

The statistical estimation problem here diÆers significantly from the usual problem of integrated

volatility estimation considered thus far in the literature, see e.g., Jacod and Protter (2012) and

references therein. Firstly, for volatility occupation time estimation, unlike previous work, the

function of volatility g(·) in (4) is discontinuous. As a result, we show that the precision of recovering

the volatility occupation time depends on the smoothness of the volatility trajectories, which in

turn depends on the type of volatility model, e.g., presence or not of volatility jumps as well as

their activity. More generally, our analysis shows, constructively, that all spatial information about

the volatility trajectory can be recovered nonparametrically from high-frequency observations.

We can further compare our analysis here with Todorov and Tauchen (2012a), where somewhat

analogous steps are followed to estimate the invariant distribution of the volatility process, but

there are fundamental diÆerences between the current paper and Todorov and Tauchen (2012a).

In the current paper, unlike Todorov and Tauchen (2012a), the time span of the data is fixed

and hence we are interested in pathwise properties of the latent volatility process over the fixed
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time interval. Thus, we do not need and we do not impose here requirements on the existence

of invariant distribution of the volatility process as well as mixing type conditions. In fact, the

volatility process in our setup can be nonstationary. Second, and quite importantly, the object of

interest here is a random quantity, mainly the occupation measure of the volatility process, and

hence the regularization error is stochastic and not deterministic as is the case when we estimate

the invariant density of the volatility.

Finally, our inference for the volatility occupation time can be compared with the estimation of

occupation times (and densities) of recurrent Markov diÆusion processes from discrete observations

of the process, see e.g., Florens-Zmirou (1993) and Bandi and Phillips (2003). The main diÆerence

is that here the state vector, and therefore the stochastic volatility, is not fully observed. Hence

we need to apply a very diÆerent estimation strategy that entails recovery of the empirical Laplace

transform of volatility and its inverse, while the above-mentioned papers make use of standard

nonparametric kernel-based estimators.

In the empirical application to financial data sets we document an interesting pattern: the

interquartile range of log variance is unrelated to the level of the variance, unlike the interquantile

ranges of other transforms of the variance (like the identity and the square root). This finding is

consistent with volatility models in which the log-variance process has homoscedastic innovations.

More generally, our estimates of the volatility occupation times provide an important tool for

analyzing characteristics of the actual latent stochastic volatility process over a given interval of

time.

The paper is organized as follows. In Section 2 we introduce the formal setup and state our

assumptions. In Section 3 we develop our estimator of the volatility occupation measure, derive its

asymptotic properties, and use it to estimate the associated volatility quantiles. Section 4 reports

results from a Monte Carlo study of our estimation technique. In Section 5 we use our estimator

to study the volatility behavior of two financial data sets: Euro/$ exchange rate futures and S&P

500 index futures. Section 6 concludes. Section 7 contains all proofs.

2 Setup

2.1 The Underlying Process

We start with introducing the formal setup. The process X in (1) is defined on a filtered probability

space (≠,F , (F
t

)
t∏0, P) with Æ

t

and æ
t

being adapted to the filtration. Further, the jump component
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J
t

is defined as

J
t

=
Z

t

0

Z

R

°

± (s, z) 1
{|±(s,z)|∑1}

¢ °

µ° ∫
¢

(ds, dz) +
Z

t

0

Z

R

°

± (s, z) 1
{|±(s,z)|>1}

¢

µ (ds, dz) , (5)

where µ is a Poisson measure on R+ £ R with compensator ∫ of the form ∫ (dt, dz) = dt ≠ ∏ (dz)

for some æ-finite measure ∏ on R and ± : ≠ £ R+ £ R 7! R is a predictable function. Regularity

conditions on X
t

are collected below.

Assumption A. For some constant r 2 (0, 2) and C > 0, we have

A1. X is an Itô semimartingale given by (1) and (5), and |± (!, t, z)| ^ 1 ∑ °
m

(z) for all

(!, t, z) with t ∑ T
m

, where (T
m

)
m∏1 is a localizing sequence of stopping times and each °

m

is a

nonnegative function on R satisfying
R

°
m

(z)r ∏ (dz) < 1.

A2. We have V
t

> 0 for all t 2 [0, T ] a.s. and both V
t

and V °1
t

are locally bounded.

A3. The process æ
t

is also an Itô semimartingale with the form

æ
t

= æ0 +
Z

t

0
Æ̃

s

ds +
Z

t

0
v
s

dW
s

+
Z

t

0
v0
s

dW 0

s

+
Z

t

0

Z

R
±0 (s, z) µ̃0 (ds, dz) ,

where W 0 is a Brownian motion orthogonal to W , µ0 is a Poisson measure with compensator

∫ 0 (dt, dz) = dt≠ ∏0 (dz) for some æ-finite measure ∏0 on R, µ̃0 = µ0 ° ∫ 0 and ±0 : ≠£ R+ £ R 7! R
is a predictable function. We have for every t,

E
µ

|Æ
t

|2 + |Æ̃
t

|2 + |æ
t

|2 + |v
t

|2 +
Ø

Øv0
t

Ø

Ø

2 +
Z

R

Ø

Ø±0 (t, z)
Ø

Ø

2
∏0 (dz)

∂

∑ C.

A4. For every t and s,

E
µ

|Æ
t

° Æ
s

|2 + |v
t

° v
s

|2 +
Ø

Øv0
t

° v0
s

Ø

Ø

2 +
Z

R

°

±0 (t, z)° ±0 (s, z)
¢2

∏0 (dz)
∂

∑ C |t° s| .

Assumptions A1-A3 impose very mild regularities on the process X and are standard in the

literature on discretized processes; see Jacod and Protter (2012) (Assumption A2 can be also

further relaxed). Assumption A4 imposes some additional smoothness on the coe±cients; but

this assumption is also mild. Importantly, Assumption A imposes no parametric structure on the

underlying process, allowing for jumps in X
t

and æ
t

, and dependence between various components

in an arbitrary manner. The constant r occurring in A1 describes the concentration of small jumps;

the smaller r, the stronger the assumption. Most results in this paper hold as soon as r < 2, except

for Theorem 1, which requires a stronger assumption with r ∑ 1.
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2.2 Occupation Times

We next collect some assumptions on the volatility occupation time and its occupation density.

Assumption B. Let (T
m

)
m∏1 be a localizing sequence of stopping times and ∞ 2 [0, 1] be a

constant.

B1. Almost surely, the function x 7! F
t

(x) is diÆerentiable with derivative f
t

(x) for all

t 2 [0, T ].

B2. For any compact K Ω (0,1), sup
x2K

E [f
T^T

m

(x)] < 1.

B3. For any compact K Ω (0,1), there exist constants (C
m

)
m∏1 such that for all x, y 2 K, we

have E
£

sup
t∑T

|f
t^T

m

(x)° f
t^T

m

(y)|
§

∑ C
m

|x° y|∞ .

Assumption B1 imposes the existence of the occupation density of V
t

. Assumption B2 imposes

some mild integrability on the occupation density and is satisfied as soon as the probability den-

sity of V
t

is uniformly bounded in the spatial variable and over t 2 [0, T ] (which is the case for

typical volatility models). Assumption B3 imposes Hölder continuity for the occupation density in

expectation. Assumption B3 is implied by Assumption B2 if we take ∞ = 0; taking ∞ > 0 slightly

improves the results in Theorem 2 below. Results on the existence and the continuity of occupation

density can be studied using various methods, see e.g., Geman and Horowitz (1980), Protter (2004),

Marcus and Rosen (2006) and Eisenbaum and Kaspi (2007) and the many references therein.

We sometimes need to strengthen Assumptions B2 and B3 as follows.

Assumption C. Let (T
m

)
m∏1 be a localizing sequence of stopping times and ∞̃ > " > 0 be

constants. We have Assumption B1, as well as the following.

C1. For any compact K Ω (0,1), sup
x2K

E
h

f
T^T

m

(x)1+"

i

< 1.

C2. For any compact K Ω (0,1), there exist constants (C
m

)
m∏1 such that for all x, y 2 K, we

have E
h

sup
t∑T

|f
t^T

m

(x)° f
t^T

m

(y)|1+"

i

∑ C
m

|x° y|∞̃ .

By Jensen’s inequality, Assumption C is stronger than Assumption B. Below, we provide some

primitive conditions for Assumption C that are easy to verify and cover many volatility models

used in financial applications (although this set of conditions is far from exhaustive).

Remark. We note that Assumptions B3 and C2 involve expectations and for establishing pathwise

Hölder continuity in the spatial argument of the occupation density (via Kolmogorov’s continuity

theorem or some metric entropy condition, see e.g., Ledoux and Talagrand (1991)), one typically

needs a stronger condition than those in B3 and C2.
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2.3 Some primitive conditions for Assumption C

We consider the following general class of jump-diÆusion volatility models:

dV
t

= a
t

dt + s (V
t

) dB
t

+ dJ
V,t

, (6)

where a
t

is a locally bounded predictable process, B
t

is a standard Brownian motion, s (·) is a

deterministic function and J
V,t

is a pure jump process. This example includes many volatility

models encountered in applications.

It is helpful to consider the Lamperti transform of V
t

. More precisely, we set eV
t

= g (V
t

), where

g (·) is any primitive of the function 1/s (·), i.e., g (x) =
R

x

du/s (u) and the constant of integration

is irrelevant. By Itô’s formula, the continuous martingale part of eV
t

is B
t

. Lemma 1(a) below shows

that under some regularity conditions, the transformed process eV
t

satisfies Assumption C. To prove

Lemma 1(a) we compute the occupation density of eV
t

explicitly in terms of stochastic integrals

via the Meyer-Tanaka formula (this is possible because the continuous martingale part of eV
t

is a

Brownian motion) and we then bound the corresponding spatial increments. Then Lemma 1(b)

shows that V
t

inherits the same property, i.e., satisfies Assumption C, provided the transformation

g (·) is smooth enough.

Lemma 1 (a) Let k > 1. Consider a process Ṽ
t

with the following form

Ṽ
t

= Ṽ0 +
Z

t

0
ã

s

ds + B
t

+
Z

t

0

Z

R
±̃ (s, z)µ (ds, dz) (7)

where ã
t

is a locally bounded predictable process, B
t

is a Brownian motion, ±̃ (·) is a predictable

function. Suppose that for some constant C > 0,

(i)
Ø

Ø

Ø

±̃ (!, t, z)
Ø

Ø

Ø

∑ °̃
m

(z) for all (!, t, z) with t ∑ S
m

, where (S
m

)
m∏1 is a localizing sequence of

stopping times and each °̃
m

is a nonnegative deterministic function satisfying
Z

R

≥

°̃
m

(z)Ø + °̃
m

(z)k

¥

∏ (dz) < 1, for some Ø 2 (0, 1).

(ii) The probability density function of Ṽ
t

is bounded on compact subsets of R uniformly in

t 2 [0, T ].

(iii) The process eV
t

is locally bounded.

Then the occupation density of Ṽ
t

, denoted by f̃
t

(·), exists. Moreover, for any compact K̃ Ω R,

there exist a localizing sequence of stopping times (T
m

)
m∏1, such that for any x, y 2 K̃, we have

E
h

f̃
T^T

m

(x)k

i

∑ K and E
∑

sup
t∑T^T

m

Ø

Ø

Ø

f̃
t

(x)° f̃
t

(y)
Ø

Ø

Ø

k

∏

∑ K |x° y|(1°Ø)k^(1/2) for some K > 0.
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(b) Suppose, in addition, that eV
t

= g (V
t

) for some continuously diÆerentiable strictly increasing

function g : R+ 7! R. Also suppose that for some ∞̄ 2 (0, 1] and any compact K Ω (0,1), there

exists some constant C > 0, such that |g0 (x)° g0 (y)| ∑ C |x° y|∞̄ for all x, y 2 K. Then V
t

satisfies Assumption C.

3 Estimating Volatility Occupation Times

We proceed next with our estimation results. We suppose that the process X
t

is observed at discrete

times i¢
n

, i = 0, 1, . . . , on [0, T ] for fixed T > 0, with the time lag ¢
n

! 0 asymptotically when

n ! 1. Our strategy for estimating the occupation time F
T

(·) is to first estimate its Laplace

transform and then to invert the latter.

We define the empirical volatility Laplace transform over the interval [0, T ] as

L
T

(u) =
Z

T

0
e°uV

sds =
Z

R+

e°uxf
T

(x)dx, u > 0,

where the second equality above follows from the occupation density formula given in (4). Then,

by Fubini’s theorem, the Laplace transform of the volatility occupation time is given by
L

T

(u)
u

=
Z

R+

e°uxF
T

(x)dx.

Following Todorov and Tauchen (2012b), we estimate the empirical volatility Laplace transform

L
T

(u) using the realized Laplace transform of volatility defined as

bL
T,n

(u) = ¢
n

[T/¢
n

]
X

i=1

cos
≥p

2u¢n

i

X/¢1/2
n

¥

, u 2 R+. (8)

Todorov and Tauchen (2012b) show that bL
T,n

(·) P°! L
T

(·) under the locally uniform topology on

R+ with an associated CLT. Consequently, u°1
bL
T,n

(u) P°! u°1L
T

(u) for each u 2 (0,1). This

result however does not su±ce for our purposes as we need the Laplace transform on the whole R+.

Therefore, in Theorems 1 and 3 below we derive the limiting behavior of bL
T,n

(u) as an element

in L1(R+, w) for w : R+ ! R+ being some weight function (which in the case of Theorem 3 can

depend on n).

Once the Laplace transform of the volatility occupation time is recovered from the data, in the

next step we need to invert it in order to estimate F
T

(x). Inverting a Laplace transform, however,

is an ill-posed problem and hence requires a regularization (Tikhonov and Arsenin (1977)). Here,

we adopt an approach proposed by Kryzhniy (2003a,b) and implement the following regularized

inversion of u°1L
T

(u):

F
T,R

(x) =
Z

1

0
L

T

(u)¶(R, ux)
du

u
, x > 0, (9)
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where R > 0 is a regularization parameter and the inversion kernel ¶ (R, x) is defined as

¶ (R, x) =
4p
2º2

≥

sinh (ºR/2)
Z

1

0

p
s cos (R ln (s))

s2 + 1
sin (xs) ds

+ cosh (ºR/2)
Z

1

0

p
s sin (R ln (s))

s2 + 1
sin (xs) ds

¥

.

Our estimator for the occupation time F
T

(x) is constructed by simply replacing L
T

(u) in F
T,R

(x)

with bL
T,n

(u), i.e., it is given by

bF
T,n,R

(x) =
Z

1

0

bL
T,n

(u)¶(R, ux)
du

u
=

Z

1

°1

bL
T,n

(ez)¶(R, xez)dz, x > 0. (10)

Todorov and Tauchen (2012a) use a similar strategy to estimate the invariant probability density

of the spot volatility process (which also implies that in the above mentioned work, unlike here,

T ! 1). However, the problem here is more complicated, since the estimand F
T

(·) itself is a

random function, which in particular renders the regularization error random, whereas in Todorov

and Tauchen (2012a) and Kryzhniy (2003a,b), the object of interest is deterministic.

We now discuss the asymptotic properties of bF
T,n,R

(x) when ¢
n

! 0. We first consider the

case with the regularization parameter R fixed. In this case, a central limit theorem for bF
T,n,R

(x)

is available for fixed x > 0. As a matter of fact, it is not much harder to prove a more general

result which has interest of its own. The notation L-s°! indicates stable convergence in law.

Theorem 1 Suppose that Assumption A holds with some r 2 (0, 1]. Let w : R+ 7! R be a Borel

function such that
R

1

0 (u _ 1) |w (u)| du < 1. Then

(a)

¢°1/2
n

Z

1

0

≥

bL
T,n

(u)° L
T

(u)
¥

w (u) du
L-s°!

Z

1

0
ª (u)w (u) du, (11)

where (ª (u))
u2R+

is defined on an extension of the probability space (≠,F , P) and, condition-

ally on F , is a centered Gaussian process with covariance function

ß
T

(u, v) =
1
2

Z

T

0

≥

e°(pu+
p

v)2
V

s + e°(pu°

p

v)2
V

s ° 2e°(u+v)V
s

¥

ds, u, v 2 R+. (12)

(b) The variance of the limit variable in (11) is given by

V AR
T

=
Z

1

0

Z

1

0
ß

T

(u, v)w (u)w (v) dudv, (13)

and a consistent estimator for it is constructed from

[V AR
T,n

=
Z

1

0

Z

1

0

bß
T,n

(u, v)w (u)w (v) dudv, (14)

9



where, with h
u,v

(x) = cos(
p

2ux) cos(
p

2vx)° cos(
p

2 (u + v)x), x 2 R, we set

bß
T,n

(u, v) = ¢
n

[T/¢
n

]
X

i=1

h
u,v

(¢n

i

X/¢1/2
n

). (15)

Theorem 1(a) shows the stable convergence in law of a linear functional of the normalized

empirical volatility Laplace transform. With R > 0 and x > 0 fixed, we set w (u) = ¶ (R, xu) /u

and verify that
R

1

0 (u _ 1) |w (u)| du < 1 by using Lemma 2 in Section 7. Then (11) implies that

¢°1/2
n

≥

bF
T,n,R

(x)° F
T,R

(x)
¥

converges stably in law to
R

1

0 ª (u)w (u) du, which conditionally on

F , is centered Gaussian with variance V AR
T

; the asymptotic variance can be consistently estimated

by [V AR
T,n

as shown in part (b) of the theorem.

We caution that the asymptotic distribution of bF
T,n,R

(x) described in the previous paragraph

is centered at the regularized version of the occupation time instead of the occupation time itself.

Therefore, this result can not be applied to make inference for the occupation time. This said, the

result provides a feasible quantification of the sampling variability of the estimator.

We now turn to the estimation of F
T

(x). It is conceptually useful to decompose the estimation

error bF
T,n,R

(x) ° F
T

(x) into two components: the regularization error F
T,R

(x) ° F
T

(x) and the

sampling error bF
T,n,R

(x)° F
T,R

(x). Theorems 2 and 3 below characterize the order of magnitude

of each component when R !1 asymptotically.

Theorem 2 Let x > 0 be a constant. Suppose that the processes V
t

and V °1
t

are locally bounded.

Under Assumption B, as R !1,

F
T,R

(x)° F
T

(x) = O
p

°

R°1 + R°1°∞ ln (R)
¢

.

Theorem 3 Let ¥ 2 (0, 1/2) be a constant and K Ω (0,1) be compact. Suppose that as n ! 1,

¢
n

! 0 and R
n

!1. Under Assumptions A1-A3,

sup
x2K

Ø

Ø

Ø

bF
T,n,R

n

(x)° F
T,R

n

(x)
Ø

Ø

Ø

= O
p

µ

exp
µ

ºR
n

2

∂

≥

R(r^1)/2
n

¢(r^1)(1/r°1/2)
n

+ R
n

ln (R
n

)¢1/2
n

+ R2
n

¢(1+¥)/2
n

¥

∂

.

Theorem 2 describes the order of magnitude of the regularization error. In the absence of

Assumption B3 (i.e. ∞ = 0), the regularization error is O
p

(R°1 ln (R)); when ∞ > 0, the rate can be

improved to O
p

°

R°1
¢

. Theorem 3 describes the order of magnitude of the sampling error uniformly

over x 2 K, where the set K is assumed bounded both above and away from zero. The parameter

¥ should be set close to 1/2 in order to produce better estimates.
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Combining Theorems 2 and 3 and choosing the regularization parameter properly, we arrive at

the following estimate for the order of magnitude of the estimation error.

Corollary 1 Suppose that Assumptions A1-A3 and B hold. We set R
n

= ± ln
°

¢°1
n

¢

for some

± 2
°

0, 2±̄/º
¢

, where ±̄ ¥ min {(r ^ 1) (1/r ° 1/2) , 1/2}. Then for each x > 0,

bF
T,n,R

n

(x)° F
T

(x) = O
p

°

R°1
n

+ R°1°∞

n

ln (R
n

)
¢

.

Corollary 1 suggests that the rate of convergence of bF
T,n,R

n

(x) towards F
T

(x) is essentially

ln
°

¢°1
n

¢

. This result is in sharp contrast with the fixed-R case (Theorem 1), where the rate of

convergence of bF
T,n,R

(x)°F
T,R

(x) is ¢°1/2
n

. The reason for the relatively slow rate of convergence

is the regularization error. It, in turn, depends on the smoothness of the estimand, i.e., the volatility

occupation time. As we saw in Lemma 1, the occupation density is typically Hölder (in expectation)

of order up to 1/2 and this is determined by the presence of the martingale component in it. The

relatively low level of smoothness of the estimand requires substantial smoothing in the inversion, by

picking R relatively low, and this results in the somewhat slow rate of convergence of our estimator.

By contrast, when the estimand is smoother, e.g., when estimating the invariant volatility density,

one needs “less” regularization and this leads to faster rate of convergence.

Corollary 1 suggests that bF
T,n,R

n

(x) consistently estimates F
T

(x). The convergence can be

further strengthened to be uniform in x, as shown below.

Theorem 4 Suppose the same conditions in Corollary 1 and Assumption C. Then for any compact

K Ω (0,1),

sup
x2K

Ø

Ø

Ø

bF
T,n,R

n

(x)° F
T

(x)
Ø

Ø

Ø

P°! 0.

Remark. A trivial consequence of Theorem 4 is the following

g(+1)T °
Z

R+

g0(x) bF
T,n,R

n

(x)dx
P°!

Z

T

0
g(V

s

)ds,

where g(·) is C1 function with g0(x) = 0 for x near zero or su±ciently large.

Next, we provide a refinement to the functional estimator bF
T,n,R

n

(·). While the occupation time

x 7! F
T

(x) is a pathwise increasing function by design, the proposed estimator bF
T,n,R

n

(·) is not

guaranteed to be monotone. We propose a monotonization of bF
T,n,R

n

(·) via rearrangement, and

as a by-product, consistent estimators of the quantiles of the occupation time. To be precise, for

ø 2 (0, T ), we define the ø -quantile of the occupation time as its pathwise left-continuous inverse:

Q
T

(ø) = inf {x 2 R+ : F
T

(x) ∏ ø} .

11



For any compact K Ω (0,1), we define the K-constrained ø -quantile of F
T

(·) as

QK

T

(ø) = inf {x 2 K : F
T

(x) ∏ ø} ,

where the infimum over an empty set is given by supK. While Q
T

(ø) is of natural interest, we

are only able to consistently estimate QK

T

(ø), although K Ω (0,1) can be arbitrarily large. This

is due to the technical reason that the uniform convergence in Theorem 4 is only available over a

nonrandom index set K, which is bounded above and away from zero, but every quantile Q
T

(ø)

is itself a random variable and thus may take values outside K on some sample paths. Such a

complication would not exist if F
T

(·), and hence Q
T

(ø), were deterministic—the standard case in

econometrics and statistics. Of course, if the process V
t

is known a priori to take values in some set

K Ω (0,1), then Q
T

(·) and QK

T

(·) coincide. In practice, the “K-constraint” is typically unbinding

as long as we do not attempt to estimate extreme (pathwise) quantiles of the process V
t

.

We propose an estimator for QK

T

(ø) and a K-constrained monotonized version bFK

T,n,R

n

(·) of the

occupation time as follows:

bQK

T,n,R

n

(ø) = inf K+
Z supK

inf K
1

n

bF
T,n,R

n

(y) < ø
o

dy, ø 2 (0, T ) ,

bFK

T,n,R

n

(x) = inf
n

ø 2 (0, T ) : bQK

T,n,R

n

(ø) > x
o

, x 2 R,

where on the second line, the infimum over an empty set is given by T . By construction, bQK

T,n,R

n

:

(0, T ) 7! K is increasing and left continuous and bFK

T,n,R

n

: R 7! [0, T ] is increasing and right

continuous. Moreover, bQK

T,n,R

n

is the quantile function of bFK

T,n,R

n

, i.e., for ø 2 (0, T ), bQK

T,n,R

n

(ø) =

inf
n

x : bFK

T,n,R

n

(x) ∏ ø
o

. The asymptotic properties of bFK

T,n,R

n

(·) and bQK

T,n,R

n

(ø) are given in

Theorem 5 below.

Theorem 5 Let K Ω (0,1) be compact. If sup
x2K

Ø

Ø

Ø

bF
T,n,R

n

(x)° F
T

(x)
Ø

Ø

Ø

P°! 0, then we have the

following.

(a)

sup
x2K

Ø

Ø

Ø

bFK

T,n,R

n

(x)° F
T

(x)
Ø

Ø

Ø

P°! 0.

(b) For every ø§ 2 {ø 2 (0, T ) : Q
T

(·) is continuous at ø almost surely},

bQK

T,n,R

n

(ø§) P°! QK

T

(ø§) .

We note that the monotonization procedure here is similar to that in Chernozhukov et al. (2010),

which in turn has a deep root in functional analysis (Hardy et al. (1952)). Our results are distinct

12



from those of Chernozhukov et al. (2010) in two aspects. First, the estimand considered here, i.e.

the occupation time, is a random function. Second, as we are interested in the convergence in

probability, we only need to assume that sup
x2K

Ø

Ø

Ø

bF
T,n,R

n

(x)° F
T

(x)
Ø

Ø

Ø

P°! 0 and, of course, our

argument does not rely on the functional delta method.

4 Monte Carlo

We test the performance of our nonparametric procedures on two popular stochastic volatility

models (both of which satisfy Lemma 1 and hence Assumption C). The first is the square-root

diÆusion volatility model, given by

dX
t

=
p

V
t

dW
t

, dV
t

= 0.03(1.0° V
t

)dt + 0.2
p

V
t

dB
t

, (16)

W
t

and B
t

are two independent Brownian motions. Our second model is a jump-diÆusion volatility

model in which the log-volatility is a Lévy-driven Ornstein-Uhlenbeck (OU) process, i.e.,

dX
t

= eV

t

°1dW
t

, dV
t

= °0.03V
t

dt + dL
t

, (17)

where L
t

is a Lévy martingale uniquely defined by the marginal law of V
t

which in turn has a self-

decomposable distribution (see Theorem 17.4 of Sato (1999)) with characteristic triplet (Definition

8.2 of Sato (1999)) of (0, 1, ∫) for ∫(dx) = 2.33e

°2.0|x|

|x|

1+0.5 1
{x>0}dx with respect to the identity truncation

function. The mean and persistence of both volatility specifications are calibrated realistically to

observed financial data and the two models diÆer in the presence of volatility jumps as well as in

the modeling of the volatility of volatility: for model (16), the transformation
p

V
t

is with constant

diÆusion coe±cient while for (17) this is the case for the transformation log V
t

.

In the Monte Carlo we fix the time span to T = 22 days (our unit of time is a day), equivalent

to one calendar month, and we consider n = 80 and n = 400, which correspond to 5-minute

and 1-minute, respectively, of intraday observations of X in a 6.5-hour trading day. We set the

regularization parameter to R
n

= 3.0 for n = 80 and we increase it to R
n

= 3.5 when n = 400.

For each realization we compute the 25-th, 50-th and 75-th volatility qunatiles over the interval

[0, T ]. The results from the Monte Carlo are summarized in Table 1. Overall, the performance of

our volatility quantile estimator is satisfactory. The highest bias arises for the square-root diÆusion

volatility model when volatility was started from a high value (the 75-th quantile of its invariant

distribution). Intuitively, in this case volatility drifts towards its unconditional mean and this

results in its larger variation over [0, T ], which in turn is more di±cult to accurately disentangle

from the Gaussian noise in the price process, i.e., the Brownian motion W
t

in X
t

. Consistent with

13



our asymptotic results, the biases and the mean absolute deviation of all volatility quantiles and

in all considered scenarios shrink as we increase the sampling frequency from n = 80 to n = 400.

5 Empirical Application

We illustrate the nonparametric quantile reconstruction technique with empirical application to

two data sets: Euro/$ exchange rate futures (for the period 01/01/1999-12/31/2010) and S&P 500

index futures (for the period 04/22/1982-12/30/2010). Both series are sampled every 5 minutes

during the trading hours. The time spans of the two data sets diÆer because of data availability

but both data sets include some of the most quiescent and also the most volatile periods in modern

financial history. These data sets thereby present a serious challenge for our method.

In the calculations of the volatility quantiles we use a time span of T = 1 month and as in

the Monte Carlo we fix the regularization parameter at R
n

= 3. Figure 1 shows the results for

the Euro/$ rate and Figure 2 those for the S&P 500 index. The left panels show the time series

of the 25-th and 75-th monthly quantiles of the spot variance V
t

, the spot volatility
p

V
t

and the

logarithm of the spot variance log(V
t

). The estimated quantiles appear to track quite sensibly the

behavior of volatility during times of either economic moderation or distress. The right panels show

the associated interquartile range (IQR) versus the median of the logarithm of the spot variance;

we use the IQR to measure the dispersion of the (transformed) volatility process. The aim of the

plots is to discover how the dispersion of volatility relates to the level volatility. We see that for

both data sets, the IQRs of the spot variance and the spot volatility exhibit a clear positive convex

relationship with the median log-variance. In contrast, the IQR of the log-variance process shows no

such pattern, suggesting that the log volatility process has homoscedastic, or at least independent

from the level of volatility, innovations.

To guide intuition about our empirical findings, suppose we have f(V
t

) = f(V0) + L
t

on [0, T ],

for L
t

a Lévy process and f(·) some monotone function (this is approximately true for the typical

volatility models like the ones in the Monte Carlo when T is relatively short and the volatility is

very persistent as in the data). In this case, the interquartile range of the volatility occupation

time of f(V
t

) on [0, T ] will be independent of the level V0. On the other hand, for other functions

h(V
t

), and in particular h(V
t

) = V
t

, the dispersion will depend in general on the level V0. The

IQR of the volatility occupation measure can be used, therefore, to study the important question

of modeling the volatility of volatility. The evidence here points away from a±ne volatility models

towards those models in which the log volatility has innovations that are independent from the

level of volatility like the exponential OU model in (17).
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Table 1: Monte Carlo Results

Start Value bQ
T,n

(0.25) bQ
T,n

(0.50) bQ
T,n

(0.75)

True Bias MAD True Bias MAD True Bias MAD

Panel A: Square-Root Volatility Model, n = 80

V0 = QV (0.25) 0.3798 °0.0301 0.0477 0.5394 °0.0306 0.0518 0.7324 0.0043 0.0572

V0 = QV (0.50) 0.6223 °0.0672 0.0824 0.8170 °0.0478 0.0712 1.0513 0.0300 0.0853

V0 = QV (0.75) 0.9865 °0.1294 0.1447 1.2359 °0.0731 0.1014 1.5310 0.0774 0.1382

Panel B: Square-Root Volatility Model, n = 400

V0 = QV (0.25) 0.3798 °0.0147 0.0378 0.5394 °0.0177 0.0385 0.7324 °0.0026 0.0429

V0 = QV (0.50) 0.6223 °0.0435 0.0629 0.8170 °0.0306 0.0535 1.0513 0.0186 0.0642

V0 = QV (0.75) 0.9865 °0.0925 0.1109 1.2359 °0.0489 0.0766 1.5310 0.0574 0.1089

Panel C: Log-Volatility Model, n = 80

V0 = QV (0.25) 0.1737 °0.0128 0.0244 0.2860 °0.0082 0.0310 0.4519 °0.0010 0.0448

V0 = QV (0.50) 0.3293 °0.0251 0.0465 0.5243 °0.0160 0.0558 0.8069 0.0038 0.0745

V0 = QV (0.75) 0.6337 °0.0453 0.0860 0.9945 °0.0304 0.1088 1.5162 0.0094 0.1394

Panel D: Log-Volatility Model, n = 400

V0 = QV (0.25) 0.1737 °0.0050 0.0192 0.2860 °0.0003 0.0245 0.4519 °0.0114 0.0411

V0 = QV (0.50) 0.3293 °0.0110 0.0354 0.5243 0.0005 0.0433 0.8069 °0.0151 0.0667

V0 = QV (0.75) 0.6337 °0.0283 0.0645 0.9945 °0.0011 0.0792 1.5162 °0.0185 0.1190

Note: In all simulated scenarios T = 22 and we set R
n

= 3.0 for n = 80 and R
n

= 3.5 for
n = 400. In each of the cases, the volatility is started from a fixed point being the 25-th, 50-th
and 75-th quantile of the invariant distribution of the volatility process, denoted correspondingly
as QV (0.25), QV (0.50) and QV (0.75). The columns “True” report the average value (across the
Monte Carlo simulations) of the true variance quantile that is estimated; MAD stands for mean
absolute deviation around true value. The Monte Carlo replica is 1000.

15



2000 2002 2004 2006 2008 2010
0

100

200

25th and 75th Percent Quantiles of Variance

2 3 4 5
0

50

100

150

200
IQR (Variance) versus Median Log−Variance

2000 2002 2004 2006 2008 2010

5

10

15

25th and 75th Percent Quantiles of Volatility

2 3 4 5
0

2

4

6

8
IQR (Volatility) versus Median Log−Variance

2000 2002 2004 2006 2008 2010

2

3

4

5

25th and 75th Percent Quantiles of Log−Variance

2 3 4 5
0.5

1

1.5

2

2.5
IQR (Log−Variance) versus Median Log−Variance

Figure 1: Estimated Quantiles of the Monthly Occupation Measure of the Spot
Volatility of the Euro/$ return, 1999–2010. The three left-hand panels show the 25
and 75 percent quantiles of the monthly occupation measure of volatility expressed
in terms of the local variance (left-top), the local standard deviation (left-middle),
and the local log-variance (left-bottom). Each right-side panel is a scatter plot of
the interquartile ranges of the associated monthly left-side distributions versus the
medians of the distributions (in standard deviation). Volatility is quoted annualized
and in percentage terms.

16



1987 1992 1997 2002 2007

2000

4000

25th and 75th Percent Quantiles of Variance

1987 1992 1997 2002 2007
10

30

50

70

25th and 75th Percent Quantiles of Volatility

1987 1992 1997 2002 2007
3
4
5
6
7
8

25th and 75th Percent Quantiles of Log−Variance

3 4 5 6 7 8
0

2000

4000
IQR (Variance) versus Median Log−Variance

3 4 5 6 7 8
0

20

40
IQR (Volatility) versus Median Log−Variance

3 4 5 6 7 8
0

1

2

3
IQR (Log−Variance) versus Median Log−Variance

Figure 2: Estimated Quantiles of the Monthly Occupation Measure of the Spot
Volatility of the S&P500 index futures return, 1982–2010. The organization is the
same as Figure 1.
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6 Conclusion

In this paper we propose a nonparametric estimator of the volatility occupation time from discrete

observations of the process over a fixed time interval with asymptotically shrinking mesh of the

observation grid. We derive the asymptotic properties of the volatility occupation time estimator

locally uniformly in the spatial argument and further invert it to estimate the corresponding quan-

tiles of volatility over the time interval. Monte Carlo and empirical applications illustrate the use

of the statistic for studying volatility of volatility.

7 Proofs

This section is organized as follows. We collect some preliminary estimates in Section 7.1. The rest

of the appendix is devoted to proving results in the main text. Throughout the proof, we use K to

denote a generic positive constant that may change from line to line. We sometimes write K
m

to

emphasize the dependence of the constant on some parameter m.

7.1 Preliminary estimates

7.1.1 Estimates for the kernel ¶ (R, x)

Lemma 2 Fix x > 0, c > 0, ¥1 2 [0, 1/2) and ¥2 2 [0, 1/2). There exists some K > 0, such that

for any R ∏ c,

|¶ (R, x)| ∑ K exp
µ

ºR

2

∂

min
©

x¥1 , Rx°1, R2x°1°¥2
™

.

Proof. To simplify notations, we denote

h
R

(s) =
p

s sin (R ln (s))
s2 + 1

, g
R

(x) =
Z

1

0
h

R

(s) sin (xs) ds.

Since ¥1 2 [0, 1/2), we have

|g
R

(x)| ∑
Z

1

0

p
s |sin (xs)|
s2 + 1

ds ∑
Z

1

0

p
s |sin (xs)|¥1

s2 + 1
ds ∑ Kx¥1 . (18)

Using integration by parts, we have g
R

(x) = x°1
R

1

0 h0
R

(s) cos (xs) ds. With h0
R

(s) explicitly

computed, we have

|g
R

(x)| ∑ x°1

Ø

Ø

Ø

Ø

Ø

Z

1

0

√

R cos (R ln (s))p
s (1 + s2)

+
°

1° 3s2
¢

sin (R ln (s))
2
p

s (1 + s2)2

!

ds

Ø

Ø

Ø

Ø

Ø

∑ KRx°1. (19)
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Using integration by parts again, we have g
R

(x) = °x°2
R

1

0 h00
R

(s) sin (xs) ds. Note that

Ø

Øh00
R

(s)
Ø

Ø =

Ø

Ø

Ø

Ø

Ø

Ø

4Rs1/2 cos (R ln (s))
(1 + s2)2

+

≥

1 + 18s2 ° 15s4 + 4R2
°

1 + s2
¢2

¥

sin (R ln (s))

4s3/2 (1 + s2)3

Ø

Ø

Ø

Ø

Ø

Ø

∑ KR2

s3/2 (1 + s2)
.

Hence, for ¥2 2 [0, 1/2),

|g
R

(x)| ∑ KR2x°2
Z

1

0

|sin (xs)|
s3/2 (1 + s2)

ds

∑ KR2x°2
Z

1

0

|sin (xs)|1°¥2

s3/2 (1 + s2)
ds

∑ KR2x°1°¥2

Z

1

0

1
s1/2+¥2 (1 + s2)

ds

∑ KR2x°1°¥2 . (20)

Combining (18), (19) and (20), we derive |g
R

(x)| ∑ K min
©

x¥1 , Rx°1, R2x°1°¥2
™

. Similarly,

we can also show that
Ø

Ø

Ø

Ø

Z

1

0

p
s cos (R ln (s))

s2 + 1
sin (xs)

Ø

Ø

Ø

Ø

∑ K min
©

x¥1 , Rx°1, R2x°1°¥2
™

.

The assertion of the lemma then readily follows. Q.E.D.

7.1.2 Estimates for the underlying process X

As often in this kind of problem, it is convenient to strengthen Assumption A as follows.

Assumption SA. We have Assumptions A1-A3, and there are a constant C > 0 and a nonnegative

function ° on R, such that V
t

∑ C, |± (!, t, z)| ∑ ° (z) ∑ C and
R

R ° (z)r ∏ (dz) ∑ C.

For notational simplicity, we set

Æ0
t

=

8

<

:

Æ
t

if r > 1

Æ
t

°
R

R ± (t, z) 1
{|±(t,z)|∑1}∏ (dz) if r ∑ 1,

J 0
t

=

8

<

:

J
t

if r > 1
R

t

0

R

R ± (s, z)µ (ds, dz) if r ∑ 1,

where r is the constant in Assumption A1. We also set Xc

t

= X0 +
R

t

0 Æ0
s

ds +
R

t

0 æ
s

dW
s

, so that

X
t

= Xc

t

+ J 0
t

. We then define

¬n

i

= ¢n

i

Xc/¢1/2
n

, Øn

i

= æ(i°1)¢
n

¢n

i

W/¢1/2
n

,

∏n

i

= ¬n

i

° Øn

i

= ¢°1/2
n

√

Z

i¢
n

(i°1)¢
n

Æ0
s

ds +
Z

i¢
n

(i°1)¢
n

°

æ
s

° æ(i°1)¢
n

¢

dW
s

!

.
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Lemma 3 Under Assumption SA, there exists K > 0 such that for all u 2 R+,

E

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

≥

cos
≥p

2u¬n

i

¥

° cos
≥p

2uØn

i

¥¥

Ø

Ø

Ø

Ø

Ø

Ø

∑ K min
n

u1/2¢1/2
n

, 1
o

(21)

E

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

exp
°

°uV(i°1)¢
n

¢

°
Z

T

0
exp (°uV

s

) ds

Ø

Ø

Ø

Ø

Ø

Ø

∑ K min
n

u¢1/2
n

, 1
o

+ ¢
n

(22)

E

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

≥

cos
≥p

2uØn

i

¥

° exp
°

°uV(i°1)¢
n

¢

¥

Ø

Ø

Ø

Ø

Ø

Ø

∑ K¢1/2
n

min {u, 1} (23)

E

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

µ

cos
µp

2u
¢n

i

Xp
¢

n

∂

° cos
≥p

2u¬n

i

¥

∂

Ø

Ø

Ø

Ø

Ø

Ø

∑ K
≥

u1/2¢1/r°1/2
n

¥

r^1
. (24)

Proof. Step 1. By the mean value theorem, E
Ø

Øcos
°

p
2u¬n

i

¢

° cos
°

p
2uØn

i

¢

Ø

Ø ∑ K min {
p

uE |∏n

i

| , 1} .

By the Burkholder-Davis-Gundy inequality,

E |∏n

i

| ∑ ¢°1/2
n

E
Ø

Ø

Ø

Ø

Ø

Z

i¢
n

(i°1)¢
n

Æ0
s

ds +
Z

i¢
n

(i°1)¢
n

°

æ
s

° æ(i°1)¢
n

¢

dW
s

Ø

Ø

Ø

Ø

Ø

∑ ¢°1/2
n

0

@K¢
n

+

√

Z

i¢
n

(i°1)¢
n

E
h

°

æ
s

° æ(i°1)¢
n

¢2
i

ds

!1/2
1

A

∑ K¢1/2
n

.

Hence, E
Ø

Øcos
°

p
2u¬n

i

¢

° cos
°

p
2uØn

i

¢

Ø
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, 1}, which implies (21).

Step 2. We prove (22) as follows:
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where the first inequality follows the triangle inequality, the second is due to the mean value theorem

and the last inequality follows E |V
t

° V
s

| ∑ K |t° s|1/2, which in turn is implied by Assumption

SA.
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Step 3. Now, consider (23). Denote ≥n

i
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°

p
2uØn

i

¢
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°

°uV(i°1)¢
n

¢

. Note that condi-

tionally on F(i°1)¢
n

, Øn

i

is N
°

0, V(i°1)¢
n

¢

distributed. It is then easy to see that (≥n

i

,F
i¢

n

)
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an array of martingale diÆerences. Moreover,

E
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n
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©

u2, 1
™

. We then deduce

(23) by using Jensen’s inequality.

Step 4. Finally, we show (24). When r 2 (0, 1], by Assumption SA and Lemma 2.1.7 in Jacod

and Protter (2012),
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.

When r 2 [1, 2), we use Assumption SA and Lemmas 2.1.5 and 2.1.7 in Jacod and Protter (2012)

to derive

E
Ø

Ø

Ø

Ø

cos
µp

2u
¢n

i

Xp
¢

n

∂

° cos
≥p

2u¬n

i

¥

Ø

Ø

Ø

Ø

r

∑ Kur/2¢°r/2
n

E
Ø

Ø¢n

i

J 0
Ø

Ø

r

∑ Kur/2¢1°r/2
n

,

and then use Jensen’s inequality to get
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Combining the above estimates, we have for each r 2 (0, 2),

E
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Then (24) readily follows. Q.E.D.

Recall the notation h
u,v

(x) from Theorem 1. We set h̄
u,v

(y) = E [h
u,v

(U)], for y ∏ 0 and

U ª N (0, y), which is h̄
u,v

(y) = 1
2

≥

e°(pu+
p

v)2
y + e°(pu°

p

v)2
y ° 2e°(u+v)y

¥

.
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Lemma 4 Under Assumption SA, there exists some K > 0 such that for all u, v 2 R+,

E
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¢
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Proof. First, note that for any x, y 2 R+,
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Hence, following the same calculations as in steps 1 and 4 of the proof of Lemma 3, we have (25)

and (28).

Next, note that for any x, y 2 R+,
Ø

Øh̄
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Similarly as in step 2 of the proof of Lemma 3, we have
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which implies (26).

Finally, we consider (27). To simplify notations, we denote ≥n
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The claim then readily follows. Q.E.D.

7.2 Proof of Lemma 1

Part a. The existence of occupation density of eV
t

follows directly from Corollary 1 of Theorem

IV.70 in Protter (2004). Since ã
t

and eV
t

are locally bounded, we can find a localizing sequence

of stopping times (T
m

)
m∏1 such that T

m

∑ S
m

and the stopped processes ã
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and eV
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are

bounded. We first show
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By Theorem IV.68 of Protter (2004), we have for x, y 2 K̃, x < y,
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Clearly, for any t,
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By (7), we have
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By Hölder’s inequality, the boundedness of ã
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m

and condition (ii), we have
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|k ds

∏

∑ K |x° y| . (33)

23



By the Burkholder-Davis-Gundy inequality and Jensen’s inequality,
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Moreover, condition (i) implies that
R
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∏ (dz) < 1. Then by Lemma 2.1.7 (b)
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Combining (32)-(35), we derive
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where the second inequality is obtained by using Lemma 2.1.7 (b) of Jacod and Protter (2012),

and the last inequality holds because
R
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°̃
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(z)Øk + °̃
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∏ (dz) < 1 under condition (i).
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Combining (30), (31), (36), (37) and (38), we derive (29).

It remains to show E
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^ ∞̄ and picking any " 2 (0, min {∞̃, k ° 1}), we verify Assumption C2

for the process V
t

. Q.E.D.

7.3 Proof of Theorem 1

Part a. By a standard localization procedure, we can suppose that Assumption SA holds without

loss of generality. For any M > 0, we have
R

M

0 |w (u)| du < 1. It is then easy to see that the
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mapping f 7!
R

M

0 f (u)w (u) du is a continuous mapping on the space of continuous functions

equipped with the uniform metric. By the continuous mapping theorem and Theorem 1 of Todorov

and Tauchen (2012b),
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where the constant K does not depend on M . By the dominated convergence theorem and Markov’s
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Combining (39)-(41), we readily derive the claim.

Part b. Recall the notations in Lemma 4 and observe that ß
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(u, v) =
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) ds. By Lemma
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The assertion readily follows. Q.E.D.

7.4 Proof of Theorem 2, 3 and Corollary 1

Proof of Theorem 2. By localization, we can suppose that V
t

is bounded above and away from

zero. We can also strengthen Assumptions B2 and B3 as follows: for any compact K Ω (0,1) and

any x, y 2 K,
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T

(x)| ∑ K, E
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this is without loss, because otherwise we can restrict our calculations in the event {T ∑ T
m

},
which charges an arbitrarily small probability mass for m su±ciently large. The proof proceeds via

several steps.

Step 1. From Kryzhniy (2003b), we have

F
t,R

(x) =
2
º

Z

1

0
F

t

(xu)
p

u
sin (R lnu)

u2 ° 1
du.

With a change of variable, we have the following decomposition:

F
t,R

(x)° F
t

(x) = F
t

(x)

√

2
º

Z

1

°1

e3z/2 sin (Rz)
e2z ° 1

dz ° 1

!

+
2
º

Z

1

0
G

t

(z; x) sin (Rz) dz, (42)

where we set

g
t

(z; x) = (F
t

(xez)° F
t

(x))h (z) , h (z) =
e3z/2

e2z ° 1
,

G
t

(z; x) = g
t

(z; x)° g
t

(°z; x) .

The first term in (42) can be bounded as follows. By direct integration, we have

2
º

Z

1

°1

e3z/2 sin (Rz)
e2z ° 1

dz = tanh (ºR) .

Hence,

sup
t∑T,x∏0,!2≠

Ø

Ø

Ø

Ø

Ø

F
t

(x)

√

2
º

Z

1

°1

e3z/2 sin (Rz)
e2z ° 1

dz ° 1

!

Ø

Ø

Ø

Ø

Ø

= O
°

e°2ºR

¢

. (43)

Bounding the second term in (42) is the task below.

Step 2. Below, we denote a = º/2R and, without loss of generality, we suppose that R ∏ 1. In

this step, we show that

E
Ø

Ø

Ø

Ø

Z

a

0
G

T

(z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

∑ KR°1. (44)

Indeed, by Assumption B2,

E
Ø

Ø

Ø

Ø

Z

a

0
G

T

(z;x) sin (Rz) dz

Ø

Ø

Ø

Ø

= E
Ø

Ø

Ø

Ø

Ø

Z

a

°a

(F
T

(xez)° F
T

(x))
e3z/2

e2z ° 1
sin (Rz) dz

Ø

Ø

Ø

Ø

Ø

∑ E
"

Z

a

°a

|F
T

(xez)° F
T

(x)| e3z/2

|e2z ° 1|dz

#

∑ K

Z

a

°a

e3z/2 |ez ° 1|
|e2z ° 1| dz

∑ Ka,

which implies (44).
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Step 3. For each k ∏ 0, we denote a
k,R

= a + 2ºk/R. Let N
R

= min {k 2 N : a
k,R

∏ 1}. Note

that for 0 ∑ k ∑ N
R

, we have a ∑ a
k,R

∑ 3º. In this step, we show that

E
Ø

Ø

Ø

Ø

Ø

Z

a+2ºN

R

/R

a

G
T

(z;x) sin (Rz) dz

Ø

Ø

Ø

Ø

Ø

∑ KR°1°∞ ln (R) + KR°1. (45)

We denote G
t,z

(z;x) = @G
t

(z; x) /@z and g
t,z

(z; x) = @g
t

(z; x) /@z. Note that G
t,z

(z; x) =

g
t,z

(z; x) + g
t,z

(°z; x). To show (45), we first note that for each k ∏ 1,
Z

a

k,R

a

k°1,R

G
T

(z; x) sin (Rz) dz

=
Z

a

k,R

°º/R

a

k°1,R

(G
T

(z; x)°G
T

(z + º/R;x)) sin (Rz) dz

= R°1
Z

a

k,R

°º/R

a

k°1,R

(G
T,z

(z;x)°G
T,z

(z + º/R;x)) cos (Rz) dz,

where the first equality is obtained by a change of variable and the second equality follows an

integration by parts, using that cos (Rz) = 0 for z = a
k°1,R

or a
k,R

° º/R. Therefore,

E
Ø

Ø

Ø

Ø

Ø

Z

a

k,R

a

k°1,R

G
T

(z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

Ø

∑ R°1
Z

a

k,R

°º/R

a

k°1,R

E |G
T,z

(z; x)°G
T,z

(z + º/R; x)| dz. (46)

To simplify notations, let ¡
t

(x) = xf
t

(x). Then g
t,z

(z; x) = ¡
t

(xez)h (z)+(F
t

(xez)° F
t

(x))h0 (z).

Hence, for any y, z 2 R,

|g
t,z

(z;x)° g
t,z

(y; x)|

∑ |¡
t

(xez)h (z)° ¡
t

(xey)h (y)|

+
Ø

Ø(F
t

(xez)° F
t

(x))h0 (z)° (F
t

(xey)° F
t

(x))h0 (y)
Ø

Ø

∑ |¡
t

(xez)° ¡
t

(xey)| · h (z) + ¡
t

(xey) · |h (y)° h (z)|

+ |F
t

(xez)° F
t

(xey)| ·
Ø

Øh0 (z)
Ø

Ø + |F
t

(xey)° F
t

(x)| ·
Ø

Øh0 (y)° h0 (z)
Ø

Ø .

Moreover, under Assumptions B2 and B3, it is easy to see that if either (i) z, y 2 [°3º,°a] and

y = z ° º/R; or (ii) z, y 2 [a, 3º] and y = z + º/R, then

E |¡
T

(xez)° ¡
T

(xey)| ∑ KR°∞ , |h (z)| ∑ K |ez ° 1|°1 ,

E |¡
T

(xey)| ∑ K, |h (y)° h (z)| ∑ KR°1 (ez ° 1)°2 ,

E |F
T

(xez)° F
T

(xey)| ∑ KR°1, |h0 (z)| ∑ K (ez ° 1)°2 ,

E |F
T

(xey)° F
T

(x)| ∑ K |z| , |h0 (y)° h0 (z)| ∑ KR°1 |ez ° 1|°3 .
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Hence, for z 2 [a
k°1,R

, a
k,R

], 1 ∑ k ∑ N
R

, we have

E |G
T,z

(z; x)°G
T,z

(z + º/R;x)| ∑ KR°∞ (ez ° 1)°1 + KR°1 (ez ° 1)°2 ,

and by (46), we derive for each 1 ∑ k ∑ N
R

,

E
Ø

Ø

Ø

Ø

Ø

Z

a

k,R

a

k°1,R

G
T

(z;x) sin (Rz) dz

Ø

Ø

Ø

Ø

Ø

∑ KR°2°∞ (ea

k°1,R ° 1)°1 + KR°3 (ea

k°1,R ° 1)°2 . (47)

Finally, observing E
Ø

Ø

Ø

R

a+2ºN

R

/R

a

G
T

(z;x) sin (Rz) dz
Ø

Ø

Ø

∑
P

N

R

k=1 E
Ø

Ø

Ø

R

a

k,R

a

k°1,R

G
T

(z; x) sin (Rz) dz
Ø

Ø

Ø

, we

readily derive (45) by using (47).

Step 4. Let M be a constant such that M ∏ a + 2ºN
R

/R and cos (MR) = 0. Integration by

parts yields
Z

M

a+2ºN

R

/R

G
T

(z; x) sin (Rz) dz = R°1
Z

M

a+2ºN

R

/R

G
T,z

(z;x) cos (Rz) dz. (48)

Since V
t

is bounded above and away from zero, f
T

(·) is supported on some compact subset of

(0,1). Then under Assumption B2, for z ∏ 1,

E |¡
T

(xez)|+ E |F
T

(xez)° F
T

(x)| ∑ K,

E
Ø

Ø¡
T

°

xe°z

¢

Ø

Ø + E
Ø

ØF
T

°

xe°z

¢

° F
T

(x)
Ø

Ø ∑ K.

Moreover, |h (z)|+ |h0 (z)| ∑ Ke°z/2 and |h (°z)|+ |h0 (°z)| ∑ Ke°3z/2. Hence, for z ∏ 1,

E |g
T,z

(z; x)| = E
Ø

Ø¡
T

(xez)h (z) + (F
T

(xez)° F
T

(x))h0 (z)
Ø

Ø ∑ Ke°z/2,

E |g
T,z

(°z; x)| = E
Ø

Ø¡
T

°

xe°z

¢

h (°z) +
°

F
T

°

xe°z

¢

° F
T

(x)
¢

h0 (°z)
Ø

Ø ∑ Ke°3z/2.

Therefore, E |G
T,z

(z; x)| ∑ Ke°z/2. Since a + 2ºN
R

/R ∏ 1, we use (48) to derive

E
Ø

Ø

Ø

Ø

Ø

Z

M

a+2ºN

R

/R

G
T

(z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

Ø

∑ KR°1
Z

M

a+2ºN

R

/R

e°z/2dz ∑ KR°1, (49)

where the constant K does not depend on M .

Step 5. Now, note that
Ø

Ø

Ø

Ø

Z

1

M

g
T

(z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

∑
Z

1

M

Ø

Ø

Ø

Ø

Ø

(F
T

(xez)° F
T

(x))
e3z/2

e2z ° 1

Ø

Ø

Ø

Ø

Ø

dz

∑ K

Z

1

M

e°z/2dz

∑ Ke°M/2,
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and
Ø

Ø

Ø

Ø

Z

1

M

g
T

(°z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

∑
Z

1

M

Ø

Ø

Ø

Ø

Ø

°

F
T

°

xe°z

¢

° F
T

(x)
¢ e°3z/2

e°2z ° 1

Ø

Ø

Ø

Ø

Ø

dz

∑ K

Z

1

M

e°3z/2dz

∑ Ke°3M/2.

Therefore,
Ø

Ø

R

1

M

G
T

(z;x) sin (Rz) dz
Ø

Ø ∑ Ke°M/2. Taking M ∏ 3 ln (R), we derive
Ø

Ø

Ø

Ø

Z

1

M

G
T

(z;x) sin (Rz) dz

Ø

Ø

Ø

Ø

∑ KR°3/2. (50)

Step 6. Combining (44), (45), (49) and (50), we have

E
Ø

Ø

Ø

Ø

Z

1

0
G

T

(z; x) sin (Rz) dz

Ø

Ø

Ø

Ø

∑ KR°1°∞ ln (R) + KR°1. (51)

The assertion of the theorem then follows from (42), (43) and (51). Q.E.D.

Proof of Theorem 3. With a standard localization procedure, we can suppose that Assumption

SA holds without loss of generality, and further that R
n

∏ 2 and ¢
n

∑ 1. It is easy to see that

sup
x2K

Ø

Ø

Ø

bF
T,n,R

n

(x)° F
T,R

n

(x)
Ø

Ø

Ø

∑
4

X

j=1

≥
j,n

, (52)

where, with the notations of Lemma 3 and ¶§ (R, u) = sup
x2K

|¶ (R, ux)|, we set

≥1,n

=
Z

1

0

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

≥

cos
≥p

2u¬n

i

¥

° cos
≥p

2uØn

i

¥¥

Ø

Ø

Ø

Ø

Ø

Ø

¶§ (R
n

, u)
u

du,

≥2,n

=
Z

1

0

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

exp
°

°uV(i°1)¢
n

¢

°
Z

T

0
exp (°uV

s

) ds

Ø

Ø

Ø

Ø

Ø

Ø

¶§ (R
n

, u)
u

du,

≥3,n

=
Z

1

0

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

≥

cos
≥p

2uØn

i

¥

° exp
°

°uV(i°1)¢
n

¢

¥

Ø

Ø

Ø

Ø

Ø

Ø

¶§ (R
n

, u)
u

du,

≥4,n

=
Z

1

0

Ø

Ø

Ø

Ø

Ø

Ø

¢
n

[T/¢
n

]
X

i=1

µ

cos
µp

2u
¢n

i

Xp
¢

n

∂

° cos
≥p

2u¬n

i

¥

∂

Ø

Ø

Ø

Ø

Ø

Ø

¶§ (R
n

, u)
u

du.

By Lemma 2, given any ¥1, ¥2 2 [0, 1/2), we have for all u > 0,

¶§ (R
n

, u) ∑ K exp
µ

ºR
n

2

∂

sup
x2K

min
n

(xu)¥1 , R
n

(xu)°1 , R2
n

(xu)°1°¥2

o

∑ K exp
µ

ºR
n

2

∂

min
©

u¥1 , R
n

u°1, R2
n

u°1°¥2
™

, (53)
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where the second inequality holds because K is bounded above and away from zero by assumption.

Below, for any Borel function h : R+ 7! R+, and u0, u00 2 R+, we set the convention that
R

u

00

u

0

h (u) du = 0 whenever u0 ∏ u00. By (21) and (53) (the latter applied with ¥1 = 0 and ¥2 = ¥,

for ¥ being the constant in the statement of the theorem), we have

E |≥1,n

| ∑ K exp
µ

ºR
n

2

∂

Z

1

0
min

n

u1/2¢1/2
n

, 1
o

min
©

u°1, R
n

u°2, R2
n

u°2°¥

™

du.

Note that
Z

1

0
min

n

u1/2¢1/2
n

, 1
o

min
©

u°1, R
n

u°2, R2
n

u°2°¥

™

du

∑ ¢1/2
n

Z

R

n

0
u°1/2du + ¢1/2

n

R
n

Z

R

1/¥

n

R

n

u°3/2du

+¢1/2
n

R2
n

Z ¢°1
n

R

1/¥

n

u°3/2°¥du + R2
n

Z

1

¢°1
n

u°2°¥du

∑ KR1/2
n

¢1/2
n

+ R
1° 1

2¥

n

¢1/2
n

+ KR2
n

¢1+¥

n

∑ KR1/2
n

¢1/2
n

+ KR2
n

¢1+¥

n

.

Hence,

E |≥1,n

| ∑ K exp
µ

ºR
n

2

∂

≥

R1/2
n

¢1/2
n

+ R2
n

¢1+¥

n

¥

. (54)

By (22) and (53), for ¥1 2 (0, 1/2), we have

E |≥2,n

| ∑ K exp
µ

ºR
n

2

∂

Z

1

0
min

n

u¢1/2
n

, 1
o

min
©

u°1, R
n

u°2, R2
n

u°2°¥

™

du

+K¢
n

exp
µ

ºR
n

2

∂

Z

1

0
min

©

u¥1°1, R
n

u°2, R2
n

u°2°¥

™

du

Moreover, note that
Z

1

0
min

©

u¥1°1, R
n

u°2, R2
n

u°2°¥

™

du

∑
Z

R

1/(1+¥1)
n

0
u¥1°1du + R

n

Z

R

1/¥

n

R

1/(1+¥1)
n

u°2du + R2
n

Z

1

R

1/¥

n

u°2°¥du

∑ KR¥1/(1+¥1)
n

+ KR1°1/¥

n

,

and
Z

1

0
min

n

u¢1/2
n

, 1
o

min
©

u°1, R
n

u°2, R2
n

u°2°¥

™

du

∑ R
n

¢1/2
n

+ R
n

¢1/2
n

Z

R

1/¥

n

R

n

u°1du + R2
n

¢1/2
n

Z ¢
°1/2
n

R

1/¥

n

u°1°¥du + R2
n

Z

1

¢
°1/2
n

u°2°¥du

∑ KR
n

ln (R
n

)¢1/2
n

+ KR2
n

¢(1+¥)/2
n

.
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Hence,

E |≥2,n

| ∑ K exp
µ

ºR
n

2

∂

≥

R
n

ln (R
n

) ¢1/2
n

+ R2
n

¢(1+¥)/2
n

¥

. (55)

By (23) and (53), we have

E |≥3,n

| ∑ K¢1/2
n

exp
µ

ºR
n

2

∂

Z

1

0
min {u, 1}min

©

u°1, R
n

u°2, R2
n

u°2°¥

™

du.

Note that
Z

1

0
min {u, 1}min

©

u°1, R
n

u°2, R2
n

u°2°¥

™

du

∑ 1 +
Z

R

n

1
u°1du + R

n

Z

R

1/¥

n

R

n

u°2du + R2
n

Z

1

R

1/¥

n

u°2°¥du

∑ K + K ln (R
n

) + KR1°1/¥

n

∑ K ln (R
n

) .

Hence,

E |≥3,n

| ∑ K exp
µ

ºR
n

2

∂

ln (R
n

)¢1/2
n

. (56)

Now, consider ≥4,n

. We denote r̃ = r ^ 1. By (24) and (53),

E |≥4,n

| ∑ K¢r̃(1/r°1/2)
n

exp
µ

ºR
n

2

∂

Z

1

0
ur̃/2 min

©

u°1, R
n

u°2, R2
n

u°2°¥

™

du.

Note that
Z

1

0
ur̃/2 min

©

u°1, R
n

u°2, R2
n

u°2°¥

™

du

∑
Z

R

n

0
ur̃/2°1du + R

n

Z

R

1/¥

n

R

n

ur̃/2°2du + R2
n

Z

1

R

1/¥

n

ur̃/2°2°¥du

∑ KRr̃/2
n

+ KR1°(1°r̃/2)/¥

n

∑ KRr̃/2
n

.

Hence,

E |≥4,n

| ∑ K exp
µ

ºR
n

2

∂

Rr̃/2
n

¢r̃(1/r°1/2)
n

. (57)

Finally, we combine (52) and (54)-(57) to derive the assertion of the theorem. Q.E.D.

Proof of Corollary 1. The assertion follows directly from Theorems 2 and 3. Q.E.D.
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7.5 Proof of Theorem 4

Let (T
m

)
m∏1 be the localizing sequence of stopping times as in Assumption C. By Assumption

A2, we can suppose that the stopped process (V
t^T

m

)
t∏0 takes values in K

m

= [c
m

, C
m

] for some

constants C
m

> c
m

> 0 without loss of generality. By enlarging K
m

if necessary, we suppose that

K µ K
m

without loss. Let M
m

= ln (C
m

/c
m

). Observe that

x, y 2 K, |z| ∏ M
m

) F
T^T

m

(xez)° F
T^T

m

(yez) = 0. (58)

Hence, for any x, y 2 K,

E
"

Ø

Ø

Ø

Ø

Ø

Z

1

°1

(F
T^T

m

(xez)° F
T^T

m

(x)° (F
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m
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Ø

Ø

Ø

Ø

Ø
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#
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"

|F
T^T

m

(x)° F
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(y)|1+"

Ø

Ø

Ø

Ø

Ø

Z

(°1,°M

m

][[M
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,1)

e3z/2 sin (R
n
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e2z ° 1

dz

Ø

Ø

Ø

Ø

Ø

1+"

#

+KE
"

Ø

Ø

Ø

Ø

Ø

Z

M

m

°M

m

≥

F
T^T

m

(xez)° F
T^T

m

(x)

° (F
T^T

m

(yez)° F
T^T

m

(y))
¥e3z/2 sin (R

n

z)
e2z ° 1

dz

Ø

Ø

Ø

Ø

Ø

1+"

#

(59)

By Assumption C1 and Hölder’s inequality,

E

2

4|F
T^T

m

(x)° F
T^T

m

(y)|1+"

√

Z

(°1,°M

m

][[M
m
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e3z/2 sin (R
n
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e2z ° 1
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!1+"

3

5

∑ K
m

E
h

|F
T^T

m

(x)° F
T^T

m

(y)|1+"

i

∑ K
m

|x° y|1+" . (60)

Note that for any x, y 2 K and z 2 R,

|F
T^T

m

(xez)° F
T^T

m

(x)° (F
T^T

m

(yez)° F
T^T

m

(y))|

=
Ø

Ø

Ø

Ø

Z

y

x

f
T^T

m

(v) dv °
Z

y

x

ezf
T^T

m

(vez) dv

Ø

Ø

Ø

Ø

∑
Z

y

x

f
T^T

m

(vez) |ez ° 1| dv +
Z

y

x

|f
T^T

m

(vez)° f
T^T

m

(v)| dv. (61)
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By (61) and Hölder’s inequality,
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The two terms on the majorant side of the above display can be further bounded as follows. By

Hölder’s inequality and Assumption C1
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Moreover, by Hölder’s inequality and Assumption C2,
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By (63) and (64), we see that the left-hand side of (62) can be further bounded by K
m

|x° y|1+".

Combining this estimate with (59) and (60), we get
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Next, observe that by Assumption C1,
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Because of (65) and (66), we can apply Theorem 20 in Ibragimov and Has’minskii (1981) to show

that the collection of processes
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is stochastically equicontinuous. By (43), we see that F
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are also stochastically equicontinuous. Combining this result with Theorem 3, we deduce that
bF
T,n,R

n

(x) ° F
T

(x), x 2 K, n ∏ 1, are stochastically equicontinuous in restriction to the event

{T ∑ T
m

}. By Corollary 1, ( bF
T,n,R

n

(x)° F
T

(x))1
{T∑T

m

}

= o
p

(1) for each x 2 K. Hence, for each

m ∏ 1,

sup
x2K

Ø

Ø

Ø

≥

bF
T,n,R

n

(x)° F
T

(x)
¥

1
{T∑T

m

}

Ø

Ø

Ø

P°! 0.

By using a standard localization argument, we readily derive the asserted convergence. Q.E.D.

7.6 Proof of Theorem 5

Part a. Let N1 be an arbitrary subsequence of N. By assumption, sup
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set {x 2 K : F
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(x) = ø} charges zero Lebesgue measure. By bounded convergence, along N2,
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Since F
T

(x) is continuous in x, by Lemma 21.2 of van der Vaart (1998) and (67), we have
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(·) is also increasing, we further have
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We have shown that for any subsequence, we can extract a further subsequence along which
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Part b. Let N1 and N2 be given as in part (a). Since the continuity points of Q
T

(·) are also

continuity points of QK

T

(·), by (67), we have bQK

T,n,R

n

(ø§) ! QK

T

(ø§) along N2 almost surely. The

assertion of part (b) then follows a subsequence argument similar to part (a). Q.E.D.
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