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Abstract 

 In 1202, Fibonacci introduced Arabic numerals and the basic principles of arithmetic to 
the West, but it was not until 1494, when Pacioli published a book that translated Fibonacci's 
ideas into the vernacular, that Arabic numerals and the basic principles of arithmetic began to 
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 Leonardo da Pisa, better known as Fibonacci, was a widely traveled Italian merchant who 

grew up on the coast of what is now Algeria. As a youngster, he was enthralled by the Arabic 

numbers used by local merchants. In his 1202 book Liber Abaci, Fibonacci introduced Arabic 

numerals and the basic principles of arithmetic to the West. This represented a huge intellectual 

breakthrough. If you doubt this, try doing addition and subtraction, let alone long division, with 

Roman numerals, the prevailing numerical system in Western Europe at the time. 

Eventually returning to Italy, Fibonacci became a celebrated mathematician among the 

academics of the day. Interestingly, however, Roman numerals continued to dominate in the 

business world. 

In the 1460s, while Luca Pacioli, a Franciscan monk, was working in Venice, he 

discovered a copy of Fibonacci's Liber Abaci. Because he had worked six years as a merchant's 

assistant, Pacioli was able to recognize the importance of the book for the practical world of 

business. In 1486, Pacioli was appointed professor of mathematics in Perugia. Perhaps 

fortunately, he had a falling out with the authorities at the monastery in Perugia that led him to 

return to his hometown of Sansepolcro. Free from his teaching responsibilities, he devoted 

himself to writing a book that would bring together all that was known of mathematics in the 

Europe of his day. 

Pacioli's summary of contemporary mathematical knowledge appeared in 1494 under the 

title Summa de arithmetica, geometria, proportioni, et proportionalita. Chapters 1-7 of Volume 

1 are devoted to Arabic numerals and the basic principles of arithmetic. Chapter 8 covers 

algebra. Chapter 9 is devoted to practical business applications, including the first systematic 

written treatment of double-entry bookkeeping, the contribution for which Pacioli is best 

remembered today (at least among accountants, for whom this is the seminal intellectual event). 

There are two key differences between Fibonacci's Liber Abaci and Pacioli's Summa, 

despite the fact that the intellectual content of Pacioli's chapters on Arabic numerals and the 

basic principles of arithmetic follow Fibonacci's book very closely. First, the Summa was 

printed, rather than handwritten. The dramatic decrease in cost made it possible for merchants to 

buy the book. Second, Pacioli wrote almost all of his book in the vernacular, making it accessible 

to business people.1 

                                                
1 For a lively account of Pacioli's life, see Gleeson-White (2012). 
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In economics, we typically assume that agents have state-of-the-art knowledge. In other 

words, we assume that agents behave according to the latest thinking of economists, as embodied 

in the model. For example, models of fixed investment typically make an assumption about the 

asset pricing model used by agents, since asset pricing affects the discount rate used by the firm. 

In Section 4 of his classic Econometrica paper, Hayashi (1982, p. 221) assumes a constant equity 

risk premium of 4%. 

As of the early 1980s, the state-of-the-art technique for calculating the firm’s discount 

rate in corporate finance was the weighted-average cost of capital: 

 

rWACC = rDEBT 1−τ( )λ + rEQUITY 1− λ( ),   
 

where rWACC  is the weighted-average cost of capital, r DEBT  is the inerest rate on the firm’s debt, 

τ is the marginal corporate income tax rate, r EQUITY  is the expected rate of return on the firm’s 

equity, and λ  is the leverage ratio. This equation is taken directly from Brealey and Myers 

(1984), a leading corporate finance textbook. In their influential Econometrica paper, Abel and 

Blanchard (1986) use a weighted-average cost of capital to calculate the discount factor, with 

two different assumptions about the equity share (0.5and 0.3). By the mid 1980s, the assumption 

of a constant equity premium was beginning to look empirically tenuous. This is reflected in the 

fact that Abel and Blanchard (1986), unlike Hayashi (1982), do not assume a fixed equity 

premium. 

From the 1960s, the Capital Asset Pricing Model (CAPM) was the dominant cross-

sectional asset pricing model.2 This is reflected in leading financial economics textbooks of the 

time. For example, “Part Three: Risk” of Brealey and Myers (1984) is overwhelmingly devoted 

to the CAPM. In discussing a firm’s investment decisions, these textbooks typically advocated 

using the weighted-average cost of capital to calculate the discount rate, with r EQUITY  based on 

the CAPM. 

The first serious empirical rejections of key implications of the CAPM began to appear in 

the late 1970s and early 1980s.3 In the early 1990s, Fama and French (1992) provided what many 

                                                
2 Evidence supportive of the CAPM was provided by a number of influential early tests including Black, Jensen, 
and Scholes (1972), Fama and MacBeth (1973), and Blume and Friend (1973). 
3 See, e.g., Basu (1977), Banz (1981), and DeBondt and Thaler (1985). 
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in the literature regarded as the death blow for the CAPM. Fama and French (1993) 

introduced a competing asset pricing model, the Fama-French three-factor model, that fits the 

data much better than the CAPM.4 Over time, the evidence against the CAPM – and in favour of 

the Fama-French three-factor model has penetrated financial economics textbooks. For example, 

Brealey and Myers (2003) explains risk primarily in terms of the CAPM but devotes three pages 

(p. 208 – 210) to the Fama-French three-factor model. 

Many models introduce some new idea about how the world works. For example, Fama 

and French (1993) introduced a new cross-sectional asset pricing model. Models typically 

assume that agents are endowed with full knowledge of the model and have always behaved in 

the way described in the model. In other words, economic models often assume that agents are 

endowed with state-of-the-art knowledge. For example, Fama and French (1993) attempt to 

explain returns over their full sample on the basis of their new asset pricing model. 

The state-of-the-art knowledge assumption is very appealing. It fits naturally with 

rational expectations. It may help to make a model more mathematically elegant. It may help 

the theorist to avoid internal inconsistency. On the other hand, the state-of-the-art knowledge 

assumption may sometimes be too strong. A new idea may begin in the academic world of 

economics and only gradually begin to influence how agents behave in the real world. 

In the 20th and 21st centuries, with the printing press and electronic media, we might 

expect knowledge to diffuse much faster than in the days of Fibonacci. Perhaps the Internet will 

make the diffusion of knowledge almost instantaneous, but the example of Fibonacci and Pacioli 

suggests otherwise. It was only when Pacioli made Fibonacci's academic work accessible to the 

practical business world that the use of Arabic numerals and the basic principles of arithmetic 

began to have an impact. 

In this paper, we test the state-of-the-art knowledge assumption using actual business 

decisions about capital expenditures. We do this by estimating the investment Euler equation on 

firm-level panel data.5 Our objective is to determine whether firms use the current state-of-the-art 

                                                
4 For a skeptical view of the tests that have contributed to the dominance of the Fama-French three-factor model, see 
Lewellen, Nagel, and Shanken (2010). 
5 Our Euler equation specification closely follows the classic paper in the literature, Whited (1992). Specialists in 
corporate finance or business fixed investment might quibble that we do not include all the possible subsequent bells 
and whistles. Frankly, it seemed cleaner to base our work on the classic paper in the literature, and, based on this 
specification, the data speak clearly on the central issue. A possible topic for future research would be to explore 
whether issues such as stock price misvaluation or non-convexities in adjustment costs affect our results, but, 
although we are sympathetic to the potential empirical relevance of these issues, we are skeptical that this would be 
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cross-sectional asset pricing model, the Fama-French three-factor model, in making investment 

decisions. An alternative possibility is that firm managers make investment decisions based on 

the knowledge that was current at a formative stage in their life, perhaps when they got their 

MBA or took a relevant economics or finance course. The latter possibility would be consistent 

with the provocative ideas and empirical results in Malmendier and Nagel (2011). An appealing 

feature of our approach is that it uses consequential decisions of sophisticated agents (i.e., 

investment decisions by the managers of publicly traded firms) to address the issue. 

 The paper is organized as follows. Since this paper is not primarily aimed at economists 

who specialize in either the theory of business fixed investment or the empirical methods that are 

used to study investment, Section 1 provides an intuitive explanation of the investment Euler 

equation. Section 2 formally derives the empirical specification, which closely follows the 

classic investment Euler equation paper, Whited (1992). Section 3 describes the US panel data. 

Section 4 tests whether firms use the CAPM to make their investment decisions (specifically, 

whether r EQUITY is calculated using the CAPM). Section 5 tests whether firms use the current 

state-of-the-art cross-sectional asset pricing model, the Fama-French three-factor model, to make 

their investment decisions. Section 6 provides two types of robustness checks. Section 7 briefly 

summarizes the main results and their implications. 

 

1. An Intuitive Explanation of the Euler Equation 

 A simple, intuitive way to understand the investment Euler equation is to start from the 

Net Present Value (NPV) rule: Accept all investment projects with positive net present value. 

Mathematically, we could write the NPV rule as: 

0
1

1 0
1

t

t
t

CF MC
r

∞

=

⎛ ⎞⎛ ⎞ − ≥⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑ ,     (1) 

where the current year is 0, r  is the firm's cost of capital, tCF  is the cash flow generated by an 

investment project at time t, and 0MC  is the marginal cost of the investment. To derive the 

investment Euler equation from the NPV rule, let's assume that the firm accepts all investment 

projects with positive NPV, so that the inequality in (1) holds with equality for the marginal 

investment project. We can then rewrite the NPV rule as: 
                                                                                                                                                       
a fruitful research topic. These issues are discussed further in Section 6, where we consider two main robustness 
checks. 
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∑ .     (2) 

The same NPV rule applies next year. In order to include the same terms in the summation, 

multiply the NPV rule for next year by 1/ (1 )r+ : 

2 1

1 2
3 2

1 1 1 1 1
1 1 1 1 1

t t

t t
t t

MC CF CF CF
r r r r r

−∞ ∞

= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ .     (3) 

By subtracting (3) from (2) and rearranging, we obtain the investment Euler equation: 

( )0 1 1
1
1

MC CF MC
r

⎛ ⎞= +⎜ ⎟+⎝ ⎠
.    (4) 

In words, the investment Euler equation says that the firm chooses investment to equate the 

marginal benefits and marginal costs. The marginal cost of investment is 0MC . There are two 

marginal benefits. First, the investment generates additional cash flow of 1CF  next year. Second, 

the firm doesn't need to make the investment 1MC  next year. Because the benefits occur next 

year, they are discounted using the firm's cost of capital.6 

The investment Euler equation has now been used in empirical studies in finance and 

economics for many years. Shapiro (1986) and Whited (1992) were pioneering studies. Other 

important early papers include Hubbard and Kashyap (1992) and Bond and Meghir (1994). Some 

previous work has focused on finance constraints, including Hubbard, Kashyap, and Whited 

(1995), Ng and Schaller (1996), Love (2003), and Whited and Wu (2006), but a wider variety of 

issues have been examined, such as investment adjustment costs [Whited (1998)], corporate 

governance [Chirinko and Schaller (2004)], and the role of non-convex costs of adjustment 

[Chirinko and Schaller (2009)]. 

 

2. A Formal Derivation of the Investment Euler Equation 

Whited (1992) and others have shown how to go from the firm's problem (of optimally 

choosing investment) to a specification that can be empirically estimated. This section and the 

Technical Appendix are included to make the details of the specification and estimation explicit -

- and to show the link with the intuitive explanation in Section 1.  

                                                
6 For another approach to linking the NPV rule with the investment Euler equation, see Chirinko and Schaller 
(2004). 
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Assume the objective of the firm is to maximize its value, 0V , as of period 0: 

 V0 = E0
j=0

t−1

Πβ j

⎛

⎝⎜
⎞

⎠⎟t=1

∞

∑ dt , (5) 

where 0E  is the expectations operator conditional on information available at time 0, jβ  is the 

discount factor at time t , and td  is dividends.  The firm faces a capital accumulation constraint 

that 

 ( ) 11t t tK K Iδ −= − + , (6) 

where tK  is the capital stock at the end of period t , δ  is the depreciation rate, and tI  is 

investment.  The firm also faces a non-negativity constraint on dividends, 

 0td t≥ ∀ , (7) 

with td  defined as 

 ( ) ( )( ) ( )1 1 1 1, , 1I
t t t t t t t t t t tK L G I K wL p I B r B− − − −Π − − − + − + , (8) 

where ( )1,t tK L−Π  is the revenue function, tL  is variable inputs, and tw  and I
tp  are the real 

relative (i.e., relative to the price of output) price of variable inputs and investment goods, 

respectively.  It is assumed that capital is costly to adjust, and ( )1,t tG I K −  is a linear homogenous 

function in I  and K .  The firm pays 1tr − , the cost of capital, on the stock of one-period external 

finance outstanding at the end of period 1t −  and issues an amount tB  of new external finance 

each period, subject to the transversality condition that 

 
1

0
lim 0

T

t TT t
Bβ

−

→∞ =

⎛ ⎞ =⎜ ⎟⎝ ⎠Π . (9) 

Let K
tλ  and d

tλ  be the Lagrange multipliers on capital accumulation and the non-

negativity constrain on dividends, respectively.  Let xH  denote the partial derivative of the 
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function H with respect to x .  The first order conditions for capital, investment, and debt are, 

respectively: 

 ( ) ( ) ( )( ) ( )1 1 1 11 , , 1 0K d K
t t t t K t t K t t t tE K L G I Kλ λ β β δ λ+ + + +
⎡ ⎤− + + Π − + − =⎣ ⎦ , (10) 

 ( ) ( )( )11 ,K d I
t t t I t tp G I Kλ λ −= + + , (11) 

 ( ) ( ) ( )11 1 1 0d d
t t t t tE rλ λ β+

⎡ ⎤+ − + + =⎣ ⎦ . (12) 

If the constraint in equation (7) does not bind, then 0d
tλ =  and ( )1 1t trβ = + .7 In other words, 

the discount rate is equal to the firm's cost of capital. In this case, the first order conditions imply 

the following investment Euler equation: 

 
( )( )
( ) ( ) ( ) ( )( )( )

1

1 1 1 1

[ ,

1 , , 1 , ] 0
1

I
t t I t t

I
K t t K t t t I t t

t

E p G I K

K L G I K p G I K
r

δ

−

+ + + +

− +

+ Π − + − + =
+

 (13) 

This has the same form as the Euler equation derived in Section 1, using the NPV rule with: 

( )1,I
t t I t tMC p G I K −= + ,      (14) 

( ) ( )( )1 1 11 ,I
t t I t tMC p G I Kδ+ + += − + ,     (15) 

( ) ( )1 1 1, ,t K t t K t tCF K L G I K+ + +=Π − .     (16) 

Equation (14) reflects the fact that there are two components of the marginal cost of investing -- 

the price of buying one more unit of investment goods and the marginal adjustment cost of 

installing one more unit. If the firm buys one unit of capital this year, it will only have ( )1 δ−  

units of capital next year, due to depreciation. Equation (15) reflects this fact. Equation (16) 

shows that there are two components to the cash flow benefit of an additional unit of capital. The 

first is the marginal increase in revenue KΠ . The second is the marginal reduction in adjustment 

costs due to an additional unit of capital KG . 

                                                
7 If the constraint binds, then ( )( ) ( ) ( )( )11 1 1 1d d

t t t t tE rβ λ λ +
⎡ ⎤= + + +⎣ ⎦  and the discount rate reflects both the firm's 

cost of capital and the constraint. 
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 In the empirical work, we multiply equation (13) by ( )1 tr+  to obtain: 

( )( )( )
( ) ( ) ( ) ( )( )( )

1

1 1 1 1

[ , 1

, , 1 , ] 0

I
t t I t t t

I
K t t K t t t I t t

E p G I K r

K L G I K p G I Kδ

−

+ + + +

− + +

+ Π − + − + =
.     (13') 

The advantage, for purposes of estimation, is that tr  enters less nonlinearly; i.e., as ( )1 tr+ , 

rather than ( )1/ 1 tr+⎡ ⎤⎣ ⎦ . The Technical Appendix provides the empirical specifications for IG  

and K KGΠ − , incorporates the effect of taxes, and describes how equation (13’) is estimated. 

 

3. Dataset 

The panel data consists of U.S. firms for the period 1980-2001, with data drawn from 

CompuStat, CRSP, and various sources of industry and aggregate data.8  Details are provided in 

the Data Appendix. 

The baseline cost of capital is a weighted-average cost of capital  

rf ,t = λs (1−τ t ) rt
DEBT + (1− λs ) rf ,t

EQUITY ,    (17) 

where λs is the sector-specific leverage ratio, tτ  is the corporate tax rate, rt
DEBT  is the cost of 

debt, and rf ,t
EQUITY  is the cost of equity capital.9 In some of the empirical work, we allow for 

differences between the baseline cost of capital r%and the actual discount rate r  by omitting the 

risk adjustment in rf ,t
EQUITY  and adding terms that allow us to estimate the effect of risk, as 

discussed in subsequent sections. 

The depreciation rate is allowed to vary across industries and over time and is based on 

BEA data.  The relative price of investment is the ratio of the price of investment to the price of 

output.  The industry-specific implicit price deflators are taken from the BEA; the relative price 

series is adjusted for corporate income taxes. In order to reduce noise in the data due to mergers, 

acquisitions, or other corporate events that lead to significant accounting changes, we trim the 

                                                
8 Our sample ends in 2001 because of a data issue. The data on the present value of depreciation allowances were 
provided by Dale Jorgenson. In general, it might be reasonable to use cruder data than that provided by Dale 
Jorgenson in estimating investment Euler equations, but, because our focus here is on estimation of the firm's 
discount rate, it seems advisable to use the best possible data, even if this shortens the sample. 
9 In order to avoid cluttering the notation, the text of the paper abstracts from the distinction between real and 
nominal variables in the cost of capital. Precise details are provided in the Data Appendix, particularly Sections A 
and F. 
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3% tails of the following variables: 1/t tSALES K − , 1/t tCOST K − , and 1/t tI K − , where SALES  is 

Net Sales (CompuStat item 12), variable costs (COST ) are the sum of the Cost of Goods Sold 

(CompuStat item 41) and Selling, General, and Administrative Expense (CompuStat item 189; 

when this item is not reported, it is set to zero.), and I  is capital expenditures (CompuStat item 

128). 

Table I presents summary statistics.  Median market capitalization is about $90 million. 

As is typically the case with firm-level data, mean size is much larger – about $1.5 billion. The 

median ratio of investment to the capital stock is 0.097.  There are some differences between 

firms depending on their asset pricing model betas, but the differences are generally not 

dramatic. One exception is SMB beta, where median market capitalization is about five times as 

large for firms with low SMB beta as for firms with high SMB beta. 

 

4. Do CAPM Betas Affect the Discount Rate? 

 Suppose we want to test whether the CAPM affects the discount rate. We can begin by 

calculating the weighted average cost of capital according to the standard textbook formula, with 

one exception. In the standard textbook formula, the equity cost of capital for firm f under the 

CAPM is rf
EQUITY = r F + β f

CAPMµEMR , where r F  is the risk-free rate, CAPM
fβ  is the firm's CAPM 

beta, and EMRµ  is the mean excess market return. By setting 0CAPM
fβ =  for all firms, we can 

construct the cost of equity capital without the CAPM (i.e., set the cost of equity capital equal to 

the risk-free rate). We can then test whether firms with higher CAPM betas use a higher discount 

rate. To do this, we divide the sample into high- CAPMβ  and low- CAPMβ  firms, specifying the cost 

of capital as 
  
rf = rf

NRA +θCAPMΓ f
HighβCAPM

, where rf
NRA  is the No-Risk-Adjustment cost of capital, 

Γ f
HighβCAPM  is an indicator variable (equal to 1 if firm f has a CAPM beta above the median, 0 

otherwise), and CAPMθ  is the estimated coefficient on Γ f
HighβCAPM .10  In other words, the cost of 

capital is specified as: 

                                                
10 Dividing the sample into high- CAPMβ  and low- CAPMβ  firms has two advantages compared to specifying the cost 
of equity capital as a linear function of beta. First, using categorical variables is more robust to the possibility of 
noise in the betas. Second, a regression with categorical variables can detect a relationship between the cost of 
equity capital and beta, even if the relationship is nonlinear. Later in this section, we also estimate a linear 
specification. 
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rf ,t = λs (1−τ t ) rt
DEBT + (1− λs ) rt

F +θCAPMΓ f
HighβCAPM .     (17')      

The coefficient CAPMθ  measures how much higher the discount rate is for a firm with a CAPM 

beta above the median. Substituting the detailed specification of the cost of capital into equation 

(13’), we obtain 

   

Et[− pt
I +GI It , Kt−1( )( ) 1+ λs(1−τ t ) rt

DEBT + (1− λs ) rt
F +θCAPMΓ f

HighβCAPM( )
+ ΠK Kt , Lt+1( )−GK It+1, Kt( ) + 1−δ( ) pt+1

I +GI It+1, Kt( )( )( )]= 0
.     (13'') 

Table II provides evidence that the CAPM beta affects the discount rate. The discount 

rate is 0.060 (i.e., 600 basis points) higher for firms with a CAPM beta above the median. This 

effect is precisely estimated and significant at the 1% level. The standard error of the estimate is 

80 basis points, implying a t-statistic of 7.5. 

 Besides the estimate of CAPMθ , Table II reports some general information about the Euler 

equation. The J statistic is the Hansen J statistic for testing overidentifying restrictions, which 

provides a useful check for the overall specification of the model. A large value of the J statistic 

implies that a model is misspecified. The J statistic in Table II is small. The p-value is 0.590, so 

the Euler equation specification is not rejected.  

The parameter ζ captures the combined effects of non-constant returns to scale in 

production and imperfect competition in output markets.  The estimated value of 0.841 is 

consistent with decreasing returns to scale and some degree of imperfect competition. The 

parameter α  determines marginal adjustment costs, while 1[ , ]I t tG I K −  is the marginal adjustment 

cost and 1[ , ]II t tG I K −  is the curvature of the adjustment cost function. Both marginal adjustment 

costs and the curvature of the adjustment cost function are positive, which is economically 

sensible. N is the number of firm/year observations.  The sample is reasonably large, with more 

than 40,000 firm-year observations.  

 Table III provides further evidence on how tight the relationship is between the CAPM 

beta and the discount rate by dividing firms more finely.   In Panel A, firms are divided into 

quintiles based on their CAPM beta. Firms in the upper CAPM beta quintiles use significantly 

higher discount rates. Firms with the lowest CAPM beta have the lowest discount rates. From the 

lowest quintile to the highest, each successive quintile has a higher discount rate. Panel B divides 
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firms into deciles based on their CAPM betas. Again, there is a strong positive relationship 

between the discount rate and the CAPM beta. 

 As an additional check, Panel C of Table III specifies the cost of equity capital as a linear 

function of CAPM beta, 

rf ,t = λs (1−τ t ) rt
DEBT + (1− λs ) rt

F + γ CAPMβ f
CAPM ,     (17'') 

 where CAPMγ  is the coefficient on CAPM
fβ . The estimate of CAPMγ  is positive, economically 

important (with an estimated value of 600 basis points for CAPMγ ), and statistically significant.  

 Tables II and III show that discount rates are strongly linked to CAPM betas. What about 

the quantitative magnitude of the effect of CAPM beta on the equity discount rate? Do firms set 

the equity discount rate in line with the CAPM? To address this question, we can use the 

estimated effects of CAPM beta (specifically, the estimates of θBOTTOM QUINTILE and θTOP QUINTILE 

from Table III), together with the risk-free rate and the leverage ratio, to calculate the estimated 

equity discount rate ,ˆ
EQUITY
f tr .11 The difference in the mean of estimated excess equity discount 

rates ( ,ˆ
EQUITY F
f t tr r− ) between firms in the top and bottom beta quintiles is 14.3%. Using the mean 

beta for the firms in the top and bottom beta quintiles, respectively, the difference in expected 

excess returns under CAPM is 15.1%. Based on the estimated Euler equation, firms are adjusting 

the equity discount rate roughly in line with the CAPM. 

 The results in Tables II and III provide strong support for Graham and Harvey (2001). In 

their survey, 73.5% of respondents reported that they always or almost always use the CAPM. 

Graham and Harvey (2001) argue that the respondents to their survey are representative of US 

firms. This is consistent with empirical results in the tables. 

 

5. Do Fama-French Betas Affect the Discount Rate? 

 We use a similar approach to test whether the Fama-French three-factor model betas 

affect the discount rate. We start with a cost of capital in which the equity component is based on 

the riskless interest rate and then add indicator variables for firms that have Fama-French betas 

that are above the median 

                                                
11 Section E of the Data Appendix provides a more detailed description of the calculation of ,ˆ

EQUITY
f tr , the estimated 

equity discount rate. 
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rf ,t = λs(1−τ t ) rt

DEBT + (1− λs )rt
F +θEMRΓ f

HighβEMR +θSMBΓ f
HighβSMB +θHMLΓ f

HighβHML ,     (22) 

where Γ f
HighβEMR =1  if [ ]EMR EMR

f fMedianβ β> , Γ f
HighβSMB =1 if [ ]SMB SMB

f fMedianβ β> , and 

Γ f
HighβHML =1 if [ ]HML HML

f fMedianβ β>  and EMRθ , SMBθ , and HMLθ  are the estimated coefficients 

on the corresponding Γ . The results are presented in Table V. The market beta enters positively 

and significantly and the HML beta enters negatively and significantly. In contrast, the 

coefficient on the indicator variables for above-median SMB beta is close to zero and 

insignificant. 

 Since the previous section provides evidence that the CAPM beta affects the discount 

rate, an interesting question is whether the Fama-French betas have an incremental effect on the 

discount rate, above and beyond the CAPM beta. To test this, we estimate a specification in 

which the baseline discount rate includes the CAPM risk adjustment. We then add indicator 

variables for SMB beta above the median and HML beta above the median, so the specification 

of the cost of capital is 

   
rf ,t = λs(1−τ t ) rt

DEBT + (1− λs ) r F + β f
CAPMµ EMR( ) +θSMBΓ f

HighβSMB +θHMLΓ f
HighβHML .     (23) 

The results are presented in the second column of Table V. When the baseline discount rate 

includes the CAPM risk adjustment, the HML beta no longer has significant explanatory power 

for discount rates. 

  

6. Robustness Checks 

 The Fama-French three-factor model is generally regarded as the current state-of-the-art 

cross-sectional asset pricing model. In our first robustness check, we consider two other cross-

sectional asset pricing models that have been somewhat influential in the recent asset pricing 

literature – Carhart (1997) and Campbell-Vuolteenaho (2004). Although these models tend to be 

less frequently mentioned in corporate finance textbooks, it is conceivable that CFOs or 

Corporate Treasurers are highly sophisticated and consider these models superior to the Fama-

French three-factor model. Our second robustness check involves the specification of the Euler 

equation. The specification described in Section 2 follows the classic investment Euler equation 

paper, Whited (1992), very closely. The subsequent investment Euler equation literature has 

considered a variety of additional elements, including stock market misvaluation, corporate 



13 
 

governance problems, non-convex costs of adjustment, and endogenous finance constraints.12 

(The last of these three arises in models of corporate savings, since firms in these models 

endogenously choose their cash holdings in an effort to avoid costly external finance.) We are 

sympathetic to the empirical relevance of all of these refinements of the classic Whited (1992) 

model but skeptical that they would change our results, because the data speak so clearly about 

the asset pricing model that is being used by firms. However, in our second robustness check, we 

examine whether our results change if we alter the specification to allow for finance constraints 

as modeled by Whited (1992). 

6.1 Other Asset Pricing Models 

 The Carhart (1997) model adds momentum as an additional factor to the Fama-French 

three-factor model. A large number of empirical studies suggest that momentum plays a role in 

determining returns. To test whether firms base their discount rate on the Carhart model, we 

begin with a baseline cost of capital that includes no risk adjustment and add indicator variables 

for Carhart betas above the median: 

   
rf ,t = λs(1−τ t ) rt

DEBT + (1− λs )rt
F +θEMRΓ f

HighβEMR +θSMBΓ f
HighβSMB +θHMLΓ f

HighβHML +θMOMΓ f
MOM ,     

(24) 

where 1MOM
fΓ =  if [ ]MOM MOM

f fMedianβ β> .13 The momentum beta, however, appears to have 

little effect on the discount rate. The estimated coefficient is close to zero and statistically 

insignificant, as shown in Table VI. 

 When momentum is incorporated into the asset pricing model, it changes the estimated 

betas on the factors in the Fama-French three-factor model. This has little effect on the discount 

rate results, however. The market and HML betas continue to enter significantly when the 

baseline discount rate includes no risk adjustment.  

We also consider a baseline cost of capital that includes the CAPM risk adjustment: 

                                                
12 See Chirinko and Schaller (1996, 2001) on the effect of stock market misvaluation on the investment Euler 
equation; Chirinko and Schaller (2004) on the implications of corporate governance problems; Chirinko and 
Schaller (2009) on non-convex costs of adjustment; and Riddick and Whited (2009), Bolton, Chen, and Wang 
(2011, 2012), and Bolton, Schaller, and Wang (2013) on endogenous finance constraints. 
13 Strictly speaking, the asset pricing model in our empirical specification is the Fama-French three-factor model 
plus momentum, since we obtain the momentum variable from Ken French's website (as described in Section B of 
the Data Appendix), rather than using Carhart's original momentum variable. 
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rf ,t = λs (1−τ t ) rt
DEBT + (1− λs ) r

F + β f
CAPMµEMR( )

+θEMRΓ f
EMR +θSMBΓ f

SMB +θHMLΓ f
HML +θMOMΓ f

MOM
.     (25) 

When the baseline discount rate includes the CAPM risk adjustment, none of the Carhart betas 

enters significantly. 

 Campbell and Vuolteenaho (2004) propose a cross-sectional asset pricing model that is 

more tightly tied to finance theory. Their "good beta/bad beta" model can be derived from the 

Intertemporal CAPM. If the risk prices associated with cash flow beta ("good beta") and discount 

rate beta ("bad beta") are equal, their model reduces to the conventional CAPM. They provide 

evidence that the conventional CAPM fits the cross-sectional asset pricing data fairly well for the 

early period (1926-1962) but breaks down in the modern period (1962-2001), when the risk 

prices on cash flow and discount rate beta diverge. 

The Intertemporal CAPM on which the Campbell-Vuolteenaho model is based predicts 

that the risk price of cash flow beta should be equal to the coefficient of relative risk aversion 

times the variance of the market return. The variance of the market return must be positive, and 

the coefficient of relative risk aversion is normally believed to be positive, so the model predicts 

that cash flow beta should have a positive risk price. Empirically, Campbell and Vuolteenaho 

(2004) obtain positive estimates of the risk price on cash flow beta.  

 We again begin with a baseline cost of capital that includes no risk adjustment: 

rf ,t = λs (1−τ t ) rt
DEBT + (1− λs )rt

F +θCFΓ f
CF +θDRΓ f

DR ,     (26) 

 where 1CF
fΓ =  if [ ]CF CF

f fMedianβ β> , 1DR
fΓ =  if [ ]DR DR

f fMedianβ β> , and CF
fβ  and DR

fβ  are 

the Campbell-Vuolteenaho cash flow and discount rate betas for firm f. The first column of 

Table VII shows that the Campbell-Vuolteenaho cash flow beta enters with the wrong sign.  

 In the second column, we report results for a baseline cost of capital that includes the 

CAPM risk adjustment: 

rf ,t = λs (1−τ t ) rt
DEBT + (1− λs ) r

F + β f
CAPMµEMR( )+θCFΓ f

CF +θDRΓ f
DR ,     (27) 

Once the baseline discount rate includes the CAPM risk adjustment, the coefficient on discount 

rate beta is close to zero (and statistically insignificant). The Campbell-Vuolteenaho cash flow 

beta continues to enter with the wrong sign. This parallels the results in Tables V and VI, in 

which the CAPM risk adjustment eliminates the significance of all other betas. 
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6.2 Finance Constraints 

Table VII tests whether CAPM betas still affect the discount rate if we control for finance 

constraints. We focus on measures of finance constraints that have been widely used in the 

literature – Kaplan and Zingales (1997) and Whited and Wu (2006). In the first column, an 

indicator variable is included in the specification for observations with a Whited-Wu index 

above the median (WW). In the second column, a similar indicator variable is included for 

observations with a Kaplan-Zingales index above the median (KZ).  

Table VIII tests whether our earlier result – that firms do not use the Fama-French model 

– continues to hold if such we control for finance constraints. The first and second columns of 

Table VIII are similar to the first column of Table IV; the baseline specification includes no risk 

adjustment, and we include coefficients that test whether the Fama-French betas affect the 

discount rate. The first and second columns use the Whited-Wu and Kaplan-Zingales indexes, 

respectively. The third and fourth columns of Table VIII are similar to the second column of 

Table IV; the baseline specification includes the CAPM risk adjustment, and we test whether the 

Fama-French betas have an incremental effect on the discount rate (after controlling for CAPM). 

  

7. Conclusion 

 The data speaks clearly on whether firms use the current state-of-the-art cross-sectional 

asset pricing model, the Fama-French three-factor model, or a model that is now widely believed 

by academics in the field of asset pricing to have been decisively rejected, the CAPM. There is 

strong evidence that firms use the CAPM in making their investment decisions, rather than the 

Fama-French three-factor model. 

 Our starting point is an investment Euler equation in which the trade-off between this 

year and next year is determined by a discount factor calculated using the standard weighted-

average cost of capital formula described in corporate finance textbooks. The special feature of 

our formula is that it tests whether the risk factors specified by a given asset pricing model affect 

the discount rate. To implement the test, we calculate firm-level betas. The discount rate for 

firms with high CAPM betas (above the median) is 600 basis points higher than for firms with 

low CAPM betas. When we divide firms into quintiles by CAPM beta, the test for equal 

coefficients is overwhelmingly rejected. The p-value is 0.000. The discount rate is monotonically 

increasing in the CAPM beta, as shown in Table III. 
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 The data are not so kind to the idea that firms use the Fama- French three-factor model in 

making their investment decisions. When we allow the discount rate to depend on the Fama-

French betas, the market beta enters significantly and with the expected sign. In contrast, the 

coefficient on the HML beta is negative, and the coefficient on the SMB beta is insignificant. 

When we use an Euler equation specification in which the baseline discount rate already 

incorporates the CAPM, none of the Fama-French betas have a significant coefficient. 

 The empirical results cast doubt on the state-of-the-art knowledge assumption, a common 

assumption in economic models. Instead, the results suggest that knowledge diffuses slowly, 

especially from the academic world to the general public. The results are especially striking 

because they are not based on anomalies at the household level, where it is easy to imagine that 

knowledge diffuses more slowly. Instead, they come from publicly traded firms that typically 

have many employees, often including senior staff with professional training in finance. 

 The empirical results in this paper are supportive of Malmendier and Nagel (2011), who 

argue that agents tend to be strongly influenced by experiences in their formative years. The data 

suggest that managers use the asset pricing model that was dominant at the time they received 

their professional training. 
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Technical Appendix 

The empirical Euler equation incorporates the effect of taxes: 

 
− 1− itct − zt( ) pf ,tI + (1−τ t )GI I f ,t ,K f ,t−1

⎡⎣ ⎤⎦( ) 1+ rf ,t +ψ +θΓ f ,t−1( )+ (1−τ t )(ΠK , f ,t −GK , f ,t )

+ 1−δ f ,t+1( ) 1− itct+1 − zt+1( ) pf ,t+1I + 1−δ f ,t+1( )(1−τ t+1)GI I f ,t+1,K f ,t
⎡⎣ ⎤⎦ = uf ,t+1

(TA-1) 

where itct is the investment tax credit rate, zt, is the present value of depreciation allowances per 

dollar of investment spending, pf ,t
I  is the relative price of capital goods , ,/I Y

f t f tp p , ,
I
f tp  is the 

price of capital goods, ,
Y
f tp  is the price of output, and tτ  is the marginal corporate income tax 

rate. All variables with cross-sectional variation are denoted with an f subscript. The variable rf ,t  

is the baseline cost of capital. In some specifications, this includes an adjustment for risk. In 

other specifications, the baseline cost of capital excludes an adjustment for risk. , 1f t−Γ is an 

indicator variable for firms that fall into a particular category; e.g., Γ f ,t−1
HighβCAPM =1  if the CAPM 

beta for firm f  is above the median, 0 otherwise.  The parameter θ  measures the effect of , 1f t−Γ

on the discount rate; e.g., the amount by which the discount rate is greater for firms that have 

CAPM beta above the median. (When firms are divided into more than two categories, e.g., 

CAPM beta quintiles, , 1f t−Γ  is a vector of indicator variables and θ  is the corresponding vector 

of coefficients on each indicator variable.) The error term , 1f tu +  arises when we replace the 

expected values of variables dated t+1 with their realized values.  We have added a time 

subscript to δ because we allow for time-varying depreciation rates, as described in the Data 

Appendix. The parameter ψ  captures the effects of unmodeled factors that affect the discount 

rate and are common to all firms.   

We assume that the marginal adjustment cost function , , 1,I f t f tG I K −⎡ ⎤⎣ ⎦  depends on the 

investment/capital ratio. We use the following first-order Taylor approximation, 

,
, , 1

, 1

, f t
I f t f t

f t

I
G I K

K
α−

−

⎡ ⎤ =⎣ ⎦ .     (TA-2) 

The marginal revenue product of capital , , , ,K f t K f tGΠ −  depends on the underlying production 

and adjustment cost functions and product market characteristics.  The production function is 

assumed to be homogeneous of degree (1+ξ), where ξ is not necessarily equal to zero.  Product 
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markets may be imperfectly competitive, and the demand schedule has a constant elasticity of µ 

> 0.  Using Euler's Theorem on Homogeneous Functions, we obtain the following specification 

for the marginal revenue product of capital, 

( ) ( )
( )

, , , , , , 1 , , 1

, , 1 , , 1

* / /

, * /

K f t K f t f t f t f t f t

I f t f t f t f t

G SALES K COST K

G I K I K

ζ − −

− −

Π − = −

⎡ ⎤+ ⎣ ⎦
,     (TA-3) 

where , , 1( / )f t f tSALES K −  and ( ), , 1/f t f tCOST K −  are sales revenues and variable costs, 

respectively, divided by the beginning-of-period capital stock, , , 1,I f t f tG I K −⎡ ⎤⎣ ⎦  is defined in 

equation (TA-2), and ( )( )1 1ζ ξ µ≡ + − , thus capturing the combined effects of non-constant 

returns to scale and imperfect competition.  Decreasing returns to scale and/or non-competitive 

product markets imply that 1ζ < . 

The main empirical results are based on the Euler equation (TA-1) estimated by GMM 

with the following instruments: 1 , 1 , 2(1 )( / )t f t f tSALES Kτ − − −− , 1 , 1 , 2(1 )( / )t f t f tI Kτ − − −− ,  

(1−τ t−1)(1+ rf ,t−1) , (1− itct−1 − zt−1) pf ,t−1
I , and an indicator variable ( , 1f t−Γ ) identifying a class of 

observations.14 

 

                                                
14 Andrews and Lu (2001) discuss the role of the J statistic in detecting correlation between the 
instruments and unobserved fixed effects in the error term (which, if present, could lead to inconsistent 
parameter estimates).  As shown in Table II, the J statistic for the model provides no evidence of such a 
correlation (and the model fits better without first differencing to remove fixed effects, perhaps because of 
the stronger link between instruments and Euler equation variables in levels), so we do not first difference 
the model.  Other studies, using slightly different specifications and data, find that first differencing can 
be useful in estimating Euler equations. 
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Data appendix (Supplementary Appendix) 

The primary data source is CompuStat with additional information obtained from CRSP 
and various sources of industry and aggregate data.  In order to compensate for noise in the data 
due to mergers, acquisitions, or other corporate events that lead to significant accounting 
changes, we use 3% trimming of the upper and lower tails for SALES/K, COST/K, and I/K, 
where I is investment (capital expenditures) and K is the firm's capital stock. 
 
A. The Cost of Capital 
 The baseline (real) cost of capital is defined as follows,  
 
  rf ,t   =  ((1+ rf ,t

NOM ) / (1+ ,
e
s tπ )) - 1.0.        (A-1) 

 
The construction of the equity risk premium is described in the next section.  The components of  
rf ,t  are defined and constructed as follows,  
 
rf ,t
NOM   = Nominal cost of capital 

  = λs (1-τt) rt
NOM ,DEBT   +  (1-λs) rf ,t

NOM ,EQUITY . 
 
rt
NOM ,DEBT  = Nominal corporate bond rate (Moody’s Seasoned Baa Corporate Bond 

Yield)  
 
rf ,t
NOM ,EQUITY  = Nominal, short-term, risk-adjusted cost of equity capital for firm f. 

  =   ,NOM F NOM
t fr σ+    

 
,NOM F

tr    = Nominal, one-year, risk-free rate (One-Year Treasury Constant Maturity 
Rate) 

 
,
e
s tπ   = Sector-specific capital goods price inflation rate from t to t+1.15   

 
NOM
fσ   = Equity risk premium for firm f (nominal). 

 
τt  = Marginal rate of corporate income taxation. 
 
λs  = Sector-specific leverage ratio calculated as the mean of book debt for the 

sector divided by the mean of (book debt + book equity) for the sector. 
 
B.  The Equity Risk Premium  

                                                
15 For 2002, the inflation rate for nonresidential fixed investment was used for ,

e
s tπ  for 2001. 
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 In the case of no risk adjustment we set the equity risk premium, NOM
fσ , equal to zero.  In 

the case of risk adjustment based on the CAPM, the equity risk premium is defined by 
NOM EMR
f fσ β µ=           (B-1) 

where µEMR denotes the sample mean of EMRt, which is the excess market return (value-
weighted market return minus the risk-free rate).  We calculate the CAPM betas by estimating 
the regression 

, ,f t f f t f tEFR EMRα β ε= + +          (B-2) 
for each firm f over monthly data for January 1955 through December 2001 (or the largest subset 
of this sample for which data is available for firm f).  EFRf,t is the excess firm return (the 
monthly return of firm f minus the risk free rate), and EMRt is as defined above. 

We calculate the Fama-French three-factor model betas by estimating the regression 
, ,

EMR SMB HML
f t f f t f t f t f tEFR EMR SMB HMLα β β β ε= + + + +      (B-3) 

for each firm f over the same sample as described above.  SMBt is the size risk factor (average 
return on three small portfolios minus the average return on three big portfolios), and HMLt is the 
book-to-market risk factor (average return on two value portfolios minus the average return on 
two growth portfolios). 

We calculate the Carhart model betas by estimating the regression 
, ,

EMR SMB HML MOM
f t f f t f t f t f t f tEFR EMR SMB HML MOMα β β β β ε= + + + + +    (B-4) 

for each firm f over the same sample as described above. MOMt is the momentum risk factor. We 
use six value-weight portfolios formed on size and prior (2-12) returns to construct MOMt. The 
portfolios, which are formed monthly, are the intersections of 2 portfolios formed on size 
(market equity, ME) and 3 portfolios formed on prior (2-12) return. The monthly size breakpoint 
is the median NYSE market equity. The monthly prior (2-12) return breakpoints are 
the 30th and 70th NYSE percentiles. MOMt is the average return on the two high prior return 
portfolios minus the average return on the two low prior return portfolios: MOMt = 0.5 (Small 
High + Big High) - 0.5 (Small Low + Big Low). 

The risk-free rate is the one-month treasury bill rate.  EMR, SMB, HML, MOM and the 
risk free rate are taken from Kenneth French’s website.16  The monthly firm returns are taken 
from the CRSP database. 

We calculate the Campbell-Vuolteenaho cash flow and discount rate betas as follows: 

, , 1

, , 1

ˆ ˆCov( , ) Cov( , )ˆ
ˆ ˆ ˆ ˆVar( ) Var( )

ˆ ˆCov( , ) Cov( , )ˆ
ˆ ˆ ˆ ˆVar( ) Var( )

CF CF
f t t f t tCF

f CF DR CF DR
t t t t

DR DR
f t t f t tDR

f CF DR CF DR
t t t t

EFR N EFR N
N N N N

EFR N EFR N
N N N N

β

β

−

−

= +
− −

− −
= +

− −

      (B-5) 

where Cov and Var denote the sample covariance and variance functions, respectively, ˆ CFtN  is 
the cash flow news function17 and ˆ DRtN  is the discount rate news function.   
 

                                                
16 Available as “Fama/French Factors” at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
17 The news factors are available in this data set, provided on the AER website: 
http://www.e-aer.org/data/dec04_data_campbell.zip 
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C. Capital Stock and Investment Flows 
For the first observation for firm f, the capital stock is based on the net plant (NPLANT), 

the nominal book value of net property, plant, and equipment (CompuStat item 8).  To convert 
this to real terms, we divide by the sector-specific price index for investment (pI).  Since book 
value is not adjusted for changes in the value of capital goods purchased in the past, we adjust 
the initial capital stock using a sector-specific adjustment factor (AF):  

0

0

0

,

,
,

f

f

f

f t
sIf t

s t

NPLANT
K AF

p
=          (C-1) 

where s is a sector index (for firm f ’s sector) and 0
ft is the year of the first observation for firm f. 

 Failure to adjust book value affects the initial value of the capital stock, but has a 
geometrically decreasing impact on the measured capital stock over time.  After 15 years, the 
initial value effect is negligible.  We use this fact to construct the adjustment factor for the initial 
value of the capital stock.  For sector s, AF is the ratio of the mean unadjusted capital stock for 
firms of age 15 or greater to the mean of what the unadjusted capital stock would have been 
measured as, if t equaled 0

ft (i.e., if the current year were the firm's first year in the sample).  In 
effect, AF is the ratio of the true capital stock to the unadjusted initial value.   
 For subsequent observations, a standard perpetual inventory method is used to construct 
the capital stock, 

, 1
, 1 , ,

, 1

(1 ) f t
f t s t f t I

s t

KCHG
K K

p
δ +

+
+

= − +         (C-2) 

where δ is the depreciation rate, KCHG is gross additions to the firm’s capital stock and, in this 
Data Appendix, the capital stock is dated at the end of the period.  The firm reports the additions 
in nominal terms, so we divide by pI to convert to real terms. 
 In the standard case, KCHG is gross investment (GI), which is capital expenditures in the 
firm’s financial statements (CompuStat item 128).  CompuStat does not always have reliable 
data for the additions to the capital stock associated with large acquisitions.  We use a modified 
version of the algorithm of Chirinko, Fazzari, and Meyer (1999) to adjust KCHG for acquisitions 
and divestitures.  In the case of a substantial acquisition, we can use accounting identities to 
derive a more accurate measure of the additions to the capital stock, 

, , , ,f t f t f t f tDGPLANT GI ACQUIS RETIRE= + −       (C-3) 
where DGPLANTt is the change in GPLANT from the end of year t-1 to the end of year t and 
GPLANTt is gross property, plant, and equipment (CompuStat item 7), ACQUIS is acquisitions, 
and RETIRE is retirements of capital stock (CompuStat item 184).  (When data on RETIRE is 
missing, we assume that the reason is that firms do not report any retirements in their financial 
statements, and we therefore assign a value of 0 to RETIRE for these observations.)  We use the 
following screen to identify cases where there has been a substantial acquisition.  If  

, ,

, 1

0.1f t f t

f t

DGPLANT GI
GPLANT −

−
>          (C-4) 

then we calculate the gross change in the capital stock as 
t t tKCHG DGPLANT RETIRE= +         (C-5) 

 We also account for substantial divestitures, using the following screen.  If 
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, ,

, 1

0.1f t f t

f t

DGPLANT RETIRE
GPLANT −

+
< −         (C-6) 

we calculate the change in the capital stock as 
, , , 1 ,

I
f t f t f t s tKCHG DNPLANT K pδ −= +         (C-7) 

where DNPLANT is the change in NPLANT (as defined above).18  Because NPLANT in the firm's 
financial statements will deduct depreciation (as well as accounting for the divestiture), 
depreciation must be added to KCHG to avoid deducting depreciation twice. 

If , 1f tGPLANT − is missing (or equal to zero) or ,f tDGPLANT  is missing, it is not feasible 
to use these screens, and we set KCHG equal to GI. 

In some cases, there is a data gap for a particular firm.  In this case, we treat the first new 
observation for that firm in the same way as we would if it were the initial observation.  This 
avoids any potential sample selection bias that would result from dropping firms with gaps in 
their data. 

Investment (I) is defined by KCHG.   
We construct sector-specific, time-varying depreciation rates using data from the BEA.  

Specifically, 
,1996 ,

,
,1996 ,

$
$
s s t

s t
s s t

D DQUANT
K KQUANT

δ =          (C-8) 

where D$ is current-cost depreciation of private fixed assets by sector (BEA, Table 3.4ES), 
DQUANT is the chain-type quantity index of depreciation of private fixed assets by sector (BEA, 
Table 3.5ES), K$ is the current cost net stock of private fixed assets by sector (as defined above), 
and KQUANT is the chain-type quantity index of the net stock of private fixed assets by sector 
(BEA, Table 3.2ES). 
 We construct the sector-specific price index for new investment goods using BEA data:  

, ,1996
,

,

100( $ / $ )s t sI
s t

s t

I I
p

IQUANT
=          (C-9) 

where I$ is historical-cost investment in private fixed assets by sector (BEA, Table 3.7ES) and 
IQUANT is the chain-type quantity index of investment in private fixed assets by sector (BEA, 
Table 3.8ES). 
 
D.  The Tax-adjusted relative price of investment goods 
 The variable ,

Y
s tp  is the sector-specific price index for output defined as the implicit price 

deflator for Gross Domestic Product by industry produced by the BEA (normalized to 1 in 1996).  
Where variables are available at a monthly or quarterly frequency, we take the average 

for the calendar year.  The investment tax credit rates ( titc ) are drawn from Pechman (1987, 
p.160-161).  Because the investment tax credit applies only to equipment, the investment tax 
                                                
18 To see this result, start with the perpetual inventory equation. 

1(1 )t t tK I Kδ −= + −  

1 1t t t tK K K Iδ− −− + =  
Now, put the previous equation in nominal terms. 

1 1[ ] I I I
t t t t t t tK K p K p I pδ− −− + =  

1
I I

t t t t t tDNPLANT K p I p KCHGδ −+ = =  
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credit for structures is zero; we multiply the statutory ITC rate for each year by the ratio of 
equipment investment to the sum of structures and equipment investment for that year.  The 
present value of depreciation allowances ( tz ) – for non-residential equipment and structures, 
respectively – were provided by Dale Jorgenson.  To calculate tz , we took the weighted sum of 
Jorgenson's z’s for equipment and structures, where the weights are the share of equipment 
investment and the share of structures investment (for a given year) in nominal gross private 
non-residential investment in fixed assets from the Bureau of Economic Analysis (Table 1IHI, 
where equipment investment is referred to as equipment and software).  
 
E.  Estimated Equity Discount Rate 

Section 4b reports statistics based on the estimated equity discount rate ,ˆ
EQUITY
f tr . Here we 

explain the background. In order to flexibly estimate the effect of CAPM beta on the firm's 
discount rate, we omit the CAPM risk adjustment to the equity cost of capital (i.e., 
NOM EMR
f fσ β µ= , as shown in equation (B-1) above) and add to the empirical specification of the 

firm's discount rate a vector of indicator variables (e.g., for firms with CAPM beta in the bottom 
quintile, second quintile, etc.) multiplied by a vector of coefficients.  The vector of indicator 
variables for firm f  is denoted by , 1f t−Γ  and the vector of estimated coefficients is denoted θ̂ .   

The general expression for the nominal weighted average cost of capital is: 
rf ,t
NOM = λs (1−τ t ) rt

NOM ,DEBT + (1− λs ) rf ,t
NOM ,EQUITY ,      (F-1) 

where 
rf ,t
NOM ,EQUITY = rt

NOM ,F +σ f
NOM ,         (F-2) 

and NOM
fσ  is the nominal equity risk premium for firm f. The variables in the Euler equation are 

expressed in real terms (i.e., in constant 1996 dollars). We omit the CAPM risk adjustment by 
setting 0NOM

fσ =  and convert rf ,t
NOM  from nominal to real terms using equation (A-1) to obtain 

the real baseline cost of capital with no risk adjustment: 

rf ,t
NRA =

1+ λs (1−τ t ) rt
NOM ,DEBT + (1− λs )rt

NOM ,F

1+π s,t
e −1 .      (F-3) 

Equation (TA-1) in the Technical Appendix shows that the discount rate in the Euler equation is 
specified as rt +ψ +θΓ t−1 , where the parameter ψ  captures the effects of unmodeled factors that 
affect the discount rate and are common to all firms.19 The estimated discount rate from the Euler 
equation is therefore:  
r̂f ,t = rf ,t

NRA +ψ̂ + θ̂Γ f ,t−1 .              (F-4) 
If the risk adjustment had been included in (F-3), we would have had 

                                                
19 When we group firms into quintiles by CAPM beta, for example, we do not include an indicator variable for the 
middle quintile, so rf ,t

NRA +ψ̂  can be interpreted as the estimated discount rate for the middle quintile. 
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rf ,t =
1+ λs (1−τ t ) rt

NOM ,DEBT + (1− λs ) rt
NOM ,F +σ f

NOM( )
1+π s,t

e −1

= rf ,t
NRA +

(1− λs )σ f
NOM

1+π s,t
e .

     (F-5) 

Thus , 1
ˆˆ f tψ θ −+ Γ  corresponds to ( ),(1 ) / 1NOM e

s f s tλ σ π− + , so the estimated nominal equity risk 
premium is: 

( ),
, 1

1 ˆˆ
(1 )

e
s tNOM

f f t
s

π
σ ψ θ

λ −

+
= + Γ

−
,         (F-6) 

and the estimated nominal equity discount rate is: 

( )

,
,

,,
, 1

ˆ

1 ˆˆ .
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f t t f
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r r
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−

       (F-7) 
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Table I 
Summary Statistics 

 
 Investment 

(I/K) 
Size 
(ME) 

Book-to-
Market 

(BE/ME) 

Sales 
(SALES/K) 

Costs 
(COSTS/K) 

Leverage 
(λs) 

CAPM β 

All observations 
0.097 

(0.146) 
[0.156] 

90.44 
(1490.29) 
[9210.95] 

0.620 
(0.746) 
[1.647] 

2.169 
(3.023) 
[2.872] 

1.965 
(2.773) 
[2.671] 

0.413 
(0.412) 
[0.089] 

1.045 
(1.079) 
[0.510] 

CAPM beta 
Low 

0.088 
(0.128) 
[0.136] 

79.07 
(1808.12) 
[9072.90] 

0.669 
(0.828) 
 [0.811] 

2.088 
(2.867) 
[2.747] 

1.853 
(2.616) 
[2.582] 

0.419 
(0.421) 
[0.088] 

0.811 
(0.745) 
[0.298] 

High 
0.112 

(0.169) 
[0.176] 

103.45 
(1086.76) 
[9368.02] 

0.561 
(0.641) 
[2.303] 

2.299 
(3.220) 
[3.012] 

2.142 
(2.972) 
[2.767] 

0.413 
(0.401) 
[0.090] 

1.389 
(1.503) 
[0.394] 

SMB beta 
(Fama-
French) 

Low 
0.098 

(0.142) 
[0.148] 

216.07 
(2427.07) 

[11920.79] 

0.604 
(0.730) 
[1.747] 

2.064 
(2.880) 
[2.798] 

1.809 
(2.584) 
[2.580] 

0.419 
(0.420) 
[0.087] 

0.955 
(0.974) 
[0.462] 

High 
0.096 

(0.151) 
[0.167] 

41.84 
(203.875) 
[1830.09] 

0.643 
(0.766) 
[1.498] 

2.321 
(3.218) 
[2.959] 

2.204 
(3.033) 
[2.771] 

0.409 
(0.401) 
[0.091] 

1.188 
(1.223) 
[0.536] 

HML beta 
(Fama-
French) 

Low 
0.113 

(0.166) 
[0.170] 

80.22 
(2073.76) 

[12084.61] 

0.533 
(0.672) 
[0.707] 

2.315 
(3.265) 
[3.035] 

2.131 
(3.005) 
[2.805] 

0.372 
(0.396) 
[0.090] 

1.191 
(1.223) 
[0.573] 

High 
0.086 

(0.130) 
[0.142] 

98.30 
(1030.76) 
[6014.19] 

0.692 
(0.804) 
[2.109] 

2.045 
(2.833) 
[2.722] 

1.837 
(2.591) 
[2.546] 

0.421 
(0.425) 
[0.086] 

0.964 
(0.966) 
[0.420] 

Momentum 
beta (Carhart) 

Low 
0.102 

(0.153) 
[0.162] 

95.26 
(1064.68) 
[7784.47] 

0.622 
(0.727) 
[2.171] 

2.349 
(3.232) 
[2.961] 

2.179 
(2.976) 
[2.753] 

0.413 
(0.414) 
[0.089] 

1.094 
(1.132) 
[0.518] 

High 
0.093 

(0.139) 
[0.150] 

85.29 
(1933.96) 

[10475.36] 

0.617 
(0.765) 
[0.790] 

2.004 
(2.805) 
[2.759] 

1.783 
(2.561) 
[2.565] 

0.413 
(0.410) 
[0.089] 

0.988 
(1.024) 
[0.495] 

Cash flow 
beta 
(Campbell-
Vuolteenaho) 

Low 
0.106 

(0.157) 
[0.164] 

92.22 
(2343.14) 

[12943.43] 

0.547 
(0.692) 
[0.709] 

2.348 
(3.212) 
[2.958] 

2.129 
(2.942) 
[2.741] 

0.413 
(0.408) 
[0.088] 

0.985 
(1.050) 
[0.547] 

High 
0.089 

(0.136) 
[0.149] 

88.83 
(727.25) 

[3103.32] 

0.686 
(0.794) 
[2.165] 

2.014 
(2.853) 
[2.781] 

1.844 
(2.622) 
[2.597] 

0.413 
(0.416) 
[0.090] 

1.090 
(1.104) 
[0.472] 

Discount rate 
beta 
(Campbell-
Vuolteenaho) 

Low 
0.088 

(0.130) 
[0.139] 

110.31 
(1824.66) 
[8858.27] 

0.656 
(0.797) 
[1.737] 

2.017 
(2.800) 
[2.719] 

1.792 
(2.537) 
[2.533] 

0.419 
(0.422) 
[0.087] 

0.868 
(0.831) 
[0.364] 

High 
0.114 

(0.170) 
[0.176] 

71.64 
(984.256) 
[9698.76] 

0.566 
(0.669) 
[1.497] 

2.446 
(3.361) 
[3.058] 

2.299 
(3.130) 
[2.830] 

0.405 
(0.397) 
[0.090] 

1.389 
(1.454) 
[0.467] 

Each cell reports the median, (mean), and [standard deviation] of the listed variable.  “Low” and “High” 
refer respectively to below and above the median of the corresponding beta.   I/K denotes the 
investment/capital stock ratio, ME is market equity in millions of (1996) dollars, and BE is book equity.  
Sales and costs are real and normalized by the capital stock. 
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Table II 
Does the CAPM Beta Affect the Discount Rate? 

CAPM Beta Above the Median 
 
 

θCAPM 0.060 
(0.008) 

*** 
 

ζ  0.841 
(0.073) 

*** 
 

α 128.767 
(75.441) 

* 

J 0.290 
[0.590] 

 
 

[ , ]I t tG I K  12.488 

[ , ]II t tG I K  1.694 

N 41369 
 
The parameter θCAPM  is the estimated amount by which the discount rate is higher for a firm with 
a CAPM beta above the median, when the baseline cost of capital includes no adjustment for 
risk. An estimate of 0.060 means 6% (600 basis points). The estimates are based on the capital 
expenditures in two subsequent years, where the firm chooses the trade-off between the costs and 
benefits in each year, using a standard NPV rule. (See Sections 2 and the Technical Appendix for 
details.) Standard errors are in parentheses under the parameter estimate (and account for both 
heteroscedasticity and serial correlation). The parameter  ζ  captures the combined effects of non-
constant returns to scale in production and imperfect competition in output markets. The 
parameter α  determines marginal adjustment costs, while 1[ , ]I t tG I K −  is the marginal adjustment 
cost and 1[ , ]II t tG I K −  is the curvature of the adjustment cost function (both evaluated at the 
median of the arguments). The J statistic is a generic specification test, the Hansen J statistic for 
testing overidentifying restrictions (with p-values in brackets).  N is the number of observations. 
Equation (TA-1) in the Technical Appendix presents the specification of the Euler equation on 
which the parameter estimates are based. GMM estimation is used with lagged values of tax-
adjusted sales/K (capital stock), I (capital expenditures)/K,  1+ r (cost of capital), the relative 
price of capital goods, and Γ  (indicator variable for selected observations) as instruments. In this 
table, the indicator variable Γ  equals 1 if a firm has a CAPM beta above the median, 0 
otherwise. In subsequent tables, the corresponding definition of the indicator variable is shown in 
the table heading, as in this table. See the Technical Appendix for the functional form 
assumptions for the marginal revenue product and marginal adjustment costs and the Data 
Appendix for additional information about the data. 
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Table III 
Does the CAPM Beta Affect the Discount Rate? 

Quintiles, Deciles, and Parametric Estimate 
 
 
 

Panel A: CAPM beta quintiles 
 

θBOTTOM QUINTILE -0.013 
(0.015) 

 
 

θ2nd QUINTILE -0.002 
(0.010) 

 
 

θ4th QUINTILE 0.051 
(0.011) 

*** 
 

θTOP QUINTILE 0.085 
(0.014) 

*** 
 

Test of equality of θ 68.301 
[0.000] 

*** 
 

N 41369 
 

The parameter "θTOP QUINTILE"  is the estimated amount by which the discount rate for a firm with 
a CAPM beta in the top 20% exceeds the discount rate for a firm with a CAPM beta in the 
middle 20%, when the baseline cost of capital includes no adjustment for risk. See the notes 
under Panel B for additional details.   
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Panel B: CAPM beta deciles 
 
 

θBOTTOM DECILE -0.004 
(0.027) 

 
 

θ2nd DECILE 0.004 
(0.018) 

 
 

θ3rd DECILE 0.009 
(0.014) 

 
 

θ4th DECILE 0.018 
(0.013) 

 
 

θ6th DECILE 0.032 
(0.014) 

** 
 

θ7th DECILE 0.044 
(0.014) 

*** 
 

θ8th DECILE 0.092 
(0.015) 

*** 
 

θ9th DECILE 0.088 
(0.016) 

*** 
 

θTOP DECILE 0.129 
(0.025) 

*** 
 

Test of equality of θ 84.979 
[0.000] 

*** 
 

N 41369 
 
 
The parameter "θTOP DECILE"  is the estimated amount by which the discount rate for a firm with a 
CAPM beta in the top decile exceeds the discount rate for a firm with a CAPM beta in the fifth 
decile, when the baseline cost of capital includes no adjustment for risk. An estimate of 0.060 
means 6% (600 basis points). Standard errors are in parentheses (and account for both 
heteroscedasticity and serial correlation). The row labeled "Test of equality of  θ" reports the 
Wald statistic for a test of the null hypothesis that all the xθ  are the same (with p-value in 
brackets). See the notes under Table II for additional information about the specification, 
estimation, and data.  
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Panel C: Equity Discount Rate as a Linear Function of CAPM Beta 
 

 
 

CAPMγ  0.060 
(0.007) 

*** 
 

N 41369 
 
 

The parameter CAPMγ  is the coefficient on CAPM beta, based on including CAPM
CAPM fγ β  in the 

empirical specification of the discount rate. An estimate of 0.060 means 6% (600 basis points). 
Standard errors are in parentheses (and account for both heteroscedasticity and serial 
correlation). See the notes under Table II for additional information about the specification, 
estimation, and data.  
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Table IV 
Do the Fama-French Betas Affect the Discount Rate? 

 
 

 Baseline Cost of Capital 
Includes No Risk 

Adjustment 

Baseline Cost of Capital 
Includes CAPM Risk 

Adjustment 
θEMR 0.052 

(0.008) 
*** -- 

θSMB 0.007 
(0.009) 

 -0.002 
(0.009) 

 
 

θHML -0.037 
(0.008) 

*** -0.014 
(0.008) 

* 
 

N 41369 41369 
 

The parameters θEMR , θSMB, and θHML are the estimated amounts by which the discount rate is 
higher for a firm with Fama-French EMR beta, SMB beta, and HML beta above the median, 
respectively. An estimate of 0.040 means 4% (400 basis points). Standard errors are in 
parentheses (and account for both heteroscedasticity and serial correlation). See the notes under 
Table II for additional information about specification, estimation, and data.  
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Table V 
Do the Carhart Betas Affect the Discount Rate? 

 
 

 Baseline Cost of Capital 
Includes No Risk 

Adjustment 

Baseline Cost of Capital 
Includes CAPM Risk 

Adjustment 
θEMR 0.048 

(0.008) 
*** 
 

-- 

θSMB 0.005 
(0.009) 

 
 

-0.005 
(0.009) 

 
 

θHML -0.034 
(0.008) 

*** 
 

-0.011 
(0.008) 

 
 

θMOM 0.001 
(0.008) 

 
 

-0.001 
(0.008) 

 
 

N 41369 41369 
 
 

The parameters θEMR , θSMB, θHML, and θMOM are the estimated amounts by which the discount 
rate is higher for a firm with Carhart EMR beta, SMB beta, HML beta, and momentum beta 
above the median, respectively. An estimate of 0.040 means 4% (400 basis points). Standard 
errors are in parentheses (and account for both heteroscedasticity and serial correlation). See the 
notes under Table II for additional information about specification, estimation, and data.  

  



35 
 

Table VI 
Do the Campbell-Vuolteenaho Betas Affect the Discount Rate? 

 
 
 

 Baseline Cost of Capital 
Includes No Risk 

Adjustment 

Baseline Cost of Capital 
Includes CAPM Risk 

Adjustment 
θCF -0.024 

(0.008) 
*** -0.025 

(0.008) 
*** 
 

θDR 0.036 
(0.008) 

*** 0.004 
(0.008) 

 
 

N 41369 41369 
 
 

The parameters θCF and θDR are the estimated amounts by which the discount rate is higher for a 
firm with Campbell-Vuolteenaho cash flow beta and discount rate beta above the median, 
respectively. An estimate of 0.040 means 4% (400 basis points). Standard errors are in 
parentheses (and account for both heteroscedasticity and serial correlation). See the notes under 
Table II for additional information about specification, estimation, and data.  
 


