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Ex-post Risk Premia Tests using Individual Stocks:
The IV-GMM solution to the EIV problem

Abstract

This paper develops an IV-GMM approach that uses past beta estimates and firm character-
istics as instruments for estimating ex-post risk premia while addressing the error-in-variables
problem in the two-pass cross-sectional regression method. The approach is developed in the
context of large cross sections of individual stocks and short time series. We establish the
N-consistency of the IV-GMM ex-post risk premia estimator and obtain its asymptotic distri-
bution along with an estimator of its asymptotic variance-covariance matrix. These results are
then used to develop new tests for asset pricing model implications. Empirically, we examine a
number of popular asset pricing models and find support for the recent ¢-factor model proposed
by Hou, Xue, and Zhang (2015).
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1 Introduction

Asset pricing models suggest that an asset’s average return should be related to its exposure
to systematic risk. Models differ in the factors they identify as sources of relevant systematic
risk. A typical model identifies a small number of pervasive risk factors and postulates that
the average return on an asset is a linear function of the factor betas. The quest for the
identification of relevant risk factors at the theoretical level can be traced back to the works
of Sharpe (1964), Lintner (1965) and Mossin (1966) on the CAPM and Ross (1976) on the
APT. On the empirical front, a long line of research on the evaluation of such models has been
developed, starting with Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973).

One important aspect of empirical evaluation of an asset pricing model involves deter-
mining the cross section of test assets. On standard approach in the literature, introduced
by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), is to perform the asset
pricing tests on a small number of portfolios. Indeed, following Fama and French (1992), it
has become standard practice to sort stocks according to some firm characteristic in order to
form sets of portfolios, typically deciles, that are subsequently used as test assets. However,
as Lewellen, Nagel, and Shanken (2010) and Daniel and Titman (2012) demonstrate, inference
regarding the performance of an asset pricing model crucially depends on the choice of test
assets.! Motivated by this finding, we develop a framework for estimating and evaluating asset
pricing factor models using large cross sections of individual stock return data, as originally
suggested by Litzenberger and Ramaswamy (1979). We only consider short time horizons so
that we can evaluate the implications of asset pricing models locally in time, and, hence, we
restrict ourselves to factors that are traded portfolio returns or spreads focusing on ex-post risk
premia (see Shanken (1992)).

The existing methodological literature on the estimation and evaluation of asset pricing
models mainly focuses the case in which the time-series sample size, T', is large while the size
of the cross section of test assets, IV, is small. This scenario is suitable when portfolios, as

opposed to individual stocks, are used as test assets.? The analysis of linear asset pricing factor

!The method used to form the test portfolios could affect the inference results in undesirable ways. As Roll
(1977) points out, in the process of forming portfolios, important mispricing in individual stocks can be averaged
out within portfolios, making it harder to reject the wrong model. Lo and MacKinlay (1990) are concerned about
the exact opposite error: if stocks are grouped into portfolios with respect to attributes already observed to be
related to average returns, the correct model may be rejected too often.

2The long list of related papers includes, among others, Gibbons (1982), Shanken (1985),
Connor and Korajczyk (1988), Lehmann and Modest (1988), Gibbons, Ross, and Shanken (1989), Harvey
(1989), Lo and MacKinlay (1990), Zhou (1991), Shanken (1992), Connor and Korajczyk (1993), Zhou (1993),
Zhou (1994), Berk (1995), Hansen and Jagannathan (1997), Ghysels (1998), Jagannathan and Wang (1998),
Kan and Zhou (1999), Jagannathan and Wang (2002), Chen and Kan (2004), Lewellen and Nagel (2006),
Shanken and Zhou (2007), Kan and Robotti (2009), Hou and Kimmel (2010), Lewellen, Nagel, and Shanken
(2010), Nagel and Singleton (2011), Ang and Kristensen (2012), Kan, Gospodinov, and Robotti (2013) and



models when the number of test assets N is large has been the subject of a few recent pa-
pers. Gagliardini, Ossola, and Scaillet (2012) extend the two-pass cross-sectional methodology
to the case of a conditional factor model incorporating firm characteristics. Their asymptotic
theory, based on N and T jointly increasing to infinity at suitable rates, facilitates studying
time varying risk premia. Chordia, Goyal, and Shanken (2015), building on Shanken (1992),
use bias-corrected risk premia estimates in a context with individual stocks and time varia-
tion in the betas through macroeconomic variables and firm characteristics. Their focus is
the relative contribution of betas and characteristics in explaining cross-sectional differences
in conditional expected returns. More closely related to our paper is the recent paper by
Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015) which employs an instrumental vari-
able approach to deal with the EIV problem in the risk premia estimation using individual
stocks, where the instruments are betas estimated over separate time periods. However, they do
not offer an estimator of the variance-covariance matrix of the risk premia estimator. Instead,
they resort to the original Fama-MacBeth approach for computing standard errors and test
statistics, as used in the large T case, and, hence, ignore the error-in-variables (EIV) problem in
the estimation of the variance-covariance matrix (Shanken (1992) and Jagannathan and Wang
(1998)).

We contribute to the extant literature by developing an instrumental variable-generalized
method of moments (IV-GMM) approach for estimating ex-post risk premia when the number
of assets, IV, tends to infinity while the time-series length 7' is fixed. In the standard two-pass
procedure used for estimating risk premia, the second step is a regression of average returns on
estimated betas. As explained in Section 6 in Shanken (1992), when T is fixed and N tends to
infinity, the orthogonality condition required for consistency in the second pass is not satisfied
rendering the two-pass CSR estimator inconsistent. This is a manifestation of the well-known
EIV problem which emerges from using beta estimates instead of the true betas. Our approach
uses past beta estimates and firm characteristics as instrumental variables in order to deal with
the EIV problem. We establish that the overidentified IV-GMM ex-post risk estimator is N-
consistent and show that it asymptotically follows a normal distribution. Finally, incorporating
a cluster structure for idiosyncratic shock correlations, we obtain an N-consistent estimator
of the asymptotic variance-covariance matrix which we use to develop statistics for testing
asset pricing model implications. There are significant differences between our paper and the
aforementioned paper by Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015), on which
we elaborate in Section 2. Importantly, in addition to beta estimates from past periods, we
use firm characteristics as additional instruments. Furthermore, we provide a fully operational

asymptotic theory for the IV-GMM estimator that we use to build asset pricing tests.

Kan, Robotti, and Shanken (2013).



Litzenberger and Ramaswamy (1979) initiated the line of research on N-consistent risk pre-
mia estimators which was continued by Shanken (1992) and Jagannathan, Skoulakis, and Wang
(2010). However, these papers do not provide inference tools as they do not address the issue
of the sampling distribution of risk premia estimators. The recent paper by Kim and Skoulakis
(2015), using the regression-calibration approach, obtain the asymptotic distribution of the ex-
post risk premia estimator along with an estimator of its variance-covariance matrix based on
which they construct asset pricing tests. In this paper, we offer an alternative approach based

on the use of instrumental variables for addressing the error-in-variables problem.

We examine the performance of the IV-GMM ex-post risk premia estimator in a num-
ber of Monte Carlo simulation experiments. In our empirical investigation, we use the IV-
GMM estimator to test the implications of four popular asset pricing model: the CAPM, the
Fama and French (1993) three-factor model (FF3), the Hou, Xue, and Zhang (2015) four-factor
model (HZX4) and the Fama and French (2015) five-factor model (FF5). To make them rel-
evant for our empirical exercise, we calibrate our simulations to the CAPM, the FF3 model
and the HXZ4 model. The simulation results clearly show the significant bias reduction in
the cross-sectional regression intercept and ex-post risk premia estimates achieved by the IV-
GMM approach and the good performance of our asset pricing tests for relevant sample sizes.
Empirically, we find that the CAPM, the FF3 model and the FF5 model are mostly rejected
by the IV-GMM test statistics in our sample. In contrast, we find evidence in favor of the
HXZ4 model, for which we find strong support in five out of eight periods under all alternative

clustering schemes.

The rest of the paper is organized as follows. In Section 2, we describe the general econo-
metric framework and develop the IV-GMM ex-post risk premia estimator using past beta
estimates and firm characteristics as instruments. We further establish the N-consistency of
the IV-GMM estimator, obtain its asymptotic distribution, provide an estimator of its asymp-
totic variance-covariance matrix and develop novel asset pricing tests. In Section 3, we provide
Monte Carlo evidence on the finite sample behavior of the IV-GMM estimator and the associ-
ated tests. Section 4 presents empirical evidence on four popular asset pricing models. Finally,
Section 5 concludes. Proofs are collected in the Appendix and additional results are delegated

to the Online Appendix.



2 Econometric Framework

2.1 Model specification

Consider an economy with N traded assets and K factors. Each factor is assumed to be a port-
folio return spread. Let ry = [ r1;, --- 7y, | be the vector of returns of the N traded assets
in excess of the risk-free return and £, = [ f1;, --- fx. |' be the vector of factor realizations
at time t. We assume that data are available over times 1 through 7', where 7' is finite and
fixed, and formally consider the case in which the number of assets, N, tends to infinity. Given
that the time-series sample size is fixed, the uncertainty about the factors cannot be resolved.
Hence, our analysis is conducted conditionally on the factor realizations.

We refer to the periods covering times 1 through 7 and 71 + 1 through T"= 7 + 7 as the
pretesting and testing periods, respectively. That is, 7, and 75, that are fixed throughout our
analysis, are the pretesting and testing time-series sample sizes. We are interested in testing
the implications of an asset pricing model over the period from time 7 + 1 through T' = 71 + 7.

The expectations of the excess return r; and the factor f; are denoted by p, = E[r;] and
s = E[fy], respectively. Furthermore, the K x K factor variance-covariance matrix is denoted
by ¢ = E[(f; — ps) (f: — py)'], while the N x K excess return-factor covariance matrix is
denoted by X, = E[(r; — ;) (£ — por)']. The N x K beta matrix is then defined by

B=[p - By =%, (1)

where 3; denotes the beta vector for the i-th asset, ¢ = 1,..., N. Given that the factors
comprising f; belong to the return space, the risk premia vector equals the vector of factor
expectations py, and, hence, the corresponding linear beta pricing model implies that p, =
Bpy.

Defining the residual u; = r; — Bf;, we can then write u; = (r, — p,) — B (f, — py), which
implies E[u;] = Oy and E [w,f}] = E[(r; — p,.) f] — B (f; — py) f]] = 3, — BX; = Oy g, where
Ox and Oyyx denote the N x 1 vector and N x K matrix of zeros, respectively. Hence, we

obtain the following time-series regression representation:
ry = Bft + U, Wlth E[ut] = ON, E[utft,] = ONXK' (2)

Over the testing period, covering times t = 7y + 1,..., 7 + 7o, the data generating process



in (2) implies that

Ty = Iny)o + BA; + T (3)
with
Ao =0 A—f—lzﬁmf
0o— Y, f — 2_7_2 =41 ts
where
1 T1+72 1 T1+72
T2 T9 t=71+1 e, U T2 Zt=7'1+1 e ( )

Recall that, since T is finite and fixed, our analysis is conducted conditionally on the factor
realizations. Hence, following Shanken (1992), among others, we refer to Ay as the ex-post risk
premia. When the linear factor model holds, the vector of ex-post risk premia A; equals the
average factor realization over the testing period, namely f, given that the factors belong to

the return space. The object of our inference is the (K + 1) x 1 vector

A=[X N . (5)
Defining the N x (K + 1) matrix X by

X=[1y B] (6)
we can rewrite equation (3) as

To = 1nyA0 + BAs + 1 = XA + 1. (7)

If the true beta matrix B were known, an N-consistent estimator of A could be obtained
by regressing the average excess return vector T, on a vector of ones and the beta matrix B,
under the reasonable assumption of zero limiting cross-sectional correlation between the betas
and the shocks. However, the beta matrix B is not known and has to be estimated using
the available data. Natural proxies for B are the time-series OLS estimators of B obtained
using data from the pretesting period or the testing period. When 71 and 7, are fixed, as in
our framework, the two-pass CSR approach with either proxy yields an inconsistent estimator.

This is a manifestation of the well-known EIV problem as pointed out in Shanken (1992),



Jagannathan, Skoulakis, and Wang (2010), and Kim and Skoulakis (2015).

Various approaches have been advanced in the statistics and econometrics literature for deal-
ing with the EIV problem. One such approach, particularly suitable for the case in which mul-
tiple proxies of unobserved quantities are available, is the instrumental variable (IV) approach.
Starting with the early works of Wald (1940), Reiersgl (1941), and Geary (1943), a long related
literature was subsequently developed.? Chapter 6 of Carroll, Ruppert, Stefanski, and Crainiceanu
(2006) offers a comprehensive account of the IV method, where they state that “One possi-
ble source of an instrumental variable is a second, possibly biased, measurement of the (true
unobserved) regressor obtained by an independent measuring method.”® The recent paper by
Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015) also uses an IV approach in the con-
text of asset pricing tests. Our paper differ from the aforementioned paper in a number of
important aspects. First, we use beta estimates obtained in the pretesting period and there-
fore, given that our pretesting and testing periods are non-overlapping and consecutive, our
approach is less prone to potential serial correlations in the real data. Second, in addition to
past beta estimates, we also use firm characteristics as instruments. As a result, our estimator
is an overidentified IV-GMM estimator and not a standard two-stage IV estimator. Third, since
we aim to develop asset pricing tests using individual stocks with a focus placed on ex-post risk
premia, we exclusively focus on the case of fixed T" and large N. Finally, we develop a fully
operational asymptotic theory of the IV risk premia estimator. That is, we show its consistency
and asymptotic normality as IV tends to infinity and, furthermore, construct an estimator of its
asymptotic variance-covariance matrix that we finally use to develop novel asset pricing tests.

To develop the IV risk premia estimator, we need to introduce some notation. Define the
N x 1 excess return matrix R; and the K x 71 factor realization matrix F, over the pretesting
period, the N X 75 excess return matrix Ry and the K x 7 factor realization matrix Fy, over

the testing period, by

Ri=[r - ry ], Fi=[fi - £ ] (8)
and

Ry=[rr1 o rrunl, Fo=[f o 0] (9)

Then, using the quantities defined in (8) and (9), we express the time-series OLS estimators

3Durbin (1954) provides a review of the early EIV literature. Aldrich (1993) offers a historical account of
the development of the IV approach to the EIV problem in the 1940s.

4In the Online Appendix, we illustrate how the IV method can be used in the context of a linear regression
model with regressors subject to the EIV problem.



of the beta matrix B over the pretesting and testing periods, denoted by ]§1 and ]§2, respectively,

as follows:
B, = (RJ,F) (F\J.F) ", (10)
]§2 = (R2JT2F/2> (F/2J7'2F2>_1 ) (11>

where J,,, = 1,,, — %Lnl;ﬂ, with I, and 1,, denoting the m x m identity matrix and the m x 1

vector of ones, respectively, for any positive integer m.?

We introduce the N x 7 idiosyncratic shock matrix Uy, over the pretesting period, and the

N X 1y idiosyncratic shock matrix Uy, over the testing period, defined by

U= [wm o ou (12
U, = [uﬁ-i-l ot Ut } (13)

Alternatively, letting u i and u) i denote the i-th row of U; and U,, respectively, for ¢ =

1,..., N, we can write
U, = [ Uy - Ug]nN] ]/a (14)
U, = | Ug1] -+ Ugz[N) I (15)

Observe that uy, the disturbance term of the equation in (7), and U, satisfy the following
relationship:

1

T2

U,1,,. (16)

ﬁgz

Noting that R; = BF;+U; and Ry, = BF,+ U, we can decompose the beta estimators ]§1
and ]§2, defined in (10) and (11), respectively, into the true beta matrix B and the corresponding

estimation error terms as follows:

B, = ((BF,+U))J,F)) (F\J,.F) ' =B+ UG, (17)
B, = ((BFy+Uy)J F,) (F,J. Fy) ' =B+ UGy, (18)

>Standard matrix algebra shows that J,, is a symmetric and idempotent matrix, and that tr (J,,) = m — 1.



where the 71 x K matrix Gy and the 5 x K matrix Gy are defined by

G, = JT1F,1 (FlJT1F/1)717 (19)
G, = J.F,(F,J.F)". (20)

To illustrate the effect of the beta estimation error in the case that we use ]§2 as a beta

matrix proxy in the second-pass CSR, we observe that equation (7) is reexpressed as Ty =
XQA + (X — XQ)A + ﬁg or

fg = Xg)\ —+ w, (21)
where

X, = [1x By, (22)

w = (X=X)A+ . (23)

Using the equations of (18) and (16), the disturbance term w defined in (23) can be expressed
as
1
w = —(UQGQ))\f +ﬁ2 = U2 (—17-2 — GQ)\f) = Uggg, (24)

T2
where the 7 x 1 vector of gs is given by

g = %172 C G = 712(172 3, Fy(FoJF)) 'Fy)L,,. (25)

It follows from the expressions (18) and (24) that the regressor and disturbance terms in
the cross-sectional regression (21) are correlated through the beta estimation error contained in
]§2. Hence, ignoring the error-in-variables problem, one would obtain an inconsistent ex-post
risk premia estimator. We develop an instrumental variable approach to deal with the error-in-
variables problem using past beta estimates and firm characteristics as instruments. Next, we
explain that, under mild assumptions, ]§1 can serve as an instrumental variable for constructing

an N-consistent estimator of A using the cross-sectional regression (21).

Assumption 1 (i) As N — oo, +U'ly - 07 and £+ U'B = Opy g, where U=[ U, U, |.
(ii) As N — oo, U Uy 25 0,4y (i) As N — 00, +B'1y = £ 3V B — pg. (iv) 4As

N — oo, %Zi\;(ﬁz — pg)(Bi — ps) — Vg, where Vg is a symmetric and positive definite

8



matriz.

Assumption 1(i) states that, at each time ¢, the cross-sectional average of the shocks u;;
converges to zero, and the limiting cross-sectional correlation between the shocks u;; and the
betas 3; is also zero, as the number of assets N tends to co. For 1 <t <7 and 7 +1<¢ <
71 + T2, Assumption 1(ii) states that the limiting cross-sectional correlation between u;; and
u;p vanishes. That is, the pretesting-period and the testing-period shocks are assumed to be
cross-sectionally uncorrelated in the limit N — 00.% Assumption 1(iii) states that the limiting
cross-sectional average of the betas (3; exists while Assumption 1(iv) states that the limiting
cross-sectional variance of the betas 3; exists and is a symmetric and positive definite matrix.

In light of equations (17) and (18), it follows from Assumption 1 that By is correlated with
the explanatory variable By in the cross-sectional regression (21), in the sense that ]§’1]§2 /N
converges in probability to Mz = Vg + pgpy, which is symmetric and positive definite, and
hence invertible matrix, as N — oo. Furthermore, based on equations (17) and (24), Assump-
tions 1(i) and 1(ii) imply that the proposed instrumental variable B, is uncorrelated with the
disturbance term w in the cross-sectional regression (21), in the sense that ]§’1w /N 25 0k, as
N — o00. These properties are formally established in Theorem 1 below, where we establish
the N-consistency of the proposed IV-GMM estimator.

In addition to the beta estimates obtained in the pretesting period, we also employ firm char-
acteristics as instrumental variables. We elaborate on the validity of the chosen characteristics
as instruments on a model by model basis in the empirical application. For the purposes of the
theoretical development, we make the following assumption. Let C; denote the N x L matrix

of characteristics observed in the pretesting period, and c}; be the i-th row of Cy,i=1,..., N.

Assumption 2 (i) As N — oo, C|U;/N L V., where Vg is an L X 7 matri. (i) As
N — 00, CiUy/N -5 Opyry. (iii) As N — o0, Cij1y/N = L350 ey — pe. (iv) As
N — o0, ~ ZiN:1(Cl,i — pe)(c1; — pe) — Vo, where V. is a symmetric and positive definite

matriz. (i) As N — oo, C\B/N -5 M.z, where Mg is an L x K matriz.

Assumptions 2(i) and 2(ii) state that firm characteristics observed in the pretesting period are
potentially correlated with idiosyncratic shocks in the pretesting period but not with those in
the testing period. In light of equation (24), Assumption 2(ii) states that C; is uncorrelated

with the disturbance term w. Assumptions 2(iii) and 2(iv) state that the first two cross-sectional

6As long as the pretesting and testing periods do not overlap and the shocks over the two periods are cross-
sectionally uncorrelated when N — oo, the IV approach would provide valid inference. In our analysis, we
consider the two periods to be consecutive so as to mitigate the effect of potential serial correlation in the real
data.



moments of the firm characteristics are well defined. Finally, Assumption 2(v) states that the
firm characteristics observed in the pretesting period are correlated with the true betas.

In our empirical applications, the factors are returns on spread portfolios constructed after
sorting stocks with respect to a certain firm characteristic, such as size and book-to-market ratio.
In this context, it is expected that characteristics and betas with respect to the corresponding
spread are highly correlated. We indeed provide evidence that this is the case in Section 4,
where we empirically evaluate a number of popular asset pricing models.

Under the aforementioned assumptions, and in particular Assumptions 1 (ii) and 2 (ii), the
past beta estimates ]§1 and the characteristics C; can be used as instruments in the estimation

of ex-post risk premia, giving rise to the following overidentified IV-GMM estimator:

-1

~

A = |(XLZ)W(ZhXy)|  (XLZ,)W(ZT), (26)

where the N x (1 4+ K + L) instrument matrix Z; is defined by
21 - [ 1N ]/_5)1 Cl ], (27)

and W is a (1+ K+ L)x (14 K+ L) symmetric weighting matrix of full rank which can
be computed using the available data. The weighting matrix W is assumed to converge to a
symmetric and positive definite matrix W, as N — oo. Note that, if we only use the past beta
estimates as instruments, i.e., if Z; = X; = [ 1y B, |, then the weighting matrix is irrelevant
and the estimator assumes the usual exactly identified IV form: Ay = ()2’15&2)*1(5&’1?2). We
will establish the N-consistency and asymptotic normality of the estimator X‘;‘v”“ for a generic
weighting matrix and then show how to obtain the efficient IV-GMM estimator by suitably
selecting W and W. Note that equation (21) implies

X = A+ [(R42,/N) W (2%o/N)] - (R42:/N) W (Ziw/N) (28)

The next theorem shows that, as N — oo, Z} X, /N converges to a full-rank (14K + L) x (14 K)

matrix and that 2’1w /N converges to 014 k1, and hence N-consistency of Xiﬂ” is established.

Theorem 1 Under Assumptions 1 and 2, the IV-GMM ex-post risk premia estimator A

Iv >’

defined in (26), is an N-consistent estimator of A.

Having established the N-consistency of the proposed IV-GMM estimator X?&”, in the next
two subsections we proceed to (i) determine its asymptotic distribution and (ii) provide an N-

consistent estimator of its asymptotic variance-covariance matrix incorporating idiosyncratic

10



shock cross-sectional correlations. Combining these results, we finally develop novel asset pric-

ing tests.

2.2 Asymptotic distribution of the IV ex-post risk premia estimator

Note that equation (28) yields
VN (R - 2) = (K2 V) W (Zi%o/V) | (RZ0/N) W (Ziw/VN) . (29)

It is shown in the proof of Theorem 1 that, as N — oo, 2’15(2/N L5 Q, where Q is the
full-rank (14 K + L) x (1 + K) matrix defined by

L pj
Q= Hs Mg |, (30)
Hec MC,B

where Mg = Vg + pgpjs. Since Vg is positive definite it follows from Theorem 7.1 in Schott
(1997) that Q has full rank equal to 1 + K. To determine the asymptotic distribution of o

v )

one needs to determine the asymptotic distribution of 2’1w JV/N. Let E/L[z‘] denote the i-th row
of Z1 defined in (27) and w; denote the i-th element of w defined in (23) so that

Z, = [ 21,[1} /Z\l,[N] ]/ (31)
and
W = [ W - WN ]/. (32)

To invoke the central limit theorem, we express 2’11.0 in summation form as
~ N
/ ~
le = Zi:l Zl,[ﬂwi' (33)

In the proof of Theorem 2, which we state next, we show that 21’[2-]%- equals ITe; (see equation
(66) in the Appendix), where II is a suitable matrix (see equation (67) in the Appendix) and

e; is the T-dimensional random vector defined by

/

e = [ W W @uy gy W06 wyec; |, (34)

11



where 7 = (1+ 7 + K + L)7. Note that Assumption 1(i), Assumption 1(ii), and Assumption
2(ii) imply that + 3V e, 25 07, as N — oo.

GMM
v

. d e . :
sumption, where — denotes convergence in distribution, postulating that e; satisfies a cross-

In order to obtain the asymptotic distribution of A% we make the following mild as-

sectional central limit theorem.

Assumption 3 As N — oo, \/Lﬁ Zf\il e; BN N(07,V.), where V. is a symmetric and positive

definite T X T matrix.
The following theorem establishes the asymptotic distribution of the estimator 3\?&”.

Theorem 2 Under Assumptions 1, 2 and 3, as N — oo, VN (Xﬁ’;”— )\) BN N (041, V),

where
V) = (QWQ)T' QW (IIV.IT) WQ(QWQ) ™, (35)

the matriz € defined in (30), the matriz II is defined by equation (67) in the Appendiz, and

the matriz V. is defined in Assumption 3.

It follows from a standard argument, typically employed in a GMM context, that the optimal
(most efficient) IV-GMM estimator is obtained when the weighting matrix is W* = (ITV IT') ",
in which case we obtain V = (Q’ (ITV. IT )71 Q) 7 In the following subsection, we obtain an
N-consistent estimator of ITV IT', based on which an N-consistent estimator of V) is readily
constructed using equation (35). As expected, the optimal IV-GMM estimator Xﬁﬁ” is at least as
efficient as the IV estimator XIV. We formally establish this property in the Online Appendix.

2.3 Estimation of the asymptotic variance-covariance matrix V)

According to equation (35), the variance-covariance matrix V) involves the matrix V. which,
according to Assumption 3, is limiting variance-covariance matrix of \/LN Zi\;l e;. Hence, the
structure of V) depends on the structure of V, which, in turn, depends on potential cross-
sectional correlations of the shocks e;. Note that in the return generating process described
by (2), the disturbance vector u; could potentially exhibit cross-sectional correlation due to

economic links such as industry effects. In that case, the vectors e; would be correlated across

"Note that 1/ g» = 1 which implies that gy # 0,,. Hence, it follows from equation (67) in the Appendix
that IT has full rank equal to 1+ K + L and so IIV II’ is invertible, given that V, is positive definite according
to Assumption 3.

12



firms as it follows from definition (34). To incorporate such correlations, we use a clustering

approach that we describe next.®

We assume that there are My clusters and that the m-th cluster consists of N, stocks,
for m = 1,..., My, so that ZMN N,, = N. For all N, we assume that the cluster sizes
N,,, m = 1,..., My are bounded. As N — oo, the number of clusters, My, is assumed to
increase so that MiN — G, where G is to be interpreted as the limiting average cluster size. For
m=1,..., My, let I,, be the set of all indices ¢ for which the i-th stock belongs to the m-th

cluster, and define the aggregate cluster shocks

M=), e (36)

In the next assumption, we postulate that the central limit theorem applies to the random

sequence My, m = 1,2,...

Assumption 4 The aggregate cluster shocks n,, are independent across clusters and, as N —

\/7 SMN N N N (07,V,), where

V= p-lim o Z M- (37)

Utilizing Assumption 4, we obtain

\/—Z =\~ \/—Z'rlm_>N(OTa U/G)

and so it follows that V, = éVn. Hence, in light of expression (35), to estimate the asymptotic

variance-covariance matrix V,, it suffices to obtain an estimator of the matrix
e =11V, II'. (38)

To construct an estimator of ®, we need to introduce some additional notation. Define the

cluster selection My x N matrix C with (m, ) element given by

C(m,i):].[iejm}, m:].,...,MN, izl,...,N, (39)

8Qur empirical applications, following standard economic intuition, we use an industry classification to
determine the clusters. In addition, for robustness purposes, we consider clusters based on firm characteristics
such as size and book-to-market ratio.
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the N x T matrix of E, stacking the firm shocks e; in (34), by

E=[e - eyx], (40)
and the My x T matrix of #, stacking the cluster aggregate shocks n,, in (36), by

H=[n - nu - (41)

It follows from the proof of Theorem 2 that z; jjw; equals ITe; (see equation (66)), which
implies that

diag (w)Z1 = [ Zy w1 -+ Zyvwn |'=EIT, (42)

where diag(w) denotes the N x N diagonal matrix with (7,7) element equal to w;, for i =
1,..., N. Furthermore, note that H = CE. Hence, if w were observed, one could consistently

estimate © by

- 1 - N
O = —(Z\diag(w)C'Cdiag(w)Zy). (43)
My

Indeed, as N — oo, we have

N

Mn
~ 1 1 1
©=-— (IECCE) =T —HH |II' =TT | — T, | TU
7 ) (MN%H) (MN;n nm>
2, v, I = 0,

where, in the last step, we make use of definition (37).

To make the above estimator operational, we need an observable proxy of the disturbance

w. Proceeding in the traditional fashion, we define the residual vector
& =Ty — XA, (44)

Replacing w by @ in (43) and incorporating the standard degrees-of-freedom adjustment,” we

9The degrees-of-freedom adjustment does not affect the asymptotic properties of e) but, following standard
econometric practice, we use it to improve the finite sample behavior of the estimator.
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propose estimating © by

. ]- =~ ~ / . ~\
= Mok o1 (Z'diag (w) C'Cdiag (¥) Z,), (45)

o)

and establish that © is indeed an N-consistent estimator of ©.

To this end, for each i = 1,..., N, we define the vector d; by

d; = [1 uy Uy W @uyy B e, BieB Biecd,; Biou, uy, 6 u/2,[i]®cll,i] (46)

Then, for each cluster m =1,..., My, we define

5m = Ziefm dia (47)

and make the following mild regularity assumption.

Assumption 5 As N — oo, MLN Z%ﬁl 0,,0). converges in probability to a finite matriz.

It follows from the proof of Theorem 1 (see equation (60)), that
Q=_—_7X, (48)

is an N-consistent estimator of €2. The following theorem provides an N-consistent estimator

of the asymptotic variance-covariance matrix V.

Theorem 3 Under Assumptions 1-5, as N — 00,

~ M e e e~
V) = TN(Q’WQ)—19'\7\79\7\79(Q’WQ)—1 L5V,

where the matrices © and Q are defined in (45) and (48), respectively.

Combining Theorems 2 and 3 we can readily obtain statistics for testing the implications
of the asset pricing model that form our null hypothesis Hy : [ Ag A} ' =[0 f; |". The first

statistic is the quadratic form
~ PN ~
J) = N (X = A) Vit (Rer - a) (49)

which, under the null hypothesis, asymptotically follows a y? distribution with K + 1 degrees
of freedom. Denoting by Ao the first element of Xiﬁ” and by vy the (1,1) element of V,, we

15



can also use
t(N) = ——=, (50)

which, under the null hypothesis, asymptotically follows a standard normal distribution. Simi-
larly, for k = 1,..., K, denoting by A, the (k-+1)-th element of A and by Uny the (k+1,k4+1)

element of V), we can use

/)\\k - 7k,2

NG

which, under the null hypothesis, also asymptotically follows a standard normal distribution.

t(Ak) = (51)

According to the simulation evidence presented in the next section, the joint test statistic
J(A) typically overrejects the null hypothesis of correct model specification exhibiting poor
performance for empirically relevant finite sample sizes. It appears that the reason causing this
behavior is that the variance-covariance matrix estimator \A/',\ can be ill-conditioned in small
samples. Motivated by this observation, we propose an additional test based on the following

quadratic form
~ I ~ ~
JaA) = N (X = A) Dyt (e - A)), (52)

where D) is the (K + 1) x (K + 1) diagonal matrix with (1,1) element equal to Ty, and
(k+1,k+1) element equal to Dy, k = 1,..., K. Note that Jy(X) = t(Xo)>+ >0, t(\)?. While
the test statistic J4(A) does not asymptotically follow a standard distribution, such as x?, under
the null hypothesis, one can easily compute p-values associated with J;(A) using simulation.
Let Q) be the Cholesky factor of the variance-covariance matrix V, so that V, = Q,Q).
Then, the asymptotic distribution of J4(A) is the same as the distribution of the quadratic
form ¢ = ¢’ [Q\D,'Q,] ¢, where D, is the (K + 1) x (K + 1) diagonal matrix with (j, ;)
element equal to the (j,j) element of V,, for j = 1,..., K + 1, and ¢ follows a (K + 1)-
dimensional standard normal distribution. The matrix Py = Q’/\D)TlQ A can be N-consistently
estimated by 13,\ = Q’A]/:\)KIQ,\, where QA is the Cholesky factor of {\/’,\ so that \A/'A = Q,\Q’A
Let {¢;:i=1,...,1} be a large sample of simulated draws from N(Og1,Ix11) and define
G = C,L’IA’ ACi, i =1,...,1. It follows by the Monte Carlo principle that the distribution function
of ¢, F¢(a) = P[¢ < al, can be approximated by Zf:l li¢,<q], wWith the approximation becoming
better as IV and [ increase. In our simulation exercises and empirical tests, we use I = 100, 000.

The above test statistics could be used for inference for any generic weighting matrix.
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However, as discussed in Subsection 2.2, selecting W* = (ITV.IT))"" yields the efficient IV-
GMM estimator. We follow standard GMM practice and obtain the two-step estimator as
follows. First, we set W = I x4 to obtain an initial N-consistent estimator of A, say :\%V
Then, using X%V, we obtain an N-consistent estimator of © from (45) which then provides an
N-consistent estimator of W*, say W+, Using W* as a weighting matrix in the second step,
we obtain the two-step [IV-GMM estimator of A which is efficient. In addition, we obtain the
iterated IV-GMM estimator by repeating the above process of successively obtaining estimators
of the risk premia and the asymptotic variance-covariance matrix, in an alternate fashion, till
the sequence of risk premia estimators converges. In practice, we stop the iteration when the
Ly-norm of the difference between two successive risk premia estimates becomes less than 1076,
We denote the two-step and iterated IV-GMM estimators by AT and AL, respectively, and use

both of them in our simulations and empirical applications.

3 Monte Carlo Simulation Evidence

In this section, we investigate the properties of the IV-GMM ex-post risk premia estimators and
the associated asset pricing tests for empirically relevant finite sample sizes through a number
of Monte Carlo simulation experiments. We illustrate the importance of the EIV correction
offered by the IV-GMM approach in terms of bias reduction and efficiency enhancement by
comparing two efficient versions of our IV-GMM estimator with two other ex-post risk premia
estimators without EIV correction. The first alternative estimator, denoted by Xl, ignores the
EIV problem and regresses average excess returns over the testing period on a constant and
beta estimates obtained by standard time series regression over the pretesting period, that is
A = (X! X)X/ Ts, where X; = [ 1y B, ]. Similarly, the second alternative estimator,
denoted by Xg, also ignores the EIV problem but uses beta estimates from the testing period,
that is Ay = (5{’25(2)—15('2?2. We report the bias as well as the root mean square error of all four
estimators. Furthermore, we investigate the finite sample performance of the test statistics J(\)
and Jy(A), defined in (49) and (52), respectively, and the ¢-statistics t(A\g) and t(A;), defined in
(50) and (51), respectively. As we explain below, we use three widely used asset pricing models
in our calibration.

Next, we provide the details of our simulation design. To make our simulation exercise
relevant for our empirical applications, we consider all stocks in the CRSP universe from 2005
to 2014 with price above 1 dollar and select the 1,000 stocks with the longest time series
histories. We jointly calibrate the betas and the idiosyncratic shock variances of those 1,000

stocks in order to simulate excess return data according to the data generating process (2).

Our calibration is based on the following three linear asset pricing models: the single-
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factor CAPM, the three-factor model of Fama and French (1993) and the four-factor model
of Hou, Xue, and Zhang (2015). The factors in the second model, which we refer to as the
FF3 model, are the market excess return (MKT), the small size minus big size spread portfolio
return (SMB), and the high book-to-market minus low book-to-market spread portfolio return
(HML).'® The factors in the third model, which we refer to as the HXZ4 model, the market
excess return (MKT), the difference between the return on a portfolio of small size stocks and
the return on a portfolio of big size stocks (ME), the difference between the return on a portfolio
of low investment stocks and the return on a portfolio of high investment stocks (I/A), and
the difference between the return on a portfolio of high profitability (return on equity) stocks
and the return on a portfolio of low profitability stocks (ROE).!! In the case of the CAPM, we
do not use any characteristics as instruments, and therefore the IV-GMM estimator becomes
the standard exactly identified IV estimator, which we denote by XIV. For the FF3 and HXZ4
models, we use the average of firm characteristics over the pretesting period of 2005-2009 as
instrumental variables. Specifically, for the FF3 model, we use the logarithm of size and book
to market ratio.'> For the HXZ4 model, we use the logarithms of size, investment over asset,

13 We provide empirical evidence illustrating that these characteristics

and return on equity.
are suitable instruments in Section 4. For both the FF3 and HXZ4 models, we consider the

two-step IV-GMM estimator, A= as well as the iterated TV-GMM estimator, XE

v

We pay particular attention to the following two aspects of the simulation design: (i) the
number of clusters in the stock universe and (ii) the correlation structure among stock returns
within clusters. Due to space limitations, we only consider clusters of equal size and assume that
correlations within clusters are constant. In the first part of the simulation exercise, that focuses
on the bias and the mean square error of the IV-GMM estimators, we set the number of clusters,
My, equal to 50 and the pairwise correlation p, within each cluster, equal to 0.10. In the second
part of the simulation exercise, that focuses on the finite sample behavior of the various asset
pricing test statistics, we let the number of clusters My take the values 50 and 100 and the
within-cluster correlation take the values 0, 0.10, and 0.20. In the empirical investigation of
Section 4, we consider clustering based on the 49-industry classification of Kenneth French.*
Following this classification, we estimate an average correlation within industries around 0.10

based on an industry residual model for the shocks, in the spirit of Ang, Liu, and Schwarz

0The data on the three factors of the Fama and French (1993) model are obtained from Kenneth French’s
data library.
HWe thank the authors for providing the data on the four factors of the Hou, Xue, and Zhang (2015) model.
12We divide the market capitalization of individual stocks by the contemporaneous aggregate market capital-
ization for normalization.
13 T/A is defined as change in inventory, property, plant and equipment (PP&E) over the previous year’s total
asset. ROE is defined as (IB - DVP + TXDI) over book value of equity where IB is the total earnings before
extraordinary items, DVP is the preferred dividends (if available), and TXDI is the deferred taxes (if available).
14The classification is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data-Library/det-49-
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(2010) (see their Appendix F.2). Hence, the range of correlation values that we employ in our

simulation is empirically relevant.

First, we illustrate the importance of the IV-GMM approach in dealing with the EIV problem
by comparing the IV-GMM estimators to the two alternative estimators, Xl and Xg, in terms
of finite sample bias. We compute the bias of all four estimators as the average of estimation
errors over 50,000 Monte Carlo repetitions. We consider pretesting and testing periods that
consist of 60 months and, to provide a comprehensive picture, we repeat the exercise over eight
testing periods from 1975-1979 to 2010-2014. In the baseline scenario, the idiosyncratic shocks
are assumed to follow a normal distribution. The results, reported in Table 1 in annualized basis
points (bps), clearly illustrate the bias reduction gains provided by the IV-GMM estimators.
Specifically, for the CAPM, the absolute biases of the IV estimator XW, averaged over the
eight periods, are 2.3 and 2.1 annualized bps for A\g and Ay, respectively. In contrast, for the
estimator A; (Xg) that ignores the EIV problem, the corresponding values are 359.9 (371.3)
and 365.1 (376.7) for A\g and Ay, respectively. Similar results hold for the FF3 model, for
which the average absolute biases of A® (A7) are 4.6 (4.9), 4.3 (4.3), 1.7 (1.7), and 2.9 (3.4)
annualized bps for A\g, Awr, Age, and Ay, respectively. The corresponding values for 3\1 (3\2)
are 552.0 (538.5), 412.2 (414.0), 293.7 (299.1), and 358.0 (288.5) for Ao, Akr, Ase, and Mgy,
respectively. For the HXZ4 model, the bias becomes even more severe for the estimators that
ignore the EIV problem. The average absolute biases of A; (3\2) are 757.7 (727.4), 475.3 (469.7),
437.0 (350.9), 370.4 (309.0), and 484.7 (473.2) annualized bps for Ao, Aur, Ay Arn, and Mg,
respectively. When AT (AI1) is used, the corresponding values are 39.1 (44.6), 16.9 (19.7), 29.2
(32.1), 21.3 (25.0), and 37.0 (42.9) annualized bps. We repeat the same exercise under the
assumption that the idiosyncratic disturbances follow a Student-¢ distribution with 6 degrees
of freedom. The results, reported in Table Al in the Online Appendix, are almost identical.
Hence, our conclusions regarding the superior performance of the IV-GMM estimators in terms
of bias reduction is robust to the assumption of normally distributed disturbances.

Next, we compare the IV-GMM estimators to the alternative estimators in terms of mean
square error. The purpose of this exercise is to examine whether the gain in bias reduction comes
at the cost of a higher variance and perhaps efficiency loss. We compute the root mean square
error (RMSE) of each estimator as the square root of the sample mean of squared estimation
errors over 50,000 Monte Carlo simulations. The simulation setup is identical to the one used
above to examine the finite sample bias. In Table 2, we report, in units of annualized bps, the
RMSE of the IV-GMM estimators along with those of the alternative estimators 3\1 and 3\2. The
results clearly illustrate that the [V-GMM estimators achieve much lower mean square errors in
comparison with the alternative estimators. For the CAPM, the RMSEs of XIV, averaged over
the eight periods, are 231.1 and 239.8 annualized bps for Ag and Ay, respectively. As already

19



seen above in the examination of bias, the two estimators that ignore the EIV problem perform
very poorly. The average RMSEs of A, (3\2) are 408.8 (418.6) and 411.9 (421.7) annualized bps
for \g and A\, respectively. The results for the FF3 model are similar. The average RMSEs of
X}E (Xﬁ) are 322.7 (323.3), 284.8 (285.4), 191.1 (191.0), and 230.4 (231.1) annualized bps for
A0, A, Asiss and Agq, respectively. The corresponding values for 3\1 (Xg) are 585.4 (578.5), 471.1
(466.2), 328.3 (328.7), and 383.6 (316.1) for A\, Awr, As, and Ay, respectively. The results for
the HXZ4 model reinforce our findings from the first two models. The average RMSEs of A, (3\2)
are 785.1 (755.6), 521.2 (514.1), 465.5 (386.5), 385.6 (324.7), and 499.4 (488.6) annualized bps
for Ao, Awrs Aues Arja, and Mg, respectively. When /)\\}‘S, (X%g) is used, the corresponding values are
471.3 (472.7), 378.9 (379.8), 335.2 (334.5), 296.8 (298.2), and 458.9 (461.2) annualized bps. We
repeat the same exercise under the assumption that the idiosyncratic shocks follow a Student-t
distribution with 6 degrees of freedom. Table A2 in the Online Appendix reports the results
that are almost identical to the ones obtained under the assumption of normally distributed
shocks. Collectively, the simulation evidence, which is robust across different factor model
specifications and distributional assumptions, illustrates that the IV-GMM estimators exhibit

superior performance in terms of bias reduction without sacrificing efficiency.

In our final simulation exercise, we investigate the behavior of the asset pricing test statis-
tics based on the IV-GMM estimators and the associated variance-covariance matrix estimators.
Specifically, we focus on the empirical rejection frequencies of the joint test statistics J(A) and
Ja(X) as well as the ¢ statistics t(\g) and t(\x), & = 1,..., K. The pretesting and testing
periods cover the years 2001 to 2005 and 2006 to 2010, consisting of 7, = 60 and 7 = 60
observations, respectively. Using the given factor realizations and the calibrated pairs of betas
and idiosyncratic shock variances, we simulate individual stock returns using the data gener-
ating process (2) for t = 1,...,120. Since the asymptotic variance of the IV-GMM estimators
crucially depends on the cluster structure, we consider a number of difference scenarios. Specif-
ically, we let the number of clusters My take the values 50 and 100 and assume that, within
each cluster, pairwise correlations are equal to p which takes the following three values: 0, 0.10,
and 0.20. We consider three nominal levels of significance, 1%, 5%, and 10%, and compute the
corresponding empirical rejection frequencies from 50,000 Monte Carlo repetitions.

The simulation exercise is first performed for idiosyncratic shocks following a normal dis-
tribution and the results are reported in Table 4. We first observe that the joint chi-square
test statistic J(A) tends to overreject the null hypothesis of correct model specification. For
example, with My = 50 and p = 0.1, the empirical rejection frequencies of the J(X) for X%S, are
9.2 (15.7) and 10.4 (17.2) percent for the FF3 and HXZ4 model, respectively, when the nomi-
nal significance level is 5 (10) percent. The rejection frequencies for /)\&3 show similar levels of

over-rejection. In contrast, the Jy(A) and the ¢ statistics yield empirical rejection frequencies
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that are reasonably close to the corresponding nominal levels of significance for both 3\@3 and
/)\\E Based on these findings, we will put more emphasis on the J;(\) and the ¢ statistics in our
empirical investigation. The simulation is repeated for shocks following a Student-t distribution
with 6 degrees of freedom and the results, reported in Table A3 in the Online Appendix, are
again almost identical. The conclusions hold for all three asset pricing factor models considered

and under both distributional assumptions.

4 Empirical Evidence

In this section, we use the IV-GMM approach developed in Section 2 to empirically evaluate
a number of popular factor models that have been proposed in the asset pricing literature.
Specifically, we focus on four models: (i) the standard single-factor CAPM, (ii) the three-factor
Fama and French (1993) model (FF3), (iii) the four-factor Hou, Xue, and Zhang (2015) model
(HXZ4), and (iv) the five-factor Fama and French (2015) model (FF5). The factors involved in
the CAPM, FF3, and FF5 models are obtained from Kenneth French’s website. In particular,
the market excess return (MKT) is used by all three aforementioned models; the small size minus
big size spread portfolio return (SMB) and the high book-to-market minus low book-to-market
spread portfolio return (HML) are used by both the FF3 and FF5 models;*® and, finally, the
robust minus weak spread portfolio return (RMW) and conservative minus aggressive spread
portfolio return (CMA) are used by FF5. The four factors involved in the HXZ4 g-factor model
are the market excess return (MKT), the difference between the return on a portfolio of small
size stocks and the return on a portfolio of big size stocks (ME), the difference between the
return on a portfolio of low investment stocks and the return on a portfolio of high investment
stocks (I/A), and the difference between the return on a portfolio of high profitability (return
on equity) stocks and the return on a portfolio of low profitability stocks (ROE).'6 We use
individual stock data at the monthly frequency covering the time period between 1970 and
2014 from the CRSP universe and apply the following filters: (i) we require that the share code
(SHRCD) is equal to 10 or 11 to keep only ordinary common shares, (ii) we require that the
exchange code (EXCHCD) is equal to 1, 2, or 3 to keep only stocks traded at NYSE, AMEX|
or NASDAQ), and (iii) we keep a stock in the sample only for the months in which its price
(PRC) is at least 1 dollar. When we use clustering based on the 49-industry classification of

Kenneth French for estimating the variance-covariance matrix of the IV-GMM estimators, we

15 The SMB factor used by the FF3 model is slightly different from the SMB factor used by the FF5 model.
Details on how the SMB factor is constructed for each model are provided in Kenneth French’s data library
website.

16 We are grateful to the authors for providing the data on the factors of the Hou, Xue, and Zhang (2015)
model.
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further we require that stocks have a Standard Industry Classification (SIC) code.!”

Our pretesting and testing periods consist of five years (13 = 75 = 60 months) resulting in 8
non-overlapping testing periods from 1975 to 2014. The cross section of our test assets consists
of all stocks with full histories over both the pretesting and testing periods. Our empirical
evidence consists of (i) estimates of A = [ g A} ],, where Ay = [ A1 -+ Mg | is the vector
of ex-post factor risk premia for the CAPM, FF3, HXZ4, and FF5 models, which they employ
K =1, K =3, K = 4, and K = 5 factors, respectively, and (ii) various test statistics for
evaluating the implications of each model and their corresponding p-values.

When estimating ex-post risk premia for the FF3, HXZ4, and FF5 models, in addition to
past beta estimates, we employ as instrumental variables the firm characteristics based on which
the various factors are constructed. Specifically, for the FF3 model, we use market capitalization
(SIZE) and book-to-market ratio (BTM) as firm characteristics. For the HXZ4 model, we use
SIZE, investment over asset (I/A), and return on equity (ROE) as firm characteristics. Lastly,
for the FF5 model, we use SIZE, BTM, operating profitability (OP) and asset growth (AG)
as firm characteristics. Next, we describe how the above characteristics are computed. The
SIZE characteristic for month m is defined as the ratio of the market capitalization a given
firm at the end of month m — 1 to the aggregate market capitalization at the end of month
m — 1. The BTM characteristic from July of year y + 1 till June of year y + 2 is defined as the
ratio of book equity (BE) in the accounting data of fiscal year y to the market capitalization
at the end of year y. BE is computed following the method in Kenneth French’s database, i.e.,
BE is defined the book value of stockholders equity (SEQ), plus balance sheet deferred taxes
and investment tax credit (TXDITC, if available), minus the book value of preferred stock.!®
The I/A characteristic from July of year y + 1 till June of year y + 2 is defined as change in
inventory, property, plant and equipment (PP&E) from year y — 1 to year y over the year y — 1
total assets. The ROE characteristic from July of year y + 1 till June of year y + 2 is defined
as the ratio of (IB — DVP + TXDI) for the year y over BE of year y, where IB is the total
earnings before extraordinary items, DVP is the preferred dividends (if available), and TXDI
is the deferred taxes (if available). The OP characteristic from July of year y + 1 till June of
year y + 2 is defined as the ratio of (REV — COGS — XINT — XSGA) for year y over BE
of year y, where REV is revenue, COGS is cost of goods sold, XINT is interest expense, and
XSGA is selling, general and administrative expenses. Finally, the AG characteristic from July
of year y+ 1 till June of year y+ 2 is defined as the ratio of change in the total assets from year
y — 1 to year y over the year y — 1 total assets. With the exception of I/A, the cross-sectional

17SIC codes are obtained from Compustat. If the SIC code does not exist in Compustat, it is obtained from
CRSP.

18For a more detailed description, the reader is referred to the definition of BE at Kenneth French’s website
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/variable_definitions.html.
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distributions of these characteristics are highly skewed. Hence, for all characteristics except
I/A, we follow standard practice and use the logarithm of the average characteristics over the

pretesting period as instrumental variables.!®

The asset pricing models under examination employ factors that are constructed as dif-
ferences between returns on top and bottom portfolios, or vice versa, after sorting according
to a particular firm characteristic. As a result, we expect a firm characteristic to be cross-
sectionally correlated with the beta with respect to the corresponding spread factor. This
provides a clear rationale for using firm characteristics as instrumental variables, in addition
to past beta estimates. In Table 5, we provide evidence supporting this rationale. Specifically,
for each characteristic, we consider decile portfolios sorted according to that characteristic and
estimate their betas with respect to the related spread factor within the context of each model
that we evaluate. For each asset pricing model, the portfolio betas are estimated jointly for all
factors using data from 07/1970 to 12/2014. As illustrated in Table 5, there is a clear monotonic
pattern in the betas for each spread factor within each model. This evidence justifies our choice

of firm characteristics as instruments in the estimation of ex-post risk premia.

We present our empirical results in Tables 6 through 9. According to our simulation evi-
dence the joint test statistic J(A) given in (49) tends to overreject the null hypothesis in small
samples. Hence, when interpreting our empirical findings, we put more emphasis on the joint
test statistics Jy(A) given in (52) and the t-statistics given in (50) and (51). In our discussion of
the results, we consider both of the conventional 5% and 10% levels of significance. The results
for the CAPM, based on the IV estimator XIV and using past beta estimates as instruments,
are reported in Table 6. Overall, our evidence points to rejection of the CAPM. The J;(\)
joint statistic rejects the null hypothesis in five out of eight testing periods at the 5% or 10%
level of significance, respectively. Similarly, the ¢()\g) statistic rejects the null hypothesis in five
(five) out of eight testing periods at the 5% and 10% level of significance, respectively. Finally,
the t(A\yg) rejects the null hypothesis in five and seven out of eight testing periods at the 5%
and 10% level of significance, respectively. These finding is not very surprising given that the

CAPM has been frequently rejected in the literature using portfolios of stocks.

The results for the FF3 model, based on the two-step and iterated IV-GMM estimators, i.e.,
X;ﬁ and XE, and using SIZE and BTM as instruments in addition to past beta estimates, are
reported in Table 7. The two IV-GMM estimators overall yield similar results. Based on the
X;s, estimator, the Jy(A) joint statistic rejects the null hypothesis in five and eight out of eight
testing periods at the 5% and 10% level of significance, respectively. When the XE estimator
is used, the Jy(A) joint statistic rejects the null hypothesis in six and seven out of eight testing

periods at the 5% and 10% level of significance, respectively. The ¢ statistics exhibit similar

YFor AG, we use the logarithm of one plus average of asset growth.
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behavior except the t statistic associated with the HML factor. Consistent with the findings in
Kim and Skoulakis (2015), the t(Ayy) statistic rejects the null hypothesis only in one and three
of eight periods for 5% and 10% level of significance, respectively, when the /)\\;S, estimator is

used.

In Table 8, we report the results for the HZX4 model, based on the two-step and iterated IV-
GMM estimators, i.e., X;s, and A7, and using SIZE, I/A, and ROE as instruments in addition

s
to past beta estimates. Based on either Xﬁ or XE, the Jy(A) joint statistic rejects the null
hypothesis only in three out of eight testing periods at the 5% or 10% level of significance.
Importantly, the ¢()\g) statistic rejects the null hypothesis only in two out of eight testing
periods at the 10% level of significance. The additional ¢ statistics point to similar conclusions.
When XE is used, the t(Awr), t(Ae), t(Arn), and t(Age) statistics reject the null hypothesis in one,

three, three, and two out of eight testing periods, respectively, at the 10% level of significance.

The results for the FF5 model, based on the two-step and iterated IV-GMM estimators,
ie., 3@3 and Xﬁ, and using SIZE, BTM, OP, and AG as instruments in addition to past beta
estimates, are reported in Table 9. Once again, the two IV-GMM estimators overall yield
similar results. Based on the /)\\;S, estimator, the J;(A) joint statistic rejects the null hypothesis
in five and six out of eight testing periods at the 5% and 10% level of significance, respectively.
When the Xg estimator is used, the J;(A) joint statistic rejects the null hypothesis in six and
seven out of eight testing periods at the 5% and 10% level of significance, respectively. Overall,

the evidence suggests that the FF5 model is mostly rejected in our sample.

Collectively, our results show that the CAPM, the FF3 and the FF5 models are mostly
rejected by the IV-GMM test statistics. In contrast, we find evidence in favor of the HZX4
model, for which we find strong support in five out of the eight time periods. In the Online
Appendix, we report the test statistics and the corresponding p-values for the four models
examined above using alternative clustering schemes and price filters. Tables A4— A7 contain
the results based on 49 industry clusters and a $3 price filter. Tables A8 A1l contain the
results based on 49 industry clusters and a $5 price filter. Finally, tables A12— A15 contain the
results based on 30 industry clusters and a $1 price filter. The results of our tests remain very

similar under all alternative scenarios.

5 Conclusion

A linear asset pricing factor model characterizes the average return of an asset as a linear
function of its factor betas with the risk premia being the slopes. In theory, such a relationship

is supposed to be valid for all individual assets. However, the majority of empirical tests of
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asset pricing models are based on portfolios. One of the main reasons for this practice is that
individual stock beta estimates are plagued by significant sampling error giving rise to the well-
known error-in-variables (EIV) problem. When the size of the cross section N is large, while the
the time series sample size T is small and fixed, the EIV problem is so severe that it renders the
standard two-pass cross-sectional regression (CSR) risk premia estimator inconsistent. To deal
with the EIV problem, we develop a modification of the two-pass CSR approach that employs
past beta estimates and firm characteristics as instrumental variables and yields an IV-GMM
ex-post risk premia estimator. We contribute to the literature by providing a novel method for
estimating ex-post risk premia and devising associated tests for evaluating linear factor models
using individual stock data over short time horizons. We establish that the ex-post risk premia
estimator is N-consistent and asymptotically follows a normal distribution. Furthermore, using
a cluster structure for idiosyncratic shock correlations, we provide an estimator of its asymptotic
variance-covariance matrix that we then use to construct asset pricing tests focusing on ex-post
risk premia.

The good performance of the IV-GMM estimator and the associated variance-covariance
matrix estimator for empirically relevant finite sample sizes is illustrated through a number of
Monte Carlo simulations. Using three different asset pricing models for calibration, we show that
(i) the IV-GMM approach leads to significant bias reduction in the cross-sectional regression
intercept and ex-post risk premia estimates without sacrificing efficiency, and (ii) the associated
asset pricing test statistics yield empirical rejection frequencies very close to the desired levels of
significance. In our empirical investigation, we estimate and evaluate four popular linear asset
pricing factor models: the CAPM, the three-factor of model of Fama and French (1993), the
g-factor model of Hou, Xue, and Zhang (2015), and the five-factor model of Fama and French
(2015). We find that all models are rejected for the majority of our testing periods with the
exception of the Hou, Xue, and Zhang (2015) model, for which we find strong support in five

out of the eight time periods under all clustering schemes under consideration.
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A  Proofs

A few facts from matrix algebra are used in the main text and/or in the subsequent proofs. We collect
them here for the convenience of the reader. In terms of notation, vec denotes the column-stacking

operator and ® denotes the Kronecker product.

(F1) For column vectors x and y, we have vec (xy’) =y ® x.
(F2) For conformable matrices A, B and C, we have vec (ABC) = (C' ® A) vec (B).

(F3) For conformable matrices A, B, C, and D, we have (AC) ® (BD) = (A ® B) (C® D).

The facts (F1), (F2), (F3) follow from Theorem 7.14, Theorem 7.16, and Theorem 7.7 in Schott (1997),

respectively.

Proof of Theorem 1: Recall from equation (28) that

xer = a4 [ (X521/N) W 24X/ - (R4Z1/N) W (Ziw/N). (53)

Thus, to prove the theorem, it suffices to show that, as N — oo, iﬁw/N converges to a vector of
zeros and 2’1?(2 /N converges to a full-rank matrix. Using equations (27), (17), and (24), and invoking

Assumption 1(i), Assumption 1(ii), and Assumption 2(ii), we obtain that, as N — oo,

Tyw/N (1yUs/N)ga
Z\w/N = | Blw/N | = | (B'Usy/N)gs + G, (U, Us/N)gs | —= O1sxc41- (54)
1w/N (C1U2/N)g2

Moreover, in light of equations (17) and (18), it follows from Assumptions 1 and 2 that, as N — oo,

B/1y/N = B'1y/N + G, (U1x/N) 2 pg, (55)
B)1y/N = B'1y/N + Gy(Uyly/N) - pg, (56)
B/By/N = B'B/N + G/ (U}B/N) + (B'Uy/N)Gy + G| (U} Uy /N)Gy -5 My, (57)
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where Mg = V5 + pgpy, and

Ciln/N % pe, (58)

C,By/N = C{B/N + (B'Uy/N)Gy 2 M_g. (59)
It then follows from definitions (27) and (22) and the probability limits in (55)-(59) that

1 1 By /N
Q=ZXs/N=| Bj1y/N B/ByN | =9, (60)
Cj1y/N C|By/N

where the matrix €2 is defined by (30). Combining the expression (53) and the probability limits in
(54) and (60) yields the N-consistency of A% completing the proof of the theorem. W

v

Proof of Theorem 2: First note that equation (29) yields

VN (f\igm - ,\) - [(X’Qil /N) W (2’122 /N)} o (5(’221 /N) W (Zgw/x/ﬁ) . (61)

According to the probability limit in (60), 2’1}A§2 /N 25 Q, where Q is defined in (30). Hence, to
obtain the asymptotic distribution of v/ N (X‘I“JM — A), it suffices to obtain the asymptotic distribution
of 2’1w/\/ﬁ Letting w; denote the i-th element of w and Bi’l denote the i-th row of ]§1, we obtain

N
Zi:1 Wi
~ N .
w=)  Zgwi=| YN Brw |- (62)

S eriwi

It follows from equation (24) that

wi = uéy[i]gg = ghuy ;). (63)
Hence, using the decomposition (17) and equation (24), we obtain

Buwi = ﬂz‘u';[i]gz + Gluy Ulz,[i] g2

= (g5 @ Ir)(ug ) ® Bi) + (g5 ® GY)(ug ) ® uy ), (64)
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and
c1iw; = c1,uy 82 = (85 @ I)(ug ) @ c1), (65)
where we use facts (F1), (F2), and (F3). Combining (62) with (63), (64), and (65), we obtain that
zy wi = Ile;, (66)
where e; is defined by (34) and IT is the (1 + K + L) x (1 4+ 7 + K + L)72 matrix defined by
g 0, Ok, O%ry

II=| Ogxr, 85®G] gy®Ix Ogy(im) |- (67)

OLxm OLx(mm) OLx(km) 85®1L

It follows from (66) that

N
7w = HZei. (68)
i=1

Finally, combining (61) with (68) and (60) and invoking Assumption 3 yields the desired result and

completes the proof of the theorem. W

Proof of Theorem 3: The N-consistency of €2 is already established in the proof of Theorem 1 (see

equation (60)). Moreover, as N — oo, My/N — 1/G. Hence, it suffices to show that, as N — oo,
e = m(f{’ldiag (@) C'Cdiag (@) X1) 25 © = IIV,II'. For each cluster m = 1,..., My, we
define

(- Zielm Zy,[;)Wi (69)
so that Z)diag (@)C' = @, --- 6,7, ] Which, in turn, implies
N 1 My ~ -
O=——""" 0,,0.,..
MN—K—lzmzl m (70)

From definition (44) and equation (21), we have & = w — X (X‘;ﬁ” - )\). Let @; denote the i-th

element of @ so that @ = [ &; --- @y |- It follows that @; = w; — 2,21[1’} (A% _ \) and so the i-th
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column of the matrix Zadiag (@) is expressed as
El,[i]@i = 51,[1}%‘ - 21,[1']§/2,[z'] <X%M - )\) . (71)
It follows from facts (F1) and (F2) that

/Z\l,[z]ﬁlg[z] (X%M _ A) = ((X%M _ A)/ ® Il+K+L> vec (/Z\l,[l]ié,[z})

B ((X%M - )‘) ® 11+K+L>/ (X2, ©Z1,59) - (72)

It follows from (17) and (18) that 21 =[1y B+U;G; C;]and Xg =[1y B+ UG, | andso

1
Zlv[i] = B’L + Glul,[ﬂ ’ X27[i] = :
Bi + Ghuy |
Ci,i
Hence,
_ , -
Bi + Ghuy
~ ~ C1,i
Xa,[i] @ Z1i) = ,
Bi + Gaug
(Bi + Gyuy ) ® (B; + Ghuy )
(Bi + Ghuy ) ® 1

Moreover, using fact (F3), we obtain

(Bi + Ghuy ) @ (B; + Ghuy )

=B ® Bi + (G5 @ Ig)(uy ) ® Bi) + (Ix ® G1)(Bs @ uy ) + (G5 @ GY)(ug ) @ uy )
and

(Bi + G’2u27m) ®cr; =B ®cy; + (GIQ & IL)(ugym ® C1,)-
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It follows from the last three equations that

X[ @ 21, = Pd;, (73)

where d; is defined in (46) and the matrix ® is defined by

1 U o, 0+ 0% o’ 0’ o 0% 1 0% ry 0% ry 0%,
Ok G Ok xrg OK X779y Ix O xL Oy k2 OK XKL OK x KTy OK x KTy OK x Lty
o - o Orxry OLx7y OLx7y7g OrLx K I 0y k2 OrLxkL OLx K™y OLx KTy OLx LTy
Ox O xry (e OK x7y79 Ik OrxL Op k2 OKxKL Or x K™y OK x K7y O x LTy
Or2  Og2,.  Og2,,, GH®G] Or2xr  Or2xr Tpe2 Or2ykr Ix®G} GBIk Or2xrry
Okt OkrLxr; OKLxmy, OKLxrirg OkLxkK OrkrLxL Oppy g2 15°97 OrkLxkry OKLxK™y Gy ®IL

It follows from equations (72) and (73) that
21 )X, (X%M - A) = Yd;, (74)
where

Y= (A - ) ohix) @ (75)

Hence, combining (71), (66), and (74), we obtain z; [;;&; = ITle; — Yd; which, according to definitions
(69), (36), and (47), yields

~

6,, = TN, — X6,,. (76)

Combining equations (70) and (76) yields

My —-—K—1x~ 1 My 1 Mpn
N - - :H - m / H/ T - m ! T/
e @I (g X ) Y (330, )
1 My / / 1 My / ' /
- (MN > 5mnm> - 11 <MN > amnm> Y. (77)

Inspection of definitions (34), (36), (46), and (47) reveals that n,, is a subvector of §,,, and so Assump-
tion 5 implies that, as N — oo, both ﬁw Zi\n@l 4,0, and MLN Zf\n@l dmm,, converge in probability to
some finite matrices. Moreover, according to Theorem 1, X%M 25 X and so it follows from definition
(75) that ¥ -2 O(14 K+L) x (14 K) (14 L4 +72)+ K2+ (L+m )rs)- Hence, using equation (37), it follows from

equation (77) above that e - ITV,IT' = © and thus the proof of the theorem is complete. W

30



References

Aldrich, J., 1993, “Reiersgl, Geary and the Idea of Instrumental Variables,” The Economic and Social Review,
24, 247-273.

Ang, A., and D. Kristensen, 2012, “Testing Conditional Factor Models,” Journal of Financial Economics, 106,
132-156.

Ang, A.; J. Liu, and K. Schwarz, 2010, “Using Stocks or Portfolios in Tests of Factor Models,” Working Paper,

Columbia University.
Berk, J. B., 1995, “A Critique of Size-Related Anomalies,” Review of Financial Studies, 8, 275-286.

Black, F., M. C. Jensen, and M. Scholes, 1972, “The Capital Asset Pricing Model: Some Empirical Tests,” in
Studies in the Theory of Capital Markets, ed. by M. C. Jensen. Praeger, New York, NY, pp. 79-121.

Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu, 2006, Measurement Error in Nonlinear
Models: A Modern Perspective. CRC, 2nd edn.

Chen, R., and R. Kan, 2004, “Finite Sample Analysis of Two-Pass Cross-Sectional Regressions,” Working Paper,

University of Toronto.

Chordia, T., A. Goyal, and J. Shanken, 2015, “Cross-Sectional Asset Pricing with Individual Stocks,” Working

Paper, Emory University.

Connor, G., and R. A. Korajczyk, 1988, “Risk and Return in an Equilibrium APT : Application of a New Test
Methodology,” Journal of Financial Economics, 21, 255-289.

—— 1993, “A Test for the Number of Factors in an Approximate Factor Model,” Journal of Financial

Economics, 48, 1263-1291.

Daniel, K., and S. Titman, 2012, “Testing Factor-Model Explanations of Market Anomalies,” Critical Finance
Review, 1, 103-139.

Durbin, J., 1954, “Errors in Variables,” Review of the International Statistical Institute, 22, 22-32.

Fama, E. F., and K. R. French, 1992, “The Cross-Section of Expected Stock Returns,” Journal of Finance, 47,
427-465.

, 1993, “Common Risk Factors in the Returns on Bonds and Stocks,” Journal of Financial Economics,

33, 3-56.

, 2015, “A five-factor asset pricing model,” Journal of Financial Economics, 116(1), 1-22.

31



Fama, E. F., and J. D. MacBeth, 1973, “Risk, Return and Equilibrium: Empirical Tests,” Journal of Political
Economy, 81(3), 607-636.

Gagliardini, P., E. Ossola, and O. Scaillet, 2012, “Time-Varying Risk Premium in Large Cross-Sectional Equity
Datasets,” Working Paper, University of Lugano.

Geary, R., 1943, “Relations between Statistics: The General and the Sampling Problem When the Samples Are
Large,” Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 49, 177-96.

Ghysels, E., 1998, “On Stable Factor Structures in the Pricing of Risk: Do Time-Varying Betas Help or Hurt?,”
Journal of Finance, 53, 549-573.

Gibbons, M., S. Ross, and J. Shanken, 1989, “A Test of the Efficiency of a Given Portfolio,” Econometrica,
57(5), 1121-1152.

Gibbons, M. R., 1982, “Multivariate Tests of Financial Models: A New Approach,” Journal of Financial
Economics, 10, 3-27.

Hansen, L., and R. Jagannathan, 1997, “Assessing Specification Errors in Stochastic Discount Factor Models,”

Journal of Finance, 52(2), 557-590.

Harvey, C., 1989, “Time-Varying Conditional Covariances in Tests of Asset Pricing Models,” Journal of Finan-

cial Economics, 24(2), 289-317.

Hou, K., and R. Kimmel, 2010, “On Estimation of Risk Premia in Linear Factor Models,” Working Paper, Ohio
State University.

Hou, K., C. Xue, and L. Zhang, 2015, “Digesting Anomalies: An Investment Approach,” Review of Financial
Studies, 3(28), 650-705.

Jagannathan, R., G. Skoulakis, and Z. Wang, 2010, “The Analysis of the Cross Section of Security Returns,” in
Handbook of Financial Econometrics 2, ed. by Y. Ait-Sahalia, and L. P. Hansen. Elsevier, UK, pp. 73-134.

Jagannathan, R., and Z. Wang, 1998, “An Asymptotic Theory for Estimating Beta-Pricing Models using Cross-
Sectional Regression,” Journal of Finance, 53, 1285-1309.

, 2002, “Empirical Evaluation of Asset-Pricing Models: A Comparison of the SDF and Beta Methods,”
Journal of Finance, 57(5), 2337-2367.

Jegadeesh, N., J. Noh, K. Pukthuanthong, R. Roll, and J. Wang, 2015, “Empirical Tests of Asset Pricing Models
with Individual Assets: Resolving the Errors-in-Variables Bias in Risk Premium Estimation,” Working Paper,

Emory University.

32



Kan, R., N. Gospodinov, and C. Robotti, 2013, “Chi-Squared Tests for Evaluation and Comparison of Asset
Pricing Models,” Journal of Econometrics, 173, 108-125.

Kan, R., and C. Robotti, 2009, “Model Comparison Using the Hansen-Jagannathan Distance,” Review of
Financial Studies, 22, 3449-3490.

Kan, R., C. Robotti, and J. Shanken, 2013, “Pricing Model Performance and the Two-Pass Cross-Sectional
Regression Methodology,” Journal of Finance, 68, 2617-2649.

Kan, R., and G. Zhou, 1999, “A Critique of the Stochastic Discount Factor Methodology,” Journal of Finance,
54, 1021-1048.

Kim, S., and G. Skoulakis, 2015, “Ex-post Risk Premia: Estimation and Inference using Large Cross Sections,”

Working Paper, Georgia Institute of Technology and University of British Columbia.

Lehmann, B. N.; and D. M. Modest, 1988, “The Empirical Foundations of the Arbitrage Pricing Theory,”
Journal of Financial Economics, 21, 213-254.

Lewellen, J., and S. Nagel, 2006, “The Conditional CAPM Does Not Explain Asset Pricing Anomalies,” Journal
of Financial Economics, 79, 289-314.

Lewellen, J., S. Nagel, and J. Shanken, 2010, “A Skeptical Appraisal of Asset Pricing Tests,” Journal of Financial
Economics, 96, 175-194.

Lintner, J., 1965, “Security Prices, Risk, and Maximal Gains from Diversification,” Journal of Finance, 20,

o87-615.

Litzenberger, R. H., and K. Ramaswamy, 1979, “The Effect of Personal Taxes and Dividends of Capital Asset

Prices: The Theory and Evidence,” Journal of Financial Economics, 7, 163-196.

Lo, A. W., and A. C. MacKinlay, 1990, “Data-Snooping Biases in Tests of Financial Asset Pricing Models,”
Review of Financial Studies, 3, 431-467.

Mossin, J., 1966, “Equilibrium in a Capital Asset Market,” Econometrica, 34, 768-783.

Nagel, S., and K. Singleton, 2011, “Estimation and Evaluation of Conditional Asset Pricing Models,” Journal
of Finance, 66, 873—909.

Reiersgl, O., 1941, “Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis,”

Econometrica, 9, 1-24.

Roll, R., 1977, “A Critique of the Asset Pricing Theory’s Tests Part I: On Past and Potential Testability of the
Theory,” Journal of Financial Economics, 4, 129-176.

33



Ross, S. A., 1976, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic Theory, 13, 341-360.
Schott, J., 1997, Matriz Analysis for Statistics. John Wiley, New York, NY.

Shanken, J., 1985, “Multivariate Tests of the Zero-Beta CAPM,” Journal of Financial Economics, 14, 327-348.

, 1992 “On the Estimation of Beta-Pricing Models,” Review of Financial Studies, 5, 1-33.

Shanken, J., and G. Zhou, 2007, “Estimating and Testing Beta Pricing Models: Alternative Methods and Their

Performance in Simulations,” Journal of Financial Economics, 84(1), 40-86.

Sharpe, W. F.; 1964, “Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk,” Journal
of Finance, 19, 425-442.

Wald, A., 1940, “The Fitting of Straight Lines if Both Variables are Subject to Error,” Annals of Mathematical
Statistics, 11, 284-300.

Zhou, G., 1991, “Small Sample Tests of Portfolio Efficiency,” Journal of Financial Economics, 30, 165-191.

, 1993, “Asset Pricing Tests under Alternative Distributions,” Journal of Finance, 48, 1927-1942.

, 1994, “Analytical GMM Tests: Asset Pricing with Time-Varying Risk Premiums,” Review of Financial
Studies, 7, 687-709.

34



Table 1: Bias in the estimation of A with normally distributed shocks: the role of the EIV
correction through the IV-GMM approach. This table presents simulation results on the absolute bias,

!/
in annualized basis points, in the estimation of A = [ Ao A} } , where Ay = [ A1 --- Mg | is the vector of

ex-post risk premia and K is the number of factors. The shocks u;; are assumed to follow a normal distribution
and the factor realizations are kept fixed throughout. The number of individual stocks, N, is equal to 1,000
and the number of clusters, My, is set equal to 50. The pairwise correlation of shocks, assumed to be constant
within each cluster, is set equal to 0.10. The simulation is calibrated to the following three linear asset pricing
models: the single-factor CAPM, the three-factor Fama and French (1993) model (FF3), and the four-factor
Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1 and Ay is the ex-post risk premia of MKT.
For FF3, K = 3 and Ar, Asws, and Ay are the ex-post risk premia of MKT, SMB, and HML, respectively. For
HX7Z4, K = 4 and Agr, A, Ar/a, and Agge are the ex-post risk premia of MKT, ME, I/A, and ROE, respectively.
For the CAPM, we consider the IV estimator XAIV, while for the FF3 and HXZ4 models, we consider both the
two-step and iterated IV-GMM estimators, i.e., ATy and ALJ. In addition, we consider two alternative estimators
A= (X, X)X F, and X = (X4, X5)1X,T, that ignore the EIV problem. The results are based on 50,000
Monte Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Fruxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Arv
Ao 1.4 0.9 2.2 1.3 4.3 1.3 2.0 4.7
AMKT 0.3 0.1 2.5 0.6 5.1 1.2 2.3 4.6
A1
Ao 358.8 178.2 465.6 160.1  1000.4 131.4 13.9 570.8
AMKT 365.0 181.6 471.6 163.1  1013.4 133.2 13.8 578.8
Ao
Ao 441.4 169.3 415.1 233.0 880.4 106.6 15.6 709.3
Aukt 448.7 172.6 420.5 237.0 891.8 108.1 15.5 719.3

Continued on next page
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Table 1 — continued from previous page

FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frgr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Fonm 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4  -549.4 1510.8 210.8 -88.0
X
Ao 0.6 5.4 7.6 5.7 8.6 6.8 0.9 1.2
AMKT 1.7 3.1 6.5 4.3 8.7 4.6 2.2 3.1
Asmp 3.3 2.5 0.8 1.1 1.7 2.2 1.1 0.7
AmuL 1.5 3.3 3.1 2.2 3.0 3.9 2.6 4.0
B
Ao 0.7 5.6 8.2 5.9 8.8 8.0 0.9 1.1
Aukt 1.5 3.0 6.8 4.3 8.7 5.5 2.2 2.8
Asmp 3.5 2.5 0.9 1.0 1.6 2.4 1.1 0.9
AHML 1.5 3.9 3.7 2.7 3.4 4.9 2.7 4.0
A1
Ao 778.4 388.4 632.8 371.0 831.9 754.7 80.7 577.7
AMKT 208.1 120.8 741.3 230.6  1136.7 77.9 4.6 687.6
Asmp 594.7 148.3 340.1 108.3 374.2 657.5 77.0 49.1
AHML 498.3 509.1 207.2 239.9 227.2 912.6 99.8 169.6
Xo
Ao 600.9 684.4 553.5 380.8 789.2 593.4 11.6 694.2
Aukt 157.1 333.5 622.6 276.5 1013.5 35.4 75.0 798.5
AsyB 683.3 306.1 293.4 76.3 309.1 567.7 83.4 73.8
AHML 281.5 537.9 240.5 191.5 110.9 7176  112.6 115.8
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Table 1 — continued from previous page

HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6  1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Froe 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
5%
Ao 33.3 26.3 50.3 55.6 54.4 36.8 17.9 38.6
Aukt 7.9 1.2 20.5 13.3 31.2 22.8 11.5 27.0
AME 41.9 28.9 32.3 57.3 30.1 19.8 11.8 11.8
A1/a 12.0 39.1 41.4 33.1 19.4 10.2 2.8 12.3
ARQE 45.2 23.0 36.8 83.5 45.6 17.7 16.7 27.2
g
Ao 37.4 30.5 57.3 62.2 63.2 42.0 20.7 43.8
AMKT 9.2 2.5 23.7 15.9 36.7 26.1 13.4 30.0
AME 46.3 30.7 35.2 61.3 33.6 22.3 13.4 13.9
A1/a 13.9 45.7 48.3 38.2 23.9 12.4 2.8 14.7
AROE 52.5 27.2 43.0 95.5 52.1 21.4 19.8 31.9
A1
Ao 1061.6 577.5 731.2 516.7 1147.6 942.9 172.0 912.1
AMKT 454.7 126.6 675.1 232.5 1251.8 170.3  102.7 789.1
AME 952.1 457.9 179.6 315.1 293.4 1089.4 141.9 66.8
A1/a 328.7 698.7 493.5 309.9 114.8 679.6 56.8 281.7
AROE 440.4 621.4 487.9 849.5 460.8 473.4  215.7 328.2
Ao
Ao 851.5 662.4 776.8 549.2  1270.7 698.1  169.6 841.2
AMKT 264.0 250.0 662.1 287.1  1272.0 196.6 58.2 767.3
AME 963.3 421.4 102.1 289.5 96.2 710.5  208.5 16.1
A1/ 234.9 621.7 535.8 276.4 96.4 452.1 38.5 215.9
ARoE 432.3 642.4 644.5 854.0 551.5 189.6  268.9 202.2
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Table 2: Root mean square error in the estimation of A with normally distributed shocks: the
role of the EIV correction through the IV-GMM approach. This table presents simulation results on

!
the root mean square error (RMSE), in annualized basis points, in the estimation of A = [ Ao Xf ] , where

A=A - Ak ]/ is the vector of ex-post risk premia and K is the number of factors. The shocks u;; are
assumed to follow a normal distribution and the factor realizations are kept fixed throughout. The number of
individual stocks, IV, is equal to 1,000 and the number of clusters, My, is set equal to 50. The pairwise correlation
of shocks, assumed to be constant within each cluster, is set equal to 0.10. The simulation is calibrated to the
following three linear asset pricing models: the single-factor CAPM, the three-factor Fama and French (1993)
model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K =1 and A\,
is the ex-post risk premia of MKT. For FF3, K = 3 and Ay, Agws, and Ay are the ex-post risk premia of MKT,
SMB, and HML, respectively. For HXZ4, K = 4 and A\gr, Mg, Aa, and Mgz are the ex-post risk premia of
MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider the IV estimator Ay, while for the FF3
and HXZ4 models, we consider the two-step and iterated IV-GMM estimators, i.e., X;S, and XR In addition,
we consider two alternative estimators X, = (X, X,)"'XT, and X = (X, X,)"1X,F, that ignore the EIV
problem. The results are based on 50,000 Monte Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Average Factor Realizations
?MKT 1118.2 453.0  1248.8 483.0 2069.4 -310.0 -43.4 15524
Arv
Ao 217.1 228.3 227.4 215.0 273.1 236.1 217.2 234.5
AMKT 226.3 237.2 236.4 223.7 281.7 244.8 2253 243.2
A1
Ao 389.2 230.0 488.6 218.4 1010.9 194.8  148.9 590.0
AMKT 394.4 230.3 493.3 219.4 1022.5 192.2  146.2 596.9
X2
Ao 465.0 223.8 441.5 272.0 892.9 182.0 1474 724.1
AMKT 470.7 224.4 446.0 271.5 903.0 181.4 144.1 732.5

Continued on next page

38



Table 2 — continued from previous page

FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Fonm 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4  -549.4 1510.8 210.8 -88.0
X
Ao 308.2 280.9 336.6 324.2 358.2 397.4  305.6 270.3
AMKT 273.5 266.2 289.7 267.8 314.7 335.1  267.1 264.6
AsMB 189.1 190.2 194.0 189.0 202.0 200.3  169.5 194.3
AL 228.2 234.4 223.8 243.9 241.9 251.7  196.0 223.5
N
Ao 309.0 281.3 337.3 324.7 359.2 398.4  306.4 270.4
AMKT 274.1 266.3 290.4 268.4 315.2 336.1  267.9 264.7
Asmp 189.3 190.0 193.6 188.8 201.9 200.2  169.8 194.0
\HML 229.1 235.3 224.4 244.4 242.8 252.5  196.7 224.0
A1
Ao 797.3 423.5 653.2 405.0 847.6 771.5  181.7 603.6
Aukt 342.3 196.4 757.9 282.6 1146.9 176.8 161.3 704.8
Asmp 608.3 183.8 356.3 149.9 390.1 669.7 153.6 114.3
AHML 512.9 520.4 238.8 259.1 252.5 919.9 161.1 203.8
Xo
Ao 625.6 703.5 577.4 412.6 804.4 617.3 172.7 714.4
Aukt 223.5 369.4 644.2 313.7 1025.3 170.8 170.3 812.0
AsyB 692.4 323.9 311.8 130.6 333.4 584.2 132.2 121.3
AHML 302.3 551.0 260.2 219.8 160.0 729.5 1579 147.8
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Table 2 — continued from previous page

HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6  1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Froe 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
5%
Ao 442.5 410.5 477.8 485.9 540.7 517.6  427.5 468.2
Aukt 348.7 358.5 399.8 371.4 446.6 404.0  350.2 351.7
AME 324.1 348.3 354.4 374.6 358.4 328.1  251.7 341.7
A1/a 257.7 391.9 331.3 336.5 323.9 255.3 191.0 287.2
ARQE 420.2 506.3 479.8 509.5 518.9 476.7  318.7 441.3
g
Ao 444.4 410.5 478.7 486.3 543.4 519.7  429.1 469.8
AMKT 349.9 358.3 399.8 371.3 448.5 406.2  351.5 352.5
AME 325.1 346.7 352.9 373.1 357.2 3279  252.0 341.3
A1/a 259.5 393.5 333.3 337.0 325.1 256.6  192.3 288.5
AROE 423.8 507.1 481.0 513.0 521.0 478.8  320.5 444.2
A1
Ao 1077.9 609.4 756.8 549.6 1161.1 958.5  238.7 928.9
AMKT 487.5 209.5 697.5 290.7 1261.3 234.0 184.2 805.0
AME 961.5 474.0 213.5 331.9 314.8 1097.4  201.0 130.0
A1/a 340.0 701.5 499.6 317.9 136.8 685.3 1123 291.0
AROE 455.8 631.6 501.4 855.3 471.1 483.5 251.7 344.9
Ao
Ao 873.1 690.6 800.3 576.6  1282.1 719.1  241.8 861.0
AukT 311.2 305.6 685.9 325.7  1282.0 253.2  166.7 782.1
ANE 970.7 437.0 148.2 310.7 162.5 726.1 235.1 101.7
A1/ 242.8 626.6 540.7 286.1 130.9 463.0 80.7 226.5
ARoE 446.4 652.7 652.5 859.5 560.0 232.3  288.1 216.9
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Table 3: Efficiency Gain : Root mean square error in the estimation of A with normally distributed
shocks: the role of the EIV correction through the IV-GMM approach. This table presents simulation

/
results on the root mean square error (RMSE), in annualized basis points, in the estimation of A = [ Ao Xf } ,

where A =[ A1 -+ Ag }/ is the vector of ex-post risk premia and K is the number of factors. The shocks u;;
are assumed to follow a normal distribution and the factor realizations are kept fixed throughout. The number
of individual stocks, N, is equal to 1,000 and the number of clusters, My, is set equal to 50. The pairwise
correlation of shocks, assumed to be constant within each cluster, is set equal to 0.10. The simulation is calibrated
to the following three linear asset pricing models: the single-factor CAPM, the three-factor Fama and French
(1993) model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K =1
and Ay is the ex-post risk premia of MKT. For FF3, K = 3 and Ayr, Asws, and Agy are the ex-post risk premia
of MKT, SMB, and HML, respectively. For HXZ4, K = 4 and Ayr, Avg, Ar/a, and Aggg are theAex—post risk
premia of MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider the IV estimator Ay, while for
the FF3 and HXZ4 models, we consider the two-step and iterated IV-GMM estimators, i.e., Xﬁ and XE In
addition, we consider two alternative estimators X; = (X, X)X/ T, and X = (X}, X))~ 1X,T, that ignore the
EIV problem. The results are based on 50,000 Monte Carlo repetitions.

FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Average Factor Realizations
?MKT 1118.2 453.0  1248.8 483.0 2069.4 -310.0 -43.4 15524
Fons 1576.0  470.2 -451.6  158.0 -369.4 1002.4 1314  149.2
Fe. 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0
55
Ao 308.2 280.9 336.6 324.2 358.2 3974  305.6 270.3
AMKT 273.5 266.2 289.7 267.8 314.7 335.1  267.1 264.6
AsmB 189.1 190.2 194.0 189.0 202.0 200.3  169.5 194.3
AHML 228.2 234.4 223.8 243.9 241.9 251.7 196.0 223.5
g
Ao 309.0 281.3 337.3 324.7 359.2 3984 3064 270.4
Aukt 274.1 266.3 290.4 268.4 315.2 336.1  267.9 264.7
AsuB 189.3 190.0 193.6 188.8 201.9 200.2  169.8 194.0
AmML 229.1 235.3 224.4 244.4 242.8 252.5  196.7 224.0
P
o 342.6 328.7 383.6 387.4 410.0 462.0 326.3 297.7
AukT 343.9 391.6 379.9 320.7 414.3 406.5  303.9 392.8
AsuB 253.8 311.7 319.0 317.0 319.3 273.5  208.0 346.6
AmmL 265.6 282.5 267.7 339.5 302.2 316.7 224.8 281.1

Continued on next page
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Table 3 — continued from previous page

HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6  1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Froe 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
X
Ao 442.5 410.5 477.8 485.9 540.7 517.6  427.5 468.2
Aukt 348.7 358.5 399.8 371.4 446.6 404.0  350.2 351.7
AME 324.1 348.3 354.4 374.6 358.4 328.1  251.7 341.7
A1/a 257.7 391.9 331.3 336.5 323.9 255.3 191.0 287.2
ARQE 420.2 506.3 479.8 509.5 518.9 476.7  318.7 441.3
g
Ao 444.4 410.5 478.7 486.3 543.4 519.7  429.1 469.8
AMKT 349.9 358.3 399.8 371.3 448.5 406.2  351.5 352.5
AME 325.1 346.7 352.9 373.1 357.2 3279  252.0 341.3
A1/a 259.5 393.5 333.3 337.0 325.1 256.6  192.3 288.5
AROE 423.8 507.1 481.0 513.0 521.0 478.8  320.5 444.2
AP
e 484.2 466.6 573.1 756.7 647.5 560.0 492.2 635.0
AMKT 396.0 520.8 491.5 475.1 564.3 456.2  430.0 538.0
AME 425.5 597.5 622.9 902.3 578.1 393.7 278.2 560.5
A1/a 296.6 508.4 426.8 580.3 415.2 286.2  208.3 359.1
AROE 495.1 678.0 617.8 821.7 724.2 554.5  376.4 673.7
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Table 5: Betas of Decile Portfolios Sorted by Characteristics. In this table, we consider decile portfolios
sorted on a characteristic and present the beta estimates of these portfolios with respect to the corresponding
spread factor within the context of the three asset pricing models we empirically examine: the FF3 model, the
HXZ4 model, and the FF5 model. For each asset pricing model, the decile portfolio betas are estimated jointly
for all factors using data from 07/1970 to 12/2014.

Decile Portfolios Sorted by Characteristic

LOW HIGH

Model Factor  Characteristic 1 2 3 4 5 6 7 8 9 10
FF3 SMB SIZE 1.19 1.10 0.92 0.81 0.69  0.49 0.38 028  0.07 -0.29
HML BTM -0.50 -0.10 0.04 028 033 0.36 0.52 0.69  0.69 0.96

HXZ4 ME SIZE 1.04 1.00 0.86 0.79 0.66  0.48 0.37 026  0.08 -0.27
I/A /A 0.37  0.45 029 014 011 -0.03 -0.12 -0.30 -0.56 -0.42

ROE ROE -0.33  -0.25 0.01 0.01 -0.15 0.06 0.09 0.10 0.23 0.32

FF5 SMB SIZE 1.12 1.06 0.92 0.83 069 050 038 025 0.06 -0.28
HML BTM -0.43 -0.19 -0.06 0.22 024 0.35 0.44 070 0.69 0.97

RMW  OP -0.90 -041 -0.27 -0.16 0.01 -0.05 0.07  0.21 0.35 0.43

CMA AG 0.63 0.67 0.68 0.27 022 010 0.04 -0.14 -0.62 -0.53

46



Table 6: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of A = [ Ag Ar ]/ and the various
statistics along with the corresponding p-values for testing the implications of the CAPM. We consider 8 non-
overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting period consists of
the preceding five years. We report point estimates, in annualized percentages, based on the IV estimator Ap.
The null hypothesis implied by the CAPM is Ao = 0 and Ay = fyer- We report the J(A) and Jz(A) joint test
statistics given by (49) and (52), respectively, as well as the ¢(Ag) and ¢(Axr) test statistics given by (50) and
(51), respectively. The corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets

1706 1942 ‘ 1967 2098

N ‘ 1204 1736 1999 1926

Average Factor Realizations
Fcr | 118 453 | 1249 483 | 2060 -310 | 043 1552
Estimates of A: XIV

Ao -3.22 4.85 25.10 0.24 4.02 18.65 -8.49 13.44
AMKT 20.33 4.72 -14.57 9.16 12.13 0.07 11.10 4.10
Test Statistics

J(X) 135.37 15.54 36.33 39.19 17.31  730.75 73.28 92.46
p-value [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 25.68 4.84 51.92 6.03 17.61  121.99 4.38 165.34
p-value [0.000] [0.110] | [0.000] [0.079] | [0.002] [0.000] | [0.138] [0.000]
t(Xo) -1.48 2.20 4.82 0.15 2.11 10.90 -0.96 9.59
p-value [0.139] [0.028] | [0.000] [0.878] | [0.035] [0.000] | [0.337] [0.000]
t (Aukr) 4.85 0.10 -5.35 2.45 -3.63 1.81 1.86 -8.57
p-value [0.000] [0.918] | [0.000] [0.014] | [0.000] [0.071] | [0.063] [0.000]
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Table 7: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of A = [ Ag Axr A Ao ]/ and the
various statistics along with the corresponding p-values for testing the implications of the FF3 model. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., )\ and )\E The null hypothesis implied by the FF3 model is
Mo =0, ixr = frers A = Sousy and gy = fHML We report the J(X) and Jg(A) joint test statistics given by
(49) and (52), respectively, as well as the t(\g) test statistics given by (50) and ¢(Aur), t(Asws), and t(Amw) test
statistics given by (51). The corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1204 1733 1704 1941 1959 2090 1994 1920
Average Factor Realizations

Frxr 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fom 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

Fa 6.51 9.31 2.52 260 | -549 1511 211  -0.88
Estimates of A: XIS

Ao 6.13 -1.02 14.31 2.31 6.14 14.09 -9.57 11.34

AMKT 6.26 4.31 -3.54 3.15 8.90 -9.33 6.02 2.67

AsMB 15.43 8.06 -1.91 5.15 4.66 22.61 10.39 5.84

AHML 1.97 12.10 6.35 -1.97 -6.26 10.05 7.24 1.94
Estimates of A: AI}

Ao 5.73 0.42 18.51 2.32 6.16 17.64 -8.32 11.62

AMKT 6.66 2.99 -2.46 2.61 8.88  -12.69 4.82 2.46

AsMB 15.39 8.58 -3.75 4.96 4.68 23.99 10.75 5.80

AmML 1.96 11.46 -6.86 -0.59 -6.28 9.19 7.87 2.11
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Table 7 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(A) 14.72 10.28 39.41 23.09 46.42 177.04 43.95 191.35
pvalue (0.005] [0.036] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 11.63 8.96 19.65 26.03 49.29 69.85 7.82  179.22
p-value (0.059] [0.105] | [0.009] [0.001] | [0.000] [0.000] | [0.132] [0.000]
t(Xo) 2.17 -0.22 2.50 1.38 1.51 4.86 -1.43 9.78
p-value (0.030] [0.826] | [0.012] [0.169] | [0.131] [0.000] | [0.152]  [0.000]
t (Amkr) -1.83 -0.05 -3.12 -1.12 -3.86 -2.97 0.93 -8.71
p-value (0.068] [0.957] | [0.002] [0.263] | [0.000] [0.003] | [0.350]  [0.000]
t (Asm) -0.29 2.92 1.65 4.27 5.66 5.81 1.99 2.53
p-value (0.774]  [0.003] | [0.099] [0.000] | [0.000] [0.000] | [0.047] [0.011]
t (Amme) -1.87 0.60 0.96 -2.16 -0.32 -1.93 0.98 1.16
p-value (0.061] [0.547] | [0.338] [0.030] | [0.748] [0.053] | [0.320] [0.245]
Test Statistics: AL}

J(A) 15.04 15.27 55.88 20.26 46.52  170.02 41.37  265.91
p-value (0.005]  [0.004] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 10.65 11.87 30.88 24.09 49.42 83.32 7.09 207.81
p-value (0.071] [0.056] | [0.001] [0.001] | [0.000] [0.000] | [0.162] [0.000]
t(Xo) 2.04 0.09 3.82 1.40 1.52 5.35 -1.17 10.70
p-value (0.042] [0.928] | [0.000] [0.162] | [0.130] [0.000] | [0.242]  [0.000]
t (Aukr) -1.69 -0.38 -3.38 -1.54 -3.86 -4.02 0.72 -9.24
p-value (0.090] [0.701] | [0.001] [0.123] | [0.000] [0.000] | [0.473] [0.000]
t (AsuB) -0.32 3.39 0.81 4.14 5.67 5.85 2.02 2.52
p-value (0.749]  [0.001] | [0.417] [0.000] | [0.000] [0.000] | [0.043] [0.012]
t (Amme) -1.88 0.47 -2.06 -1.61 -0.33 -2.09 1.06 1.22
p-value (0.060] [0.641] | [0.039] [0.108] | [0.743] [0.037] | [0.289] [0.221]
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Table 8: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of A = [ Ag Mxr A Arn Anoe ]/ and
the various statistics along with the corresponding p-values for testing the implications of the HXZ4 model. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We re/port point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., ATy and )\E The null hypothesis implied by the HXZ4 model
is Ao = 0, Mixr = fraers Mg = Fugr An = Fryms and )\RDE = froe- We report the J(X) and J4(X) joint test statistics
given by (49) and (52), respectively, as well as the t(Ag) test statistics given by (50) and ¢(Aur), t(Ae); t(An),
and t(Agee) test statistics given by (51). The corresponding p-values are reported in square brackets below the
test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1059 1598 1527 1709 1627 1740 1610 1560

Average Factor Realizations

T 1115 405 | 1213 455 | 20.14  -2.45 038  14.20
fue 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88
Fin 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63
?RUE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86
Estimates of A: X%S,

Ao 1.55 3.19 6.85 2.77 16.50 17.98 -0.20 13.72
AMKT 11.26 0.80 6.83 2.21 0.17 -5.10 2.97 2.50
AME 17.48 7.01 -0.66 6.29 1.30 27.86 8.05 0.96
A1/a 0.26 11.20 3.12 -3.49 -8.82 0.37 1.56 14.81
AROE 2.22 -5.49 9.91 -0.41 -5.24 11.35 2.97 0.92

Estimates of A: AIT

Ao 2.52 5.51 4.19 6.84 6.98 16.25 1.12 13.92
AMKT 10.16 -1.87 9.69 -3.00 7.06 -4.68 -1.12 2.35
AME 18.12 8.30 -0.53 3.11 4.00 38.52 11.14 0.77
A1/a -0.09 8.42 2.68 -5.25 -4.83 0.72 1.16 14.79
AROE 2.53 -5.06 11.87 -6.83 -5.84 16.85 -1.23 0.42

Continued on next page
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Table 8 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(X) 7.24 49.55 45.64 150.08 | 113.06 331.54 | 113.43 70.23
pvalue (0.204] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 0.85 4.25 5.34 4.07 33.76 24.60 4.32 71.27
p-value (0.867) [0.362] | [0.310] [0.367] | [0.003] [0.006] | [0.408] [0.000]
t(Xo) 0.40 0.34 0.71 0.55 1.63 4.13 -0.04 4.97
p-value (0.687] [0.733] | [0.476] [0.585] | [0.104] [0.000] | [0.968] [0.000]
t (Mukr) 0.03 -0.27 -0.56 -0.40 -2.28 -0.84 0.44 -6.32
p-value (0.079] [0.786] | [0.577] [0.689] | [0.022] [0.401] | [0.658]  [0.000]
t (Ae) 0.13 1.13 1.58 0.67 2.16 1.69 1.84 -0.30
p-value (0.896] [0.257] | [0.115] [0.501] | [0.030] [0.091] | [0.065] [0.765]
t (A1/a) -0.81 0.21 -1.42 -1.52 -2.61 -1.80 0.84 2.54
p-value (0.420] [0.831] | [0.156] [0.128] | [0.009] [0.071] | [0.400] [0.011]
t (AroE) -0.16 -1.65 0.16 -0.92 -3.79 0.87 -0.12 -0.17
p-value (0.876] [0.099] | [0.875] [0.357] | [0.000] [0.386] | [0.905] [0.869)]
Test Statistics: ALT

J(A) 8.41 60.43 39.40  109.25 98.46  307.05 | 115.89 70.65
p-value (0.135]  [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(\) 184 772 | 570 888 | 3423 2121 | 844  73.93
p-value (0.691] [0.209] | [0.288] [0.175] | [0.003] [0.011] | [0.167] [0.000]
t(Xo) 0.69 0.67 0.44 1.29 0.78 3.06 0.26 5.03
p-value (0.492] [0.505] | [0.661] [0.197] | [0.434] [0.002] | [0.793] [0.000]
t (Aukr) -0.26 -0.56 -0.26 -1.32 -1.85 -0.62 -0.30 -6.47
p-value (0.798]  [0.574] | [0.797] [0.186] | [0.065] [0.538] | [0.765] [0.000]
t (Ae) 0.55 1.91 1.57 0.15 3.25 2.70 2.57 -0.36
p-value (0.583] [0.056] | [0.117] [0.884] | [0.001] [0.007] | [0.010] [0.718]
t (A1/) 0.99 003 | -163 -1.82 | -1.66 -1.28 | 062  2.56
p-value (0.322] [0.974] | [0.102] [0.069] | [0.097] [0.202] | [0.538] [0.010]
t (AroE) -0.13 -1.82 0.56 -1.46 -4.11 1.61 -1.14 -0.25
p-value (0.896] [0.069] | [0.574] [0.143] | [0.000] [0.108] | [0.252]  [0.799)]
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Table 9: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of A = [ Ay Axr Ase Amr Amw Acu ]/
and the various statistics along with the corresponding p-values for testing the implications of the FF5 model.
We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., ATy and AL. The null hypothesis implied by the FF5 model
is Ao = 0, Ar = frxr> 2o = fams A = Saws Auw = S a0d Aan = fou. We report the J(X) and Jg(X)
joint test statistics given by (49) and (52), respectively, as well as the ¢(X\g) test statistics given by (50) and
t(Akr)s t(Asus)s t( ), t(Amay), and t(Aqu) test statistics given by (51). The corresponding p-values are reported
in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1193 1719 1692 1882 1811 2049 1956 1885

Average Factor Realizations

Frucr 1118 4.53 | 1249 483 | 2060 -3.10 | -043  15.52
Fas 1733 414 | -482 157 | -530 1278 | 163  1.54
T 653 935 | 257 270 | -551 1500 | 208  -0.93
T 010 404 | 551 470 | 094 1023 | 473 071
Fom 172 624 | 522 L74| -1.60 1393 | -028  2.90
Estimates of A: XIS
Ao 1.28 7.42 20.42 3.41 4.38 10.94 -4.57 8.73
AMKT 9.51 -3.67 -6.31 0.16 11.06 -7.54 7.99 6.28
AsyMB 18.39 5.56 -5.84 7.29 3.44 27.70 1.15 5.87
AHML 2.16 4.65 3.76 0.05 -6.44 4.32 8.24 -0.53
ARmw -3.36 -0.09 -4.50 -5.67 -2.48 4.27 -5.95 -6.37
Acha -2.09 6.72 -2.06 -5.37 -4.47 3.64 -7.43 6.53
Estimates of A: AIT
Ao 2.04 4.23 31.58 3.91 3.45 10.93 0.12 8.64
Aukt 9.26 -2.46 -13.05 -0.89 11.67 -7.38 3.43 6.38
AsMB 16.79 8.28 -11.77 6.51 3.74 26.93 3.17 6.85
AHML 1.84 -1.73 6.57 1.82 -6.53 4.52 13.55 -1.33
ARmw -2.24 0.83 -8.68 -4.33 -2.18 3.95 -6.53 -8.44
Acma -1.14 7.84 -6.35 -4.75 -3.80 2.97 -4.37 6.22

Continued on next page
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Table 9 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(A) 49.00 7.86 26.70 56.51 46.16  222.33 | 145.50 170.52
p-value (0.000] [0.249] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 5.74 6.16 17.31 59.11 29.92 45.86 12.64 91.55
pvalue (0.345]  [0.354] | [0.052] [0.000] | [0.002] [0.000] | [0.103] [0.000]
t(Xo) 0.24 1.17 1.94 1.58 0.88 4.35 -0.93 6.37
p-value (0.811) [0.243] | [0.052] [0.115] | [0.377] [0.000] | [0.354] [0.000]
t (Aukr) -0.34 -1.22 -1.99 -1.95 -2.50 -2.10 1.73 -5.46
pvalue (0.733] [0.224] | [0.046] [0.051] | [0.013] [0.036] | [0.084] [0.000]
t (Asup) 0.72 1.13 -0.31 4.33 4.47 2.82 -0.14 2.75
p-value (0.470] [0.259] | [0.760] [0.000] | [0.000] [0.005] | [0.889] [0.006]
t (Am) -1.83 -0.99 0.31 -1.08 -0.41 -2.93 1.14 0.28
p-value (0.067) [0.322] | [0.755] [0.279] | [0.683] [0.003] | [0.254] [0.779]
t (Armw) -0.88 -1.02 -2.60 -4.03 -1.47 -2.21 -2.24 -2.95
p-value (0.378]  [0.310] | [0.009] [0.000] | [0.142] [0.027] | [0.025] [0.003]
t (Aown) 096 018 | -1.62  -4.08 | -0.78 -1.01 | -1.56  2.19
p-value (0.338] [0.861] | [0.105] [0.000] | [0.438] [0.312] | [0.118]  [0.029)]
Test Statistics: ALT

J(A) 54.42 29.72 16.69 46.56 45.54  223.34 | 183.06 204.85
pvalue (0.000] [0.000] | [0.010] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 7.74 16.46 14.20 56.53 30.12 46.19 12.32 88.97
p-value (0.249] [0.049] | [0.092] [0.000] | [0.002] [0.000] | [0.112]  [0.000]
t(Xo) 0.43 0.68 1.66 1.96 0.74 4.36 0.02 5.94
p-value (0.665] [0.498] | [0.096] [0.049] | [0.458] [0.000] | [0.984] [0.000]
t (Aukr) -0.43 -1.07 -1.53 -2.59 -2.47 -2.12 0.74 -5.28
p-value (0.664] [0.283] | [0.127] [0.010] | [0.013] [0.034] | [0.462] [0.000]
t (Asup) -0.44 3.06 -1.22 3.81 4.59 2.70 0.46 3.27
p-value (0.663] [0.002] | [0.222] [0.000] | [0.000] [0.007] | [0.645] [0.001]
t (Am) -2.45 -2.12 0.76 -0.38 -0.45 -2.93 2.31 -0.30
p-value (0.014] [0.034] | [0.448] [0.700] | [0.655] [0.003] | [0.021] [0.767]
t (Armw) -0.71 -0.79 -2.12 -3.75 -1.36 -2.37 -2.32 -3.37
p-value (0.475]  [0.429] | [0.034] [0.000] | [0.172] [0.018] | [0.020] [0.001]
t (Acma) -0.82 0.61 -1.59 -4.16 -0.61 -1.10 -0.93 1.92
p-value (0.414] [0.541] | [0.111] [0.000] | [0.539] [0.273] | [0.353]  [0.055]
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Online Appendix for
“Ex-post Risk Premia Tests using Individual Stocks:
The IV-GMM solution to the EIV problem”

In this Online Appendix, we present (i) an illustration of the IV approach for addressing the
EIV problem in the context of a linear regression model; (ii) a proof that the IV-GMM estimator
is at least as efficient as the exactly-identified IV estimator; (iii) additional simulation results
under the assumption that the shocks follow a Student-t distribution; and (iv) robustness checks

of the empirical results where we use alternative price filters and clustering schemes.

Using IV to address the EIV problem in a linear regression model

Consider the standard linear regression model:
yi=xXb+e, i=1,...,N, (78)

where the M-dimensional regressor x satisfies the orthogonality condition E[xe] = 0,;. How-
ever, the regressor x is not observed. Instead, we observe the noisy proxy x, = x+u, where the
measurement error u, is uncorrelated with the true regressor x: E[xu/] = 0y/x . However, u,
is correlated with the disturbance e: E[u,e] # 0),. Regressing € on u, we obtain ¢ = u/,d + w.

Expressed in terms of the noisy proxy x,, the regression equation assumes the form
yi:X:l7ib+5a,ia Z.:l,...,]\/v7 (79)
where ¢, = ¢ — u/,b. Then,

E[x.e.] = E[(x + u,)(e — u,,b)] = E[u,u,](d — b). (80)
Hence, unless d = b, we have E[x,e,] # 0) and so we cannot use the noisy proxy x, as an
OLS regressor to consistently estimate b.

Suppose that we also observe another noisy proxy x;, = x + u; where the measurement error

u, is uncorrelated with the true regressor x, the measurement error u,, and the disturbance



e: E[ux'] = 0y« and E[upu)] = 0prxpr and Efuye] = 0y, Expressed in terms of the noisy

proxy X, the regression equation assumes the form

yi=xpb+ey, i=1,...,N, (81)
where ¢, = ¢ — u;b. Then,

Epes] = El(x +w)(e — wpb)] = —Efuyu]b. (82)

Hence, in the presence of non-trivial measurement error uy,, we have E[xye,] # 0 and so we
cannot use the noisy proxy x; as an OLS regressor to consistently estimate b either. However,

the noisy proxy x; could be used as an instrument because

E[xpeq] = E[(x + w) (e — u/,b)] = 0y, (83)
which implies

E[xpy] = E[xyx,]b. (84)

Given the above assumptions about the measurement errors u, and u,, we have that E[x,x/| =
E[xx'], which is a symmetric and positive definite matrix. The consistent IV estimator of b

then is

~ N , —1 N
b = (o) (X mm) #)

Efficiency gains from using the IV-GMM estimator

As expected, the IV-GMM estimator that uses the characteristics as additional instruments is
at least as efficient as the IV estimator that only uses past beta estimates as instruments. Next,
we show that this is indeed the case. First, let

/
€i = [ u,2,[z'] u/2,m ® u’1,m u/2,m ®B; | - (86)



It follows from Assumption 3, tEat, as N — oo, \/LNNZ?; €; N N (0%, Vg), where Vg is a
symmetric and positive definite 7 x 7 matrix, where 7 = (1 4+ 7, + K)7s, and

Ve Ve
Ve _ ,11 ,12 : (87)
Ve,Ql Ve,22

where V.11 = V. Moreover, we have

@

2

Ly
Hs Mg

Q- with € = and Q, = [ e M. ] , (88)

and

II,;, II )
II = 11 12 with II;5 = 0(1+K)><(L72)7 II,, = 0L><(1+K+7‘1)7‘27 Iy, = g/2 ®IL’ (89>
H21 H22
and
/ o’ 0/
I, = &2 / n ' ' o ' (90>
0K><7'2 125 ® Gl g2 ® IK

It is easily seen that the asymptotic variance-covariance matrix of the IV estimator is Viy =
ﬁfl(ﬁVgﬁ’ )ﬁfl, where Q = 2, and I = IT;;. Recall that the asymptotic variance-covariance
matrix of the IV-GMM estimator is Vi = (€' (ITV IT’ )t Q)fl. To show that the IV-GMM
estimator is at least as efficient as the IV estimator, we need to show that Viy = VEM where

A > B means that A — B is a positive semidefinite matrix. Next, we observe that

Vi = Vi & @ (ITVIT) 7 Q = 0 (I Ve uIT;,) 7'

_ I, V. qIrr,)-t o
SQIOV.IN) Q= (I Venll,) (HROXL 1 (91)
Orx(1+k) Orxr
Letting Q = ITV IT’, we obtain
Q= Qi Qi _ 1,V I}, II;1 V10015, (92)
Qa1 Qo IV IT}; TIoV 9oIT),



It follows from the formula for the inverse of a partitioned matrix that

11 12
Q- [321 i ] | 93

where QM = (Qq1 — Q12Q5, Qo1) L. Tt follows from (91) that, to show Viy = V&M it suffices
to show that Q' = (II;; V. 1 IT}) ™! & (Qu — Q12Q52Q21)~! = Q. The last relation is
equivalent to Q1 = Q11— Q12Q2_21Q21 which is obviously satisfied since V. g5 is positive definite
and so Qo is also positive definite. Hence, we have established that the IV-GMM ex-post risk

premia estimator is at least as efficient as the IV estimator.



Monte Carlo simulation evidence

Table Al: Bias in the estimation of A with Student-t distributed shocks: the role of the EIV
correction through the IV-GMM approach. This table presents simulation results on the absolute bias, in

A
annualized basis points, in the estimation of A = [ Ao )\} } ,where A\p = [ A\ -+ Ag ]' is the vector of ex-post

risk premia and K is the number of factors. The shocks u;; are assumed to follow a Student-t distribution with
6 degrees of freedom and the factor realizations are kept fixed throughout. The number of individual stocks, IV,
is equal to 1,000 and the number of clusters, My, is set equal to 50. The pairwise correlation of shocks, assumed
to be constant within each cluster, is set equal to 0.10. The simulation is calibrated to the following three linear
asset pricing models: the single-factor CAPM, the three-factor Fama and French (1993) model (FF3), and the
four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1 and A\ is the ex-post risk
premia of MKT. For FF3, K = 3 and Agr, Asus, and Mgy are the ex-post risk premia of MKT, SMB, and HML,
respectively. For HXZ4, K = 4 and \gr, A, A/, and Agoe are the ex-post risk premia of MKT, ME, I/A; and
ROE, respectively. For the CAPM, we consider the IV estimator XI,‘L while for the FF3 and HXZ4 models, we
consider both the two-step and iterated IV-GMM estimators, i.e., Ay and AL. In addition, we consider two
alternative estimators A, = (X} X1) ' X/Ty and Xy = (X,X,) ' X,F, that ignore the EIV problem. The results
are based on 50,000 Monte Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frgr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Aty
Ao 1.4 0.4 0.6 1.1 6.0 0.3 0.9 4.2
AMKT 1.9 0.6 0.9 1.7 6.0 0.4 0.6 4.8
A1
Ao 359.5 179.1 466.6 160.5 999.4 132.0 15.8 571.0
Aukt 363.9 181.3 472.6 162.2  1013.3 133.7 15.7 578.5
Ao
Ao 441.6 168.4 416.2 233.8 880.0 107.4 16.5 710.2
AMKT 447.1 170.4 421.6 236.5 892.3 108.7 16.4 719.5

Continued on next page
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FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Fonm 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4  -549.4 1510.8 210.8 -88.0
X
Ao 0.8 3.8 9.8 5.1 5.3 9.2 0.3 1.9
AukT 0.5 2.4 7.9 4.3 5.8 5.9 0.4 4.0
Asmp 3.3 0.3 0.8 1.1 1.7 2.4 0.0 2.1
Anmr, 2.2 4.3 5.0 1.7 1.4 6.4 0.2 2.9
Amv: Iterated TV
Ao 1.0 4.0 10.3 5.3 5.9 10.2 0.2 1.7
Aukt 0.3 2.4 8.0 4.4 6.0 6.7 0.3 3.7
Asmp 3.6 0.4 0.9 1.0 14 2.4 0.1 1.8
\HML 2.2 4.8 5.8 2.0 1.8 7.3 0.2 3.2
A1
Ao 777.2 387.3 633.9 371.0 830.6 755.1 81.4 578.0
AMKT 298.6 120.5 742.3 230.9 1135.7 78.2 5.2 687.1
Asmp 595.3 146.9 340.5 108.8 373.9 657.7 76.4 49.8
AHML 497.8 509.4 207.5 239.7 228.1 912.6 99.0 168.6
Xo
Ao 601.7 683.2 555.0 381.0 788.4 594.3 12.2 694.6
Aukt 158.6 332.8 624.2 276.3 1012.5 36.2 75.0 798.9
AsyB 684.2 304.9 293.8 77.1 308.2 567.8 83.8 74.2
AHML 281.9 538.5 240.5 192.3 111.3 7177 1122 116.9

Continued on next page
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HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6  1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Froe 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
5%
Ao 29.2 30.0 50.5 58.4 63.2 29.6 16.6 36.5
AukT 5.1 4.9 20.9 14.5 38.6 17.4 10.9 24.2
AME 39.1 26.4 30.6 59.3 31.3 18.3 10.9 13.2
A1/a 10.4 40.3 43.5 33.9 22.1 7.7 1.9 9.9
ARQE 45.4 24.2 36.0 88.8 42.3 20.6 15.8 29.4
XIV: Iterated IV
Ao 33.3 34.3 57.3 65.0 71.3 35.0 19.4 41.2
AMKT 6.4 6.6 24.0 17.1 43.5 20.8 12.7 26.9
AME 43.5 27.6 33.2 63.7 35.0 21.1 12.6 15.2
A1/a 12.6 46.7 50.5 38.9 26.1 10.0 1.8 11.7
AROE 52.7 27.7 41.9 100.8 49.2 24.0 18.7 33.7
A1
Ao 1059.7 578.0 730.8 517.9 1150.3 940.3 1713 912.5
AMKT 454.1 127.2 674.1 234.2  1253.7 169.1  102.9 788.2
AME 950.5 457.3 180.2 314.9 293.6 1088.4 1414 67.7
A1/a 327.9 698.4 493.6 309.7 115.4 679.3 56.8 281.6
AROE 439.8 622.0 487.0 849.5 460.3 473.8 215.6 328.6
Ao
Ao 850.6 662.1 775.9 550.4  1271.9 696.2 168.5 839.7
AMKT 263.3 249.9 660.9 288.9 1273.1 195.4 57.7 765.3
AME 962.8 420.5 103.3 289.3 97.6 710.5  208.3 15.7
A1/ 234.9 621.3 536.4 275.4 97.0 451.5 37.4 215.9
ARoE 432.2 642.7 644.8 854.1 551.4 191.6  268.5 202.7




Table A2: Root mean square error in the estimation of A with Student-t distributed shocks: the
role of the EIV correction through the IV-GMM approach. This table presents simulation results on

!
the root mean square error (RMSE), in annualized basis points, in the estimation of A = [ Ao Xf ] , where

A=A - Ak ]/ is the vector of ex-post risk premia and K is the number of factors. The shocks u;; are
assumed to follow a Student-¢ distribution with 6 degrees of freedom and the factor realizations are kept fixed
throughout. The number of individual stocks, IV, is equal to 1,000 and the number of clusters, My, is set
equal to 50. The pairwise correlation of shocks, assumed to be constant within each cluster, is set equal to
0.10. The simulation is calibrated to the following three linear asset pricing models: the single-factor CAPM,
the three-factor Fama and French (1993) model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model
(HXZ4). For the CAPM, K = 1 and Ay is the ex-post risk premia of MKT. For FF3, K = 3 and A\gr, Agus, and
A are the ex-post risk premia of MKT, SMB, and HML, respectively. For HXZ4, K = 4 and M\gr, A, A/,
and Agge are the ex-post risk premia of MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider
the IV estimator A;‘IV while for the FF3 and HXZ4 models, we consider both the two-step and iterated IV-GMM
estimators, i.e., AT and AL, In addition, we consider two alternative estimators A; = (X}X;) !XT, and
X = ()A(’Q)Aig)*lﬁgﬁ that ignore the EIV problem. The results are based on 50,000 Monte Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Average Factor Realizations
?MKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Ay
Ao 216.2 229.2 228.3 215.2 275.0 235.6  216.6 233.0
AMKT 224.6 237.9 237.2 224.3 283.8 244.2  225.6 241.8
A1
Ao 389.7 230.9 489.8 218.8 1010.2 194.9 1484 590.1
AMKT 393.0 230.3 494.5 219.2 1022.7 192.2  146.7 596.4
Xo
Ao 465.8 224.3 443.3 273.4 893.0 183.6  148.7 725.1
AMKT 469.6 224.1 447.6 271.6 904.1 182.5 145.6 732.8

Continued on next page
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FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Fonm 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4  -549.4 1510.8 210.8 -88.0
X
Ao 308.6 281.4 333.9 323.9 361.1 399.5  306.9 269.3
AMKT 273.8 266.4 288.2 268.1 316.0 336.4  266.8 263.3
AsyB 188.6 190.2 192.5 188.9 200.8 200.9 170.1 195.2
AL 229.2 234.7 223.3 245.1 242.9 251.8 197.0 224.0
N
Ao 309.4 281.6 334.5 324.8 361.6 400.4  307.4 269.4
AMKT 274.5 266.5 288.7 269.0 316.5 3372 267.5 263.4
Asmp 188.8 190.0 192.5 188.6 200.6 201.1 1704 194.8
AHML 229.9 235.3 223.9 245.6 243.4 252.3 197.5 224.2
A1
Ao 796.3 422.7 654.1 404.7 846.5 7717 1831 604.0
Aukt 343.0 196.3 758.9 282.8 11459 176.3 161.1 704.3
Asmp 608.9 182.9 356.4 150.6 389.6 670.0 153.4 115.7
AHML 512.3 520.7 239.4 259.2 253.5 920.0 161.5 202.5
Xo
Ao 626.7 703.0 579.1 413.1 804.5 619.1  174.7 715.2
Aukt 225.0 369.4 646.2 314.2  1025.0 173.9 1719 812.6
AsyB 693.4 323.5 312.5 132.9 333.3 584.7 133.3 122.8
AHML 303.3 551.7 260.8 220.8 161.6 729.8 158.7 150.0

Continued on next page
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HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Frxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6  1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Froe 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
5%
Ao 442.4 411.5 475.1 482.0 537.5 516.2  429.0 467.4
Aukt 348.7 359.3 397.3 371.0 444.8 403.1  349.5 351.4
AME 327.0 348.0 353.5 372.4 357.9 329.8  256.1 340.9
A1/a 257.4 391.1 329.0 331.7 324.7 256.5 190.8 287.9
ARQE 422.2 506.6 475.8 505.3 520.3 477.8  320.9 439.1
g
Ao 443.8 412.4 476.4 482.5 540.3 517.6  430.6 468.7
AMKT 349.7 359.2 398.2 371.0 446.2 404.4  351.0 352.1
AME 327.5 347.1 352.0 371.2 3574 329.7 256.4 340.3
A1/a 258.7 393.4 331.5 332.8 326.8 2577 191.9 288.5
AROE 425.7 507.6 477.5 509.0 522.9 480.6  322.8 440.9
A1
Ao 1076.2 610.3 756.2 550.9 1163.9 955.9  237.9 929.3
AMKT 487.0 210.9 696.4 292.2  1263.2 233.5 1839 804.3
AME 959.8 473.5 214.1 331.9 3149 1096.4 201.9 130.4
A1/a 339.2 701.2 499.8 317.7 137.7 685.0 112.0 290.9
AROE 455.2 632.3 500.6 855.4 470.6 483.9  251.7 345.7
Ao
Ao 872.7 690.7 799.6 578.3  1283.6 717.8  242.6 860.2
AukT 311.5 306.0 685.0 328.1 12835 253.4 168.2 780.5
ANE 970.5 436.5 149.8 310.7 164.0 726.3  235.7 103.0
A1/ 243.0 626.2 541.4 285.2 131.6 462.7 81.4 227.0
ARoE 446.5 653.2 653.0 859.7 560.1 235.0 288.3 217.7
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Empirical evidence using 49 industry clusters and $3 price filter

Table A4: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters and $3 price filter. This table presents the point estimates of A =[ Ay Ar ]/
and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator Ary. The null hypothesis implied by the CAPM is A\g = 0 and Aygy = fyq- We report the J(A)
and Jg(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) and t(Agr) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79  80-84 | 85-80  90-94 | 95-99  00-04 | 05-09  10-14
Number of Test Assets
N | 1026 1417 | 146 1507 | 1553 1667 | 1477 1570

Average Factor Realizations

Fur | 118 453 | 1249 483 | 2060 310 | 043 1552
Estimates of X: A1y
Ao -3.83 5.74 21.09 -1.12 3.28 16.17 -5.74 12.94
AMKT 20.43 3.66 -9.66 10.21 13.02 1.51 9.88 4.46
Test Statistics
J(A) 104.49 17.51 25.36 41.25 17.48 803.86 | 147.03 69.39
p-value [0.000]  [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 18.52 6.42 46.28 10.04 15.89  168.53 491  125.29
p-value [0.002] [0.067] | [0.000] [0.023] | [0.003] [0.000] | [0.117] [0.000]
t(Xo) -1.59 2.50 4.69 -0.73 1.86 12.67 -0.85 8.30
p-value [0.113]  [0.012] | [0.000] [0.466] | [0.063] [0.000] | [0.393]  [0.000]
t (Aukr) 4.00 -0.40 -4.93 3.08 -3.53 2.84 2.04 -7.51
p-value [0.000] [0.686] | [0.000] [0.002] | [0.000] [0.004] | [0.041]  [0.000]
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Table A5: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of A =
[ Ao Amr sz Ame ]/ and the various statistics along with the corresponding p-values for testing the implications
of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., ATy and AL. The null hypothesis
implied by the FF3 model is A\g = 0, Az = fugr, A = foup a0d A = fra. We report the J(A) and Jg() joint
test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics given by (50) and t(Awr),
t(Asws), and t(Agy) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1026 1417 1455 1597 1549 1661 1474 1565
Average Factor Realizations

Fugr 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fons 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

Fa 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88
Estimates of A: XIS

Ao 4.09 2.79 16.90 1.76 4.33 9.40 -6.36 10.93

AMKT 7.70 2.48 -2.96 4.17 11.68 -2.11 7.76 3.96

AsuB 17.19 6.49 -3.15 6.61 3.45 17.55 5.48 5.14

AmiL 2.96 7.14 -0.62 -3.46 -6.40 7.84 4.78 1.23
Estimates of A: XE

Ao 3.70 6.25 14.36 1.83 4.29 12.81 -5.93 11.08

AMKT 8.02 -0.66 1.20 4.00 11.72 -6.24 7.41 3.85

AsuB 17.17 6.34 -3.51 6.61 3.45 21.70 5.44 5.18

AHML 3.16 5.01 -4.53 -3.36 -6.42 5.82 5.22 1.26

15

Continued on next page



Table A5 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: AIS

J(A) 2.11 8.32 42.21 37.01 42.61  245.11 94.06 192.34
pvalue (0.715]  [0.081] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]

Ja(N) 5.88 2.85 30.22 33.14 36.74 49.10 6.79  135.75
p-value (0.211) [0.441] | [0.000] [0.000] | [0.000] [0.000] | [0.172] [0.000]

t(Xo) 1.19 0.66 3.78 0.88 1.22 4.27 -1.20 8.13
pvalue (0.235] [0.510] | [0.000] [0.378] | [0.221] [0.000] | [0.229]  [0.000]
t (Amkr) -1.08 -0.52 -3.65 -0.38 -3.42 0.59 1.49 -7.92
p-value (0.282] [0.602] | [0.000] [0.703] | [0.001] [0.557] | [0.137] [0.000]
t (AswB) 1.22 1.32 1.17 4.88 4.84 4.22 1.66 2.52
p-value (0.224] [0.187] | [0.242] [0.000] | [0.000] [0.000] | [0.097] [0.012]
t (Amme) -1.36 -0.64 -1.11 -2.91 -0.38 -3.57 0.61 0.79
p-value [0.175] [0.525] | [0.265] [0.004] | [0.704] [0.000] | [0.542] [0.432]

Test Statistics: AL}

J(A) 1.91 14.21 63.45 36.85 42.54  270.36 88.51  248.43
p-value (0.753]  [0.007] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]

Ja(X) 5.15 8.11 30.08 33.29 36.63 87.53 6.20  149.50
pvalue (0.253] [0.135] | [0.001] [0.000] | [0.000] [0.000] | [0.198] [0.000]

t(Xo) 1.07 1.62 3.74 0.92 1.21 4.98 -1.08 8.54
p-value (0.284] [0.106] | [0.000] [0.357] | [0.226] [0.000] | [0.282]  [0.000]
t (Aukr) -0.98 -1.45 -3.08 -0.48 -3.41 -1.69 1.37 -8.32
p-value (0.328) [0.147] | [0.002] [0.628] | [0.001] [0.091] | [0.170] [0.000]
t (AsuB) 1.20 1.28 1.09 4.90 4.84 6.52 1.63 2.58
p-value (0.232] [0.200] | [0.277] [0.000] | [0.000] [0.000] | [0.102]  [0.010]
t (M) 127 <132 | 233 286 | -0.39  -417 | 070  0.79
p-value (0.203] [0.186] | [0.020] [0.004] | [0.700] [0.000] | [0.482] [0.428]
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Table A6: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of
A=[X0 Axr Me Ara Anoe ]/ and the various statistics along with the corresponding p-values for testing the
implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the HXZ4 model is A\g = 0, Mz = Fuxrs Mg = Sogs Aiza = fI/A7 and Anoe = fros: We report
the J(X) and J4(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics
given by (50) and t(Ar), t(Me), t(A1/n), and (Agee) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 882 1288 1285 1389 1278 1358 1184 1286
Average Factor Realizations
T 1115 405 | 1213 455 | 20.14  -2.45 038  14.20
e 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88
Fin 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63
?RUE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86
Estimates of A: X%S,
Ao 2.32 10.11 5.45 16.46 1.06 11.32 0.44 12.96
AMKT 10.32 -6.76 942  -14.52 14.14 -1.41 0.50 3.90
AuE 18.14 7.28 -2.41 0.01 2.17 22.00 10.45 1.66
A1/ 0.76 -0.46 0.44 -14.01 -4.01 6.93 7.24 10.59
ARoE -0.58 -8.72 6.42  -27.05 -0.86 3.82 5.18 4.78
Estimates of A: AIT

Ao 2.30 10.59 5.64 16.55 1.86 7.03 2.27 12.70
AMKT 10.33 -6.02 9.31 -14.47 13.56 0.28 -2.53 3.92
AME 18.15 7.59 -1.30 0.11 2.13 29.60 11.43 1.69
A1/ 0.83 -0.05 0.07  -13.83 -4.75 12.11 7.26 10.62
ARGE -0.48 -6.25 9.79  -26.58 -1.39 2.89 4.40 3.67

Continued on next page
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Table A6 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(X) 23.60 58.83 98.52 29.89 60.21  307.24 49.58 78.27
pvalue (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 1.29 37.62 3.92 2.57 15.78 10.05 9.48 63.11
p-value (0.789]  [0.001] | [0.452] [0.479] | [0.057] [0.123] | [0.137]  [0.000]
t(Xo) 0.60 3.21 0.70 0.65 0.09 2.40 0.06 5.55
p-value (0.551] [0.001] | [0.486] [0.515] | [0.929] [0.016] | [0.949]  [0.000]
t (Amkr) -0.20 -2.48 -0.35 -0.68 -0.59 0.34 0.02 -5.26
p-value (0.841] [0.013] | [0.726] [0.499] | [0.553] [0.737] | [0.986]  [0.000]
t (Aue) 0.69 2.03 0.64 -0.14 3.22 1.88 2.62 -0.24
p-value (0.492] [0.043] | [0.523] [0.886] | [0.001] [0.061] | [0.009] [0.807]
t (A1/a) -0.48 -2.24 -1.56 -0.93 -1.18 -0.68 1.58 2.00
p-value (0.628] [0.025] | [0.119] [0.353] | [0.237] [0.496] | [0.115]  [0.045]
t (AroE) -0.44 -3.46 -0.69 -0.90 -1.92 -0.42 0.31 0.74
p-value (0.663] [0.001] | [0.487] [0.370] | [0.055] [0.674] | [0.754] [0.458]
Test Statistics: ALT

J(A) 23.22 93.56 91.49 30.86 62.68  264.73 47.97 86.53
p-value (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 1.27 41.26 6.01 2.60 17.70 13.04 11.01 64.55
p-value (0.798] [0.001] | [0.283] [0.475] | [0.044] [0.067] | [0.106] [0.000]
t(Xo) 0.59 3.63 0.73 0.66 0.16 1.42 0.32 5.55
p-value (0.555]  [0.000] | [0.467] [0.506] | [0.871] [0.156] | [0.748] [0.000]
t (Aukr) -0.20 -2.51 -0.37 -0.68 -0.67 0.83 -0.40 -5.42
p-value (0.843] [0.012] | [0.709] [0.494] | [0.500] [0.409] | [0.686] [0.000]
t (Aue) 0.69 2.53 1.26 -0.14 3.28 3.16 2.89 -0.21
p-value (0.489] [0.011] | [0.209] [0.890] | [0.001] [0.002] | [0.004] [0.832]
t (A1/a) -0.47 -2.21 -1.93 -0.93 -1.44 0.15 1.54 2.04
p-value (0.630] [0.027] | [0.053] [0.352] | [0.149] [0.883] | [0.124] [0.041]
t (AroE) -0.42 -3.24 0.16 -0.90 -2.10 -0.56 0.17 0.49
p-value (0.671] [0.001] | [0.873] [0.370] | [0.036] [0.575] | [0.865] [0.625]
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Table A7: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of A =
[Mo e dsz Ame Aaw Ao ]/ and the various statistics along with the corresponding p-values for testing the
implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the FF5 model is A\g = 0, Mgz = fugr> Asp = Fomp> N = s /\mw = fam> a0d Ao = fo-
We report the J(A) and Jg(X) joint test statistics given by (49) and (52), respectively, as well as the t(\g)
test statistics given by (50) and t(Axr), t(Asus)s t(Ame), t(Amw), and t(Aqn) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1016 1404 1446 1555 1439 1643 1455 1552
Average Factor Realizations
Fugr 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52
fons 17.33 4.14 -4.82 1.57 -5.30 12.78 1.63 1.54
Fa 6.53 9.35 2.57 2.70 -5.51 15.00 2.08 -0.93
Fam 0.10 4.04 5.51 4.70 094 1023 4.73 0.71
Fom 1.72 6.24 5.22 1.74 -1.69 13.93 -0.28 2.90
Estimates of A: XIS
Ao 5.07 13.21 10.41 -0.01 5.62 5.66 -5.19 9.13
AMKT 6.89 -7.89 3.23 4.38 12.76 -3.41 9.26 7.7
Asme 18.73 4.17 -2.06 8.18 0.92 27.13 3.01 3.51
AnML 1.64 0.13 -2.36 -1.27 -6.30 6.65 5.88 -0.24
ARMW -1.05 -4.13 3.28 -3.45 -3.98 1.59 -5.91 -4.16
Acua 1.25 3.50 -0.95 -4.18 | -10.77 16.75 -4.42 7.14
Estimates of A: Xg

Ao 6.59 -1.08 11.70 -6.87 6.68 4.99 -5.45 9.05
Akt 5.36 4.73 3.50 11.26 11.50 -3.84 9.76 7.38
AsuB 17.28 7.95 -2.95 9.97 1.11 28.75 2.83 4.31
AnmL, 2.28 -1.60 -4.50 -4.19 -5.69 6.93 6.77 -0.07
AR -0.89 6.82 2.47 -0.04 -4.67 1.94 -6.71 -4.44
Acua 1.14 9.36 -3.15 -2.86 | -12.01 18.68 -3.67 7.53

Continued on next page
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Table A7 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(A) 27.39 51.31 54.07 65.76 53.92  261.51 168.94  202.82
p-value (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 5.24 28.34 35.34 52.95 36.65 26.63 28.05 52.02
pvalue (0.369]  [0.005] | [0.000] [0.000] | [0.000] [0.007] | [0.003] [0.000]
t(Xo) 0.90 3.06 2.94 -0.01 1.50 1.72 -1.91 5.09
p-value (0.370]  [0.002] | [0.003] [0.996] | [0.134] [0.085] | [0.056] [0.000]
t (Aukr) -0.79 -2.66 -2.62 -0.15 -2.62 -0.15 3.52 -3.87
pvalue (0.432] [0.008] | [0.009] [0.884] | [0.009] [0.879] | [0.000]  [0.000]
t (Asmp) 0.85 0.03 2.85 4.38 3.76 3.55 0.77 1.56
p-value (0.398] [0.979] | [0.004] [0.000] | [0.000] [0.000] | [0.441] [0.118]
t (Am) -1.74 -2.63 -1.95 -1.60 -0.27 -2.00 0.82 0.31
p-value (0.081] [0.008] | [0.051] [0.109] | [0.790] [0.046] | [0.410] [0.759]
t (Armw) -0.25 -2.03 -1.18 -3.83 -1.98 -2.65 -2.66 -1.77
p-value (0.800]  [0.043] | [0.237] [0.000] | [0.048] [0.008] | [0.008] [0.077]
t (Acma) -0.09 -0.91 -2.54 -4.06 -3.07 0.25 -1.90 2.33
p-value (0.930] [0.363] | [0.011] [0.000] | [0.002] [0.804] | [0.057] [0.020]
Test Statistics: ALT

J(A) 31.17 33.24 | 103.10 63.37 63.63 249.92 | 161.80 202.43
pvalue (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 6.93 15.08 42.47 56.08 40.22 26.47 31.28 57.20
p-value [0.280] [0.050] | [0.000] [0.000] | [0.000] [0.007] | [0.002] [0.000]
t(Xo) 1.39 -0.24 3.12 -1.50 1.71 1.49 -2.07 5.06
p-value (0.164] [0.807] | [0.002] [0.133] | [0.088] [0.137] | [0.039] [0.000]
t (Aukr) -1.26 0.05 -2.41 1.37 -2.99 -0.34 3.88 -4.08
p-value (0.208] [0.962] | [0.016] [0.172] | [0.003] [0.736] | [0.000]  [0.000]
t (AswB) -0.04 2.39 1.97 5.82 3.57 3.77 0.67 2.23
p-value (0.972] [0.017] | [0.048] [0.000] | [0.000] [0.000] | [0.500] [0.026]
t (Am) -1.82 -2.78 -2.99 -2.47 -0.06 -1.91 1.00 0.38
p-value (0.069] [0.005] | [0.003] [0.014] | [0.954] [0.056] | [0.315] [0.705]
t (Armw) -0.28 0.54 -1.81 -1.84 -2.28 -2.47 -2.83 -1.89
p-value (0.783]  [0.590] | [0.070] [0.065] | [0.023] [0.014] | [0.005] [0.059]
t (Acma) -0.12 1.12 -3.30 -2.94 -3.22 0.41 -1.57 2.51
p-value (0.003] [0.261] | [0.001] [0.003] | [0.001] [0.682] | [0.116] [0.012]
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Empirical evidence using 49 industry clusters and $5 price filter

Table A8: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters and $5 price filter. This table presents the point estimates of A = [ Ay Ar ]/
and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator Ary. The null hypothesis implied by the CAPM is A\g = 0 and Aygy = fyq- We report the J(A)
and Jg(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) and t(Agr) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period | 70-74  75-79 | 80-84  85-89 | 90-94  95-09 | 00-04  05-09

Testing Period 7579 80-84 | 8589  90-04 | 95-99  00-04 | 05-00  10-14
Number of Test Assets

N | s40 1177 | 1253 1361 | 1300 w408 | 1210 1347

Average Factor Realizations

Fur | 118 453 | 1249 483 | 2060 310 | 043 1552
Estimates of X: A1y
Ao -2.96 6.05 19.43 -0.21 2.71 15.99 -5.08 12.85
AMKT 18.90 3.45 -7.37 8.90 14.05 0.52 9.91 4.43
Test Statistics
J(A) 64.34 23.53 22.53 46.30 10.37  686.00 | 139.35 49.10
p-value [0.000]  [0.000] | [0.000] [0.000] | [0.006] [0.000] | [0.000] [0.000]
Ja(X) 13.29 5.62 43.13 7.18 8.19 171.14 7.71 95.84
p-value [0.010] [0.089] | [0.000] [0.056] | [0.039] [0.000] | [0.049] [0.000]
t(Xo) -1.35 2.33 4.57 -0.14 1.33 12.91 -1.01 6.94
p-value [0.176]  [0.020] | [0.000] [0.892] | [0.183] [0.000] | [0.314]  [0.000]
t (Augr) 339 042 | -4.72 268 | -253  2.10 259  -6.90
p-value [0.001] [0.672] | [0.000] [0.007] | [0.011] [0.036] | [0.010]  [0.000]

21



Table A9: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of A =
[ Ao Amr sz Ame ]/ and the various statistics along with the corresponding p-values for testing the implications
of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., ATy and AL. The null hypothesis
implied by the FF3 model is A\g = 0, Az = fugr, A = foup a0d A = fra. We report the J(A) and Jg() joint
test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics given by (50) and t(Awr),
t(Asws), and t(Agy) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 849 1177 1252 1361 1296 1403 1216 1344
Average Factor Realizations

Fugr 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fons 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

Fa 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88
Estimates of A: XIS

Ao 1.32 6.95 15.84 2.78 4.64 6.82 -4.69 10.21

AMKT 10.27 -1.74 -1.63 3.52 12.67 0.81 6.29 5.12

AsuB 18.92 6.62 -3.16 6.53 3.17 13.69 6.42 5.24

AmiL 3.75 5.75 0.09 -3.82 -7.42 9.17 4.85 -1.22
Estimates of A: XE

Ao 1.00 10.11 13.86 2.45 4.44 6.02 -3.33 10.48

AMKT 10.56 -4.35 1.00 3.75 12.83 0.29 5.14 4.96

AsuB 18.92 5.37 -3.58 6.76 3.20 16.50 6.51 5.21

AHML 3.91 2.12 -0.88 -4.01 -7.39 8.05 5.29 -1.18
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Table A9 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(X) 10.61 17.99 52.17 65.96 48.12  137.47 69.77  181.05
pvalue (0.031] [0.001] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 7.51 7.73 37.23 51.59 30.58 26.93 7.85 136.36
p-value (0.140]  [0.146] | [0.000] [0.000] | [0.000] [0.001] | [0.130] [0.000]
t(Xo) 0.42 1.63 4.21 1.47 1.33 3.13 -0.88 7.39
p-value (0.678] [0.102] | [0.000] [0.140] | [0.184] [0.002] | [0.377] [0.000]
t (Auxr) 032  -153 | -415  -071 | -3.30 231 | 129 873
p-value (0.751] [0.126] | [0.000] [0.478] | [0.001] [0.021] | [0.198]  [0.000]
t (AswB) 2.43 1.27 1.06 6.09 4.18 2.10 2.25 2.35
p-value (0.015] [0.204] | [0.287] [0.000] | [0.000] [0.035] | [0.025] [0.019]
t (Amme) -1.16 -1.05 -1.07 -3.43 -0.66 -2.70 0.60 -0.15
p-value (0.248] [0.292] | [0.286] [0.001] | [0.507] [0.007] | [0.552] [0.880]
Test Statistics: AL}

J(A) 10.68 19.06 54.62 68.87 47.88  134.57 66.63  258.37
p-value (0.030] [0.001] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 7.22 18.88 34.55 51.72 30.46 37.01 6.58  159.93
p-value (0.149]  [0.018] | [0.000] [0.000] | [0.000] [0.000] | [0.184] [0.000]
t(Xo) 0.32 2.70 4.13 1.23 1.28 2.89 -0.59 8.00
p-value (0.752] [0.007] | [0.000] [0.219] | [0.199] [0.004] | [0.556] [0.000]
t (Aukr) -0.22 -2.47 -3.81 -0.56 -3.27 2.11 0.99 -9.50
p-value (0.828] [0.014] | [0.000] [0.576] | [0.001] [0.035] | [0.323] [0.000]
t (AsuB) 2.43 0.45 0.79 6.09 4.20 3.86 2.19 2.38
p-value (0.015] [0.654] | [0.432] [0.000] | [0.000] [0.000] | [0.020] [0.017]
t (L) -1.08 -2.31 -1.53 -3.58 -0.65 -3.06 0.69 -0.13
p-value (0.278] [0.021] | [0.127] [0.000] | [0.517] [0.002] | [0.493] [0.894]
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Table A10: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of
A=[X0 Axr Me Ara Anoe ]/ and the various statistics along with the corresponding p-values for testing the
implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the HXZ4 model is A\g = 0, Mz = Fuxrs Mg = Sogs Aiza = fI/A7 and Anoe = fros: We report
the J(X) and J4(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics
given by (50) and t(Ar), t(Me), t(A1/n), and (Agee) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 709 1056 1091 1166 1054 1125 984 1127
Average Factor Realizations
T 1115 405 | 1213 455 | 20.14  -2.45 038  14.20
e 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88
Fin 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63
?RUE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86
Estimates of A: X%S,
Ao -0.51 8.19 0.99 11.59 0.84 9.22 -2.96 13.85
AMKT 12.27 -5.91 13.80 -7.74 14.53 -1.12 6.61 3.46
AuE 19.69 9.55 -0.04 1.35 2.67 21.18 8.85 1.75
A1/ -1.44 0.30 3.77 -6.78 -4.20 10.11 291 8.63
ARoE -5.68  -12.41 9.68  -13.28 -0.20 3.58 9.57 3.74
Estimates of A: AIT

Ao 2.27 8.03 1.11 12.09 0.70 7.61 -6.40 13.94
AMKT 9.88 -5.73 13.61 -8.40 14.64 -1.07 9.63 3.00
AME 18.04 9.59 0.10 1.12 2.83 24.19 11.77 1.88
A1/ -3.33 0.26 3.57 -7.43 -4.23 12.67 5.16 8.43
AROE -7.90 -12.68 10.13 -14.25 -0.39 5.23 15.45 3.51

Continued on next page
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Table A10 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(X) 49.10 80.21 | 114.55 79.06 62.22  201.31 76.94  103.37
pvalue (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 6.56 32.04 5.88 15.45 16.53 8.52 8.41 93.08
p-value (0.253] [0.001] | [0.287] [0.070] | [0.041] [0.169] | [0.173] [0.000]
t(Xo) -0.14 2.26 0.16 1.47 0.08 1.99 -0.43 6.96
p-value (0.885] [0.024] | [0.871] [0.140] | [0.933] [0.046] | [0.670]  [0.000]
t (Amkr) 0.34 -2.35 0.27 -1.34 -0.67 0.44 0.82 -6.49
p-value (0.733] [0.019] | [0.789] [0.179] | [0.502] [0.657] | [0.414]  [0.000]
t (M) 1.57 1.86 2.11 -0.21 3.40 2.02 2.34 -0.13
p-value (0.117] [0.063] | [0.035] [0.833] | [0.001] [0.044] | [0.019] [0.896]
t (A1/a) -1.33 -1.80 -1.15 -2.45 -1.23 -0.20 1.19 1.51
p-value (0.184] [0.072] | [0.252] [0.014] | [0.220] [0.843] | [0.235] [0.131]
t (AroE) -1.48 -3.83 0.13 -2.33 -1.74 -0.51 0.83 0.48
p-value (0.138] [0.000] | [0.898] [0.020] | [0.083] [0.610] | [0.408] [0.631]
Test Statistics: ALT

J(A) 31.39 84.35 | 111.22 80.54 62.42 171.74 47.39  104.57
p-value (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 7.72 32.26 6.58 15.81 17.17 8.62 13.32  101.47
p-value (0.197] [0.001] | [0.249] [0.067] | [0.037] [0.163] | [0.073] [0.000]
t(Xo) 0.71 2.22 0.19 1.48 0.07 1.49 -0.69 7.13
p-value (0.479] [0.027] | [0.853] [0.138] | [0.944] [0.137] | [0.493] [0.000]
t (Aukr) -0.42 -2.30 0.24 -1.37 -0.65 0.41 0.90 -6.95
p-value (0.673] [0.022] | [0.807] [0.171] | [0.513] [0.678] | [0.366] [0.000]
t (M) 0.65 1.90 2.21 -0.25 3.48 2.48 2.91 0.00
p-value (0.514] [0.058] | [0.027] [0.800] | [0.001] [0.013] | [0.004] [0.999]
t (A1/a) -1.85 -1.80 -1.24 -2.49 -1.23 0.29 1.42 1.49
p-value (0.064] [0.072] | [0.215] [0.013] | [0.220] [0.775] | [0.155] [0.137]
t (AroE) -1.78 -3.90 0.25 -2.34 -1.78 -0.14 1.23 0.44
p-value (0.075] [0.000] | [0.801] [0.019] | [0.076] [0.886] | [0.218]  [0.660]
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Table A1l: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of A =
[Mo e dsz Ame Aaw Ao ]/ and the various statistics along with the corresponding p-values for testing the
implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the FF5 model is A\g = 0, Mgz = fugr> Asp = Fomp> N = s /\mw = fam> a0d Ao = fo-
We report the J(A) and Jg(X) joint test statistics given by (49) and (52), respectively, as well as the t(\g)
test statistics given by (50) and t(Axr), t(Asus)s t(Ame), t(Amw), and t(Aqn) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 842 1165 1245 1321 1208 1396 1204 1336

Average Factor Realizations

Frucr 1118 4.53 | 1249 483 | 2060 -3.10 | -043  15.52
Fas 1733 414 | -482 157 | -530 1278 | 163  1.54
T 653 935 | 257 270 | -551 1500 | 208  -0.93
T 010 404 | 551 470 | 094 1023 | 473 071
Fom 172 624 | 522 L74| -1.60 1393 | -028  2.90
Estimates of A: XIS
Ao -0.42 11.40 7.35 0.49 5.65 7.32 -5.55 7.45
AMKT 11.87 -5.53 6.31 4.97 13.86 -3.11 10.43 9.13
AsyMB 20.83 4.56 -1.95 6.82 -1.10 20.85 3.20 4.49
AHML 2.77 3.88 0.20 -1.96 -6.92 8.73 7.23 -3.46
ARmw -3.99 -2.00 2.76 -3.53 -2.38 0.18 -6.05 -4.51
Acha 2.92 6.07 0.55 -5.22 -13.01 11.85 -4.61 6.35
Estimates of A: AIT
Ao 1.04 0.70 7.68 3.32 7.47 6.89 -3.29 7.55
AMKT 11.06 2.70 6.25 2.17 11.59 -3.76 7.32 8.83
sy 19.68 8.15 -2.54 6.07 -2.73 23.68 4.53 4.99
\HML 2.11 2.95 0.44 -1.98 -5.34 7.41 4.44 -3.36
ARMw -2.34 1.23 3.33 -1.35 -2.26 -1.44 -4.14 -4.59
Acma 3.00 11.94 -0.77 -4.91 -12.57 15.27 -5.71 6.42

Continued on next page
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Table A1l — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(A) 38.14 58.90 63.24 96.01 39.03 134.49 | 223.33 19545
p-value (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 10.16 16.00 26.83 58.31 21.68 30.93 13.66 40.83
pvalue (0.162] [0.069] | [0.002] [0.000] | [0.013] [0.005] | [0.090] [0.001]
t(Xo) -0.10 2.48 1.98 0.21 1.30 2.67 -1.39 4.12
p-value (0.923] [0.013] | [0.048] [0.831] | [0.195] [0.008] | [0.166] [0.000]
t (Aukr) 0.17 -2.31 -1.75 0.05 -2.27 0.00 2.32 -3.21
pvalue (0.868] [0.021] | [0.080] [0.961] | [0.023] [0.997] | [0.020] [0.001]
t (Asup) 2.39 0.21 3.23 4.10 1.84 2.80 0.81 2.26
p-value (0.017] [0.836] | [0.001] [0.000] | [0.065] [0.005] | [0.418] [0.024]
t (Am) -1.63 -1.41 -1.24 -2.32 -0.45 -1.68 0.69 -1.16
p-value (0.103] [0.159] | [0.214] [0.020] | [0.656] [0.094] | [0.493] [0.244]
t (Armw) -1.28 -1.58 -1.87 -3.39 -0.91 -3.62 -1.72 -1.76
p-value (0.200] [0.113] | [0.061] [0.001] | [0.362] [0.000] | [0.085] [0.078]
t (Acma) 0.33 -0.04 -2.10 -4.96 -3.23 -0.21 -1.50 1.99
p-value (0.745] [0.967] | [0.036] [0.000] | [0.001] [0.834] | [0.133] [0.047]
Test Statistics: ALT

J(A) 39.16 32.33 | 108.84 84.01 61.21 179.70 | 219.70  210.56
pvalue (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 7.42 11.93 22.88 65.76 24.89 45.45 13.71 45.01
p-value [0.270] [0.108] | [0.009] [0.000] | [0.008] [0.000] | [0.084] [0.000]
t(Xo) 0.26 0.14 2.14 2.16 1.68 2.70 -0.90 4.20
p-value (0.796] [0.891] | [0.033] [0.031] | [0.094] [0.007] | [0.369] [0.000]
t (Aukr) -0.03 -0.37 -1.83 -1.31 -3.24 -0.42 1.86 -3.40
p-value (0.975] [0.709] | [0.067] [0.190] | [0.001] [0.674] | [0.063] [0.001]
t (Asup) 1.92 1.96 2.24 4.24 1.24 4.03 1.48 2.69
p-value (0.055] [0.050] | [0.025] [0.000] | [0.213] [0.000] | [0.140]  [0.007]
t (Am) -1.72 -1.94 -1.03 -2.59 0.05 -2.07 0.36 -1.13
p-value (0.085] [0.052] | [0.304] [0.010] | [0.959] [0.039] | [0.722] [0.258]
t (Armw) -0.77 -0.83 -1.56 -2.65 -1.00 -4.17 -1.64 -1.80
p-value (0.438]  [0.408] | [0.118] [0.008] | [0.315] [0.000] | [0.100] [0.072]
t (Acma) 0.35 1.86 -2.54 -5.25 -3.01 0.14 -2.11 2.01
p-value (0.724] [0.063] | [0.011] [0.000] | [0.003] [0.888] | [0.035] [0.045]
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Empirical evidence using 30 industry clusters and $1 price filter

Table A12: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 30 industry clusters and $1 price filter. This table presents the point estimates of A = [ Ay Ar ]/
and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator Ary. The null hypothesis implied by the CAPM is A\g = 0 and Aygy = fyq- We report the J(A)
and Jg(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) and t(Agr) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets

N | 1223 1ssa | 1762 1980 | 1954 2081 | 1983 1907

Average Factor Realizations

For 11.18 453 | 12.49 4.83 ‘ 2069  -3.10 | -0.43  15.52
Estimates of A: XIV
Ao -3.51 5.83 23.91 1.40 4.12 18.67 -8.69 13.47
AMKT 20.48 3.74 | -13.74 8.07 12.11 0.07 11.25 4.04
Test Statistics

J(X) 109.16 17.09 23.60 27.56 17.16  507.80 51.10 86.85
p-value [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(X) 23.92 8.37 44.84 2.29 16.77  105.67 4.04 147.63
p-value [0.001] [0.033] | [0.000] [0.282] | [0.003] [0.000] | [0.154] [0.000]
t(Xo) -1.49 2.86 4.63 0.64 1.91 10.16 -0.93 9.19
p-value [0.136] [0.004] | [0.000] [0.523] | [0.057] [0.000] | [0.350] [0.000]
t (Aukr) 4.66 -0.42 -4.83 1.37 -3.62 1.55 1.78 -7.95
p-value [0.000] [0.672] | [0.000] [0.170] | [0.000] [0.121] | [0.075] [0.000]
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Table A13: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of A =
[ Ao Amr sz Ame ]/ and the various statistics along with the corresponding p-values for testing the implications
of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., ATy and AL. The null hypothesis
implied by the FF3 model is A\g = 0, Az = fugr, A = foup a0d A = fra. We report the J(A) and Jg() joint
test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics given by (50) and t(Awr),
t(Asws), and t(Agy) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1194 1716 1683 1912 1940 2072 1977 1900
Average Factor Realizations

Fugr 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fons 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

Fa 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88
Estimates of A: XIS

Ao 6.90 -1.17 15.17 1.86 6.14 14.65 -9.41 10.90

AMKT 5.52 5.93 -5.06 3.55 9.25  -10.07 5.58 3.48

AsuB 15.59 6.36 -0.14 5.02 4.41 22.28 10.69 5.25

AmiL 1.77 11.79 5.25 -2.16 -6.52 9.71 7.34 2.23
Estimates of A: XE

Ao 6.42 4.40 19.70 2.07 6.25 19.63 -7.25 11.51

AMKT 5.98 0.41 -1.92 2.06 9.15  -15.08 3.47 2.81

AsuB 15.52 6.60 -4.06 5.44 4.41 24.24 11.35 5.39

AHML 1.79 6.31 -12.24 -1.10 -6.55 8.69 8.33 2.28
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Table A13 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS

J(X) 10.76 4.69 52.11 29.88 58.27  160.65 33.82  101.23
p-value (0.020] [0.320] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 11.58 3.30 30.66 24.03 58.52 49.89 7.81  117.79
p-value (0.058] [0.422] | [0.001] [0.001] | [0.000] [0.000] | [0.135] [0.000]
t(Xo) 2.13 -0.26 2.66 1.46 1.36 3.98 -1.45 8.35
p-value (0.033] [0.798] | [0.008] [0.145] | [0.174] [0.000] | [0.146] [0.000]
t (Aukr) -1.82 0.35 -3.59 -1.00 -3.04 -2.21 0.84 -6.56
p-value (0.069] [0.723] | [0.000] [0.318] | [0.002] [0.027] | [0.403] [0.000]
t (Asm) -0.15 1.69 3.23 4.15 6.87 4.89 1.96 1.94
p-value (0.877]  [0.091] | [0.001] [0.000] | [0.000] [0.000] | [0.050] [0.053]
t (Amme) -1.93 0.49 0.49 -1.93 -0.47 -2.30 1.08 1.12
p-value (0.054] [0.621] | [0.624] [0.054] | [0.639] [0.021] | [0.282] [0.261]

Test Statistics: AL}

J(A) 11.20 6.77 | 6151  47.48 | 5876 111.08 | 31.00 196.83
p-value [0.024] [0.149] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]

Ja(\) 10.64 748 | 5353  35.83 | 59.05  63.98 6.87 207.34
p-value [0.071]  [0.143] | [0.000] [0.000] | [0.000] [0.000] | [0.171]  [0.000]

t(Ao) 2.00 1.08 5.07 1.46 1.38 484 | -1.07  11.56
p-value [0.045] [0.278] | [0.000] [0.146] | [0.166] [0.000] | [0.283]  [0.000]
t (Awgr) 2170 -1.23 | -4.38 217 | -3.07  -3.32 051  -8.25
p-value [0.090] [0.219] | [0.000] [0.030] | [0.002] [0.001] | [0.608] [0.000]
t (Asup) -0.22 2.08 0.52 5.07 6.89 4.87 2.00 2.05
p-value [0.828]  [0.038] | [0.602] [0.000] | [0.000] [0.000] | [0.045] [0.041]
t (M) -1.93 069 | -2.90  -1.81 | -048  -2.40 1.20 1.15
p-value [0.054] [0.487] | [0.004] [0.070] | [0.628] [0.016] | [0.230] [0.249)]
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Table Al4: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of
A=[X0 Axr Me Ara Anoe ]/ and the various statistics along with the corresponding p-values for testing the
implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the HXZ4 model is A\g = 0, Mz = Fuxrs Mg = Sogs Aiza = fI/A7 and Anoe = fros: We report
the J(X) and J4(A) joint test statistics given by (49) and (52), respectively, as well as the t(Ag) test statistics
given by (50) and t(Ar), t(Me), t(A1/n), and (Agee) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets
N 1049 1580 1506 1679 1607 1722 1593 1540
Average Factor Realizations
T 1115 405 | 1213 455 | 20.14  -2.45 038  14.20
e 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88
Fin 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63
?RUE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86
Estimates of A: X%S,
Ao 3.79 -3.99 21.37 5.88 9.17 16.74 -4.49 12.92
AMKT 9.41 10.33 -8.36 -2.96 5.80 -4.93 8.61 2.63
AuE 16.28 5.03 -1.51 4.21 3.50 28.11 10.02 1.84
A1/ -1.05 18.86 -0.85 -6.61 -5.89 1.38 6.76 14.51
AROE -2.10 -0.13 4.28 -10.16 -3.38 11.72 7.71 2.17
Estimates of A: AIT

Ao 5.82 -6.63 15.93 11.77 2.63 14.31 -9.69 13.26
AMKT 6.99 11.99 -1.41 -8.55 9.14 -3.43 12.36 2.38
AME 17.23 5.24 -3.91 -1.62 0.24 38.43 14.58 1.79
A1/ -0.96 29.28 -2.89 -10.46 -0.87 1.23 8.53 14.41
ARGE 1.22 3.95 0.89 -18.72 -3.53 15.30 11.00 1.88

Continued on next page
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Table A14 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(X) 9.90 36.51 72.96 87.38 | 115.44  384.20 73.53 88.00
pvalue (0.078]  [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 2.64 1.32 7.21 4.03 27.61 15.12 10.08 90.60
p-value (0.562] [0.705] | [0.219] [0.373] | [0.008] [0.046] | [0.124]  [0.000]
t(Xo) 0.87 -0.32 1.32 0.64 0.93 2.79 -0.64 6.67
p-value (0.382] [0.746] | [0.187] [0.523] | [0.353] [0.005] | [0.524] [0.000]
t (Aukr) -0.39 0.41 -1.32 -0.81 -1.81 -0.55 1.05 -6.21
p-value (0.696] [0.679] | [0.185] [0.416] | [0.070] [0.580] | [0.295]  [0.000]
t (Ae) -0.51 0.25 0.69 0.18 2.90 1.63 1.71 -0.02
p-value (0.610] [0.804] | [0.492] [0.855] | [0.004] [0.103] | [0.087] [0.984]
t (A1/a) -1.06 0.65 -1.61 -1.35 -1.67 -1.79 2.24 2.74
p-value (0.201] [0.514] | [0.108] [0.177] | [0.096] [0.073] | [0.025] [0.006]
t (AroE) -0.59 -0.74 -0.82 -1.05 -3.51 1.09 0.79 0.09
p-value (0.556] [0.457] | [0.415] [0.294] | [0.000] [0.277] | [0.428]  [0.929)]
Test Statistics: ALT

J(A) 8.68 42.10 72.94 85.29 | 100.88  356.72 65.18 88.43
p-value (0.123]  [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 4.47 1.52 9.16 8.00 21.69 15.12 16.70 98.82
p-value (0.371] [0.636] | [0.166] [0.202] | [0.019] [0.045] | [0.037] [0.000]
t(Xo) 1.42 -0.44 1.15 1.24 0.29 2.13 -1.22 7.05
p-value (0.157) [0.661] | [0.249] [0.215] | [0.776] [0.033] | [0.223]  [0.000]
t (Aukr) -0.99 0.40 -0.99 -1.32 -1.66 -0.21 1.36 -6.46
p-value (0.321] [0.686] | [0.320] [0.186] | [0.098] [0.837] | [0.175]  [0.000]
t (Mug) 0.02 022 | 000 -036| 154 224 | 253  -0.05
p-value (0.981] [0.825] | [1.000] [0.717] | [0.123] [0.025] | [0.011] [0.961]
t (A1/a) -1.18 1.01 -1.98 -1.68 -0.38 -1.46 2.38 2.72
p-value (0.230] [0.313] | [0.047] [0.093] | [0.703] [0.143] | [0.017] [0.007]
t (AroE) -0.30 -0.32 -1.70 -1.33 -4.04 1.84 1.15 0.00
p-value (0.763] [0.746] | [0.088] [0.184] | [0.000] [0.066] | [0.251] [0.997]
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Table A15: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of A =
[Mo e dsz Ame Aaw Ao ]/ and the various statistics along with the corresponding p-values for testing the
implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., )@3 and )\E The null
hypothesis implied by the FF5 model is A\g = 0, Mgz = fugr> Asp = Fomp> N = s /\mw = fam> a0d Ao = fo-
We report the J(A) and Jg(X) joint test statistics given by (49) and (52), respectively, as well as the t(\g)
test statistics given by (50) and t(Axr), t(Asus)s t(Ame), t(Amw), and t(Aqn) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Number of Test Assets

N 1183 1702 1671 1852 1792 2031 1939 1865

Average Factor Realizations

Frucr 1118 4.53 | 1249 483 | 2060 -3.10 | -043  15.52
Fas 1733 414 | -482 157 | -530 1278 | 163  1.54
T 653 935 | 257 270 | -551 1500 | 208  -0.93
T 010 404 | 551 470 | 094 1023 | 473 071
Fom 172 624 | 522 L74| -1.60 1393 | -028  2.90
Estimates of A: XIS
Ao 2.83 8.85 18.81 2.81 2.25 13.09 -8.99 7.93
AMKT 8.04 -5.64 -4.55 1.12 13.22 -7.49 13.50 6.97
AsyMB 18.73 5.11 -4.85 7.23 3.16 22.68 -1.63 6.42
AHML 1.56 1.37 2.11 -0.82 -6.88 3.59 7.56 -0.39
ARMW -1.17 -0.96 -3.21 -6.50 -2.46 3.02 -7.22 -5.17
Acha -4.38 5.76 -3.20 -5.34 -2.93 -3.27 -4.92 6.69
Estimates of A: AIT
Ao 6.30 0.27 8.54 3.83 2.36 15.79 -6.88 8.27
Aukt 5.40 1.39 6.20 -0.46 13.28 -9.34 10.86 6.74
sy 16.59 8.47 -3.58 6.85 3.52 18.97 0.46 8.82
\HML 0.44 -2.79 -2.67 0.77 -7.38 5.13 16.63 -3.38
ARmw -0.47 3.91 0.98 -5.57 -2.24 1.44 -9.76 -8.47
Acma -2.46 8.14 -6.40 -4.60 -2.50 -4.17 -3.00 4.27

Continued on next page
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Table A15 — continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Test Statistics: AIS
J(A) 42.28 6.74 42.79  117.65 56.44  206.89 | 237.89 294.69
p-value (0.000] [0.345] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 8.60 11.84 19.70 69.99 51.90 45.81 34.98 86.24
pvalue (0.217] [0.108] | [0.029] [0.000] | [0.000] [0.000] | [0.003] [0.000]
t(Xo) 0.55 1.81 2.14 1.34 0.49 3.49 -2.89 6.65
p-value (0.579]  [0.070] | [0.032] [0.180] | [0.626] [0.000] | [0.004] [0.000]
t (Aukr) -0.69 -1.88 -2.15 -1.65 -1.99 -2.24 4.00 -4.80
pvalue (0.493] [0.060] | [0.032] [0.100] | [0.047] [0.025] | [0.000] [0.000]
t (AswB) 1.01 0.69 -0.01 3.77 6.75 1.38 -0.95 2.51
p-value (0.313] [0.491] | [0.992] [0.000] | [0.000] [0.168] | [0.343] [0.012]
t (Am) -2.00 -1.89 -0.09 -1.29 -0.55 -3.80 1.04 0.37
p-value (0.046] [0.059] | [0.932] [0.197] | [0.582] [0.000] | [0.298] [0.711]
t (Armw) -0.36 -0.97 -2.51 -5.90 -1.32 -3.17 -2.59 -2.95
p-value [0.721] [0.330] | [0.012] [0.000] | [0.187] [0.002] | [0.010] [0.003]
t (Acwa) -1.64 -0.17 -2.05 -3.85 -0.39 -1.48 -1.41 1.98
p-value (0.101] [0.868] | [0.041] [0.000] | [0.695] [0.138] | [0.157]  [0.048]
Test Statistics: ALT

J(A) 82.34 37.81 43.34 123.15 60.41 195.93 | 153.67  393.09
pvalue (0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000] | [0.000] [0.000]
Ja(N) 20.44 23.07 14.73 76.85 59.87 70.46 27.60 130.56
p-value (0.047] [0.012] | [0.061] [0.000] | [0.000] [0.000] | [0.009] [0.000]
t(Xo) 1.45 0.05 1.19 2.14 0.57 4.29 -1.66 7.84
p-value (0.146] [0.959] | [0.234] [0.033] | [0.571] [0.000] | [0.098] [0.000]
t (Aukr) -1.45 -0.60 -0.92 -2.71 -2.11 -4.05 2.90 -5.93
p-value (0.147]  [0.550] | [0.360] [0.007] | [0.035] [0.000] | [0.004] [0.000]
t (AswB) -0.72 3.34 0.61 3.62 7.26 0.79 -0.30 3.68
p-value (0.471] [0.001] | [0.542] [0.000] | [0.000] [0.430] | [0.768]  [0.000]
t (Am) -3.70 -3.31 -1.06 -0.80 -0.81 -3.82 2.77 -1.53
p-value (0.000] [0.001] | [0.287] [0.421] | [0.416] [0.000] | [0.006] [0.126]
t (Armw) -0.21 -0.03 -1.68 -6.03 -1.27 -4.28 -2.88 -4.18
p-value (0.835]  [0.977] | [0.093] [0.000] | [0.204] [0.000] | [0.004] [0.000]
t (Acma) -1.40 0.76 -2.86 -3.85 -0.27 -1.47 -0.60 0.80
p-value (0.162] [0.446] | [0.004] [0.000] | [0.787] [0.140] | [0.550]  [0.425]
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