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Ex-post Risk Premia Tests using Individual Stocks:
The IV-GMM solution to the EIV problem

Abstract

This paper develops an IV-GMM approach that uses past beta estimates and firm character-

istics as instruments for estimating ex-post risk premia while addressing the error-in-variables

problem in the two-pass cross-sectional regression method. The approach is developed in the

context of large cross sections of individual stocks and short time series. We establish the

N -consistency of the IV-GMM ex-post risk premia estimator and obtain its asymptotic distri-

bution along with an estimator of its asymptotic variance-covariance matrix. These results are

then used to develop new tests for asset pricing model implications. Empirically, we examine a

number of popular asset pricing models and find support for the recent q-factor model proposed

by Hou, Xue, and Zhang (2015).

Keywords : Error-in-variables problem, instrumental variables, individual stocks, N -consistent

ex-post risk premia estimator, asset pricing tests.
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1 Introduction

Asset pricing models suggest that an asset’s average return should be related to its exposure

to systematic risk. Models differ in the factors they identify as sources of relevant systematic

risk. A typical model identifies a small number of pervasive risk factors and postulates that

the average return on an asset is a linear function of the factor betas. The quest for the

identification of relevant risk factors at the theoretical level can be traced back to the works

of Sharpe (1964), Lintner (1965) and Mossin (1966) on the CAPM and Ross (1976) on the

APT. On the empirical front, a long line of research on the evaluation of such models has been

developed, starting with Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973).

One important aspect of empirical evaluation of an asset pricing model involves deter-

mining the cross section of test assets. On standard approach in the literature, introduced

by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), is to perform the asset

pricing tests on a small number of portfolios. Indeed, following Fama and French (1992), it

has become standard practice to sort stocks according to some firm characteristic in order to

form sets of portfolios, typically deciles, that are subsequently used as test assets. However,

as Lewellen, Nagel, and Shanken (2010) and Daniel and Titman (2012) demonstrate, inference

regarding the performance of an asset pricing model crucially depends on the choice of test

assets.1 Motivated by this finding, we develop a framework for estimating and evaluating asset

pricing factor models using large cross sections of individual stock return data, as originally

suggested by Litzenberger and Ramaswamy (1979). We only consider short time horizons so

that we can evaluate the implications of asset pricing models locally in time, and, hence, we

restrict ourselves to factors that are traded portfolio returns or spreads focusing on ex-post risk

premia (see Shanken (1992)).

The existing methodological literature on the estimation and evaluation of asset pricing

models mainly focuses the case in which the time-series sample size, T , is large while the size

of the cross section of test assets, N , is small. This scenario is suitable when portfolios, as

opposed to individual stocks, are used as test assets.2 The analysis of linear asset pricing factor

1The method used to form the test portfolios could affect the inference results in undesirable ways. As Roll
(1977) points out, in the process of forming portfolios, important mispricing in individual stocks can be averaged
out within portfolios, making it harder to reject the wrong model. Lo and MacKinlay (1990) are concerned about
the exact opposite error: if stocks are grouped into portfolios with respect to attributes already observed to be
related to average returns, the correct model may be rejected too often.

2The long list of related papers includes, among others, Gibbons (1982), Shanken (1985),
Connor and Korajczyk (1988), Lehmann and Modest (1988), Gibbons, Ross, and Shanken (1989), Harvey
(1989), Lo and MacKinlay (1990), Zhou (1991), Shanken (1992), Connor and Korajczyk (1993), Zhou (1993),
Zhou (1994), Berk (1995), Hansen and Jagannathan (1997), Ghysels (1998), Jagannathan and Wang (1998),
Kan and Zhou (1999), Jagannathan and Wang (2002), Chen and Kan (2004), Lewellen and Nagel (2006),
Shanken and Zhou (2007), Kan and Robotti (2009), Hou and Kimmel (2010), Lewellen, Nagel, and Shanken
(2010), Nagel and Singleton (2011), Ang and Kristensen (2012), Kan, Gospodinov, and Robotti (2013) and
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models when the number of test assets N is large has been the subject of a few recent pa-

pers. Gagliardini, Ossola, and Scaillet (2012) extend the two-pass cross-sectional methodology

to the case of a conditional factor model incorporating firm characteristics. Their asymptotic

theory, based on N and T jointly increasing to infinity at suitable rates, facilitates studying

time varying risk premia. Chordia, Goyal, and Shanken (2015), building on Shanken (1992),

use bias-corrected risk premia estimates in a context with individual stocks and time varia-

tion in the betas through macroeconomic variables and firm characteristics. Their focus is

the relative contribution of betas and characteristics in explaining cross-sectional differences

in conditional expected returns. More closely related to our paper is the recent paper by

Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015) which employs an instrumental vari-

able approach to deal with the EIV problem in the risk premia estimation using individual

stocks, where the instruments are betas estimated over separate time periods. However, they do

not offer an estimator of the variance-covariance matrix of the risk premia estimator. Instead,

they resort to the original Fama-MacBeth approach for computing standard errors and test

statistics, as used in the large T case, and, hence, ignore the error-in-variables (EIV) problem in

the estimation of the variance-covariance matrix (Shanken (1992) and Jagannathan and Wang

(1998)).

We contribute to the extant literature by developing an instrumental variable-generalized

method of moments (IV-GMM) approach for estimating ex-post risk premia when the number

of assets, N , tends to infinity while the time-series length T is fixed. In the standard two-pass

procedure used for estimating risk premia, the second step is a regression of average returns on

estimated betas. As explained in Section 6 in Shanken (1992), when T is fixed and N tends to

infinity, the orthogonality condition required for consistency in the second pass is not satisfied

rendering the two-pass CSR estimator inconsistent. This is a manifestation of the well-known

EIV problem which emerges from using beta estimates instead of the true betas. Our approach

uses past beta estimates and firm characteristics as instrumental variables in order to deal with

the EIV problem. We establish that the overidentified IV-GMM ex-post risk estimator is N -

consistent and show that it asymptotically follows a normal distribution. Finally, incorporating

a cluster structure for idiosyncratic shock correlations, we obtain an N -consistent estimator

of the asymptotic variance-covariance matrix which we use to develop statistics for testing

asset pricing model implications. There are significant differences between our paper and the

aforementioned paper by Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015), on which

we elaborate in Section 2. Importantly, in addition to beta estimates from past periods, we

use firm characteristics as additional instruments. Furthermore, we provide a fully operational

asymptotic theory for the IV-GMM estimator that we use to build asset pricing tests.

Kan, Robotti, and Shanken (2013).

2



Litzenberger and Ramaswamy (1979) initiated the line of research on N -consistent risk pre-

mia estimators which was continued by Shanken (1992) and Jagannathan, Skoulakis, and Wang

(2010). However, these papers do not provide inference tools as they do not address the issue

of the sampling distribution of risk premia estimators. The recent paper by Kim and Skoulakis

(2015), using the regression-calibration approach, obtain the asymptotic distribution of the ex-

post risk premia estimator along with an estimator of its variance-covariance matrix based on

which they construct asset pricing tests. In this paper, we offer an alternative approach based

on the use of instrumental variables for addressing the error-in-variables problem.

We examine the performance of the IV-GMM ex-post risk premia estimator in a num-

ber of Monte Carlo simulation experiments. In our empirical investigation, we use the IV-

GMM estimator to test the implications of four popular asset pricing model: the CAPM, the

Fama and French (1993) three-factor model (FF3), the Hou, Xue, and Zhang (2015) four-factor

model (HZX4) and the Fama and French (2015) five-factor model (FF5). To make them rel-

evant for our empirical exercise, we calibrate our simulations to the CAPM, the FF3 model

and the HXZ4 model. The simulation results clearly show the significant bias reduction in

the cross-sectional regression intercept and ex-post risk premia estimates achieved by the IV-

GMM approach and the good performance of our asset pricing tests for relevant sample sizes.

Empirically, we find that the CAPM, the FF3 model and the FF5 model are mostly rejected

by the IV-GMM test statistics in our sample. In contrast, we find evidence in favor of the

HXZ4 model, for which we find strong support in five out of eight periods under all alternative

clustering schemes.

The rest of the paper is organized as follows. In Section 2, we describe the general econo-

metric framework and develop the IV-GMM ex-post risk premia estimator using past beta

estimates and firm characteristics as instruments. We further establish the N -consistency of

the IV-GMM estimator, obtain its asymptotic distribution, provide an estimator of its asymp-

totic variance-covariance matrix and develop novel asset pricing tests. In Section 3, we provide

Monte Carlo evidence on the finite sample behavior of the IV-GMM estimator and the associ-

ated tests. Section 4 presents empirical evidence on four popular asset pricing models. Finally,

Section 5 concludes. Proofs are collected in the Appendix and additional results are delegated

to the Online Appendix.
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2 Econometric Framework

2.1 Model specification

Consider an economy with N traded assets and K factors. Each factor is assumed to be a port-

folio return spread. Let rt = [ r1,t · · · rN,t ]′ be the vector of returns of the N traded assets

in excess of the risk-free return and ft = [ f1,t · · · fK,t ]′ be the vector of factor realizations

at time t. We assume that data are available over times 1 through T , where T is finite and

fixed, and formally consider the case in which the number of assets, N , tends to infinity. Given

that the time-series sample size is fixed, the uncertainty about the factors cannot be resolved.

Hence, our analysis is conducted conditionally on the factor realizations.

We refer to the periods covering times 1 through τ1 and τ1 + 1 through T = τ1 + τ2 as the

pretesting and testing periods, respectively. That is, τ1 and τ2, that are fixed throughout our

analysis, are the pretesting and testing time-series sample sizes. We are interested in testing

the implications of an asset pricing model over the period from time τ1+1 through T = τ1+ τ2.

The expectations of the excess return rt and the factor ft are denoted by µr = E[rt] and

µf = E[ft], respectively. Furthermore, the K ×K factor variance-covariance matrix is denoted

by Σf = E[(ft − µf ) (ft − µf )
′], while the N × K excess return-factor covariance matrix is

denoted by Σrf = E[(rt − µr)(ft − µf )
′]. The N ×K beta matrix is then defined by

B ≡ [ β1 · · · βN ]′ = ΣrfΣ
−1
f , (1)

where βi denotes the beta vector for the i-th asset, i = 1, . . . , N . Given that the factors

comprising ft belong to the return space, the risk premia vector equals the vector of factor

expectations µf , and, hence, the corresponding linear beta pricing model implies that µr =

Bµf .

Defining the residual ut = rt −Bf t, we can then write ut = (rt − µr)−B (ft − µf ), which

implies E[ut] = 0N and E [utf
′
t] = E [(rt − µr) f

′
t −B (ft − µf ) f

′
t] = Σrf −BΣf = 0N×K , where

0N and 0N×K denote the N × 1 vector and N × K matrix of zeros, respectively. Hence, we

obtain the following time-series regression representation:

rt = Bft + ut, with E[ut] = 0N , E[utf
′
t] = 0N×K . (2)

Over the testing period, covering times t = τ1 + 1, . . . , τ1 + τ2, the data generating process
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in (2) implies that

r2 = 1Nλ0 +Bλf + u2 (3)

with

λ0 = 0, λf = f2 =
1

τ2

∑τ1+τ2

t=τ1+1
ft,

where

r2 =
1

τ2

∑τ1+τ2

t=τ1+1
rt, u2 =

1

τ2

∑τ1+τ2

t=τ1+1
ut. (4)

Recall that, since T is finite and fixed, our analysis is conducted conditionally on the factor

realizations. Hence, following Shanken (1992), among others, we refer to λf as the ex-post risk

premia. When the linear factor model holds, the vector of ex-post risk premia λf equals the

average factor realization over the testing period, namely f2, given that the factors belong to

the return space. The object of our inference is the (K + 1)× 1 vector

λ = [ λ0 λ′
f ]′. (5)

Defining the N × (K + 1) matrix X by

X = [ 1N B ], (6)

we can rewrite equation (3) as

r2 = 1Nλ0 +Bλf + u2 = Xλ+ u2. (7)

If the true beta matrix B were known, an N -consistent estimator of λ could be obtained

by regressing the average excess return vector r2 on a vector of ones and the beta matrix B,

under the reasonable assumption of zero limiting cross-sectional correlation between the betas

and the shocks. However, the beta matrix B is not known and has to be estimated using

the available data. Natural proxies for B are the time-series OLS estimators of B obtained

using data from the pretesting period or the testing period. When τ1 and τ2 are fixed, as in

our framework, the two-pass CSR approach with either proxy yields an inconsistent estimator.

This is a manifestation of the well-known EIV problem as pointed out in Shanken (1992),
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Jagannathan, Skoulakis, and Wang (2010), and Kim and Skoulakis (2015).

Various approaches have been advanced in the statistics and econometrics literature for deal-

ing with the EIV problem. One such approach, particularly suitable for the case in which mul-

tiple proxies of unobserved quantities are available, is the instrumental variable (IV) approach.

Starting with the early works of Wald (1940), Reiersøl (1941), and Geary (1943), a long related

literature was subsequently developed.3 Chapter 6 of Carroll, Ruppert, Stefanski, and Crainiceanu

(2006) offers a comprehensive account of the IV method, where they state that “One possi-

ble source of an instrumental variable is a second, possibly biased, measurement of the (true

unobserved) regressor obtained by an independent measuring method.”4 The recent paper by

Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015) also uses an IV approach in the con-

text of asset pricing tests. Our paper differ from the aforementioned paper in a number of

important aspects. First, we use beta estimates obtained in the pretesting period and there-

fore, given that our pretesting and testing periods are non-overlapping and consecutive, our

approach is less prone to potential serial correlations in the real data. Second, in addition to

past beta estimates, we also use firm characteristics as instruments. As a result, our estimator

is an overidentified IV-GMM estimator and not a standard two-stage IV estimator. Third, since

we aim to develop asset pricing tests using individual stocks with a focus placed on ex-post risk

premia, we exclusively focus on the case of fixed T and large N . Finally, we develop a fully

operational asymptotic theory of the IV risk premia estimator. That is, we show its consistency

and asymptotic normality as N tends to infinity and, furthermore, construct an estimator of its

asymptotic variance-covariance matrix that we finally use to develop novel asset pricing tests.

To develop the IV risk premia estimator, we need to introduce some notation. Define the

N × τ1 excess return matrix R1 and the K× τ1 factor realization matrix F1, over the pretesting

period, the N × τ2 excess return matrix R2 and the K × τ2 factor realization matrix F2, over

the testing period, by

R1 = [ r1 · · · rτ1 ], F1 = [ f1 · · · fτ1 ] (8)

and

R2 = [ rτ1+1 · · · rτ1+τ2 ], F2 = [ fτ1+1 · · · fτ1+τ2 ]. (9)

Then, using the quantities defined in (8) and (9), we express the time-series OLS estimators

3Durbin (1954) provides a review of the early EIV literature. Aldrich (1993) offers a historical account of
the development of the IV approach to the EIV problem in the 1940s.

4In the Online Appendix, we illustrate how the IV method can be used in the context of a linear regression
model with regressors subject to the EIV problem.
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of the beta matrixB over the pretesting and testing periods, denoted by B̂1 and B̂2, respectively,

as follows:

B̂1 = (R1Jτ1F
′
1) (F

′
1Jτ1F1)

−1
, (10)

B̂2 = (R2Jτ2F
′
2) (F

′
2Jτ2F2)

−1
, (11)

where Jm = Im − 1
m
1m1

′
m, with Im and 1m denoting the m×m identity matrix and the m× 1

vector of ones, respectively, for any positive integer m.5

We introduce the N × τ1 idiosyncratic shock matrix U1, over the pretesting period, and the

N × τ2 idiosyncratic shock matrix U2, over the testing period, defined by

U1 = [ u1 · · · uτ1 ], (12)

U2 = [ uτ1+1 · · · uτ1+τ2 ]. (13)

Alternatively, letting u′
1,[i] and u′

2,[i] denote the i-th row of U1 and U2, respectively, for i =

1, . . . , N , we can write

U1 = [ u1,[1] · · · u1,[N ] ]
′, (14)

U2 = [ u2,[1] · · · u2,[N ] ]
′. (15)

Observe that u2, the disturbance term of the equation in (7), and U2 satisfy the following

relationship:

u2 =
1

τ2
U21τ2 . (16)

Noting that R1 = BF1+U1 and R2 = BF2+U2, we can decompose the beta estimators B̂1

and B̂2, defined in (10) and (11), respectively, into the true beta matrixB and the corresponding

estimation error terms as follows:

B̂1 = ((BF1 +U1)Jτ1F
′
1) (F

′
1Jτ1F1)

−1
= B+U1G1, (17)

B̂2 = ((BF2 +U2)Jτ2F
′
2) (F

′
2Jτ2F2)

−1
= B+U2G2, (18)

5Standard matrix algebra shows that Jm is a symmetric and idempotent matrix, and that tr (Jm) = m− 1.
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where the τ1 ×K matrix G1 and the τ2 ×K matrix G2 are defined by

G1 = Jτ1F
′
1 (F1Jτ1F

′
1)

−1
, (19)

G2 = Jτ2F
′
2 (F2Jτ2F

′
2)

−1
. (20)

To illustrate the effect of the beta estimation error in the case that we use B̂2 as a beta

matrix proxy in the second-pass CSR, we observe that equation (7) is reexpressed as r2 =

X̂2λ+ (X− X̂2)λ+ u2 or

r2 = X̂2λ+ ω, (21)

where

X̂2 = [ 1N B̂2 ], (22)

ω = (X− X̂2)λ+ u2. (23)

Using the equations of (18) and (16), the disturbance term ω defined in (23) can be expressed

as

ω = −(U2G2)λf + u2 = U2

(
1

τ2
1τ2 −G2λf

)
= U2g2, (24)

where the τ2 × 1 vector of g2 is given by

g2 =
1

τ2
1τ2 −G2λf =

1

τ2
(Iτ2 − Jτ2F

′
2(F2Jτ2F

′
2)

−1F2)1τ2 . (25)

It follows from the expressions (18) and (24) that the regressor and disturbance terms in

the cross-sectional regression (21) are correlated through the beta estimation error contained in

B̂2. Hence, ignoring the error-in-variables problem, one would obtain an inconsistent ex-post

risk premia estimator. We develop an instrumental variable approach to deal with the error-in-

variables problem using past beta estimates and firm characteristics as instruments. Next, we

explain that, under mild assumptions, B̂1 can serve as an instrumental variable for constructing

an N -consistent estimator of λ using the cross-sectional regression (21).

Assumption 1 (i) As N → ∞, 1
N
U′1N

p−→ 0T and 1
N
U′B

p−→ 0T×K, where U = [ U1 U2 ].

(ii) As N → ∞, 1
N
U′

1U2
p−→ 0τ1×τ2. (iii) As N → ∞, 1

N
B′1N = 1

N

∑N
i=1 βi → µβ. (iv) As

N → ∞, 1
N

∑N
i=1(βi − µβ)(βi − µβ)

′ → Vβ, where Vβ is a symmetric and positive definite
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matrix.

Assumption 1(i) states that, at each time t, the cross-sectional average of the shocks ui,t

converges to zero, and the limiting cross-sectional correlation between the shocks ui,t and the

betas βi is also zero, as the number of assets N tends to ∞. For 1 ≤ t ≤ τ1 and τ1 + 1 ≤ t′ ≤
τ1 + τ2, Assumption 1(ii) states that the limiting cross-sectional correlation between ui,t and

ui,t′ vanishes. That is, the pretesting-period and the testing-period shocks are assumed to be

cross-sectionally uncorrelated in the limit N → ∞.6 Assumption 1(iii) states that the limiting

cross-sectional average of the betas βi exists while Assumption 1(iv) states that the limiting

cross-sectional variance of the betas βi exists and is a symmetric and positive definite matrix.

In light of equations (17) and (18), it follows from Assumption 1 that B̂1 is correlated with

the explanatory variable B̂2 in the cross-sectional regression (21), in the sense that B̂′
1B̂2/N

converges in probability to Mβ = Vβ + µβµ
′
β, which is symmetric and positive definite, and

hence invertible matrix, as N → ∞. Furthermore, based on equations (17) and (24), Assump-

tions 1(i) and 1(ii) imply that the proposed instrumental variable B̂1 is uncorrelated with the

disturbance term ω in the cross-sectional regression (21), in the sense that B̂′
1ω/N

p−→ 0K , as

N → ∞. These properties are formally established in Theorem 1 below, where we establish

the N -consistency of the proposed IV-GMM estimator.

In addition to the beta estimates obtained in the pretesting period, we also employ firm char-

acteristics as instrumental variables. We elaborate on the validity of the chosen characteristics

as instruments on a model by model basis in the empirical application. For the purposes of the

theoretical development, we make the following assumption. Let C1 denote the N × L matrix

of characteristics observed in the pretesting period, and c′1i be the i-th row of C1, i = 1, . . . , N .

Assumption 2 (i) As N → ∞, C′
1U1/N

p−→ Vcu, where Vcu is an L × τ1 matrix. (ii) As

N → ∞, C′
1U2/N

p−→ 0L×τ2. (iii) As N → ∞, C′
11N/N = 1

N

∑N
i=1 c1,i → µc. (iv) As

N → ∞, 1
N

∑N
i=1(c1,i − µc)(c1,i − µc)

′ → Vc, where Vc is a symmetric and positive definite

matrix. (iv) As N → ∞, C′
1B/N

p−→ Mcβ, where Mcβ is an L×K matrix.

Assumptions 2(i) and 2(ii) state that firm characteristics observed in the pretesting period are

potentially correlated with idiosyncratic shocks in the pretesting period but not with those in

the testing period. In light of equation (24), Assumption 2(ii) states that C1 is uncorrelated

with the disturbance term ω. Assumptions 2(iii) and 2(iv) state that the first two cross-sectional

6As long as the pretesting and testing periods do not overlap and the shocks over the two periods are cross-
sectionally uncorrelated when N → ∞, the IV approach would provide valid inference. In our analysis, we
consider the two periods to be consecutive so as to mitigate the effect of potential serial correlation in the real
data.
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moments of the firm characteristics are well defined. Finally, Assumption 2(v) states that the

firm characteristics observed in the pretesting period are correlated with the true betas.

In our empirical applications, the factors are returns on spread portfolios constructed after

sorting stocks with respect to a certain firm characteristic, such as size and book-to-market ratio.

In this context, it is expected that characteristics and betas with respect to the corresponding

spread are highly correlated. We indeed provide evidence that this is the case in Section 4,

where we empirically evaluate a number of popular asset pricing models.

Under the aforementioned assumptions, and in particular Assumptions 1 (ii) and 2 (ii), the

past beta estimates B̂1 and the characteristics C1 can be used as instruments in the estimation

of ex-post risk premia, giving rise to the following overidentified IV-GMM estimator:

λ̂GMM

IV
=
[
(X̂′

2Ẑ1)Ŵ(Ẑ′
1X̂2)

]−1

(X̂′
2Ẑ1)Ŵ(Ẑ′

1r2), (26)

where the N × (1 +K + L) instrument matrix Ẑ1 is defined by

Ẑ1 = [ 1N B̂1 C1 ], (27)

and Ŵ is a (1 + K + L) × (1 + K + L) symmetric weighting matrix of full rank which can

be computed using the available data. The weighting matrix Ŵ is assumed to converge to a

symmetric and positive definite matrix W, as N → ∞. Note that, if we only use the past beta

estimates as instruments, i.e., if Ẑ1 = X̂1 = [ 1N B̂1 ], then the weighting matrix is irrelevant

and the estimator assumes the usual exactly identified IV form: λ̂IV = (X̂′
1X̂2)

−1(X̂′
1r2). We

will establish the N -consistency and asymptotic normality of the estimator λ̂GMM

IV
for a generic

weighting matrix and then show how to obtain the efficient IV-GMM estimator by suitably

selecting W and Ŵ. Note that equation (21) implies

λ̂GMM

IV
= λ+

[(
X̂′

2Ẑ1/N
)
Ŵ
(
Ẑ′

1X̂2/N
)]−1 (

X̂′
2Ẑ1/N

)
Ŵ
(
Ẑ′

1ω/N
)
. (28)

The next theorem shows that, as N → ∞, Ẑ′
1X̂2/N converges to a full-rank (1+K+L)×(1+K)

matrix and that Ẑ′
1ω/N converges to 01+K+L, and hence N -consistency of λ̂GMM

IV
is established.

Theorem 1 Under Assumptions 1 and 2, the IV-GMM ex-post risk premia estimator λ̂GMM

IV
,

defined in (26), is an N-consistent estimator of λ.

Having established the N -consistency of the proposed IV-GMM estimator λ̂GMM

IV
, in the next

two subsections we proceed to (i) determine its asymptotic distribution and (ii) provide an N -

consistent estimator of its asymptotic variance-covariance matrix incorporating idiosyncratic
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shock cross-sectional correlations. Combining these results, we finally develop novel asset pric-

ing tests.

2.2 Asymptotic distribution of the IV ex-post risk premia estimator

Note that equation (28) yields

√
N
(
λ̂GMM

IV
− λ

)
=
[(

X̂′
2Ẑ1/N

)
Ŵ
(
Ẑ′

1X̂2/N
)]−1 (

X̂′
2Ẑ1/N

)
Ŵ
(
Ẑ′

1ω/
√
N
)
. (29)

It is shown in the proof of Theorem 1 that, as N → ∞, Ẑ′
1X̂2/N

p−→ Ω, where Ω is the

full-rank (1 +K + L)× (1 +K) matrix defined by

Ω =

 1 µ′
β

µβ Mβ

µc Mcβ

 , (30)

where Mβ = Vβ + µβµ
′
β. Since Vβ is positive definite it follows from Theorem 7.1 in Schott

(1997) that Ω has full rank equal to 1 +K. To determine the asymptotic distribution of λ̂GMM

IV
,

one needs to determine the asymptotic distribution of Ẑ′
1ω/

√
N . Let ẑ′1,[i] denote the i-th row

of Ẑ1 defined in (27) and ωi denote the i-th element of ω defined in (23) so that

Ẑ1 = [ ẑ1,[1] · · · ẑ1,[N ] ]
′ (31)

and

ω = [ ω1 · · · ωN ]′. (32)

To invoke the central limit theorem, we express Ẑ′
1ω in summation form as

Ẑ′
1ω =

∑N

i=1
ẑ1,[i]ωi. (33)

In the proof of Theorem 2, which we state next, we show that ẑ1,[i]ωi equalsΠei (see equation

(66) in the Appendix), where Π is a suitable matrix (see equation (67) in the Appendix) and

ei is the T -dimensional random vector defined by

ei =
[
u′
2,[i] u′

2,[i] ⊗ u′
1,[i] u′

2,[i] ⊗ β′
i u′

2,[i] ⊗ c′1,i

]′
, (34)
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where T = (1 + τ1 +K +L)τ2. Note that Assumption 1(i), Assumption 1(ii), and Assumption

2(ii) imply that 1
N

∑N
i=1 ei

p−→ 0T , as N → ∞.

In order to obtain the asymptotic distribution of λ̂GMM

IV
, we make the following mild as-

sumption, where
d−→ denotes convergence in distribution, postulating that ei satisfies a cross-

sectional central limit theorem.

Assumption 3 As N → ∞, 1√
N

∑N
i=1 ei

d−→ N(0T ,Ve), where Ve is a symmetric and positive

definite T × T matrix.

The following theorem establishes the asymptotic distribution of the estimator λ̂GMM

IV
.

Theorem 2 Under Assumptions 1, 2 and 3, as N → ∞,
√
N
(
λ̂GMM

IV
− λ

)
d−→ N (0K+1,Vλ),

where

Vλ = (Ω′WΩ)−1Ω′W (ΠVeΠ
′)WΩ(Ω′WΩ)−1, (35)

the matrix Ω defined in (30), the matrix Π is defined by equation (67) in the Appendix, and

the matrix Ve is defined in Assumption 3.

It follows from a standard argument, typically employed in a GMM context, that the optimal

(most efficient) IV-GMM estimator is obtained when the weighting matrix isW∗ = (ΠVeΠ
′)−1,

in which case we obtain Vλ =
(
Ω′ (ΠVeΠ

′)−1 Ω
)−1

.7 In the following subsection, we obtain an

N -consistent estimator of ΠVeΠ
′, based on which an N -consistent estimator of Vλ is readily

constructed using equation (35). As expected, the optimal IV-GMM estimator λ̂GMM

IV
is at least as

efficient as the IV estimator λ̂IV. We formally establish this property in the Online Appendix.

2.3 Estimation of the asymptotic variance-covariance matrix Vλ

According to equation (35), the variance-covariance matrix Vλ involves the matrix Ve which,

according to Assumption 3, is limiting variance-covariance matrix of 1√
N

∑N
i=1 ei. Hence, the

structure of Vλ depends on the structure of Ve which, in turn, depends on potential cross-

sectional correlations of the shocks ei. Note that in the return generating process described

by (2), the disturbance vector ut could potentially exhibit cross-sectional correlation due to

economic links such as industry effects. In that case, the vectors ei would be correlated across

7Note that 1′
τ2g2 = 1 which implies that g2 ̸= 0τ2 . Hence, it follows from equation (67) in the Appendix

that Π has full rank equal to 1+K+L and so ΠVeΠ
′ is invertible, given that Ve is positive definite according

to Assumption 3.
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firms as it follows from definition (34). To incorporate such correlations, we use a clustering

approach that we describe next.8

We assume that there are MN clusters and that the m-th cluster consists of Nm stocks,

for m = 1, . . . ,MN , so that
∑MN

m=1Nm = N . For all N , we assume that the cluster sizes

Nm, m = 1, . . . ,MN are bounded. As N → ∞, the number of clusters, MN , is assumed to

increase so that N
MN

→ G, where G is to be interpreted as the limiting average cluster size. For

m = 1, . . . ,MN , let Im be the set of all indices i for which the i-th stock belongs to the m-th

cluster, and define the aggregate cluster shocks

ηm =
∑

i∈Im
ei. (36)

In the next assumption, we postulate that the central limit theorem applies to the random

sequence ηm, m = 1, 2, . . .

Assumption 4 The aggregate cluster shocks ηm are independent across clusters and, as N →

∞, 1√
MN

∑MN

m=1 ηm
d−→ N (0T ,Vη), where

Vη = p- lim
1

MN

MN∑
m=1

ηmη
′
m. (37)

Utilizing Assumption 4, we obtain

1√
N

N∑
i=1

ei =

√
MN

N

1√
MN

MN∑
m=1

ηm
d−→ N (0T ,Vη/G) ,

and so it follows that Ve =
1
G
Vη. Hence, in light of expression (35), to estimate the asymptotic

variance-covariance matrix Vλ, it suffices to obtain an estimator of the matrix

Θ = ΠVηΠ
′. (38)

To construct an estimator of Θ, we need to introduce some additional notation. Define the

cluster selection MN ×N matrix C with (m, i) element given by

C(m, i) = 1[i∈Im], m = 1, . . . ,MN , i = 1, . . . , N, (39)

8Our empirical applications, following standard economic intuition, we use an industry classification to
determine the clusters. In addition, for robustness purposes, we consider clusters based on firm characteristics
such as size and book-to-market ratio.
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the N × T matrix of E, stacking the firm shocks ei in (34), by

E = [ e1 · · · eN ]′, (40)

and the MN × T matrix of H, stacking the cluster aggregate shocks ηm in (36), by

H = [ η1 · · · ηMN
]′. (41)

It follows from the proof of Theorem 2 that ẑ1,[i]ωi equals Πei (see equation (66)), which

implies that

diag (ω) Ẑ1 = [ ẑ1,[1]ω1 · · · ẑ1,[N ]ωN ]′ = EΠ′, (42)

where diag(ω) denotes the N × N diagonal matrix with (i, i) element equal to ωi, for i =

1, . . . , N . Furthermore, note that H = CE. Hence, if ω were observed, one could consistently

estimate Θ by

Θ̃ =
1

MN

(Ẑ′
1diag(ω)C′Cdiag(ω)Ẑ1). (43)

Indeed, as N → ∞, we have

Θ̃ =
1

MN

(ΠE′C′CEΠ′) = Π

(
1

MN

H′H
)
Π′ = Π

(
1

MN

MN∑
m=1

ηmη
′
m

)
Π′

p−→ ΠVηΠ
′ = Θ,

where, in the last step, we make use of definition (37).

To make the above estimator operational, we need an observable proxy of the disturbance

ω. Proceeding in the traditional fashion, we define the residual vector

ω̂ = r2 − X̂2λ̂
GMM

IV
. (44)

Replacing ω by ω̂ in (43) and incorporating the standard degrees-of-freedom adjustment,9 we

9The degrees-of-freedom adjustment does not affect the asymptotic properties of Θ̂ but, following standard
econometric practice, we use it to improve the finite sample behavior of the estimator.
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propose estimating Θ by

Θ̂ =
1

MN −K − 1
(Ẑ′

1diag (ω̂)C′Cdiag (ω̂) Ẑ1), (45)

and establish that Θ̂ is indeed an N -consistent estimator of Θ.

To this end, for each i = 1, . . . , N , we define the vector di by

di =
[
1 u′

1,[i] u′
2,[i] u′

2,[i] ⊗ u′
1,[i] β′

i c′1,i β′
i ⊗ β′

i β′
i ⊗ c′1,i β′

i ⊗ u′
1,[i] u′

2,[i] ⊗ β′
i u′

2,[i] ⊗ c′1,i

]′
. (46)

Then, for each cluster m = 1, . . . ,MN , we define

δm =
∑

i∈Im
di, (47)

and make the following mild regularity assumption.

Assumption 5 As N → ∞, 1
MN

∑MN

m=1 δmδ
′
m converges in probability to a finite matrix.

It follows from the proof of Theorem 1 (see equation (60)), that

Ω̂ =
1

N
Ẑ′

1X̂2 (48)

is an N -consistent estimator of Ω. The following theorem provides an N -consistent estimator

of the asymptotic variance-covariance matrix Vλ.

Theorem 3 Under Assumptions 1-5, as N → ∞,

V̂λ =
MN

N
(Ω̂′ŴΩ̂)−1Ω̂′ŴΘ̂ŴΩ̂(Ω̂′ŴΩ̂)−1 p−→ Vλ,

where the matrices Θ̂ and Ω̂ are defined in (45) and (48), respectively.

Combining Theorems 2 and 3 we can readily obtain statistics for testing the implications

of the asset pricing model that form our null hypothesis H0 : [ λ0 λ′
f ]′ = [ 0 f

′
2 ]′. The first

statistic is the quadratic form

J(λ) = N
(
λ̂GMM

IV
− λ

)′
V̂−1

λ

(
λ̂GMM

IV
− λ

)
(49)

which, under the null hypothesis, asymptotically follows a χ2 distribution with K + 1 degrees

of freedom. Denoting by λ̂0 the first element of λ̂GMM

IV
and by v̂λ,0 the (1, 1) element of V̂λ, we
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can also use

t(λ0) =
λ̂0√
v̂λ,0/N

, (50)

which, under the null hypothesis, asymptotically follows a standard normal distribution. Simi-

larly, for k = 1, . . . , K, denoting by λ̂k the (k+1)-th element of λ̂GMM

IV
and by v̂λ,k the (k+1, k+1)

element of V̂λ, we can use

t(λk) =
λ̂k − fk,2√
v̂λ,k/N

, (51)

which, under the null hypothesis, also asymptotically follows a standard normal distribution.

According to the simulation evidence presented in the next section, the joint test statistic

J(λ) typically overrejects the null hypothesis of correct model specification exhibiting poor

performance for empirically relevant finite sample sizes. It appears that the reason causing this

behavior is that the variance-covariance matrix estimator V̂λ can be ill-conditioned in small

samples. Motivated by this observation, we propose an additional test based on the following

quadratic form

Jd(λ) = N
(
λ̂GMM

IV
− λ

)′
D̂−1

λ

(
λ̂GMM

IV
− λ

)
, (52)

where D̂λ is the (K + 1) × (K + 1) diagonal matrix with (1, 1) element equal to v̂λ,0 and

(k+1, k+1) element equal to v̂λ,k, k = 1, . . . , K. Note that Jd(λ) = t(λ0)
2+
∑K

k=1 t(λk)
2. While

the test statistic Jd(λ) does not asymptotically follow a standard distribution, such as χ2, under

the null hypothesis, one can easily compute p-values associated with Jd(λ) using simulation.

Let Qλ be the Cholesky factor of the variance-covariance matrix Vλ so that Vλ = QλQ
′
λ.

Then, the asymptotic distribution of Jd(λ) is the same as the distribution of the quadratic

form ζ = ζ ′ [Q′
λD

−1
λ Qλ

]
ζ, where Dλ is the (K + 1) × (K + 1) diagonal matrix with (j, j)

element equal to the (j, j) element of Vλ, for j = 1, . . . , K + 1, and ζ follows a (K + 1)-

dimensional standard normal distribution. The matrix Pλ = Q′
λD

−1
λ Qλ can be N -consistently

estimated by P̂λ = Q̂′
λD̂

−1
λ Q̂λ, where Q̂λ is the Cholesky factor of V̂λ so that V̂λ = Q̂λQ̂

′
λ.

Let {ζi : i = 1, . . . , I} be a large sample of simulated draws from N(0K+1, IK+1) and define

ζi = ζ ′
iP̂λζi, i = 1, . . . , I. It follows by the Monte Carlo principle that the distribution function

of ζ, Fζ(a) = P[ζ ≤ a], can be approximated by 1
I

∑I
i=1 1[ζi≤a], with the approximation becoming

better as N and I increase. In our simulation exercises and empirical tests, we use I = 100, 000.

The above test statistics could be used for inference for any generic weighting matrix.
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However, as discussed in Subsection 2.2, selecting W∗ = (ΠVeΠ
′)−1 yields the efficient IV-

GMM estimator. We follow standard GMM practice and obtain the two-step estimator as

follows. First, we set Ŵ = I1+K+L to obtain an initial N -consistent estimator of λ, say λ̂I
IV.

Then, using λ̂I
IV, we obtain an N -consistent estimator of Θ from (45) which then provides an

N -consistent estimator of W∗, say Ŵ∗. Using Ŵ∗ as a weighting matrix in the second step,

we obtain the two-step IV-GMM estimator of λ which is efficient. In addition, we obtain the

iterated IV-GMM estimator by repeating the above process of successively obtaining estimators

of the risk premia and the asymptotic variance-covariance matrix, in an alternate fashion, till

the sequence of risk premia estimators converges. In practice, we stop the iteration when the

L1-norm of the difference between two successive risk premia estimates becomes less than 10−6.

We denote the two-step and iterated IV-GMM estimators by λ̂TS
IV and λ̂IT

IV, respectively, and use

both of them in our simulations and empirical applications.

3 Monte Carlo Simulation Evidence

In this section, we investigate the properties of the IV-GMM ex-post risk premia estimators and

the associated asset pricing tests for empirically relevant finite sample sizes through a number

of Monte Carlo simulation experiments. We illustrate the importance of the EIV correction

offered by the IV-GMM approach in terms of bias reduction and efficiency enhancement by

comparing two efficient versions of our IV-GMM estimator with two other ex-post risk premia

estimators without EIV correction. The first alternative estimator, denoted by λ̂1, ignores the

EIV problem and regresses average excess returns over the testing period on a constant and

beta estimates obtained by standard time series regression over the pretesting period, that is

λ̂1 = (X̂′
1X̂1)

−1X̂′
1r2, where X̂1 = [ 1N B̂1 ]. Similarly, the second alternative estimator,

denoted by λ̂2, also ignores the EIV problem but uses beta estimates from the testing period,

that is λ̂2 = (X̂′
2X̂2)

−1X̂′
2r2. We report the bias as well as the root mean square error of all four

estimators. Furthermore, we investigate the finite sample performance of the test statistics J(λ)

and Jd(λ), defined in (49) and (52), respectively, and the t-statistics t(λ0) and t(λk), defined in

(50) and (51), respectively. As we explain below, we use three widely used asset pricing models

in our calibration.

Next, we provide the details of our simulation design. To make our simulation exercise

relevant for our empirical applications, we consider all stocks in the CRSP universe from 2005

to 2014 with price above 1 dollar and select the 1,000 stocks with the longest time series

histories. We jointly calibrate the betas and the idiosyncratic shock variances of those 1,000

stocks in order to simulate excess return data according to the data generating process (2).

Our calibration is based on the following three linear asset pricing models: the single-
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factor CAPM, the three-factor model of Fama and French (1993) and the four-factor model

of Hou, Xue, and Zhang (2015). The factors in the second model, which we refer to as the

FF3 model, are the market excess return (MKT), the small size minus big size spread portfolio

return (SMB), and the high book-to-market minus low book-to-market spread portfolio return

(HML).10 The factors in the third model, which we refer to as the HXZ4 model, the market

excess return (MKT), the difference between the return on a portfolio of small size stocks and

the return on a portfolio of big size stocks (ME), the difference between the return on a portfolio

of low investment stocks and the return on a portfolio of high investment stocks (I/A), and

the difference between the return on a portfolio of high profitability (return on equity) stocks

and the return on a portfolio of low profitability stocks (ROE).11 In the case of the CAPM, we

do not use any characteristics as instruments, and therefore the IV-GMM estimator becomes

the standard exactly identified IV estimator, which we denote by λ̂IV. For the FF3 and HXZ4

models, we use the average of firm characteristics over the pretesting period of 2005-2009 as

instrumental variables. Specifically, for the FF3 model, we use the logarithm of size and book

to market ratio.12 For the HXZ4 model, we use the logarithms of size, investment over asset,

and return on equity.13 We provide empirical evidence illustrating that these characteristics

are suitable instruments in Section 4. For both the FF3 and HXZ4 models, we consider the

two-step IV-GMM estimator, λ̂TS

IV
, as well as the iterated IV-GMM estimator, λ̂IT

IV
.

We pay particular attention to the following two aspects of the simulation design: (i) the

number of clusters in the stock universe and (ii) the correlation structure among stock returns

within clusters. Due to space limitations, we only consider clusters of equal size and assume that

correlations within clusters are constant. In the first part of the simulation exercise, that focuses

on the bias and the mean square error of the IV-GMM estimators, we set the number of clusters,

MN , equal to 50 and the pairwise correlation ρ, within each cluster, equal to 0.10. In the second

part of the simulation exercise, that focuses on the finite sample behavior of the various asset

pricing test statistics, we let the number of clusters MN take the values 50 and 100 and the

within-cluster correlation take the values 0, 0.10, and 0.20. In the empirical investigation of

Section 4, we consider clustering based on the 49-industry classification of Kenneth French.14

Following this classification, we estimate an average correlation within industries around 0.10

based on an industry residual model for the shocks, in the spirit of Ang, Liu, and Schwarz

10The data on the three factors of the Fama and French (1993) model are obtained from Kenneth French’s
data library.

11We thank the authors for providing the data on the four factors of the Hou, Xue, and Zhang (2015) model.
12We divide the market capitalization of individual stocks by the contemporaneous aggregate market capital-

ization for normalization.
13 I/A is defined as change in inventory, property, plant and equipment (PP&E) over the previous year’s total

asset. ROE is defined as (IB - DVP + TXDI) over book value of equity where IB is the total earnings before
extraordinary items, DVP is the preferred dividends (if available), and TXDI is the deferred taxes (if available).

14The classification is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data-Library/det-49-ind-port.html.
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(2010) (see their Appendix F.2). Hence, the range of correlation values that we employ in our

simulation is empirically relevant.

First, we illustrate the importance of the IV-GMM approach in dealing with the EIV problem

by comparing the IV-GMM estimators to the two alternative estimators, λ̂1 and λ̂2, in terms

of finite sample bias. We compute the bias of all four estimators as the average of estimation

errors over 50,000 Monte Carlo repetitions. We consider pretesting and testing periods that

consist of 60 months and, to provide a comprehensive picture, we repeat the exercise over eight

testing periods from 1975-1979 to 2010-2014. In the baseline scenario, the idiosyncratic shocks

are assumed to follow a normal distribution. The results, reported in Table 1 in annualized basis

points (bps), clearly illustrate the bias reduction gains provided by the IV-GMM estimators.

Specifically, for the CAPM, the absolute biases of the IV estimator λ̂IV, averaged over the

eight periods, are 2.3 and 2.1 annualized bps for λ0 and λMKT, respectively. In contrast, for the

estimator λ̂1 (λ̂2) that ignores the EIV problem, the corresponding values are 359.9 (371.3)

and 365.1 (376.7) for λ0 and λMKT, respectively. Similar results hold for the FF3 model, for

which the average absolute biases of λ̂TS

IV
(λ̂IT

IV
) are 4.6 (4.9), 4.3 (4.3), 1.7 (1.7), and 2.9 (3.4)

annualized bps for λ0, λMKT, λSMB, and λHML, respectively. The corresponding values for λ̂1 (λ̂2)

are 552.0 (538.5), 412.2 (414.0), 293.7 (299.1), and 358.0 (288.5) for λ0, λMKT, λSMB, and λHML,

respectively. For the HXZ4 model, the bias becomes even more severe for the estimators that

ignore the EIV problem. The average absolute biases of λ̂1 (λ̂2) are 757.7 (727.4), 475.3 (469.7),

437.0 (350.9), 370.4 (309.0), and 484.7 (473.2) annualized bps for λ0, λMKT, λME, λI/A, and λROE,

respectively. When λ̂TS
IV (λ̂

IT
IV) is used, the corresponding values are 39.1 (44.6), 16.9 (19.7), 29.2

(32.1), 21.3 (25.0), and 37.0 (42.9) annualized bps. We repeat the same exercise under the

assumption that the idiosyncratic disturbances follow a Student-t distribution with 6 degrees

of freedom. The results, reported in Table A1 in the Online Appendix, are almost identical.

Hence, our conclusions regarding the superior performance of the IV-GMM estimators in terms

of bias reduction is robust to the assumption of normally distributed disturbances.

Next, we compare the IV-GMM estimators to the alternative estimators in terms of mean

square error. The purpose of this exercise is to examine whether the gain in bias reduction comes

at the cost of a higher variance and perhaps efficiency loss. We compute the root mean square

error (RMSE) of each estimator as the square root of the sample mean of squared estimation

errors over 50,000 Monte Carlo simulations. The simulation setup is identical to the one used

above to examine the finite sample bias. In Table 2, we report, in units of annualized bps, the

RMSE of the IV-GMM estimators along with those of the alternative estimators λ̂1 and λ̂2. The

results clearly illustrate that the IV-GMM estimators achieve much lower mean square errors in

comparison with the alternative estimators. For the CAPM, the RMSEs of λ̂IV, averaged over

the eight periods, are 231.1 and 239.8 annualized bps for λ0 and λMKT, respectively. As already
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seen above in the examination of bias, the two estimators that ignore the EIV problem perform

very poorly. The average RMSEs of λ̂1 (λ̂2) are 408.8 (418.6) and 411.9 (421.7) annualized bps

for λ0 and λMKT, respectively. The results for the FF3 model are similar. The average RMSEs of

λ̂TS
IV (λ̂IT

IV) are 322.7 (323.3), 284.8 (285.4), 191.1 (191.0), and 230.4 (231.1) annualized bps for

λ0, λMKT, λSMB, and λHML, respectively. The corresponding values for λ̂1 (λ̂2) are 585.4 (578.5), 471.1

(466.2), 328.3 (328.7), and 383.6 (316.1) for λ0, λMKT, λSMB, and λHML, respectively. The results for

the HXZ4 model reinforce our findings from the first two models. The average RMSEs of λ̂1 (λ̂2)

are 785.1 (755.6), 521.2 (514.1), 465.5 (386.5), 385.6 (324.7), and 499.4 (488.6) annualized bps

for λ0, λMKT, λME, λI/A, and λROE, respectively. When λ̂TS
IV (λ̂

IT
IV) is used, the corresponding values are

471.3 (472.7), 378.9 (379.8), 335.2 (334.5), 296.8 (298.2), and 458.9 (461.2) annualized bps. We

repeat the same exercise under the assumption that the idiosyncratic shocks follow a Student-t

distribution with 6 degrees of freedom. Table A2 in the Online Appendix reports the results

that are almost identical to the ones obtained under the assumption of normally distributed

shocks. Collectively, the simulation evidence, which is robust across different factor model

specifications and distributional assumptions, illustrates that the IV-GMM estimators exhibit

superior performance in terms of bias reduction without sacrificing efficiency.

In our final simulation exercise, we investigate the behavior of the asset pricing test statis-

tics based on the IV-GMM estimators and the associated variance-covariance matrix estimators.

Specifically, we focus on the empirical rejection frequencies of the joint test statistics J(λ) and

Jd(λ) as well as the t statistics t(λ0) and t(λk), k = 1, . . . , K. The pretesting and testing

periods cover the years 2001 to 2005 and 2006 to 2010, consisting of τ1 = 60 and τ2 = 60

observations, respectively. Using the given factor realizations and the calibrated pairs of betas

and idiosyncratic shock variances, we simulate individual stock returns using the data gener-

ating process (2) for t = 1, . . . , 120. Since the asymptotic variance of the IV-GMM estimators

crucially depends on the cluster structure, we consider a number of difference scenarios. Specif-

ically, we let the number of clusters MN take the values 50 and 100 and assume that, within

each cluster, pairwise correlations are equal to ρ which takes the following three values: 0, 0.10,

and 0.20. We consider three nominal levels of significance, 1%, 5%, and 10%, and compute the

corresponding empirical rejection frequencies from 50,000 Monte Carlo repetitions.

The simulation exercise is first performed for idiosyncratic shocks following a normal dis-

tribution and the results are reported in Table 4. We first observe that the joint chi-square

test statistic J(λ) tends to overreject the null hypothesis of correct model specification. For

example, with MN = 50 and ρ = 0.1, the empirical rejection frequencies of the J(λ) for λ̂TS
IV are

9.2 (15.7) and 10.4 (17.2) percent for the FF3 and HXZ4 model, respectively, when the nomi-

nal significance level is 5 (10) percent. The rejection frequencies for λ̂IT
IV show similar levels of

over-rejection. In contrast, the Jd(λ) and the t statistics yield empirical rejection frequencies
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that are reasonably close to the corresponding nominal levels of significance for both λ̂TS
IV and

λ̂IT
IV. Based on these findings, we will put more emphasis on the Jd(λ) and the t statistics in our

empirical investigation. The simulation is repeated for shocks following a Student-t distribution

with 6 degrees of freedom and the results, reported in Table A3 in the Online Appendix, are

again almost identical. The conclusions hold for all three asset pricing factor models considered

and under both distributional assumptions.

4 Empirical Evidence

In this section, we use the IV-GMM approach developed in Section 2 to empirically evaluate

a number of popular factor models that have been proposed in the asset pricing literature.

Specifically, we focus on four models: (i) the standard single-factor CAPM, (ii) the three-factor

Fama and French (1993) model (FF3), (iii) the four-factor Hou, Xue, and Zhang (2015) model

(HXZ4), and (iv) the five-factor Fama and French (2015) model (FF5). The factors involved in

the CAPM, FF3, and FF5 models are obtained from Kenneth French’s website. In particular,

the market excess return (MKT) is used by all three aforementioned models; the small size minus

big size spread portfolio return (SMB) and the high book-to-market minus low book-to-market

spread portfolio return (HML) are used by both the FF3 and FF5 models;15 and, finally, the

robust minus weak spread portfolio return (RMW) and conservative minus aggressive spread

portfolio return (CMA) are used by FF5. The four factors involved in the HXZ4 q-factor model

are the market excess return (MKT), the difference between the return on a portfolio of small

size stocks and the return on a portfolio of big size stocks (ME), the difference between the

return on a portfolio of low investment stocks and the return on a portfolio of high investment

stocks (I/A), and the difference between the return on a portfolio of high profitability (return

on equity) stocks and the return on a portfolio of low profitability stocks (ROE).16 We use

individual stock data at the monthly frequency covering the time period between 1970 and

2014 from the CRSP universe and apply the following filters: (i) we require that the share code

(SHRCD) is equal to 10 or 11 to keep only ordinary common shares, (ii) we require that the

exchange code (EXCHCD) is equal to 1, 2, or 3 to keep only stocks traded at NYSE, AMEX,

or NASDAQ, and (iii) we keep a stock in the sample only for the months in which its price

(PRC) is at least 1 dollar. When we use clustering based on the 49-industry classification of

Kenneth French for estimating the variance-covariance matrix of the IV-GMM estimators, we

15 The SMB factor used by the FF3 model is slightly different from the SMB factor used by the FF5 model.
Details on how the SMB factor is constructed for each model are provided in Kenneth French’s data library
website.

16 We are grateful to the authors for providing the data on the factors of the Hou, Xue, and Zhang (2015)
model.
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further we require that stocks have a Standard Industry Classification (SIC) code.17

Our pretesting and testing periods consist of five years (τ1 = τ2 = 60 months) resulting in 8

non-overlapping testing periods from 1975 to 2014. The cross section of our test assets consists

of all stocks with full histories over both the pretesting and testing periods. Our empirical

evidence consists of (i) estimates of λ =
[
λ0 λ′

f

]′
, where λf = [ λ1 · · · λK ]′ is the vector

of ex-post factor risk premia for the CAPM, FF3, HXZ4, and FF5 models, which they employ

K = 1, K = 3, K = 4, and K = 5 factors, respectively, and (ii) various test statistics for

evaluating the implications of each model and their corresponding p-values.

When estimating ex-post risk premia for the FF3, HXZ4, and FF5 models, in addition to

past beta estimates, we employ as instrumental variables the firm characteristics based on which

the various factors are constructed. Specifically, for the FF3 model, we use market capitalization

(SIZE) and book-to-market ratio (BTM) as firm characteristics. For the HXZ4 model, we use

SIZE, investment over asset (I/A), and return on equity (ROE) as firm characteristics. Lastly,

for the FF5 model, we use SIZE, BTM, operating profitability (OP) and asset growth (AG)

as firm characteristics. Next, we describe how the above characteristics are computed. The

SIZE characteristic for month m is defined as the ratio of the market capitalization a given

firm at the end of month m − 1 to the aggregate market capitalization at the end of month

m− 1. The BTM characteristic from July of year y + 1 till June of year y + 2 is defined as the

ratio of book equity (BE) in the accounting data of fiscal year y to the market capitalization

at the end of year y. BE is computed following the method in Kenneth French’s database, i.e.,

BE is defined the book value of stockholders equity (SEQ), plus balance sheet deferred taxes

and investment tax credit (TXDITC, if available), minus the book value of preferred stock.18

The I/A characteristic from July of year y + 1 till June of year y + 2 is defined as change in

inventory, property, plant and equipment (PP&E) from year y− 1 to year y over the year y− 1

total assets. The ROE characteristic from July of year y + 1 till June of year y + 2 is defined

as the ratio of (IB − DVP + TXDI) for the year y over BE of year y, where IB is the total

earnings before extraordinary items, DVP is the preferred dividends (if available), and TXDI

is the deferred taxes (if available). The OP characteristic from July of year y + 1 till June of

year y + 2 is defined as the ratio of (REV − COGS − XINT − XSGA) for year y over BE

of year y, where REV is revenue, COGS is cost of goods sold, XINT is interest expense, and

XSGA is selling, general and administrative expenses. Finally, the AG characteristic from July

of year y+1 till June of year y+2 is defined as the ratio of change in the total assets from year

y − 1 to year y over the year y − 1 total assets. With the exception of I/A, the cross-sectional

17SIC codes are obtained from Compustat. If the SIC code does not exist in Compustat, it is obtained from
CRSP.

18For a more detailed description, the reader is referred to the definition of BE at Kenneth French’s website
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/variable_definitions.html.
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distributions of these characteristics are highly skewed. Hence, for all characteristics except

I/A, we follow standard practice and use the logarithm of the average characteristics over the

pretesting period as instrumental variables.19

The asset pricing models under examination employ factors that are constructed as dif-

ferences between returns on top and bottom portfolios, or vice versa, after sorting according

to a particular firm characteristic. As a result, we expect a firm characteristic to be cross-

sectionally correlated with the beta with respect to the corresponding spread factor. This

provides a clear rationale for using firm characteristics as instrumental variables, in addition

to past beta estimates. In Table 5, we provide evidence supporting this rationale. Specifically,

for each characteristic, we consider decile portfolios sorted according to that characteristic and

estimate their betas with respect to the related spread factor within the context of each model

that we evaluate. For each asset pricing model, the portfolio betas are estimated jointly for all

factors using data from 07/1970 to 12/2014. As illustrated in Table 5, there is a clear monotonic

pattern in the betas for each spread factor within each model. This evidence justifies our choice

of firm characteristics as instruments in the estimation of ex-post risk premia.

We present our empirical results in Tables 6 through 9. According to our simulation evi-

dence the joint test statistic J(λ) given in (49) tends to overreject the null hypothesis in small

samples. Hence, when interpreting our empirical findings, we put more emphasis on the joint

test statistics Jd(λ) given in (52) and the t-statistics given in (50) and (51). In our discussion of

the results, we consider both of the conventional 5% and 10% levels of significance. The results

for the CAPM, based on the IV estimator λ̂IV and using past beta estimates as instruments,

are reported in Table 6. Overall, our evidence points to rejection of the CAPM. The Jd(λ)

joint statistic rejects the null hypothesis in five out of eight testing periods at the 5% or 10%

level of significance, respectively. Similarly, the t(λ0) statistic rejects the null hypothesis in five

(five) out of eight testing periods at the 5% and 10% level of significance, respectively. Finally,

the t(λMKT) rejects the null hypothesis in five and seven out of eight testing periods at the 5%

and 10% level of significance, respectively. These finding is not very surprising given that the

CAPM has been frequently rejected in the literature using portfolios of stocks.

The results for the FF3 model, based on the two-step and iterated IV-GMM estimators, i.e.,

λ̂TS

IV
and λ̂IT

IV
, and using SIZE and BTM as instruments in addition to past beta estimates, are

reported in Table 7. The two IV-GMM estimators overall yield similar results. Based on the

λ̂TS

IV
estimator, the Jd(λ) joint statistic rejects the null hypothesis in five and eight out of eight

testing periods at the 5% and 10% level of significance, respectively. When the λ̂IT

IV
estimator

is used, the Jd(λ) joint statistic rejects the null hypothesis in six and seven out of eight testing

periods at the 5% and 10% level of significance, respectively. The t statistics exhibit similar

19For AG, we use the logarithm of one plus average of asset growth.
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behavior except the t statistic associated with the HML factor. Consistent with the findings in

Kim and Skoulakis (2015), the t(λHML) statistic rejects the null hypothesis only in one and three

of eight periods for 5% and 10% level of significance, respectively, when the λ̂TS

IV
estimator is

used.

In Table 8, we report the results for the HZX4 model, based on the two-step and iterated IV-

GMM estimators, i.e., λ̂TS

IV
and λ̂IT

IV
, and using SIZE, I/A, and ROE as instruments in addition

to past beta estimates. Based on either λ̂TS

IV
or λ̂IT

IV
, the Jd(λ) joint statistic rejects the null

hypothesis only in three out of eight testing periods at the 5% or 10% level of significance.

Importantly, the t(λ0) statistic rejects the null hypothesis only in two out of eight testing

periods at the 10% level of significance. The additional t statistics point to similar conclusions.

When λ̂IT

IV
is used, the t(λMKT), t(λME), t(λI/A), and t(λROE) statistics reject the null hypothesis in one,

three, three, and two out of eight testing periods, respectively, at the 10% level of significance.

The results for the FF5 model, based on the two-step and iterated IV-GMM estimators,

i.e., λ̂TS

IV
and λ̂IT

IV
, and using SIZE, BTM, OP, and AG as instruments in addition to past beta

estimates, are reported in Table 9. Once again, the two IV-GMM estimators overall yield

similar results. Based on the λ̂TS

IV
estimator, the Jd(λ) joint statistic rejects the null hypothesis

in five and six out of eight testing periods at the 5% and 10% level of significance, respectively.

When the λ̂IT

IV
estimator is used, the Jd(λ) joint statistic rejects the null hypothesis in six and

seven out of eight testing periods at the 5% and 10% level of significance, respectively. Overall,

the evidence suggests that the FF5 model is mostly rejected in our sample.

Collectively, our results show that the CAPM, the FF3 and the FF5 models are mostly

rejected by the IV-GMM test statistics. In contrast, we find evidence in favor of the HZX4

model, for which we find strong support in five out of the eight time periods. In the Online

Appendix, we report the test statistics and the corresponding p-values for the four models

examined above using alternative clustering schemes and price filters. Tables A4– A7 contain

the results based on 49 industry clusters and a $3 price filter. Tables A8– A11 contain the

results based on 49 industry clusters and a $5 price filter. Finally, tables A12– A15 contain the

results based on 30 industry clusters and a $1 price filter. The results of our tests remain very

similar under all alternative scenarios.

5 Conclusion

A linear asset pricing factor model characterizes the average return of an asset as a linear

function of its factor betas with the risk premia being the slopes. In theory, such a relationship

is supposed to be valid for all individual assets. However, the majority of empirical tests of
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asset pricing models are based on portfolios. One of the main reasons for this practice is that

individual stock beta estimates are plagued by significant sampling error giving rise to the well-

known error-in-variables (EIV) problem. When the size of the cross section N is large, while the

the time series sample size T is small and fixed, the EIV problem is so severe that it renders the

standard two-pass cross-sectional regression (CSR) risk premia estimator inconsistent. To deal

with the EIV problem, we develop a modification of the two-pass CSR approach that employs

past beta estimates and firm characteristics as instrumental variables and yields an IV-GMM

ex-post risk premia estimator. We contribute to the literature by providing a novel method for

estimating ex-post risk premia and devising associated tests for evaluating linear factor models

using individual stock data over short time horizons. We establish that the ex-post risk premia

estimator is N -consistent and asymptotically follows a normal distribution. Furthermore, using

a cluster structure for idiosyncratic shock correlations, we provide an estimator of its asymptotic

variance-covariance matrix that we then use to construct asset pricing tests focusing on ex-post

risk premia.

The good performance of the IV-GMM estimator and the associated variance-covariance

matrix estimator for empirically relevant finite sample sizes is illustrated through a number of

Monte Carlo simulations. Using three different asset pricing models for calibration, we show that

(i) the IV-GMM approach leads to significant bias reduction in the cross-sectional regression

intercept and ex-post risk premia estimates without sacrificing efficiency, and (ii) the associated

asset pricing test statistics yield empirical rejection frequencies very close to the desired levels of

significance. In our empirical investigation, we estimate and evaluate four popular linear asset

pricing factor models: the CAPM, the three-factor of model of Fama and French (1993), the

q-factor model of Hou, Xue, and Zhang (2015), and the five-factor model of Fama and French

(2015). We find that all models are rejected for the majority of our testing periods with the

exception of the Hou, Xue, and Zhang (2015) model, for which we find strong support in five

out of the eight time periods under all clustering schemes under consideration.
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A Proofs

A few facts from matrix algebra are used in the main text and/or in the subsequent proofs. We collect

them here for the convenience of the reader. In terms of notation, vec denotes the column-stacking

operator and ⊗ denotes the Kronecker product.

(F1) For column vectors x and y, we have vec (xy′) = y ⊗ x.

(F2) For conformable matrices A, B and C, we have vec (ABC) = (C′ ⊗A) vec (B).

(F3) For conformable matrices A, B, C, and D, we have (AC)⊗ (BD) = (A⊗B) (C⊗D).

The facts (F1), (F2), (F3) follow from Theorem 7.14, Theorem 7.16, and Theorem 7.7 in Schott (1997),

respectively.

Proof of Theorem 1: Recall from equation (28) that

λ̂GMM

IV = λ+
[(

X̂′
2Ẑ1/N

)
Ŵ
(
Ẑ′
1X̂2/N

)]−1 (
X̂′

2Ẑ1/N
)
Ŵ
(
Ẑ′
1ω/N

)
. (53)

Thus, to prove the theorem, it suffices to show that, as N → ∞, Ẑ′
1ω/N converges to a vector of

zeros and Ẑ′
1X̂2/N converges to a full-rank matrix. Using equations (27), (17), and (24), and invoking

Assumption 1(i), Assumption 1(ii), and Assumption 2(ii), we obtain that, as N → ∞,

Ẑ′
1ω/N =


1′Nω/N

B̂′
1ω/N

C′
1ω/N

 =


(1′NU2/N)g2

(B′U2/N)g2 +G′
1(U

′
1U2/N)g2

(C′
1U2/N)g2

 p−→ 01+K+L. (54)

Moreover, in light of equations (17) and (18), it follows from Assumptions 1 and 2 that, as N → ∞,

B̂′
11N/N = B′1N/N +G′

1(U
′
11N/N)

p−→ µβ, (55)

B̂′
21N/N = B′1N/N +G′

2(U
′
21N/N)

p−→ µβ, (56)

B̂′
1B̂2/N = B′B/N +G′

1(U
′
1B/N) + (B′U2/N)G2 +G′

1(U
′
1U2/N)G2

p−→ Mβ, (57)
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where Mβ = Vβ + µβµ
′
β, and

C′
11N/N

p−→ µc, (58)

C′
1B̂2/N = C′

1B/N + (B′U2/N)G2
p−→ Mcβ. (59)

It then follows from definitions (27) and (22) and the probability limits in (55)-(59) that

Ω̂ ≡ Ẑ′
1X̂2/N =


1 1′N B̂2/N

B̂′
11N/N B̂′

1B̂2/N

C′
11N/N C′

1B̂2/N

 p−→ Ω, (60)

where the matrix Ω is defined by (30). Combining the expression (53) and the probability limits in

(54) and (60) yields the N -consistency of λ̂GMM
IV completing the proof of the theorem. �

Proof of Theorem 2: First note that equation (29) yields

√
N
(
λ̂GMM

IV − λ
)
=
[(

X̂′
2Ẑ1/N

)
Ŵ
(
Ẑ′
1X̂2/N

)]−1 (
X̂′

2Ẑ1/N
)
Ŵ
(
Ẑ′
1ω/

√
N
)
. (61)

According to the probability limit in (60), Ẑ′
1X̂2/N

p−→ Ω, where Ω is defined in (30). Hence, to

obtain the asymptotic distribution of
√
N
(
λ̂GMM

IV − λ
)
, it suffices to obtain the asymptotic distribution

of Ẑ′
1ω/

√
N . Letting ωi denote the i-th element of ω and β̂′

1,i denote the i-th row of B̂1, we obtain

Ẑ′
1ω =

∑N

i=1
ẑ1,[i]ωi =


∑N

i=1 ωi∑N
i=1 β̂1,iωi∑N
i=1 c1,iωi

 . (62)

It follows from equation (24) that

ωi = u′
2,[i]g2 = g′

2u2,[i]. (63)

Hence, using the decomposition (17) and equation (24), we obtain

β̂1,iωi = βiu
′
2,[i]g2 +G′

1u1,[i]u
′
2,[i]g2

= (g′
2 ⊗ IK)(u2,[i] ⊗ βi) + (g′

2 ⊗G′
1)(u2,[i] ⊗ u1,[i]), (64)
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and

c1,iωi = c1,iu
′
2,[i]g2 = (g′

2 ⊗ IL)(u2,[i] ⊗ c1,i), (65)

where we use facts (F1), (F2), and (F3). Combining (62) with (63), (64), and (65), we obtain that

ẑ1,[i]ωi = Πei, (66)

where ei is defined by (34) and Π is the (1 +K + L)× (1 + τ1 +K + L)τ2 matrix defined by

Π =


g′
2 0′τ1τ2 0′Kτ2

0′Lτ2

0K×τ2 g′
2 ⊗G′

1 g′
2 ⊗ IK 0K×(Lτ2)

0L×τ2 0L×(τ1τ2) 0L×(Kτ2) g′
2 ⊗ IL

 . (67)

It follows from (66) that

Ẑ′
1ω = Π

N∑
i=1

ei. (68)

Finally, combining (61) with (68) and (60) and invoking Assumption 3 yields the desired result and

completes the proof of the theorem. �

Proof of Theorem 3: The N -consistency of Ω̂ is already established in the proof of Theorem 1 (see

equation (60)). Moreover, as N → ∞, MN/N → 1/G. Hence, it suffices to show that, as N → ∞,

Θ̂ = 1
MN−K−1(X̂

′
1diag (ω̂)C′Cdiag (ω̂) X̂1)

p−→ Θ = ΠVηΠ
′. For each cluster m = 1, . . . ,MN , we

define

θ̂m =
∑

i∈Im
ẑ1,[i]ω̂i (69)

so that Ẑ′
1diag (ω̂)C′ = [ θ̂1 · · · θ̂MN

] which, in turn, implies

Θ̂ =
1

MN −K − 1

∑MN

m=1
θ̂mθ̂′

m. (70)

From definition (44) and equation (21), we have ω̂ = ω − X̂2

(
λ̂GMM

IV − λ
)
. Let ω̂i denote the i-th

element of ω̂ so that ω̂ = [ ω̂1 · · · ω̂N ]′. It follows that ω̂i = ωi − x̂′
2,[i](λ̂

GMM
IV − λ) and so the i-th
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column of the matrix Ẑ′
1diag (ω̂) is expressed as

ẑ1,[i]ω̂i = ẑ1,[i]ωi − ẑ1,[i]x̂
′
2,[i]

(
λ̂GMM

IV − λ
)
. (71)

It follows from facts (F1) and (F2) that

ẑ1,[i]x̂
′
2,[i]

(
λ̂GMM

IV − λ
)
=

((
λ̂GMM

IV − λ
)′

⊗ I1+K+L

)
vec
(
ẑ1,[i]x̂

′
2,[i]

)
=
((

λ̂GMM

IV − λ
)
⊗ I1+K+L

)′ (
x̂2,[i] ⊗ ẑ1,[i]

)
. (72)

It follows from (17) and (18) that Ẑ1 = [ 1N B+U1G1 C1 ] and X̂2 = [ 1N B+U2G2 ] and so

ẑ1,[i] =


1

βi +G′
1u1,[i]

c1,i

 , x̂2,[i] =

 1

βi +G′
2u2,[i]

 .

Hence,

x̂2,[i] ⊗ ẑ1,[i] =



1

βi +G′
1u1,[i]

c1,i

βi +G′
2u2,[i]

(βi +G′
2u2,[i])⊗ (βi +G′

1u1,[i])

(βi +G′
2u2,[i])⊗ c1,i


.

Moreover, using fact (F3), we obtain

(βi +G′
2u2,[i])⊗ (βi +G′

1u1,[i])

=βi ⊗ βi + (G′
2 ⊗ IK)(u2,[i] ⊗ βi) + (IK ⊗G′

1)(βi ⊗ u1,[i]) + (G′
2 ⊗G′

1)(u2,[i] ⊗ u1,[i])

and

(βi +G′
2u2,[i])⊗ c1,i = βi ⊗ c1,i + (G′

2 ⊗ IL)(u2,[i] ⊗ c1,i).
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It follows from the last three equations that

x̂2,[i] ⊗ ẑ1,[i] = Φdi, (73)

where di is defined in (46) and the matrix Φ is defined by

Φ =



1 0′
τ1

0′
τ2

0′
τ1τ2

0′
K 0′

L 0′
K2 0′

KL 0′
Kτ1

0′
Kτ2

0′
Lτ2

0K G′
1 0K×τ2

0K×τ1τ2
IK 0K×L 0

K×K2 0K×KL 0K×Kτ1
0K×Kτ2

0K×Lτ2

0L 0L×τ1
0L×τ2

0L×τ1τ2
0L×K IL 0

L×K2 0L×KL 0L×Kτ1
0L×Kτ2

0L×Lτ2

0K 0K×τ1
G′

2 0K×τ1τ2
IK 0K×L 0

K×K2 0K×KL 0K×Kτ1
0K×Kτ2

0K×Lτ2

0
K2 0

K2×τ1
0
K2×τ2

G′
2⊗G′

1 0
K2×K

0
K2×L

I
K2 0

K2×KL
IK⊗G′

1 G′
2⊗IK 0

K2×Lτ2

0KL 0KL×τ1
0KL×τ2

0KL×τ1τ2
0KL×K 0KL×L 0

KL×K2 IKL 0KL×Kτ1
0KL×Kτ2

G′
2 ⊗ IL


.

It follows from equations (72) and (73) that

ẑ1,[i]x̂
′
2,[i]

(
λ̂GMM

IV − λ
)
= Υdi, (74)

where

Υ =
((

λ̂GMM

IV − λ
)
⊗ I1+K+L

)′
Φ. (75)

Hence, combining (71), (66), and (74), we obtain ẑ1,[i]ω̂i = Πei −Υdi which, according to definitions

(69), (36), and (47), yields

θ̂m = Πηm −Υδm. (76)

Combining equations (70) and (76) yields

MN −K − 1

MN
Θ̂ =Π

(
1

MN

∑MN

m=1
ηmη′

m

)
Π′ +Υ

(
1

MN

∑MN

m=1
δmδ′m

)
Υ′

−Υ

(
1

MN

∑MN

m=1
δmη′

m

)
Π′ −Π

(
1

MN

∑MN

m=1
δmη′

m

)′
Υ′. (77)

Inspection of definitions (34), (36), (46), and (47) reveals that ηm is a subvector of δm, and so Assump-

tion 5 implies that, as N → ∞, both 1
MN

∑MN
m=1 δmδ′m and 1

MN

∑MN
m=1 δmη′

m converge in probability to

some finite matrices. Moreover, according to Theorem 1, λ̂GMM
IV

p−→ λ and so it follows from definition

(75) that Υ
p−→ 0(1+K+L)×((1+K)(1+L+τ1+τ2)+K2+(L+τ1)τ2). Hence, using equation (37), it follows from

equation (77) above that Θ̂
p−→ ΠVηΠ

′ = Θ and thus the proof of the theorem is complete. �
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Table 1: Bias in the estimation of λ with normally distributed shocks: the role of the EIV
correction through the IV-GMM approach. This table presents simulation results on the absolute bias,

in annualized basis points, in the estimation of λ =
[
λ0 λ′

f

]′
, where λf = [ λ1 · · · λK ]

′
is the vector of

ex-post risk premia and K is the number of factors. The shocks uit are assumed to follow a normal distribution
and the factor realizations are kept fixed throughout. The number of individual stocks, N , is equal to 1,000
and the number of clusters, MN , is set equal to 50. The pairwise correlation of shocks, assumed to be constant
within each cluster, is set equal to 0.10. The simulation is calibrated to the following three linear asset pricing
models: the single-factor CAPM, the three-factor Fama and French (1993) model (FF3), and the four-factor
Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1 and λMKT is the ex-post risk premia of MKT.
For FF3, K = 3 and λMKT, λSMB, and λHML are the ex-post risk premia of MKT, SMB, and HML, respectively. For
HXZ4, K = 4 and λMKT, λME, λI/A, and λROE are the ex-post risk premia of MKT, ME, I/A, and ROE, respectively.

For the CAPM, we consider the IV estimator λ̂IV, while for the FF3 and HXZ4 models, we consider both the
two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. In addition, we consider two alternative estimators

λ̂1 = (X̂′
1X̂1)

−1X̂′
1r2 and λ̂2 = (X̂′

2X̂2)
−1X̂′

2r2 that ignore the EIV problem. The results are based on 50,000
Monte Carlo repetitions.

CAPM

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

λ̂IV

λ0 1.4 0.9 2.2 1.3 4.3 1.3 2.0 4.7

λMKT 0.3 0.1 2.5 0.6 5.1 1.2 2.3 4.6

λ̂1

λ0 358.8 178.2 465.6 160.1 1000.4 131.4 13.9 570.8

λMKT 365.0 181.6 471.6 163.1 1013.4 133.2 13.8 578.8

λ̂2

λ0 441.4 169.3 415.1 233.0 880.4 106.6 15.6 709.3

λMKT 448.7 172.6 420.5 237.0 891.8 108.1 15.5 719.3

Continued on next page

35



Table 1 – continued from previous page

FF3 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

fSMB 1576.0 470.2 -451.6 158.0 -369.4 1002.4 131.4 149.2

fHML 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0

λ̂TS
IV

λ0 0.6 5.4 7.6 5.7 8.6 6.8 0.9 1.2

λMKT 1.7 3.1 6.5 4.3 8.7 4.6 2.2 3.1

λSMB 3.3 2.5 0.8 1.1 1.7 2.2 1.1 0.7

λHML 1.5 3.3 3.1 2.2 3.0 3.9 2.6 4.0

λ̂IT
IV

λ0 0.7 5.6 8.2 5.9 8.8 8.0 0.9 1.1

λMKT 1.5 3.0 6.8 4.3 8.7 5.5 2.2 2.8

λSMB 3.5 2.5 0.9 1.0 1.6 2.4 1.1 0.9

λHML 1.5 3.9 3.7 2.7 3.4 4.9 2.7 4.0

λ̂1

λ0 778.4 388.4 632.8 371.0 831.9 754.7 80.7 577.7

λMKT 298.1 120.8 741.3 230.6 1136.7 77.9 4.6 687.6

λSMB 594.7 148.3 340.1 108.3 374.2 657.5 77.0 49.1

λHML 498.3 509.1 207.2 239.9 227.2 912.6 99.8 169.6

λ̂2

λ0 600.9 684.4 553.5 380.8 789.2 593.4 11.6 694.2

λMKT 157.1 333.5 622.6 276.5 1013.5 35.4 75.0 798.5

λSMB 683.3 306.1 293.4 76.3 309.1 567.7 83.4 73.8

λHML 281.5 537.9 240.5 191.5 110.9 717.6 112.6 115.8

Continued on next page
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Table 1 – continued from previous page

HXZ4 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1115.2 404.8 1212.8 455.0 2014.4 -244.8 37.6 1420.2

fME 1726.6 420.2 -391.4 225.4 -436.2 1435.6 258.2 188.4

fI/A 302.8 875.4 657.4 364.4 75.4 1113.4 -56.6 362.6

fROE 359.8 1022.8 921.0 1116.4 731.8 593.2 348.0 186.4

λ̂TS
IV

λ0 33.3 26.3 50.3 55.6 54.4 36.8 17.9 38.6

λMKT 7.9 1.2 20.5 13.3 31.2 22.8 11.5 27.0

λME 41.9 28.9 32.3 57.3 30.1 19.8 11.8 11.8

λI/A 12.0 39.1 41.4 33.1 19.4 10.2 2.8 12.3

λROE 45.2 23.0 36.8 83.5 45.6 17.7 16.7 27.2

λ̂IT
IV

λ0 37.4 30.5 57.3 62.2 63.2 42.0 20.7 43.8

λMKT 9.2 2.5 23.7 15.9 36.7 26.1 13.4 30.0

λME 46.3 30.7 35.2 61.3 33.6 22.3 13.4 13.9

λI/A 13.9 45.7 48.3 38.2 23.9 12.4 2.8 14.7

λROE 52.5 27.2 43.0 95.5 52.1 21.4 19.8 31.9

λ̂1

λ0 1061.6 577.5 731.2 516.7 1147.6 942.9 172.0 912.1

λMKT 454.7 126.6 675.1 232.5 1251.8 170.3 102.7 789.1

λME 952.1 457.9 179.6 315.1 293.4 1089.4 141.9 66.8

λI/A 328.7 698.7 493.5 309.9 114.8 679.6 56.8 281.7

λROE 440.4 621.4 487.9 849.5 460.8 473.4 215.7 328.2

λ̂2

λ0 851.5 662.4 776.8 549.2 1270.7 698.1 169.6 841.2

λMKT 264.0 250.0 662.1 287.1 1272.0 196.6 58.2 767.3

λME 963.3 421.4 102.1 289.5 96.2 710.5 208.5 16.1

λI/A 234.9 621.7 535.8 276.4 96.4 452.1 38.5 215.9

λROE 432.3 642.4 644.5 854.0 551.5 189.6 268.9 202.2
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Table 2: Root mean square error in the estimation of λ with normally distributed shocks: the
role of the EIV correction through the IV-GMM approach. This table presents simulation results on

the root mean square error (RMSE), in annualized basis points, in the estimation of λ =
[
λ0 λ′

f

]′
, where

λf = [ λ1 · · · λK ]
′
is the vector of ex-post risk premia and K is the number of factors. The shocks uit are

assumed to follow a normal distribution and the factor realizations are kept fixed throughout. The number of
individual stocks, N , is equal to 1,000 and the number of clusters,MN , is set equal to 50. The pairwise correlation
of shocks, assumed to be constant within each cluster, is set equal to 0.10. The simulation is calibrated to the
following three linear asset pricing models: the single-factor CAPM, the three-factor Fama and French (1993)
model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1 and λMKT

is the ex-post risk premia of MKT. For FF3, K = 3 and λMKT, λSMB, and λHML are the ex-post risk premia of MKT,
SMB, and HML, respectively. For HXZ4, K = 4 and λMKT, λME, λI/A, and λROE are the ex-post risk premia of
MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider the IV estimator λ̂IV, while for the FF3

and HXZ4 models, we consider the two-step and iterated IV-GMM estimators, i.e., λ̂TS
IV and λ̂IT

IV. In addition,

we consider two alternative estimators λ̂1 = (X̂′
1X̂1)

−1X̂′
1r2 and λ̂2 = (X̂′

2X̂2)
−1X̂′

2r2 that ignore the EIV
problem. The results are based on 50,000 Monte Carlo repetitions.

CAPM

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

λ̂IV

λ0 217.1 228.3 227.4 215.0 273.1 236.1 217.2 234.5

λMKT 226.3 237.2 236.4 223.7 281.7 244.8 225.3 243.2

λ̂1

λ0 389.2 230.0 488.6 218.4 1010.9 194.8 148.9 590.0

λMKT 394.4 230.3 493.3 219.4 1022.5 192.2 146.2 596.9

λ̂2

λ0 465.0 223.8 441.5 272.0 892.9 182.0 147.4 724.1

λMKT 470.7 224.4 446.0 271.5 903.0 181.4 144.1 732.5

Continued on next page
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Table 2 – continued from previous page

FF3 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

fSMB 1576.0 470.2 -451.6 158.0 -369.4 1002.4 131.4 149.2

fHML 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0

λ̂TS
IV

λ0 308.2 280.9 336.6 324.2 358.2 397.4 305.6 270.3

λMKT 273.5 266.2 289.7 267.8 314.7 335.1 267.1 264.6

λSMB 189.1 190.2 194.0 189.0 202.0 200.3 169.5 194.3

λHML 228.2 234.4 223.8 243.9 241.9 251.7 196.0 223.5

λ̂IT
IV

λ0 309.0 281.3 337.3 324.7 359.2 398.4 306.4 270.4

λMKT 274.1 266.3 290.4 268.4 315.2 336.1 267.9 264.7

λSMB 189.3 190.0 193.6 188.8 201.9 200.2 169.8 194.0

λHML 229.1 235.3 224.4 244.4 242.8 252.5 196.7 224.0

λ̂1

λ0 797.3 423.5 653.2 405.0 847.6 771.5 181.7 603.6

λMKT 342.3 196.4 757.9 282.6 1146.9 176.8 161.3 704.8

λSMB 608.3 183.8 356.3 149.9 390.1 669.7 153.6 114.3

λHML 512.9 520.4 238.8 259.1 252.5 919.9 161.1 203.8

λ̂2

λ0 625.6 703.5 577.4 412.6 804.4 617.3 172.7 714.4

λMKT 223.5 369.4 644.2 313.7 1025.3 170.8 170.3 812.0

λSMB 692.4 323.9 311.8 130.6 333.4 584.2 132.2 121.3

λHML 302.3 551.0 260.2 219.8 160.0 729.5 157.9 147.8

Continued on next page
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Table 2 – continued from previous page

HXZ4 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1115.2 404.8 1212.8 455.0 2014.4 -244.8 37.6 1420.2

fME 1726.6 420.2 -391.4 225.4 -436.2 1435.6 258.2 188.4

fI/A 302.8 875.4 657.4 364.4 75.4 1113.4 -56.6 362.6

fROE 359.8 1022.8 921.0 1116.4 731.8 593.2 348.0 186.4

λ̂TS
IV

λ0 442.5 410.5 477.8 485.9 540.7 517.6 427.5 468.2

λMKT 348.7 358.5 399.8 371.4 446.6 404.0 350.2 351.7

λME 324.1 348.3 354.4 374.6 358.4 328.1 251.7 341.7

λI/A 257.7 391.9 331.3 336.5 323.9 255.3 191.0 287.2

λROE 420.2 506.3 479.8 509.5 518.9 476.7 318.7 441.3

λ̂IT
IV

λ0 444.4 410.5 478.7 486.3 543.4 519.7 429.1 469.8

λMKT 349.9 358.3 399.8 371.3 448.5 406.2 351.5 352.5

λME 325.1 346.7 352.9 373.1 357.2 327.9 252.0 341.3

λI/A 259.5 393.5 333.3 337.0 325.1 256.6 192.3 288.5

λROE 423.8 507.1 481.0 513.0 521.0 478.8 320.5 444.2

λ̂1

λ0 1077.9 609.4 756.8 549.6 1161.1 958.5 238.7 928.9

λMKT 487.5 209.5 697.5 290.7 1261.3 234.0 184.2 805.0

λME 961.5 474.0 213.5 331.9 314.8 1097.4 201.0 130.0

λI/A 340.0 701.5 499.6 317.9 136.8 685.3 112.3 291.0

λROE 455.8 631.6 501.4 855.3 471.1 483.5 251.7 344.9

λ̂2

λ0 873.1 690.6 800.3 576.6 1282.1 719.1 241.8 861.0

λMKT 311.2 305.6 685.9 325.7 1282.0 253.2 166.7 782.1

λME 970.7 437.0 148.2 310.7 162.5 726.1 235.1 101.7

λI/A 242.8 626.6 540.7 286.1 130.9 463.0 80.7 226.5

λROE 446.4 652.7 652.5 859.5 560.0 232.3 288.1 216.9

40



Table 3: Efficiency Gain : Root mean square error in the estimation of λ with normally distributed
shocks: the role of the EIV correction through the IV-GMM approach. This table presents simulation

results on the root mean square error (RMSE), in annualized basis points, in the estimation of λ =
[
λ0 λ′

f

]′
,

where λf = [ λ1 · · · λK ]
′
is the vector of ex-post risk premia and K is the number of factors. The shocks uit

are assumed to follow a normal distribution and the factor realizations are kept fixed throughout. The number
of individual stocks, N , is equal to 1,000 and the number of clusters, MN , is set equal to 50. The pairwise
correlation of shocks, assumed to be constant within each cluster, is set equal to 0.10. The simulation is calibrated
to the following three linear asset pricing models: the single-factor CAPM, the three-factor Fama and French
(1993) model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1
and λMKT is the ex-post risk premia of MKT. For FF3, K = 3 and λMKT, λSMB, and λHML are the ex-post risk premia
of MKT, SMB, and HML, respectively. For HXZ4, K = 4 and λMKT, λME, λI/A, and λROE are the ex-post risk
premia of MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider the IV estimator λ̂IV, while for

the FF3 and HXZ4 models, we consider the two-step and iterated IV-GMM estimators, i.e., λ̂TS
IV and λ̂IT

IV. In

addition, we consider two alternative estimators λ̂1 = (X̂′
1X̂1)

−1X̂′
1r2 and λ̂2 = (X̂′

2X̂2)
−1X̂′

2r2 that ignore the
EIV problem. The results are based on 50,000 Monte Carlo repetitions.

FF3 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

fSMB 1576.0 470.2 -451.6 158.0 -369.4 1002.4 131.4 149.2

fHML 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0

λ̂TS
IV

λ0 308.2 280.9 336.6 324.2 358.2 397.4 305.6 270.3

λMKT 273.5 266.2 289.7 267.8 314.7 335.1 267.1 264.6

λSMB 189.1 190.2 194.0 189.0 202.0 200.3 169.5 194.3

λHML 228.2 234.4 223.8 243.9 241.9 251.7 196.0 223.5

λ̂IT
IV

λ0 309.0 281.3 337.3 324.7 359.2 398.4 306.4 270.4

λMKT 274.1 266.3 290.4 268.4 315.2 336.1 267.9 264.7

λSMB 189.3 190.0 193.6 188.8 201.9 200.2 169.8 194.0

λHML 229.1 235.3 224.4 244.4 242.8 252.5 196.7 224.0

λ̂STD
IV

α 342.6 328.7 383.6 387.4 410.0 462.0 326.3 297.7

λMKT 343.9 391.6 379.9 320.7 414.3 406.5 303.9 392.8

λSMB 253.8 311.7 319.0 317.0 319.3 273.5 208.0 346.6

λHML 265.6 282.5 267.7 339.5 302.2 316.7 224.8 281.1

Continued on next page
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Table 3 – continued from previous page

HXZ4 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1115.2 404.8 1212.8 455.0 2014.4 -244.8 37.6 1420.2

fME 1726.6 420.2 -391.4 225.4 -436.2 1435.6 258.2 188.4

fI/A 302.8 875.4 657.4 364.4 75.4 1113.4 -56.6 362.6

fROE 359.8 1022.8 921.0 1116.4 731.8 593.2 348.0 186.4

λ̂TS
IV

λ0 442.5 410.5 477.8 485.9 540.7 517.6 427.5 468.2

λMKT 348.7 358.5 399.8 371.4 446.6 404.0 350.2 351.7

λME 324.1 348.3 354.4 374.6 358.4 328.1 251.7 341.7

λI/A 257.7 391.9 331.3 336.5 323.9 255.3 191.0 287.2

λROE 420.2 506.3 479.8 509.5 518.9 476.7 318.7 441.3

λ̂IT
IV

λ0 444.4 410.5 478.7 486.3 543.4 519.7 429.1 469.8

λMKT 349.9 358.3 399.8 371.3 448.5 406.2 351.5 352.5

λME 325.1 346.7 352.9 373.1 357.2 327.9 252.0 341.3

λI/A 259.5 393.5 333.3 337.0 325.1 256.6 192.3 288.5

λROE 423.8 507.1 481.0 513.0 521.0 478.8 320.5 444.2

λ̂STD
IV

α 484.2 466.6 573.1 756.7 647.5 560.0 492.2 635.0

λMKT 396.0 520.8 491.5 475.1 564.3 456.2 430.0 538.0

λME 425.5 597.5 622.9 902.3 578.1 393.7 278.2 560.5

λI/A 296.6 508.4 426.8 580.3 415.2 286.2 208.3 359.1

λROE 495.1 678.0 617.8 821.7 724.2 554.5 376.4 673.7
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Table 5: Betas of Decile Portfolios Sorted by Characteristics. In this table, we consider decile portfolios
sorted on a characteristic and present the beta estimates of these portfolios with respect to the corresponding
spread factor within the context of the three asset pricing models we empirically examine: the FF3 model, the
HXZ4 model, and the FF5 model. For each asset pricing model, the decile portfolio betas are estimated jointly
for all factors using data from 07/1970 to 12/2014.

Decile Portfolios Sorted by Characteristic

LOW HIGH

Model Factor Characteristic 1 2 3 4 5 6 7 8 9 10

FF3 SMB SIZE 1.19 1.10 0.92 0.81 0.69 0.49 0.38 0.28 0.07 -0.29

HML BTM -0.50 -0.10 0.04 0.28 0.33 0.36 0.52 0.69 0.69 0.96

HXZ4 ME SIZE 1.04 1.00 0.86 0.79 0.66 0.48 0.37 0.26 0.08 -0.27

I/A I/A 0.37 0.45 0.29 0.14 0.11 -0.03 -0.12 -0.30 -0.56 -0.42

ROE ROE -0.33 -0.25 0.01 0.01 -0.15 0.06 0.09 0.10 0.23 0.32

FF5 SMB SIZE 1.12 1.06 0.92 0.83 0.69 0.50 0.38 0.25 0.06 -0.28

HML BTM -0.43 -0.19 -0.06 0.22 0.24 0.35 0.44 0.70 0.69 0.97

RMW OP -0.90 -0.41 -0.27 -0.16 0.01 -0.05 0.07 0.21 0.35 0.43

CMA AG 0.63 0.67 0.68 0.27 0.22 0.10 0.04 -0.14 -0.62 -0.53
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Table 6: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of λ = [ λ0 λMKT ]

′
and the various

statistics along with the corresponding p-values for testing the implications of the CAPM. We consider 8 non-
overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting period consists of
the preceding five years. We report point estimates, in annualized percentages, based on the IV estimator λ̂IV.
The null hypothesis implied by the CAPM is λ0 = 0 and λMKT = f MKT. We report the J(λ) and Jd(λ) joint test
statistics given by (49) and (52), respectively, as well as the t(λ0) and t(λMKT) test statistics given by (50) and
(51), respectively. The corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1204 1736 1706 1942 1967 2098 1999 1926

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

Estimates of λ: λ̂IV

λ0 -3.22 4.85 25.10 0.24 4.02 18.65 -8.49 13.44

λMKT 20.33 4.72 -14.57 9.16 12.13 0.07 11.10 4.10

Test Statistics

J(λ) 135.37 15.54 36.33 39.19 17.31 730.75 73.28 92.46

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 25.68 4.84 51.92 6.03 17.61 121.99 4.38 165.34

p-value [0.000] [0.110] [0.000] [0.079] [0.002] [0.000] [0.138] [0.000]

t(λ0) -1.48 2.20 4.82 0.15 2.11 10.90 -0.96 9.59

p-value [0.139] [0.028] [0.000] [0.878] [0.035] [0.000] [0.337] [0.000]

t (λMKT) 4.85 0.10 -5.35 2.45 -3.63 1.81 1.86 -8.57

p-value [0.000] [0.918] [0.000] [0.014] [0.000] [0.071] [0.063] [0.000]
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Table 7: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of λ = [ λ0 λMKT λSMB λHML ]

′
and the

various statistics along with the corresponding p-values for testing the implications of the FF3 model. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis implied by the FF3 model is

λ0 = 0, λMKT = f MKT, λSMB = f SMB, and λHML = f HML. We report the J(λ) and Jd(λ) joint test statistics given by
(49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and t(λMKT), t(λSMB), and t(λHML) test
statistics given by (51). The corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1204 1733 1704 1941 1959 2090 1994 1920

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

fHML 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88

Estimates of λ: λ̂TS
IV

λ0 6.13 -1.02 14.31 2.31 6.14 14.09 -9.57 11.34

λMKT 6.26 4.31 -3.54 3.15 8.90 -9.33 6.02 2.67

λSMB 15.43 8.06 -1.91 5.15 4.66 22.61 10.39 5.84

λHML 1.97 12.10 6.35 -1.97 -6.26 10.05 7.24 1.94

Estimates of λ: λ̂IT
IV

λ0 5.73 0.42 18.51 2.32 6.16 17.64 -8.32 11.62

λMKT 6.66 2.99 -2.46 2.61 8.88 -12.69 4.82 2.46

λSMB 15.39 8.58 -3.75 4.96 4.68 23.99 10.75 5.80

λHML 1.96 11.46 -6.86 -0.59 -6.28 9.19 7.87 2.11

Continued on next page
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Table 7 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 14.72 10.28 39.41 23.09 46.42 177.04 43.95 191.35

p-value [0.005] [0.036] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 11.63 8.96 19.65 26.03 49.29 69.85 7.82 179.22

p-value [0.059] [0.105] [0.009] [0.001] [0.000] [0.000] [0.132] [0.000]

t(λ0) 2.17 -0.22 2.50 1.38 1.51 4.86 -1.43 9.78

p-value [0.030] [0.826] [0.012] [0.169] [0.131] [0.000] [0.152] [0.000]

t (λMKT) -1.83 -0.05 -3.12 -1.12 -3.86 -2.97 0.93 -8.71

p-value [0.068] [0.957] [0.002] [0.263] [0.000] [0.003] [0.350] [0.000]

t (λSMB) -0.29 2.92 1.65 4.27 5.66 5.81 1.99 2.53

p-value [0.774] [0.003] [0.099] [0.000] [0.000] [0.000] [0.047] [0.011]

t (λHML) -1.87 0.60 0.96 -2.16 -0.32 -1.93 0.98 1.16

p-value [0.061] [0.547] [0.338] [0.030] [0.748] [0.053] [0.329] [0.245]

Test Statistics: λ̂IT
IV

J(λ) 15.04 15.27 55.88 20.26 46.52 170.02 41.37 265.91

p-value [0.005] [0.004] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 10.65 11.87 30.88 24.09 49.42 83.32 7.09 207.81

p-value [0.071] [0.056] [0.001] [0.001] [0.000] [0.000] [0.162] [0.000]

t(λ0) 2.04 0.09 3.82 1.40 1.52 5.35 -1.17 10.70

p-value [0.042] [0.928] [0.000] [0.162] [0.130] [0.000] [0.242] [0.000]

t (λMKT) -1.69 -0.38 -3.38 -1.54 -3.86 -4.02 0.72 -9.24

p-value [0.090] [0.701] [0.001] [0.123] [0.000] [0.000] [0.473] [0.000]

t (λSMB) -0.32 3.39 0.81 4.14 5.67 5.85 2.02 2.52

p-value [0.749] [0.001] [0.417] [0.000] [0.000] [0.000] [0.043] [0.012]

t (λHML) -1.88 0.47 -2.06 -1.61 -0.33 -2.09 1.06 1.22

p-value [0.060] [0.641] [0.039] [0.108] [0.743] [0.037] [0.289] [0.221]
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Table 8: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of λ = [ λ0 λMKT λME λI/A λROE ]

′
and

the various statistics along with the corresponding p-values for testing the implications of the HXZ4 model. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis implied by the HXZ4 model

is λ0 = 0, λMKT = f MKT, λME = f ME, λI/A = f I/A, and λROE = f ROE. We report the J(λ) and Jd(λ) joint test statistics
given by (49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and t(λMKT), t(λME), t(λI/A),
and t(λROE) test statistics given by (51). The corresponding p-values are reported in square brackets below the
test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1059 1598 1527 1709 1627 1740 1610 1560

Average Factor Realizations

fMKT 11.15 4.05 12.13 4.55 20.14 -2.45 0.38 14.20

fME 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88

fI/A 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63

fROE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86

Estimates of λ: λ̂TS
IV

λ0 1.55 3.19 6.85 2.77 16.50 17.98 -0.20 13.72

λMKT 11.26 0.80 6.83 2.21 0.17 -5.10 2.97 2.50

λME 17.48 7.01 -0.66 6.29 1.30 27.86 8.05 0.96

λI/A 0.26 11.20 3.12 -3.49 -8.82 0.37 1.56 14.81

λROE 2.22 -5.49 9.91 -0.41 -5.24 11.35 2.97 0.92

Estimates of λ: λ̂IT
IV

λ0 2.52 5.51 4.19 6.84 6.98 16.25 1.12 13.92

λMKT 10.16 -1.87 9.69 -3.00 7.06 -4.68 -1.12 2.35

λME 18.12 8.30 -0.53 3.11 4.00 38.52 11.14 0.77

λI/A -0.09 8.42 2.68 -5.25 -4.83 0.72 1.16 14.79

λROE 2.53 -5.06 11.87 -6.83 -5.84 16.85 -1.23 0.42

Continued on next page
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Table 8 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 7.24 49.55 45.64 150.08 113.06 331.54 113.43 70.23

p-value [0.204] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 0.85 4.25 5.34 4.07 33.76 24.60 4.32 71.27

p-value [0.867] [0.362] [0.310] [0.367] [0.003] [0.006] [0.408] [0.000]

t(λ0) 0.40 0.34 0.71 0.55 1.63 4.13 -0.04 4.97

p-value [0.687] [0.733] [0.476] [0.585] [0.104] [0.000] [0.968] [0.000]

t (λMKT) 0.03 -0.27 -0.56 -0.40 -2.28 -0.84 0.44 -6.32

p-value [0.979] [0.786] [0.577] [0.689] [0.022] [0.401] [0.658] [0.000]

t (λME) 0.13 1.13 1.58 0.67 2.16 1.69 1.84 -0.30

p-value [0.896] [0.257] [0.115] [0.501] [0.030] [0.091] [0.065] [0.765]

t (λI/A) -0.81 0.21 -1.42 -1.52 -2.61 -1.80 0.84 2.54

p-value [0.420] [0.831] [0.156] [0.128] [0.009] [0.071] [0.400] [0.011]

t (λROE) -0.16 -1.65 0.16 -0.92 -3.79 0.87 -0.12 -0.17

p-value [0.876] [0.099] [0.875] [0.357] [0.000] [0.386] [0.905] [0.869]

Test Statistics: λ̂IT
IV

J(λ) 8.41 60.43 39.40 109.25 98.46 307.05 115.89 70.65

p-value [0.135] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 1.84 7.72 5.70 8.88 34.23 21.21 8.44 73.93

p-value [0.691] [0.209] [0.288] [0.175] [0.003] [0.011] [0.167] [0.000]

t(λ0) 0.69 0.67 0.44 1.29 0.78 3.06 0.26 5.03

p-value [0.492] [0.505] [0.661] [0.197] [0.434] [0.002] [0.793] [0.000]

t (λMKT) -0.26 -0.56 -0.26 -1.32 -1.85 -0.62 -0.30 -6.47

p-value [0.798] [0.574] [0.797] [0.186] [0.065] [0.538] [0.765] [0.000]

t (λME) 0.55 1.91 1.57 0.15 3.25 2.70 2.57 -0.36

p-value [0.583] [0.056] [0.117] [0.884] [0.001] [0.007] [0.010] [0.718]

t (λI/A) -0.99 -0.03 -1.63 -1.82 -1.66 -1.28 0.62 2.56

p-value [0.322] [0.974] [0.102] [0.069] [0.097] [0.202] [0.538] [0.010]

t (λROE) -0.13 -1.82 0.56 -1.46 -4.11 1.61 -1.14 -0.25

p-value [0.896] [0.069] [0.574] [0.143] [0.000] [0.108] [0.252] [0.799]
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Table 9: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters. This table presents the point estimates of λ = [ λ0 λMKT λSMB λHML λRMW λCMA ]

′

and the various statistics along with the corresponding p-values for testing the implications of the FF5 model.
We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis implied by the FF5 model

is λ0 = 0, λMKT = f MKT, λSMB = f SMB, λHML = f HML, λRMW = f RMW, and λCMA = f CMA. We report the J(λ) and Jd(λ)
joint test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and
t(λMKT), t(λSMB), t(λHML), t(λRMW), and t(λCMA) test statistics given by (51). The corresponding p-values are reported
in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1193 1719 1692 1882 1811 2049 1956 1885

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 17.33 4.14 -4.82 1.57 -5.30 12.78 1.63 1.54

fHML 6.53 9.35 2.57 2.70 -5.51 15.00 2.08 -0.93

fRMW 0.10 4.04 5.51 4.70 0.94 10.23 4.73 0.71

fCMA 1.72 6.24 5.22 1.74 -1.69 13.93 -0.28 2.90

Estimates of λ: λ̂TS
IV

λ0 1.28 7.42 20.42 3.41 4.38 10.94 -4.57 8.73

λMKT 9.51 -3.67 -6.31 0.16 11.06 -7.54 7.99 6.28

λSMB 18.39 5.56 -5.84 7.29 3.44 27.70 1.15 5.87

λHML 2.16 4.65 3.76 0.05 -6.44 4.32 8.24 -0.53

λRMW -3.36 -0.09 -4.50 -5.67 -2.48 4.27 -5.95 -6.37

λCMA -2.09 6.72 -2.06 -5.37 -4.47 3.64 -7.43 6.53

Estimates of λ: λ̂IT
IV

λ0 2.04 4.23 31.58 3.91 3.45 10.93 0.12 8.64

λMKT 9.26 -2.46 -13.05 -0.89 11.67 -7.38 3.43 6.38

λSMB 16.79 8.28 -11.77 6.51 3.74 26.93 3.17 6.85

λHML 1.84 -1.73 6.57 1.82 -6.53 4.52 13.55 -1.33

λRMW -2.24 0.83 -8.68 -4.33 -2.18 3.95 -6.53 -8.44

λCMA -1.14 7.84 -6.35 -4.75 -3.80 2.97 -4.37 6.22

Continued on next page
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Table 9 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 49.00 7.86 26.70 56.51 46.16 222.33 145.50 170.52

p-value [0.000] [0.249] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 5.74 6.16 17.31 59.11 29.92 45.86 12.64 91.55

p-value [0.345] [0.354] [0.052] [0.000] [0.002] [0.000] [0.103] [0.000]

t(λ0) 0.24 1.17 1.94 1.58 0.88 4.35 -0.93 6.37

p-value [0.811] [0.243] [0.052] [0.115] [0.377] [0.000] [0.354] [0.000]

t (λMKT) -0.34 -1.22 -1.99 -1.95 -2.50 -2.10 1.73 -5.46

p-value [0.733] [0.224] [0.046] [0.051] [0.013] [0.036] [0.084] [0.000]

t (λSMB) 0.72 1.13 -0.31 4.33 4.47 2.82 -0.14 2.75

p-value [0.470] [0.259] [0.760] [0.000] [0.000] [0.005] [0.889] [0.006]

t (λHML) -1.83 -0.99 0.31 -1.08 -0.41 -2.93 1.14 0.28

p-value [0.067] [0.322] [0.755] [0.279] [0.683] [0.003] [0.254] [0.779]

t (λRMW) -0.88 -1.02 -2.60 -4.03 -1.47 -2.21 -2.24 -2.95

p-value [0.378] [0.310] [0.009] [0.000] [0.142] [0.027] [0.025] [0.003]

t (λCMA) -0.96 0.18 -1.62 -4.08 -0.78 -1.01 -1.56 2.19

p-value [0.338] [0.861] [0.105] [0.000] [0.438] [0.312] [0.118] [0.029]

Test Statistics: λ̂IT
IV

J(λ) 54.42 29.72 16.69 46.56 45.54 223.34 183.06 204.85

p-value [0.000] [0.000] [0.010] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 7.74 16.46 14.20 56.53 30.12 46.19 12.32 88.97

p-value [0.249] [0.049] [0.092] [0.000] [0.002] [0.000] [0.112] [0.000]

t(λ0) 0.43 0.68 1.66 1.96 0.74 4.36 0.02 5.94

p-value [0.665] [0.498] [0.096] [0.049] [0.458] [0.000] [0.984] [0.000]

t (λMKT) -0.43 -1.07 -1.53 -2.59 -2.47 -2.12 0.74 -5.28

p-value [0.664] [0.283] [0.127] [0.010] [0.013] [0.034] [0.462] [0.000]

t (λSMB) -0.44 3.06 -1.22 3.81 4.59 2.70 0.46 3.27

p-value [0.663] [0.002] [0.222] [0.000] [0.000] [0.007] [0.645] [0.001]

t (λHML) -2.45 -2.12 0.76 -0.38 -0.45 -2.93 2.31 -0.30

p-value [0.014] [0.034] [0.448] [0.700] [0.655] [0.003] [0.021] [0.767]

t (λRMW) -0.71 -0.79 -2.12 -3.75 -1.36 -2.37 -2.32 -3.37

p-value [0.475] [0.429] [0.034] [0.000] [0.172] [0.018] [0.020] [0.001]

t (λCMA) -0.82 0.61 -1.59 -4.16 -0.61 -1.10 -0.93 1.92

p-value [0.414] [0.541] [0.111] [0.000] [0.539] [0.273] [0.353] [0.055]
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Online Appendix for

“Ex-post Risk Premia Tests using Individual Stocks:

The IV-GMM solution to the EIV problem”

In this Online Appendix, we present (i) an illustration of the IV approach for addressing the

EIV problem in the context of a linear regression model; (ii) a proof that the IV-GMM estimator

is at least as efficient as the exactly-identified IV estimator; (iii) additional simulation results

under the assumption that the shocks follow a Student-t distribution; and (iv) robustness checks

of the empirical results where we use alternative price filters and clustering schemes.

Using IV to address the EIV problem in a linear regression model

Consider the standard linear regression model:

yi = x′
ib+ εi, i = 1, . . . , N, (78)

where the M -dimensional regressor x satisfies the orthogonality condition E[xε] = 0M . How-

ever, the regressor x is not observed. Instead, we observe the noisy proxy xa = x+ua where the

measurement error ua is uncorrelated with the true regressor x: E[xu′
a] = 0M×M . However, ua

is correlated with the disturbance ε: E[uaε] ̸= 0M . Regressing ε on ua we obtain ε = u′
ad+w.

Expressed in terms of the noisy proxy xa, the regression equation assumes the form

yi = x′
a,ib+ εa,i, i = 1, . . . , N, (79)

where εa = ε− u′
ab. Then,

E[xaεa] = E[(x+ ua)(ε− u′
ab)] = E[uau

′
a](d− b). (80)

Hence, unless d = b, we have E[xaεa] ̸= 0M and so we cannot use the noisy proxy xa as an

OLS regressor to consistently estimate b.

Suppose that we also observe another noisy proxy xb = x+ub where the measurement error

ub is uncorrelated with the true regressor x, the measurement error ua, and the disturbance

1



ε: E[ubx
′] = 0M×M and E[ubu

′
a] = 0M×M and E[ubε] = 0M . Expressed in terms of the noisy

proxy xb, the regression equation assumes the form

yi = x′
b,ib+ εb,i, i = 1, . . . , N, (81)

where εb = ε− u′
bb. Then,

E[xbεb] = E[(x+ ub)(ε− u′
bb)] = −E[ubu

′
b]b. (82)

Hence, in the presence of non-trivial measurement error ub, we have E[xbεb] ̸= 0M and so we

cannot use the noisy proxy xb as an OLS regressor to consistently estimate b either. However,

the noisy proxy xb could be used as an instrument because

E[xbεa] = E[(x+ ub)(ε− u′
ab)] = 0M , (83)

which implies

E[xby] = E[xbx
′
a]b. (84)

Given the above assumptions about the measurement errors ua and ub, we have that E[xbx
′
a] =

E[xx′], which is a symmetric and positive definite matrix. The consistent IV estimator of b

then is

b̂IV =
(∑N

i=1
xb,ix

′
a,i

)−1 (∑N

i=1
xb,iyi

)
. (85)

Efficiency gains from using the IV-GMM estimator

As expected, the IV-GMM estimator that uses the characteristics as additional instruments is

at least as efficient as the IV estimator that only uses past beta estimates as instruments. Next,

we show that this is indeed the case. First, let

ẽi =
[
u′
2,[i] u′

2,[i] ⊗ u′
1,[i] u′

2,[i] ⊗ β′
i

]′
. (86)

2



It follows from Assumption 3, that, as N → ∞, 1√
N

∑N
i=1 ẽi

d−→ N(0T̃ ,Vẽ), where Vẽ is a

symmetric and positive definite T̃ × T̃ matrix, where T̃ = (1 + τ1 +K)τ2, and

Ve =

[
Ve,11 Ve,12

Ve,21 Ve,22

]
, (87)

where Ve,11 = Vẽ. Moreover, we have

Ω =

[
Ω1

Ω2

]
with Ω1 =

[
1 µ′

β

µβ Mβ

]
and Ω2 =

[
µc Mcβ

]
, (88)

and

Π =

[
Π11 Π12

Π21 Π22

]
with Π12 = 0(1+K)×(Lτ2), Π21 = 0L×(1+K+τ1)τ2 , Π22 = g′

2⊗ IL, (89)

and

Π11 =

[
g′
2 0′

τ1τ2
0′
Kτ2

0K×τ2 g′
2 ⊗G′

1 g′
2 ⊗ IK

]
. (90)

It is easily seen that the asymptotic variance-covariance matrix of the IV estimator is VIV =

Ω̃−1(Π̃VẽΠ̃
′)Ω̃−1, where Ω̃ = Ω1 and Π̃ = Π11. Recall that the asymptotic variance-covariance

matrix of the IV-GMM estimator is VGMM
IV =

(
Ω′ (ΠVeΠ

′)−1Ω
)−1

. To show that the IV-GMM

estimator is at least as efficient as the IV estimator, we need to show that VIV ≽ VGMM
IV , where

A ≽ B means that A−B is a positive semidefinite matrix. Next, we observe that

VIV ≽ VGMM
IV ⇔ Ω′ (ΠVeΠ

′)
−1

Ω ≽ Ω1(Π11Ve,11Π
′
11)

−1Ω1

⇔ Ω′ (ΠVeΠ
′)
−1

Ω ≽ Ω′

[
(Π11Ve,11Π

′
11)

−1 0(1+K)×L

0L×(1+K) 0L×L

]
Ω. (91)

Letting Q = ΠVeΠ
′, we obtain

Q ≡

[
Q11 Q12

Q21 Q22

]
=

[
Π11Ve,11Π

′
11 Π11Ve,12Π

′
22

Π22Ve,21Π
′
11 Π22Ve,22Π

′
22

]
(92)

3



It follows from the formula for the inverse of a partitioned matrix that

Q−1 ≡

[
Q11 Q12

Q21 Q22

]
, (93)

where Q11 = (Q11 −Q12Q
−1
22 Q21)

−1. It follows from (91) that, to show VIV ≽ VGMM
IV , it suffices

to show that Q11 ≽ (Π11Ve,11Π
′
11)

−1 ⇔ (Q11 − Q12Q
−1
22 Q21)

−1 ≽ Q−1
11 . The last relation is

equivalent to Q11 ≽ Q11−Q12Q
−1
22 Q21 which is obviously satisfied since Ve,22 is positive definite

and so Q22 is also positive definite. Hence, we have established that the IV-GMM ex-post risk

premia estimator is at least as efficient as the IV estimator.
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Monte Carlo simulation evidence

Table A1: Bias in the estimation of λ with Student-t distributed shocks: the role of the EIV
correction through the IV-GMM approach. This table presents simulation results on the absolute bias, in

annualized basis points, in the estimation of λ =
[
λ0 λ′

f

]′
, where λf = [ λ1 · · · λK ]

′
is the vector of ex-post

risk premia and K is the number of factors. The shocks uit are assumed to follow a Student-t distribution with
6 degrees of freedom and the factor realizations are kept fixed throughout. The number of individual stocks, N ,
is equal to 1,000 and the number of clusters, MN , is set equal to 50. The pairwise correlation of shocks, assumed
to be constant within each cluster, is set equal to 0.10. The simulation is calibrated to the following three linear
asset pricing models: the single-factor CAPM, the three-factor Fama and French (1993) model (FF3), and the
four-factor Hou, Xue, and Zhang (2015) model (HXZ4). For the CAPM, K = 1 and λMKT is the ex-post risk
premia of MKT. For FF3, K = 3 and λMKT, λSMB, and λHML are the ex-post risk premia of MKT, SMB, and HML,
respectively. For HXZ4, K = 4 and λMKT, λME, λI/A, and λROE are the ex-post risk premia of MKT, ME, I/A, and

ROE, respectively. For the CAPM, we consider the IV estimator λ̂IV while for the FF3 and HXZ4 models, we
consider both the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. In addition, we consider two

alternative estimators λ̂1 = (X̂′
1X̂1)

−1X̂′
1r2 and λ̂2 = (X̂′

2X̂2)
−1X̂′

2r2 that ignore the EIV problem. The results
are based on 50,000 Monte Carlo repetitions.

CAPM

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

λ̂IV

λ0 1.4 0.4 0.6 1.1 6.0 0.3 0.9 4.2

λMKT 1.9 0.6 0.9 1.7 6.0 0.4 0.6 4.8

λ̂1

λ0 359.5 179.1 466.6 160.5 999.4 132.0 15.8 571.0

λMKT 363.9 181.3 472.6 162.2 1013.3 133.7 15.7 578.5

λ̂2

λ0 441.6 168.4 416.2 233.8 880.0 107.4 16.5 710.2

λMKT 447.1 170.4 421.6 236.5 892.3 108.7 16.4 719.5

Continued on next page
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Table A1 – continued from previous page

FF3 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

fSMB 1576.0 470.2 -451.6 158.0 -369.4 1002.4 131.4 149.2

fHML 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0

λ̂TS
IV

λ0 0.8 3.8 9.8 5.1 5.3 9.2 0.3 1.9

λMKT 0.5 2.4 7.9 4.3 5.8 5.9 0.4 4.0

λSMB 3.3 0.3 0.8 1.1 1.7 2.4 0.0 2.1

λHML 2.2 4.3 5.0 1.7 1.4 6.4 0.2 2.9

λ̂IV: Iterated IV

λ0 1.0 4.0 10.3 5.3 5.9 10.2 0.2 1.7

λMKT 0.3 2.4 8.0 4.4 6.0 6.7 0.3 3.7

λSMB 3.6 0.4 0.9 1.0 1.4 2.4 0.1 1.8

λHML 2.2 4.8 5.8 2.0 1.8 7.3 0.2 3.2

λ̂1

λ0 777.2 387.3 633.9 371.0 830.6 755.1 81.4 578.0

λMKT 298.6 120.5 742.3 230.9 1135.7 78.2 5.2 687.1

λSMB 595.3 146.9 340.5 108.8 373.9 657.7 76.4 49.8

λHML 497.8 509.4 207.5 239.7 228.1 912.6 99.0 168.6

λ̂2

λ0 601.7 683.2 555.0 381.0 788.4 594.3 12.2 694.6

λMKT 158.6 332.8 624.2 276.3 1012.5 36.2 75.0 798.9

λSMB 684.2 304.9 293.8 77.1 308.2 567.8 83.8 74.2

λHML 281.9 538.5 240.5 192.3 111.3 717.7 112.2 116.9

Continued on next page
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Table A1 – continued from previous page

HXZ4 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1115.2 404.8 1212.8 455.0 2014.4 -244.8 37.6 1420.2

fME 1726.6 420.2 -391.4 225.4 -436.2 1435.6 258.2 188.4

fI/A 302.8 875.4 657.4 364.4 75.4 1113.4 -56.6 362.6

fROE 359.8 1022.8 921.0 1116.4 731.8 593.2 348.0 186.4

λ̂TS
IV

λ0 29.2 30.0 50.5 58.4 63.2 29.6 16.6 36.5

λMKT 5.1 4.9 20.9 14.5 38.6 17.4 10.9 24.2

λME 39.1 26.4 30.6 59.3 31.3 18.3 10.9 13.2

λI/A 10.4 40.3 43.5 33.9 22.1 7.7 1.9 9.9

λROE 45.4 24.2 36.0 88.8 42.3 20.6 15.8 29.4

λ̂IV: Iterated IV

λ0 33.3 34.3 57.3 65.0 71.3 35.0 19.4 41.2

λMKT 6.4 6.6 24.0 17.1 43.5 20.8 12.7 26.9

λME 43.5 27.6 33.2 63.7 35.0 21.1 12.6 15.2

λI/A 12.6 46.7 50.5 38.9 26.1 10.0 1.8 11.7

λROE 52.7 27.7 41.9 100.8 49.2 24.0 18.7 33.7

λ̂1

λ0 1059.7 578.0 730.8 517.9 1150.3 940.3 171.3 912.5

λMKT 454.1 127.2 674.1 234.2 1253.7 169.1 102.9 788.2

λME 950.5 457.3 180.2 314.9 293.6 1088.4 141.4 67.7

λI/A 327.9 698.4 493.6 309.7 115.4 679.3 56.8 281.6

λROE 439.8 622.0 487.0 849.5 460.3 473.8 215.6 328.6

λ̂2

λ0 850.6 662.1 775.9 550.4 1271.9 696.2 168.5 839.7

λMKT 263.3 249.9 660.9 288.9 1273.1 195.4 57.7 765.3

λME 962.8 420.5 103.3 289.3 97.6 710.5 208.3 15.7

λI/A 234.9 621.3 536.4 275.4 97.0 451.5 37.4 215.9

λROE 432.2 642.7 644.8 854.1 551.4 191.6 268.5 202.7
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Table A2: Root mean square error in the estimation of λ with Student-t distributed shocks: the
role of the EIV correction through the IV-GMM approach. This table presents simulation results on

the root mean square error (RMSE), in annualized basis points, in the estimation of λ =
[
λ0 λ′

f

]′
, where

λf = [ λ1 · · · λK ]
′
is the vector of ex-post risk premia and K is the number of factors. The shocks uit are

assumed to follow a Student-t distribution with 6 degrees of freedom and the factor realizations are kept fixed
throughout. The number of individual stocks, N , is equal to 1,000 and the number of clusters, MN , is set
equal to 50. The pairwise correlation of shocks, assumed to be constant within each cluster, is set equal to
0.10. The simulation is calibrated to the following three linear asset pricing models: the single-factor CAPM,
the three-factor Fama and French (1993) model (FF3), and the four-factor Hou, Xue, and Zhang (2015) model
(HXZ4). For the CAPM, K = 1 and λMKT is the ex-post risk premia of MKT. For FF3, K = 3 and λMKT, λSMB, and
λHML are the ex-post risk premia of MKT, SMB, and HML, respectively. For HXZ4, K = 4 and λMKT, λME, λI/A,
and λROE are the ex-post risk premia of MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider

the IV estimator λ̂IV while for the FF3 and HXZ4 models, we consider both the two-step and iterated IV-GMM
estimators, i.e., λ̂TS

IV and λ̂IT
IV. In addition, we consider two alternative estimators λ̂1 = (X̂′

1X̂1)
−1X̂′

1r2 and

λ̂2 = (X̂′
2X̂2)

−1X̂′
2r2 that ignore the EIV problem. The results are based on 50,000 Monte Carlo repetitions.

CAPM

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

λ̂IV

λ0 216.2 229.2 228.3 215.2 275.0 235.6 216.6 233.0

λMKT 224.6 237.9 237.2 224.3 283.8 244.2 225.6 241.8

λ̂1

λ0 389.7 230.9 489.8 218.8 1010.2 194.9 148.4 590.1

λMKT 393.0 230.3 494.5 219.2 1022.7 192.2 146.7 596.4

λ̂2

λ0 465.8 224.3 443.3 273.4 893.0 183.6 148.7 725.1

λMKT 469.6 224.1 447.6 271.6 904.1 182.5 145.6 732.8

Continued on next page
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Table A2 – continued from previous page

FF3 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 1552.4

fSMB 1576.0 470.2 -451.6 158.0 -369.4 1002.4 131.4 149.2

fHML 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0

λ̂TS
IV

λ0 308.6 281.4 333.9 323.9 361.1 399.5 306.9 269.3

λMKT 273.8 266.4 288.2 268.1 316.0 336.4 266.8 263.3

λSMB 188.6 190.2 192.5 188.9 200.8 200.9 170.1 195.2

λHML 229.2 234.7 223.3 245.1 242.9 251.8 197.0 224.0

λ̂IT
IV

λ0 309.4 281.6 334.5 324.8 361.6 400.4 307.4 269.4

λMKT 274.5 266.5 288.7 269.0 316.5 337.2 267.5 263.4

λSMB 188.8 190.0 192.5 188.6 200.6 201.1 170.4 194.8

λHML 229.9 235.3 223.9 245.6 243.4 252.3 197.5 224.2

λ̂1

λ0 796.3 422.7 654.1 404.7 846.5 771.7 183.1 604.0

λMKT 343.0 196.3 758.9 282.8 1145.9 176.3 161.1 704.3

λSMB 608.9 182.9 356.4 150.6 389.6 670.0 153.4 115.7

λHML 512.3 520.7 239.4 259.2 253.5 920.0 161.5 202.5

λ̂2

λ0 626.7 703.0 579.1 413.1 804.5 619.1 174.7 715.2

λMKT 225.0 369.4 646.2 314.2 1025.0 173.9 171.9 812.6

λSMB 693.4 323.5 312.5 132.9 333.3 584.7 133.3 122.8

λHML 303.3 551.7 260.8 220.8 161.6 729.8 158.7 150.0

Continued on next page
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Table A2 – continued from previous page

HXZ4 Model

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Average Factor Realizations

fMKT 1115.2 404.8 1212.8 455.0 2014.4 -244.8 37.6 1420.2

fME 1726.6 420.2 -391.4 225.4 -436.2 1435.6 258.2 188.4

fI/A 302.8 875.4 657.4 364.4 75.4 1113.4 -56.6 362.6

fROE 359.8 1022.8 921.0 1116.4 731.8 593.2 348.0 186.4

λ̂TS
IV

λ0 442.4 411.5 475.1 482.0 537.5 516.2 429.0 467.4

λMKT 348.7 359.3 397.3 371.0 444.8 403.1 349.5 351.4

λME 327.0 348.0 353.5 372.4 357.9 329.8 256.1 340.9

λI/A 257.4 391.1 329.0 331.7 324.7 256.5 190.8 287.9

λROE 422.2 506.6 475.8 505.3 520.3 477.8 320.9 439.1

λ̂IT
IV

λ0 443.8 412.4 476.4 482.5 540.3 517.6 430.6 468.7

λMKT 349.7 359.2 398.2 371.0 446.2 404.4 351.0 352.1

λME 327.5 347.1 352.0 371.2 357.4 329.7 256.4 340.3

λI/A 258.7 393.4 331.5 332.8 326.8 257.7 191.9 288.5

λROE 425.7 507.6 477.5 509.0 522.9 480.6 322.8 440.9

λ̂1

λ0 1076.2 610.3 756.2 550.9 1163.9 955.9 237.9 929.3

λMKT 487.0 210.9 696.4 292.2 1263.2 233.5 183.9 804.3

λME 959.8 473.5 214.1 331.9 314.9 1096.4 201.9 130.4

λI/A 339.2 701.2 499.8 317.7 137.7 685.0 112.0 290.9

λROE 455.2 632.3 500.6 855.4 470.6 483.9 251.7 345.7

λ̂2

λ0 872.7 690.7 799.6 578.3 1283.6 717.8 242.6 860.2

λMKT 311.5 306.0 685.0 328.1 1283.5 253.4 168.2 780.5

λME 970.5 436.5 149.8 310.7 164.0 726.3 235.7 103.0

λI/A 243.0 626.2 541.4 285.2 131.6 462.7 81.4 227.0

λROE 446.5 653.2 653.0 859.7 560.1 235.0 288.3 217.7
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Empirical evidence using 49 industry clusters and $3 price filter

Table A4: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters and $3 price filter. This table presents the point estimates of λ = [ λ0 λMKT ]

′

and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator λ̂IV. The null hypothesis implied by the CAPM is λ0 = 0 and λMKT = f MKT. We report the J(λ)
and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) and t(λMKT) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1026 1417 1456 1597 1553 1667 1477 1570

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

Estimates of λ: λ̂IV

λ0 -3.83 5.74 21.09 -1.12 3.28 16.17 -5.74 12.94

λMKT 20.43 3.66 -9.66 10.21 13.02 1.51 9.88 4.46

Test Statistics

J(λ) 104.49 17.51 25.36 41.25 17.48 803.86 147.03 69.39

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 18.52 6.42 46.28 10.04 15.89 168.53 4.91 125.29

p-value [0.002] [0.067] [0.000] [0.023] [0.003] [0.000] [0.117] [0.000]

t(λ0) -1.59 2.50 4.69 -0.73 1.86 12.67 -0.85 8.30

p-value [0.113] [0.012] [0.000] [0.466] [0.063] [0.000] [0.393] [0.000]

t (λMKT) 4.00 -0.40 -4.93 3.08 -3.53 2.84 2.04 -7.51

p-value [0.000] [0.686] [0.000] [0.002] [0.000] [0.004] [0.041] [0.000]
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Table A5: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML ]

′
and the various statistics along with the corresponding p-values for testing the implications

of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis

implied by the FF3 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, and λHML = f HML. We report the J(λ) and Jd(λ) joint
test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and t(λMKT),
t(λSMB), and t(λHML) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1026 1417 1455 1597 1549 1661 1474 1565

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

fHML 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88

Estimates of λ: λ̂TS
IV

λ0 4.09 2.79 16.90 1.76 4.33 9.40 -6.36 10.93

λMKT 7.70 2.48 -2.96 4.17 11.68 -2.11 7.76 3.96

λSMB 17.19 6.49 -3.15 6.61 3.45 17.55 5.48 5.14

λHML 2.96 7.14 -0.62 -3.46 -6.40 7.84 4.78 1.23

Estimates of λ: λ̂IT
IV

λ0 3.70 6.25 14.36 1.83 4.29 12.81 -5.93 11.08

λMKT 8.02 -0.66 1.20 4.00 11.72 -6.24 7.41 3.85

λSMB 17.17 6.34 -3.51 6.61 3.45 21.70 5.44 5.18

λHML 3.16 5.01 -4.53 -3.36 -6.42 5.82 5.22 1.26

Continued on next page
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Table A5 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 2.11 8.32 42.21 37.01 42.61 245.11 94.06 192.34

p-value [0.715] [0.081] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 5.88 2.85 30.22 33.14 36.74 49.10 6.79 135.75

p-value [0.211] [0.441] [0.000] [0.000] [0.000] [0.000] [0.172] [0.000]

t(λ0) 1.19 0.66 3.78 0.88 1.22 4.27 -1.20 8.13

p-value [0.235] [0.510] [0.000] [0.378] [0.221] [0.000] [0.229] [0.000]

t (λMKT) -1.08 -0.52 -3.65 -0.38 -3.42 0.59 1.49 -7.92

p-value [0.282] [0.602] [0.000] [0.703] [0.001] [0.557] [0.137] [0.000]

t (λSMB) 1.22 1.32 1.17 4.88 4.84 4.22 1.66 2.52

p-value [0.224] [0.187] [0.242] [0.000] [0.000] [0.000] [0.097] [0.012]

t (λHML) -1.36 -0.64 -1.11 -2.91 -0.38 -3.57 0.61 0.79

p-value [0.175] [0.525] [0.265] [0.004] [0.704] [0.000] [0.542] [0.432]

Test Statistics: λ̂IT
IV

J(λ) 1.91 14.21 63.45 36.85 42.54 270.36 88.51 248.43

p-value [0.753] [0.007] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 5.15 8.11 30.08 33.29 36.63 87.53 6.20 149.50

p-value [0.253] [0.135] [0.001] [0.000] [0.000] [0.000] [0.198] [0.000]

t(λ0) 1.07 1.62 3.74 0.92 1.21 4.98 -1.08 8.54

p-value [0.284] [0.106] [0.000] [0.357] [0.226] [0.000] [0.282] [0.000]

t (λMKT) -0.98 -1.45 -3.08 -0.48 -3.41 -1.69 1.37 -8.32

p-value [0.328] [0.147] [0.002] [0.628] [0.001] [0.091] [0.170] [0.000]

t (λSMB) 1.20 1.28 1.09 4.90 4.84 6.52 1.63 2.58

p-value [0.232] [0.200] [0.277] [0.000] [0.000] [0.000] [0.102] [0.010]

t (λHML) -1.27 -1.32 -2.33 -2.86 -0.39 -4.17 0.70 0.79

p-value [0.203] [0.186] [0.020] [0.004] [0.700] [0.000] [0.482] [0.428]
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Table A6: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of
λ = [ λ0 λMKT λME λI/A λROE ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the HXZ4 model is λ0 = 0, λMKT = f MKT, λME = f ME, λI/A = f I/A, and λROE = f ROE. We report
the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics
given by (50) and t(λMKT), t(λME), t(λI/A), and t(λROE) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 882 1288 1285 1389 1278 1358 1184 1286

Average Factor Realizations

fMKT 11.15 4.05 12.13 4.55 20.14 -2.45 0.38 14.20

fME 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88

fI/A 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63

fROE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86

Estimates of λ: λ̂TS
IV

λ0 2.32 10.11 5.45 16.46 1.06 11.32 0.44 12.96

λMKT 10.32 -6.76 9.42 -14.52 14.14 -1.41 0.50 3.90

λME 18.14 7.28 -2.41 0.01 2.17 22.00 10.45 1.66

λI/A 0.76 -0.46 0.44 -14.01 -4.01 6.93 7.24 10.59

λROE -0.58 -8.72 6.42 -27.05 -0.86 3.82 5.18 4.78

Estimates of λ: λ̂IT
IV

λ0 2.30 10.59 5.64 16.55 1.86 7.03 2.27 12.70

λMKT 10.33 -6.02 9.31 -14.47 13.56 0.28 -2.53 3.92

λME 18.15 7.59 -1.30 0.11 2.13 29.60 11.43 1.69

λI/A 0.83 -0.05 0.07 -13.83 -4.75 12.11 7.26 10.62

λROE -0.48 -6.25 9.79 -26.58 -1.39 2.89 4.40 3.67

Continued on next page
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Table A6 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 23.60 58.83 98.52 29.89 60.21 307.24 49.58 78.27

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 1.29 37.62 3.92 2.57 15.78 10.05 9.48 63.11

p-value [0.789] [0.001] [0.452] [0.479] [0.057] [0.123] [0.137] [0.000]

t(λ0) 0.60 3.21 0.70 0.65 0.09 2.40 0.06 5.55

p-value [0.551] [0.001] [0.486] [0.515] [0.929] [0.016] [0.949] [0.000]

t (λMKT) -0.20 -2.48 -0.35 -0.68 -0.59 0.34 0.02 -5.26

p-value [0.841] [0.013] [0.726] [0.499] [0.553] [0.737] [0.986] [0.000]

t (λME) 0.69 2.03 0.64 -0.14 3.22 1.88 2.62 -0.24

p-value [0.492] [0.043] [0.523] [0.886] [0.001] [0.061] [0.009] [0.807]

t (λI/A) -0.48 -2.24 -1.56 -0.93 -1.18 -0.68 1.58 2.00

p-value [0.628] [0.025] [0.119] [0.353] [0.237] [0.496] [0.115] [0.045]

t (λROE) -0.44 -3.46 -0.69 -0.90 -1.92 -0.42 0.31 0.74

p-value [0.663] [0.001] [0.487] [0.370] [0.055] [0.674] [0.754] [0.458]

Test Statistics: λ̂IT
IV

J(λ) 23.22 93.56 91.49 30.86 62.68 264.73 47.97 86.53

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 1.27 41.26 6.01 2.60 17.70 13.04 11.01 64.55

p-value [0.798] [0.001] [0.283] [0.475] [0.044] [0.067] [0.106] [0.000]

t(λ0) 0.59 3.63 0.73 0.66 0.16 1.42 0.32 5.55

p-value [0.555] [0.000] [0.467] [0.506] [0.871] [0.156] [0.748] [0.000]

t (λMKT) -0.20 -2.51 -0.37 -0.68 -0.67 0.83 -0.40 -5.42

p-value [0.843] [0.012] [0.709] [0.494] [0.500] [0.409] [0.686] [0.000]

t (λME) 0.69 2.53 1.26 -0.14 3.28 3.16 2.89 -0.21

p-value [0.489] [0.011] [0.209] [0.890] [0.001] [0.002] [0.004] [0.832]

t (λI/A) -0.47 -2.21 -1.93 -0.93 -1.44 0.15 1.54 2.04

p-value [0.639] [0.027] [0.053] [0.352] [0.149] [0.883] [0.124] [0.041]

t (λROE) -0.42 -3.24 0.16 -0.90 -2.10 -0.56 0.17 0.49

p-value [0.671] [0.001] [0.873] [0.370] [0.036] [0.575] [0.865] [0.625]
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Table A7: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $3 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML λRMW λCMA ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the FF5 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, λHML = f HML, λRMW = f RMW, and λCMA = f CMA.
We report the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0)
test statistics given by (50) and t(λMKT), t(λSMB), t(λHML), t(λRMW), and t(λCMA) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1016 1404 1446 1555 1439 1643 1455 1552

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 17.33 4.14 -4.82 1.57 -5.30 12.78 1.63 1.54

fHML 6.53 9.35 2.57 2.70 -5.51 15.00 2.08 -0.93

fRMW 0.10 4.04 5.51 4.70 0.94 10.23 4.73 0.71

fCMA 1.72 6.24 5.22 1.74 -1.69 13.93 -0.28 2.90

Estimates of λ: λ̂TS
IV

λ0 5.07 13.21 10.41 -0.01 5.62 5.66 -5.19 9.13

λMKT 6.89 -7.89 3.23 4.38 12.76 -3.41 9.26 7.77

λSMB 18.73 4.17 -2.06 8.18 0.92 27.13 3.01 3.51

λHML 1.64 0.13 -2.36 -1.27 -6.30 6.65 5.88 -0.24

λRMW -1.05 -4.13 3.28 -3.45 -3.98 1.59 -5.91 -4.16

λCMA 1.25 3.50 -0.95 -4.18 -10.77 16.75 -4.42 7.14

Estimates of λ: λ̂IT
IV

λ0 6.59 -1.08 11.70 -6.87 6.68 4.99 -5.45 9.05

λMKT 5.36 4.73 3.50 11.26 11.50 -3.84 9.76 7.38

λSMB 17.28 7.95 -2.95 9.97 1.11 28.75 2.83 4.31

λHML 2.28 -1.60 -4.50 -4.19 -5.69 6.93 6.77 -0.07

λRMW -0.89 6.82 2.47 -0.04 -4.67 1.94 -6.71 -4.44

λCMA 1.14 9.36 -3.15 -2.86 -12.01 18.68 -3.67 7.53

Continued on next page
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Table A7 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 27.39 51.31 54.07 65.76 53.92 261.51 168.94 202.82

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 5.24 28.34 35.34 52.95 36.65 26.63 28.05 52.02

p-value [0.369] [0.005] [0.000] [0.000] [0.000] [0.007] [0.003] [0.000]

t(λ0) 0.90 3.06 2.94 -0.01 1.50 1.72 -1.91 5.09

p-value [0.370] [0.002] [0.003] [0.996] [0.134] [0.085] [0.056] [0.000]

t (λMKT) -0.79 -2.66 -2.62 -0.15 -2.62 -0.15 3.52 -3.87

p-value [0.432] [0.008] [0.009] [0.884] [0.009] [0.879] [0.000] [0.000]

t (λSMB) 0.85 0.03 2.85 4.38 3.76 3.55 0.77 1.56

p-value [0.398] [0.979] [0.004] [0.000] [0.000] [0.000] [0.441] [0.118]

t (λHML) -1.74 -2.63 -1.95 -1.60 -0.27 -2.00 0.82 0.31

p-value [0.081] [0.008] [0.051] [0.109] [0.790] [0.046] [0.410] [0.759]

t (λRMW) -0.25 -2.03 -1.18 -3.83 -1.98 -2.65 -2.66 -1.77

p-value [0.800] [0.043] [0.237] [0.000] [0.048] [0.008] [0.008] [0.077]

t (λCMA) -0.09 -0.91 -2.54 -4.06 -3.07 0.25 -1.90 2.33

p-value [0.930] [0.363] [0.011] [0.000] [0.002] [0.804] [0.057] [0.020]

Test Statistics: λ̂IT
IV

J(λ) 31.17 33.24 103.10 63.37 63.63 249.92 161.80 202.43

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 6.93 15.08 42.47 56.08 40.22 26.47 31.28 57.20

p-value [0.280] [0.050] [0.000] [0.000] [0.000] [0.007] [0.002] [0.000]

t(λ0) 1.39 -0.24 3.12 -1.50 1.71 1.49 -2.07 5.06

p-value [0.164] [0.807] [0.002] [0.133] [0.088] [0.137] [0.039] [0.000]

t (λMKT) -1.26 0.05 -2.41 1.37 -2.99 -0.34 3.88 -4.08

p-value [0.208] [0.962] [0.016] [0.172] [0.003] [0.736] [0.000] [0.000]

t (λSMB) -0.04 2.39 1.97 5.82 3.57 3.77 0.67 2.23

p-value [0.972] [0.017] [0.048] [0.000] [0.000] [0.000] [0.500] [0.026]

t (λHML) -1.82 -2.78 -2.99 -2.47 -0.06 -1.91 1.00 0.38

p-value [0.069] [0.005] [0.003] [0.014] [0.954] [0.056] [0.315] [0.705]

t (λRMW) -0.28 0.54 -1.81 -1.84 -2.28 -2.47 -2.83 -1.89

p-value [0.783] [0.590] [0.070] [0.065] [0.023] [0.014] [0.005] [0.059]

t (λCMA) -0.12 1.12 -3.30 -2.94 -3.22 0.41 -1.57 2.51

p-value [0.903] [0.261] [0.001] [0.003] [0.001] [0.682] [0.116] [0.012]
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Empirical evidence using 49 industry clusters and $5 price filter

Table A8: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 49 industry clusters and $5 price filter. This table presents the point estimates of λ = [ λ0 λMKT ]

′

and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator λ̂IV. The null hypothesis implied by the CAPM is λ0 = 0 and λMKT = f MKT. We report the J(λ)
and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) and t(λMKT) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 849 1177 1253 1361 1300 1408 1219 1347

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

Estimates of λ: λ̂IV

λ0 -2.96 6.05 19.43 -0.21 2.71 15.99 -5.08 12.85

λMKT 18.90 3.45 -7.37 8.90 14.05 0.52 9.91 4.43

Test Statistics

J(λ) 64.34 23.53 22.53 46.30 10.37 686.00 139.35 49.10

p-value [0.000] [0.000] [0.000] [0.000] [0.006] [0.000] [0.000] [0.000]

Jd(λ) 13.29 5.62 43.13 7.18 8.19 171.14 7.71 95.84

p-value [0.010] [0.089] [0.000] [0.056] [0.039] [0.000] [0.049] [0.000]

t(λ0) -1.35 2.33 4.57 -0.14 1.33 12.91 -1.01 6.94

p-value [0.176] [0.020] [0.000] [0.892] [0.183] [0.000] [0.314] [0.000]

t (λMKT) 3.39 -0.42 -4.72 2.68 -2.53 2.10 2.59 -6.90

p-value [0.001] [0.672] [0.000] [0.007] [0.011] [0.036] [0.010] [0.000]
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Table A9: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML ]

′
and the various statistics along with the corresponding p-values for testing the implications

of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis

implied by the FF3 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, and λHML = f HML. We report the J(λ) and Jd(λ) joint
test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and t(λMKT),
t(λSMB), and t(λHML) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 849 1177 1252 1361 1296 1403 1216 1344

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

fHML 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88

Estimates of λ: λ̂TS
IV

λ0 1.32 6.95 15.84 2.78 4.64 6.82 -4.69 10.21

λMKT 10.27 -1.74 -1.63 3.52 12.67 0.81 6.29 5.12

λSMB 18.92 6.62 -3.16 6.53 3.17 13.69 6.42 5.24

λHML 3.75 5.75 0.09 -3.82 -7.42 9.17 4.85 -1.22

Estimates of λ: λ̂IT
IV

λ0 1.00 10.11 13.86 2.45 4.44 6.02 -3.33 10.48

λMKT 10.56 -4.35 1.00 3.75 12.83 0.29 5.14 4.96

λSMB 18.92 5.37 -3.58 6.76 3.20 16.50 6.51 5.21

λHML 3.91 2.12 -0.88 -4.01 -7.39 8.05 5.29 -1.18

Continued on next page
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Table A9 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 10.61 17.99 52.17 65.96 48.12 137.47 69.77 181.05

p-value [0.031] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 7.51 7.73 37.23 51.59 30.58 26.93 7.85 136.36

p-value [0.140] [0.146] [0.000] [0.000] [0.000] [0.001] [0.130] [0.000]

t(λ0) 0.42 1.63 4.21 1.47 1.33 3.13 -0.88 7.39

p-value [0.678] [0.102] [0.000] [0.140] [0.184] [0.002] [0.377] [0.000]

t (λMKT) -0.32 -1.53 -4.15 -0.71 -3.30 2.31 1.29 -8.73

p-value [0.751] [0.126] [0.000] [0.478] [0.001] [0.021] [0.198] [0.000]

t (λSMB) 2.43 1.27 1.06 6.09 4.18 2.10 2.25 2.35

p-value [0.015] [0.204] [0.287] [0.000] [0.000] [0.035] [0.025] [0.019]

t (λHML) -1.16 -1.05 -1.07 -3.43 -0.66 -2.70 0.60 -0.15

p-value [0.248] [0.292] [0.286] [0.001] [0.507] [0.007] [0.552] [0.880]

Test Statistics: λ̂IT
IV

J(λ) 10.68 19.06 54.62 68.87 47.88 134.57 66.63 258.37

p-value [0.030] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 7.22 18.88 34.55 51.72 30.46 37.01 6.58 159.93

p-value [0.149] [0.018] [0.000] [0.000] [0.000] [0.000] [0.184] [0.000]

t(λ0) 0.32 2.70 4.13 1.23 1.28 2.89 -0.59 8.00

p-value [0.752] [0.007] [0.000] [0.219] [0.199] [0.004] [0.556] [0.000]

t (λMKT) -0.22 -2.47 -3.81 -0.56 -3.27 2.11 0.99 -9.50

p-value [0.828] [0.014] [0.000] [0.576] [0.001] [0.035] [0.323] [0.000]

t (λSMB) 2.43 0.45 0.79 6.09 4.20 3.86 2.19 2.38

p-value [0.015] [0.654] [0.432] [0.000] [0.000] [0.000] [0.029] [0.017]

t (λHML) -1.08 -2.31 -1.53 -3.58 -0.65 -3.06 0.69 -0.13

p-value [0.278] [0.021] [0.127] [0.000] [0.517] [0.002] [0.493] [0.894]
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Table A10: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of
λ = [ λ0 λMKT λME λI/A λROE ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the HXZ4 model is λ0 = 0, λMKT = f MKT, λME = f ME, λI/A = f I/A, and λROE = f ROE. We report
the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics
given by (50) and t(λMKT), t(λME), t(λI/A), and t(λROE) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 709 1056 1091 1166 1054 1125 984 1127

Average Factor Realizations

fMKT 11.15 4.05 12.13 4.55 20.14 -2.45 0.38 14.20

fME 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88

fI/A 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63

fROE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86

Estimates of λ: λ̂TS
IV

λ0 -0.51 8.19 0.99 11.59 0.84 9.22 -2.96 13.85

λMKT 12.27 -5.91 13.80 -7.74 14.53 -1.12 6.61 3.46

λME 19.69 9.55 -0.04 1.35 2.67 21.18 8.85 1.75

λI/A -1.44 0.30 3.77 -6.78 -4.20 10.11 2.91 8.63

λROE -5.68 -12.41 9.68 -13.28 -0.20 3.58 9.57 3.74

Estimates of λ: λ̂IT
IV

λ0 2.27 8.03 1.11 12.09 0.70 7.61 -6.40 13.94

λMKT 9.88 -5.73 13.61 -8.40 14.64 -1.07 9.63 3.00

λME 18.04 9.59 0.10 1.12 2.83 24.19 11.77 1.88

λI/A -3.33 0.26 3.57 -7.43 -4.23 12.67 5.16 8.43

λROE -7.90 -12.68 10.13 -14.25 -0.39 5.23 15.45 3.51

Continued on next page
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Table A10 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 49.10 80.21 114.55 79.06 62.22 201.31 76.94 103.37

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 6.56 32.04 5.88 15.45 16.53 8.52 8.41 93.08

p-value [0.253] [0.001] [0.287] [0.070] [0.041] [0.169] [0.173] [0.000]

t(λ0) -0.14 2.26 0.16 1.47 0.08 1.99 -0.43 6.96

p-value [0.885] [0.024] [0.871] [0.140] [0.933] [0.046] [0.670] [0.000]

t (λMKT) 0.34 -2.35 0.27 -1.34 -0.67 0.44 0.82 -6.49

p-value [0.733] [0.019] [0.789] [0.179] [0.502] [0.657] [0.414] [0.000]

t (λME) 1.57 1.86 2.11 -0.21 3.40 2.02 2.34 -0.13

p-value [0.117] [0.063] [0.035] [0.833] [0.001] [0.044] [0.019] [0.896]

t (λI/A) -1.33 -1.80 -1.15 -2.45 -1.23 -0.20 1.19 1.51

p-value [0.184] [0.072] [0.252] [0.014] [0.220] [0.843] [0.235] [0.131]

t (λROE) -1.48 -3.83 0.13 -2.33 -1.74 -0.51 0.83 0.48

p-value [0.138] [0.000] [0.898] [0.020] [0.083] [0.610] [0.408] [0.631]

Test Statistics: λ̂IT
IV

J(λ) 31.39 84.35 111.22 80.54 62.42 171.74 47.39 104.57

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 7.72 32.26 6.58 15.81 17.17 8.62 13.32 101.47

p-value [0.197] [0.001] [0.249] [0.067] [0.037] [0.163] [0.073] [0.000]

t(λ0) 0.71 2.22 0.19 1.48 0.07 1.49 -0.69 7.13

p-value [0.479] [0.027] [0.853] [0.138] [0.944] [0.137] [0.493] [0.000]

t (λMKT) -0.42 -2.30 0.24 -1.37 -0.65 0.41 0.90 -6.95

p-value [0.673] [0.022] [0.807] [0.171] [0.513] [0.678] [0.366] [0.000]

t (λME) 0.65 1.90 2.21 -0.25 3.48 2.48 2.91 0.00

p-value [0.514] [0.058] [0.027] [0.800] [0.001] [0.013] [0.004] [0.999]

t (λI/A) -1.85 -1.80 -1.24 -2.49 -1.23 0.29 1.42 1.49

p-value [0.064] [0.072] [0.215] [0.013] [0.220] [0.775] [0.155] [0.137]

t (λROE) -1.78 -3.90 0.25 -2.34 -1.78 -0.14 1.23 0.44

p-value [0.075] [0.000] [0.801] [0.019] [0.076] [0.886] [0.218] [0.660]
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Table A11: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 49 industry clusters and $5 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML λRMW λCMA ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the FF5 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, λHML = f HML, λRMW = f RMW, and λCMA = f CMA.
We report the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0)
test statistics given by (50) and t(λMKT), t(λSMB), t(λHML), t(λRMW), and t(λCMA) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 842 1165 1245 1321 1208 1396 1204 1336

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 17.33 4.14 -4.82 1.57 -5.30 12.78 1.63 1.54

fHML 6.53 9.35 2.57 2.70 -5.51 15.00 2.08 -0.93

fRMW 0.10 4.04 5.51 4.70 0.94 10.23 4.73 0.71

fCMA 1.72 6.24 5.22 1.74 -1.69 13.93 -0.28 2.90

Estimates of λ: λ̂TS
IV

λ0 -0.42 11.40 7.35 0.49 5.65 7.32 -5.55 7.45

λMKT 11.87 -5.53 6.31 4.97 13.86 -3.11 10.43 9.13

λSMB 20.83 4.56 -1.95 6.82 -1.10 20.85 3.20 4.49

λHML 2.77 3.88 0.20 -1.96 -6.92 8.73 7.23 -3.46

λRMW -3.99 -2.00 2.76 -3.53 -2.38 0.18 -6.05 -4.51

λCMA 2.92 6.07 0.55 -5.22 -13.01 11.85 -4.61 6.35

Estimates of λ: λ̂IT
IV

λ0 1.04 0.70 7.68 3.32 7.47 6.89 -3.29 7.55

λMKT 11.06 2.70 6.25 2.17 11.59 -3.76 7.32 8.83

λSMB 19.68 8.15 -2.54 6.07 -2.73 23.68 4.53 4.99

λHML 2.11 2.95 0.44 -1.98 -5.34 7.41 4.44 -3.36

λRMW -2.34 1.23 3.33 -1.35 -2.26 -1.44 -4.14 -4.59

λCMA 3.00 11.94 -0.77 -4.91 -12.57 15.27 -5.71 6.42

Continued on next page
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Table A11 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 38.14 58.90 63.24 96.01 39.03 134.49 223.33 195.45

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 10.16 16.00 26.83 58.31 21.68 30.93 13.66 40.83

p-value [0.162] [0.069] [0.002] [0.000] [0.013] [0.005] [0.090] [0.001]

t(λ0) -0.10 2.48 1.98 0.21 1.30 2.67 -1.39 4.12

p-value [0.923] [0.013] [0.048] [0.831] [0.195] [0.008] [0.166] [0.000]

t (λMKT) 0.17 -2.31 -1.75 0.05 -2.27 0.00 2.32 -3.21

p-value [0.868] [0.021] [0.080] [0.961] [0.023] [0.997] [0.020] [0.001]

t (λSMB) 2.39 0.21 3.23 4.10 1.84 2.80 0.81 2.26

p-value [0.017] [0.836] [0.001] [0.000] [0.065] [0.005] [0.418] [0.024]

t (λHML) -1.63 -1.41 -1.24 -2.32 -0.45 -1.68 0.69 -1.16

p-value [0.103] [0.159] [0.214] [0.020] [0.656] [0.094] [0.493] [0.244]

t (λRMW) -1.28 -1.58 -1.87 -3.39 -0.91 -3.62 -1.72 -1.76

p-value [0.200] [0.113] [0.061] [0.001] [0.362] [0.000] [0.085] [0.078]

t (λCMA) 0.33 -0.04 -2.10 -4.96 -3.23 -0.21 -1.50 1.99

p-value [0.745] [0.967] [0.036] [0.000] [0.001] [0.834] [0.133] [0.047]

Test Statistics: λ̂IT
IV

J(λ) 39.16 32.33 108.84 84.01 61.21 179.70 219.70 210.56

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 7.42 11.93 22.88 65.76 24.89 45.45 13.71 45.01

p-value [0.270] [0.108] [0.009] [0.000] [0.008] [0.000] [0.084] [0.000]

t(λ0) 0.26 0.14 2.14 2.16 1.68 2.70 -0.90 4.20

p-value [0.796] [0.891] [0.033] [0.031] [0.094] [0.007] [0.369] [0.000]

t (λMKT) -0.03 -0.37 -1.83 -1.31 -3.24 -0.42 1.86 -3.40

p-value [0.975] [0.709] [0.067] [0.190] [0.001] [0.674] [0.063] [0.001]

t (λSMB) 1.92 1.96 2.24 4.24 1.24 4.03 1.48 2.69

p-value [0.055] [0.050] [0.025] [0.000] [0.213] [0.000] [0.140] [0.007]

t (λHML) -1.72 -1.94 -1.03 -2.59 0.05 -2.07 0.36 -1.13

p-value [0.085] [0.052] [0.304] [0.010] [0.959] [0.039] [0.722] [0.258]

t (λRMW) -0.77 -0.83 -1.56 -2.65 -1.00 -4.17 -1.64 -1.80

p-value [0.438] [0.408] [0.118] [0.008] [0.315] [0.000] [0.100] [0.072]

t (λCMA) 0.35 1.86 -2.54 -5.25 -3.01 0.14 -2.11 2.01

p-value [0.724] [0.063] [0.011] [0.000] [0.003] [0.888] [0.035] [0.045]
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Empirical evidence using 30 industry clusters and $1 price filter

Table A12: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014
using 30 industry clusters and $1 price filter. This table presents the point estimates of λ = [ λ0 λMKT ]

′

and the various statistics along with the corresponding p-values for testing the implications of the CAPM. We
consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting
period consists of the preceding five years. We report point estimates, in annualized percentages, based on the
IV estimator λ̂IV. The null hypothesis implied by the CAPM is λ0 = 0 and λMKT = f MKT. We report the J(λ)
and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) and t(λMKT) test statistics
given by (50) and (51), respectively. The corresponding p-values are reported in square brackets below the test
statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1223 1854 1762 1980 1954 2081 1983 1907

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

Estimates of λ: λ̂IV

λ0 -3.51 5.83 23.91 1.40 4.12 18.67 -8.69 13.47

λMKT 20.48 3.74 -13.74 8.07 12.11 0.07 11.25 4.04

Test Statistics

J(λ) 109.16 17.09 23.60 27.56 17.16 507.80 51.10 86.85

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 23.92 8.37 44.84 2.29 16.77 105.67 4.04 147.63

p-value [0.001] [0.033] [0.000] [0.282] [0.003] [0.000] [0.154] [0.000]

t(λ0) -1.49 2.86 4.63 0.64 1.91 10.16 -0.93 9.19

p-value [0.136] [0.004] [0.000] [0.523] [0.057] [0.000] [0.350] [0.000]

t (λMKT) 4.66 -0.42 -4.83 1.37 -3.62 1.55 1.78 -7.95

p-value [0.000] [0.672] [0.000] [0.170] [0.000] [0.121] [0.075] [0.000]
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Table A13: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to
2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML ]

′
and the various statistics along with the corresponding p-values for testing the implications

of the FF3 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For each testing
period, the pretesting period consists of the preceding five years. We report point estimates, in annualized
percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null hypothesis

implied by the FF3 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, and λHML = f HML. We report the J(λ) and Jd(λ) joint
test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics given by (50) and t(λMKT),
t(λSMB), and t(λHML) test statistics given by (51). The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1194 1716 1683 1912 1940 2072 1977 1900

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 15.76 4.70 -4.52 1.58 -3.69 10.02 1.31 1.49

fHML 6.51 9.31 2.52 2.69 -5.49 15.11 2.11 -0.88

Estimates of λ: λ̂TS
IV

λ0 6.90 -1.17 15.17 1.86 6.14 14.65 -9.41 10.90

λMKT 5.52 5.93 -5.06 3.55 9.25 -10.07 5.58 3.48

λSMB 15.59 6.36 -0.14 5.02 4.41 22.28 10.69 5.25

λHML 1.77 11.79 5.25 -2.16 -6.52 9.71 7.34 2.23

Estimates of λ: λ̂IT
IV

λ0 6.42 4.40 19.70 2.07 6.25 19.63 -7.25 11.51

λMKT 5.98 0.41 -1.92 2.06 9.15 -15.08 3.47 2.81

λSMB 15.52 6.60 -4.06 5.44 4.41 24.24 11.35 5.39

λHML 1.79 6.31 -12.24 -1.10 -6.55 8.69 8.33 2.28

Continued on next page

29
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Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 10.76 4.69 52.11 29.88 58.27 160.65 33.82 101.23

p-value [0.029] [0.320] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 11.58 3.30 30.66 24.03 58.52 49.89 7.81 117.79

p-value [0.058] [0.422] [0.001] [0.001] [0.000] [0.000] [0.135] [0.000]

t(λ0) 2.13 -0.26 2.66 1.46 1.36 3.98 -1.45 8.35

p-value [0.033] [0.798] [0.008] [0.145] [0.174] [0.000] [0.146] [0.000]

t (λMKT) -1.82 0.35 -3.59 -1.00 -3.04 -2.21 0.84 -6.56

p-value [0.069] [0.723] [0.000] [0.318] [0.002] [0.027] [0.403] [0.000]

t (λSMB) -0.15 1.69 3.23 4.15 6.87 4.89 1.96 1.94

p-value [0.877] [0.091] [0.001] [0.000] [0.000] [0.000] [0.050] [0.053]

t (λHML) -1.93 0.49 0.49 -1.93 -0.47 -2.30 1.08 1.12

p-value [0.054] [0.621] [0.624] [0.054] [0.639] [0.021] [0.282] [0.261]

Test Statistics: λ̂IT
IV

J(λ) 11.20 6.77 61.51 47.48 58.76 111.08 31.00 196.83

p-value [0.024] [0.149] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 10.64 7.48 53.53 35.83 59.05 63.98 6.87 207.34

p-value [0.071] [0.143] [0.000] [0.000] [0.000] [0.000] [0.171] [0.000]

t(λ0) 2.00 1.08 5.07 1.46 1.38 4.84 -1.07 11.56

p-value [0.045] [0.278] [0.000] [0.146] [0.166] [0.000] [0.283] [0.000]

t (λMKT) -1.70 -1.23 -4.38 -2.17 -3.07 -3.32 0.51 -8.25

p-value [0.090] [0.219] [0.000] [0.030] [0.002] [0.001] [0.608] [0.000]

t (λSMB) -0.22 2.08 0.52 5.07 6.89 4.87 2.00 2.05

p-value [0.828] [0.038] [0.602] [0.000] [0.000] [0.000] [0.045] [0.041]

t (λHML) -1.93 -0.69 -2.90 -1.81 -0.48 -2.40 1.20 1.15

p-value [0.054] [0.487] [0.004] [0.070] [0.628] [0.016] [0.230] [0.249]
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Table A14: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975
to 2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of
λ = [ λ0 λMKT λME λI/A λROE ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the HXZ4 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the HXZ4 model is λ0 = 0, λMKT = f MKT, λME = f ME, λI/A = f I/A, and λROE = f ROE. We report
the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0) test statistics
given by (50) and t(λMKT), t(λME), t(λI/A), and t(λROE) test statistics given by (51). The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1049 1580 1506 1679 1607 1722 1593 1540

Average Factor Realizations

fMKT 11.15 4.05 12.13 4.55 20.14 -2.45 0.38 14.20

fME 17.27 4.20 -3.91 2.25 -4.36 14.36 2.58 1.88

fI/A 3.03 8.75 6.57 3.64 0.75 11.13 -0.57 3.63

fROE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86

Estimates of λ: λ̂TS
IV

λ0 3.79 -3.99 21.37 5.88 9.17 16.74 -4.49 12.92

λMKT 9.41 10.33 -8.36 -2.96 5.80 -4.93 8.61 2.63

λME 16.28 5.03 -1.51 4.21 3.50 28.11 10.02 1.84

λI/A -1.05 18.86 -0.85 -6.61 -5.89 1.38 6.76 14.51

λROE -2.10 -0.13 4.28 -10.16 -3.38 11.72 7.71 2.17

Estimates of λ: λ̂IT
IV

λ0 5.82 -6.63 15.93 11.77 2.63 14.31 -9.69 13.26

λMKT 6.99 11.99 -1.41 -8.55 9.14 -3.43 12.36 2.38

λME 17.23 5.24 -3.91 -1.62 0.24 38.43 14.58 1.79

λI/A -0.96 29.28 -2.89 -10.46 -0.87 1.23 8.53 14.41

λROE 1.22 3.95 0.89 -18.72 -3.53 15.30 11.00 1.88

Continued on next page
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Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 9.90 36.51 72.96 87.38 115.44 384.20 73.53 88.00

p-value [0.078] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 2.64 1.32 7.21 4.03 27.61 15.12 10.08 90.60

p-value [0.562] [0.705] [0.219] [0.373] [0.008] [0.046] [0.124] [0.000]

t(λ0) 0.87 -0.32 1.32 0.64 0.93 2.79 -0.64 6.67

p-value [0.382] [0.746] [0.187] [0.523] [0.353] [0.005] [0.524] [0.000]

t (λMKT) -0.39 0.41 -1.32 -0.81 -1.81 -0.55 1.05 -6.21

p-value [0.696] [0.679] [0.185] [0.416] [0.070] [0.580] [0.295] [0.000]

t (λME) -0.51 0.25 0.69 0.18 2.90 1.63 1.71 -0.02

p-value [0.610] [0.804] [0.492] [0.855] [0.004] [0.103] [0.087] [0.984]

t (λI/A) -1.06 0.65 -1.61 -1.35 -1.67 -1.79 2.24 2.74

p-value [0.291] [0.514] [0.108] [0.177] [0.096] [0.073] [0.025] [0.006]

t (λROE) -0.59 -0.74 -0.82 -1.05 -3.51 1.09 0.79 0.09

p-value [0.556] [0.457] [0.415] [0.294] [0.000] [0.277] [0.428] [0.929]

Test Statistics: λ̂IT
IV

J(λ) 8.68 42.10 72.94 85.29 100.88 356.72 65.18 88.43

p-value [0.123] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 4.47 1.52 9.16 8.00 21.69 15.12 16.70 98.82

p-value [0.371] [0.636] [0.166] [0.202] [0.019] [0.045] [0.037] [0.000]

t(λ0) 1.42 -0.44 1.15 1.24 0.29 2.13 -1.22 7.05

p-value [0.157] [0.661] [0.249] [0.215] [0.776] [0.033] [0.223] [0.000]

t (λMKT) -0.99 0.40 -0.99 -1.32 -1.66 -0.21 1.36 -6.46

p-value [0.321] [0.686] [0.320] [0.186] [0.098] [0.837] [0.175] [0.000]

t (λME) -0.02 0.22 0.00 -0.36 1.54 2.24 2.53 -0.05

p-value [0.981] [0.825] [1.000] [0.717] [0.123] [0.025] [0.011] [0.961]

t (λI/A) -1.18 1.01 -1.98 -1.68 -0.38 -1.46 2.38 2.72

p-value [0.239] [0.313] [0.047] [0.093] [0.703] [0.143] [0.017] [0.007]

t (λROE) -0.30 -0.32 -1.70 -1.33 -4.04 1.84 1.15 0.00

p-value [0.763] [0.746] [0.088] [0.184] [0.000] [0.066] [0.251] [0.997]
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Table A15: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to
2014 using 30 industry clusters and $1 price filter. This table presents the point estimates of λ =
[ λ0 λMKT λSMB λHML λRMW λCMA ]

′
and the various statistics along with the corresponding p-values for testing the

implications of the FF5 model. We consider 8 non-overlapping 5-year testing periods from 1975 to 2014. For
each testing period, the pretesting period consists of the preceding five years. We report point estimates, in
annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e., λ̂TS

IV and λ̂IT
IV. The null

hypothesis implied by the FF5 model is λ0 = 0, λMKT = f MKT, λSMB = f SMB, λHML = f HML, λRMW = f RMW, and λCMA = f CMA.
We report the J(λ) and Jd(λ) joint test statistics given by (49) and (52), respectively, as well as the t(λ0)
test statistics given by (50) and t(λMKT), t(λSMB), t(λHML), t(λRMW), and t(λCMA) test statistics given by (51). The
corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Number of Test Assets

N 1183 1702 1671 1852 1792 2031 1939 1865

Average Factor Realizations

fMKT 11.18 4.53 12.49 4.83 20.69 -3.10 -0.43 15.52

fSMB 17.33 4.14 -4.82 1.57 -5.30 12.78 1.63 1.54

fHML 6.53 9.35 2.57 2.70 -5.51 15.00 2.08 -0.93

fRMW 0.10 4.04 5.51 4.70 0.94 10.23 4.73 0.71

fCMA 1.72 6.24 5.22 1.74 -1.69 13.93 -0.28 2.90

Estimates of λ: λ̂TS
IV

λ0 2.83 8.85 18.81 2.81 2.25 13.09 -8.99 7.93

λMKT 8.04 -5.64 -4.55 1.12 13.22 -7.49 13.50 6.97

λSMB 18.73 5.11 -4.85 7.23 3.16 22.68 -1.63 6.42

λHML 1.56 1.37 2.11 -0.82 -6.88 3.59 7.56 -0.39

λRMW -1.17 -0.96 -3.21 -6.50 -2.46 3.02 -7.22 -5.17

λCMA -4.38 5.76 -3.20 -5.34 -2.93 -3.27 -4.92 6.69

Estimates of λ: λ̂IT
IV

λ0 6.30 0.27 8.54 3.83 2.36 15.79 -6.88 8.27

λMKT 5.40 1.39 6.20 -0.46 13.28 -9.34 10.86 6.74

λSMB 16.59 8.47 -3.58 6.85 3.52 18.97 0.46 8.82

λHML 0.44 -2.79 -2.67 0.77 -7.38 5.13 16.63 -3.38

λRMW -0.47 3.91 0.98 -5.57 -2.24 1.44 -9.76 -8.47

λCMA -2.46 8.14 -6.40 -4.60 -2.50 -4.17 -3.00 4.27

Continued on next page

33



Table A15 – continued from previous page

Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99 00-04 05-09

Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14

Test Statistics: λ̂TS
IV

J(λ) 42.28 6.74 42.79 117.65 56.44 206.89 237.89 294.69

p-value [0.000] [0.345] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 8.60 11.84 19.70 69.99 51.90 45.81 34.98 86.24

p-value [0.217] [0.108] [0.029] [0.000] [0.000] [0.000] [0.003] [0.000]

t(λ0) 0.55 1.81 2.14 1.34 0.49 3.49 -2.89 6.65

p-value [0.579] [0.070] [0.032] [0.180] [0.626] [0.000] [0.004] [0.000]

t (λMKT) -0.69 -1.88 -2.15 -1.65 -1.99 -2.24 4.00 -4.80

p-value [0.493] [0.060] [0.032] [0.100] [0.047] [0.025] [0.000] [0.000]

t (λSMB) 1.01 0.69 -0.01 3.77 6.75 1.38 -0.95 2.51

p-value [0.313] [0.491] [0.992] [0.000] [0.000] [0.168] [0.343] [0.012]

t (λHML) -2.00 -1.89 -0.09 -1.29 -0.55 -3.80 1.04 0.37

p-value [0.046] [0.059] [0.932] [0.197] [0.582] [0.000] [0.298] [0.711]

t (λRMW) -0.36 -0.97 -2.51 -5.90 -1.32 -3.17 -2.59 -2.95

p-value [0.721] [0.330] [0.012] [0.000] [0.187] [0.002] [0.010] [0.003]

t (λCMA) -1.64 -0.17 -2.05 -3.85 -0.39 -1.48 -1.41 1.98

p-value [0.101] [0.868] [0.041] [0.000] [0.695] [0.138] [0.157] [0.048]

Test Statistics: λ̂IT
IV

J(λ) 82.34 37.81 43.34 123.15 60.41 195.93 153.67 393.09

p-value [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Jd(λ) 20.44 23.07 14.73 76.85 59.87 70.46 27.60 130.56

p-value [0.047] [0.012] [0.061] [0.000] [0.000] [0.000] [0.009] [0.000]

t(λ0) 1.45 0.05 1.19 2.14 0.57 4.29 -1.66 7.84

p-value [0.146] [0.959] [0.234] [0.033] [0.571] [0.000] [0.098] [0.000]

t (λMKT) -1.45 -0.60 -0.92 -2.71 -2.11 -4.05 2.90 -5.93

p-value [0.147] [0.550] [0.360] [0.007] [0.035] [0.000] [0.004] [0.000]

t (λSMB) -0.72 3.34 0.61 3.62 7.26 0.79 -0.30 3.68

p-value [0.471] [0.001] [0.542] [0.000] [0.000] [0.430] [0.768] [0.000]

t (λHML) -3.70 -3.31 -1.06 -0.80 -0.81 -3.82 2.77 -1.53

p-value [0.000] [0.001] [0.287] [0.421] [0.416] [0.000] [0.006] [0.126]

t (λRMW) -0.21 -0.03 -1.68 -6.03 -1.27 -4.28 -2.88 -4.18

p-value [0.835] [0.977] [0.093] [0.000] [0.204] [0.000] [0.004] [0.000]

t (λCMA) -1.40 0.76 -2.86 -3.85 -0.27 -1.47 -0.60 0.80

p-value [0.162] [0.446] [0.004] [0.000] [0.787] [0.140] [0.550] [0.425]
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