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Abstract

I design a novel specification test for diagnosing the adequacy of affine term structure

models to describe the observed yield variance dynamics, and derive the associated limit

theory necessary for carrying out the test. The test statistic utilizes model–free estimators

of instantaneous variances based on intraday data as well as model-free prices of variance

swaps. Hence, it enables a direct testing of variance dynamics, independent of any

specific modeling assumptions. I implement the test statistic in Eurodollar futures and

options markets and find that affine term structure models cannot accommodate the yield

variance dynamics observed in the data, especially during the crisis period of 2008–2010.

However, a logarithmic affine specification of variances provides a remarkably improved

fit.
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1. Introduction

Low–dimensional affine term structure models stand as a cornerstone in the term

structure literature. These models provide a very successful fit to the cross–sectional

properties of bond yields, see, e.g., Dai and Singleton (2002). However, their implica-

tions for yield variances are still not clear. Although these models can generate the

patterns of unconditional yield volatility, see, e.g., Dai and Singleton (2003), the condi-

tional volatilites implied by standard affine multifactor models can be uncorrelated or

even negatively correlated with the time–series of conditional volatilities estimated via a

GARCH approach, see, e.g., Collin–Dufresne, Goldstein, and Jones (2009), and Jacobs

and Karoui (2009).

These findings may raise concerns about the presence of some sort of misspecification

in affine term–structure models. This is an important problem because systematic bi-

ases caused by incorrect specification of underlying models may mislead inference about

yield volatility dynamics, yield risks, and their respective pricing implied by the models.

Therefore, guidance for diagnosing the presence of such misspecification may be useful

particularly for applications that demand correct model implications for yield volatility

dynamics.

In this paper, I design a novel specification test for diagnosing the adequacy of affine

term structure models to describe the observed yield variance dynamics, and derive the

associated limit theory necessary for carrying out the tests. I implement the test statistic

in Eurodollar futures and options markets and explore whether the affine term–structure

model class provides a satisfactory characterization of the observed yield variance dy-

namics. The proposed test statistic relies on two measures that are highly sensitive to

variance states: model–free prices of variance swaps and model–free estimators of instan-

taneous volatility based on intraday data. Hence, it enables a direct testing for variance

dynamics, being independent from any specific modelling assumptions.

This novel test statistic is useful in several dimensions. First, it enables a direct test-

ing of variance implications of the affine model class without making any reference to
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unspanned stochastic volatility, i.e. a form of bond market incompleteness that variance

risk can not be hedged with bonds, see, e.g., Collin–Dufresne and Goldstein (2002) and

Joslin (2017). Second, one may test the variance specification at any given point in time,

which can be informative about the potential sources of model failures. Third, the devel-

oped test statistic serves as a diagnostic tool for the affine specification under the pricing

measure and does not hinge upon any parametric assumptions regarding the dynamics

under the physical measure beyond what is implied by the no–arbitrage condition. In

that aspect, it serves as a valid diagnostic tool for a large set of models including the so–

called essentially affine class of Duffee (2002), extended affine classification of Cheridito,

Filipović, and Kimmel (2007) and the models with a non–affine drift under the phys-

ical measure, see, e.g., Duarte (2003)1. Fourth, no specific time series model for the

conditional variances is required under this approach. GARCH–type models are often

employed in the literature to judge the feasibility of the model–implied variances, see,

e.g., Collin–Dufresne, Goldstein, and Jones (2009), Jacobs and Karoui (2009). Instead,

the proposed test statistic relies on non–parametric measures of spot volatility.

One approach to mitigate the harmful effects of misspecification of variances is to

incorporate datasets that provide valuable information about variances in the estimation.

Along this line, several recent studies explore potential benefits of incorporating the

interest rate derivatives data in model estimations. For instance, Almeida, Graveline,

and Joslin (2011) document that relying on derivatives data together with underlying

interest rates in estimation improves the precision of the risk neutral parameter estimates

of the underlying affine models. However, they find that even when estimated with

derivatives data, standard three–factor affine models fail to match the cross–section of

conditional yield volatilities. Cieslak and Povala (2016) employ realized covariances of

zero–coupon rates as well as the options data in their proposed affine model’s estimation.

They document an improved fit of the affine model to the conditional yield variances and

the cross–section of yields with maturities above two years but with the cost of extra

1See Piazzesi (2010) for a review on nonlinearities in term structure literature.
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state variables.

Another strand of the literature along the lines of stochastic volatility in interest

rate markets investigates whether the term structure of yields is related to the yield

variances. An implication of affine term structure models is that the states driving the

yield variances are a linear combination of yields. Collin–Dufresne and Goldstein (2002)

document low explanatory power of swap rates in explaining returns on at–the–money

straddles, which are particularly sensitive to the volatility risk. Accordingly, they propose

a sub–family of the affine term structure models and term it as unspanned stochastic

volatility models. However, there is mixed evidence on the empirical performance of

these models for capturing the cross–sectional and time–series properties of yields, see,

e.g., Bikbov and Chernov (2009), Collin–Dufresne, Goldstein, and Jones (2009) and

Joslin (2017).

I highlight one fundamental variance implication of the arbitrage–free affine term

structure models that earlier literature has not focused on: the instantenous variances

of the discount rates are linearly spanned by the contamporaneous term–structure of

variance swap rates. This relation is the focus of the testing mechanisms devised in this

paper. Intuitively, any natural testing mechanism of this property requires relating the

measures of instantenous variances to the cross–section of variance swap rates. However,

both the instantenous variances and the variance swap rates are unobserved for discount

rates.

Testing mechanism designed in this paper requires two crucial steps. The first one is

the model–free recovery of the volatility realizations. This paper relies on the localized

versions of the realized variance estimators based on intraday data for inferring instanta-

neous variances. In particular, for each day in the sample, I form model–free estimators

of the spot volatility by using 10–minute observations on implied discount rates. The

second step is the construction of the model–free measure of variance swap rates on im-

plied discount rates. Building on previous work of Neuberger (1994), Demeterfi, Derman,

Kamal, and Zou (1999), Carr and Wu (2009), and Mele and Obayashi (2013), I show
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that variance swap rates on implied discount rates can be synthesized using a portfolio of

put and call options in a model–free way. Specifically, I provide the contract designs of

such variance swaps and the derivation of model–free prices of these variance swaps with

a portfolio of put and call options. In that context, model–free refers to the circumstance

that the theoretical value of the variance swap rates can be replicated by a portfolio of

European style options, without hinging upon any parametric assumptions. Based on

these results, I approximate the variance swap rates on implied discount rates each day

by using a panel of daily option prices.

I perform diagnostic tests for the popular three–factor affine term structure models

for Eurodollar futures and options data. More specifically, I examine the variance im-

plications of three–factor models with one and two stochastic volatility factors, denoted

by A1(3) and A2(3) respectively.2 The results from testing the variance dynamics of the

model with one stochastic volatility factor (A1(3)) are striking. For the 6–month maturi-

ty variance, the test statistic implies large violations of the affine specification, especially

during the crisis period of 2008 to 2010. Moreover, the affine model struggles occasionally

with capturing the variance dynamics before 2007. Although the afffine model with two

stochastic volatility factors (A2(3)) performs better especially before 2007, it is strongly

rejected during the crisis period.

Given the failure of the affine specification with one and two volatility factors, I ex-

plore whether an affine specification of logarithmic variances is supported by the data.

There is substantial empirical evidence in the equity and foreign exchange literature

that the distributions of the logarithms of daily realized variances are approximately

Gaussian, see for example Andersen, Bollerslev, Diebold, and Labys (2000, 2001, 2003).

Accordingly, Andersen, Bollerslev, and Diebold (2007) study volatility forecasting via

modelling the logarithms of realized variances and find substantial improvements in the

forecasting perfomance (see, also, Andersen, Bollerslev, and Meddahi (2005) for volatility

forecast evaluations). These results regarding equity and foreign exchange markets pro-

2The A1(3) and A2(3) models refer to the affine–model classifications where the covariance of the
entire state–space system are driven solely by one state and two states respectively.
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vide a foundation for exploring the affine specification on logarithmic variances. I design

a test statistic to judge the logaritmic affine specification of variances and provide the

associated limit theory. I find that the logarithmic affine specification with two factors

provides a remarkably improved fit for the variance dynamics of implied discount rates

at several maturities including the short end of the yield curve. In stark contrast to

the case of affine variance specification, the test statistic exhibits much more moderate

values consistently throughout the sample, including the crisis period.

The findings of this paper indicate the necessity of further extensions to the volatility

modelling in affine term structure models. Such extensions may be especially important

for applications that demand correct model implications for yield volatility dynamics,

such as interest rate volatility hedging, and yield volatility forecasting. Broadly, presence

of misspecification in the underlying models may lead to biases in estimation and may

distort the model-implied inference about volatility risks, yield risks, and their respective

pricing. Therefore, preventing potential biases caused by misspecification may offer a

fresh perspective on bond risk premia as well as variance risk premia dynamics.

The remainder of this paper is organized as follows. Section 2 introduces the class

of affine term–structure models explored in this paper. Moreover, this section clarifies

the links between Eurodollar futures variances and variance swap rates in the context

of affine term structure models. Section 3 provides the methodologies underlying the

model–free construction of spot variances and the variance swap rates together with

the associated theory. In Section 4, I develop the diagnostic tests for both the affine

and logarithmic affine variance specifications and derive the limiting theory. Section 5

describes the Eurodollar futures and options data set, and outlines the calculations of

the instantanous variances and the variance swap rates based on the intraday and the

options data. Section 6 presents the main empirical results. Section 7 concludes.
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2. The Model

2.1. The Affine Model Specification

I consider the class of term structure models where the spot interest rate, rt, of a

hypothetical AA quality bond is an affine function of the N–dimensional Markov state

variable, Xt, that follows an affine diffusion process under the risk–neutral measure.

Following Duffie and Kan (1996) and Dai and Singleton (2000), the state variable, Xt,

solves the stochastic differential equation (SDE),

dXt = K (Θ−Xt) dt+ Σ
√
StdW

Q
t , (2.1)

where WQ
t is an N–dimensional vector of independent Brownian Motions under the risk–

neutral measure Q, K and Σ are N×N matrices, Θ is an N×1 vector and St is a diagonal

N × N matrix with diagonal components given by [St]ii = αi + β>i Xt, with αi being a

scalar and βi an N× 1 vector.

The short rate is an affine function of X such that

rt = δ0 +

N∑
i=1

δiX
i
t = δ0 + δ>x Xt, (2.2)

where δx is an N–dimensional vector.

Given the risk–neutral dynamics of X and the specification of the short rate, the time

t price of a zero–coupon bond with maturity at t+ τ , with τ being measured in years, is

given by

Pt(τ) = EQ
t

[
e−

∫ t+τ
t

rsds
]
. (2.3)

Following Dai and Singleton (2000), I impose the following parameter constraints to

guarantee admissibility for the model specification in Equation (2.1) under Q:

1.
∑M
j=1Ki,jΘj > 0, 1 ≤ i ≤M,

2. Ki,j = 0, 1 ≤ i ≤M, M + 1 ≤ j ≤ N,

3. Ki,j ≤ 0, 1 ≤ i 6= j ≤M,
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4. Siit = Xi
t , 1 ≤ i ≤M ,

5. Sjjt = αj + ΣMk=1[βj ]kX
k
t , M + 1 ≤ j ≤ N,

6. Σi,j = 0, 1 ≤ i ≤M, M + 1 ≤ j ≤ N,

where αj ≥ 0, [βj ]k ≥ 0.

The first three constraints guarantee that the drift of the factors driving the volatility

is positive and that the non–volatility factors do not feed into the drift of the volatility

factors. Moreover, they guarantee positive feedbacks among volatility factors. The last

three conditions ensure the positive semi–definiteness of the covariance matrix of the

process. In particular, in this specification, the covariance matrix of N–factors would

be determined solely by the M volatility factors, which are autonomous of the N −M

conditionally Gaussian states. Hence, under the admissibility conditions (1 to 6), the

covariance matrix of the N–factors is affine in the M variance states and is given by:

ΣStΣ
> = ΣDiag(α)Σ> +

M∑
i=1

ΣDiag(Γrow,i)Σ
>Xi

t

≡ G0 +

M∑
i=1

Gi1X
i
t . (2.4)

In the rest of the paper, even though I provide the theoretical results for a general

AM (N) model where M states drive the volatility, I will use A1(3) as an illustrative

model where M = 1 factor drives the volatility.

Within this setting, one can obtain the zero–coupon bond prices in closed form.

Specifically, Duffie and Kan (1996) show that the time–t price of a zero–coupon bond

with maturity τ is given by

Pt(τ) = eA(τ)+B(τ)>Xt , (2.5)

where the loadings A(τ) ∈ R and B(τ) ∈ RN satisfy the Riccati ODEs,

A
′
(τ) = −δ0 + Θ>K>B(τ) +

1

2

N∑
i=1

[
B(τ)>Σ

]2
i
αi, (2.6)

B
′
(τ) = −δx −K>β(τ) +

1

2

N∑
i=1

[
B(τ)>Σ

]2
i
βi,
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with initial conditions A(0) = 0 and B(0) = 0.

Next, I will provide the pricing of the Eurodollar futures contracts.

2.2. Eurodollar futures contracts

Eurodollar futures contracts at time t with maturity τf are quoted as

FEDt (τf ) = 100
(
1− fEDt (τf )

)
, (2.7)

where fEDt (τf ) is the futures rate for three–month LIBOR rate.

Eurodollar futures are cash settled contracts with final settlement prices being tied

to the three–month London Interbank Offer Rate (LIBOR). In particular, the terminal

price, i.e., the price at maturity, of a three–month Eurodollar futures contract with time

to maturity τf is given by

FEDt+τf (0) = 100
(
1− Lt+τf (τL)

)
, (2.8)

where τL = 90/360 and Lt+τf (τL) is the three–month LIBOR rate at time t+ τf .3 The

LIBOR is a simple rate and is linked to the zero–coupon bond price,

1 + τLLt(τL) =
1

Pt(τL)
. (2.9)

Consequently, the three–month LIBOR rate at time t+ τf can be written as

Lt+τf (τL) =
1

τL

(
1

Pt+τf (τL)
− 1

)
. (2.10)

Under the risk–neutral measure, Q, the time t price of a Eurodollar futures contract

with time to maturity τf follows a martingale process and can be obtained by taking the

conditional expectation of its delivery prices under Q,

FEDt (τf ) = EQ
t

[
100

(
1− Lt+τf (τL)

)]
. (2.11)

3The LIBOR is quoted in annualized terms and the day count convention is 360 days for the USD.
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By using the link between the LIBOR and zero–coupon bond prices in Equation (2.10)

and the exponential affine form of zero–coupon bond prices in Equation (2.5), fEDt (τf )

is given by

fEDt (τf ) =
1

τL
e−A(τL)EQ

t

[
e−B(τL)>Xt+τf

]
− 1

τL
(2.12)

The risk–neutral expectation in Eq. (2.12) can be obtained by using the conditional

moment generating function. Duffie, Pan, and Singleton (2000), henceforth DPS, derive

closed–form expressions for a class of transforms of affine jump–diffusion processes. One

implication of their analysis is that the conditional moment generating function of Xt+τf

given Xt can be obtained in closed form within the affine setting of the short rate,

Equation (2.2), and the affine diffusion dynamics of Xt under Q, Equation (2.1). In

particular, by setting δ0 = 0, δx = 0N×1, a closed–form expression for the conditional

moment generating function of Xt + τf given Xt can be obtained by Equations (2.4-2.6)

in DPS. Accordingly, the future LIBOR rate takes the form

fEDt (τf ) =
1

τL
e−A(τL)+Af (τf )+Bf (τf )>Xt − 1

τL
, (2.13)

where Af (τf ) and Bf (τf ) solve the same Riccati ODEs as in Equation (2.6) with δ0 = 0,

δx = 0N×1, and initial conditions Af (0) = 0 and Bf (0) = −B(τL).

Tranforming the futures rate, fEDt (τf ) in Equation (2.13), into its equivalent three–

month discount rate leads to an exponential linear form in state variables. Specifically,

the time t implied three–month gross rate is given by

Ψ
τf
t = e−A(τL)+Af (τf )+Bf (τf )>Xt (2.14)

= 1 + τLf
ED
t (τf ).

An application of Itô’s lemma reveals the dynamics of Ψ
τf ,τL
t ,

dΨ
τf
t

Ψ
τf
t

= µΨ (Xt, τf ) dt+ σΨ (Xt, τf ) dWQ
t , (2.15)
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with the instantaneous variance

V Ψτf
t := σΨ (Xt, τf )σΨ (Xt, τf )

>

= Bf (τf )>

(
G0 +

M∑
i=1

Gi1X
i
t

)
Bf (τf )

= Bf (τf )>G0B
f (τf ) +

M∑
i=1

Bf (τf )>Gi1B
f (τf )Xi

t

≡ Φ
τf
0 + Φτf>XG

t , (2.16)

where Φ
τf
0 ≡ Bf (τf )>G0B

f (τf ) and Φτf =
(
Φ
τf
1 , ...,Φ

τf
M

)>
with Φi ≡ Bf (τf )>Gi1B

f (τf ).

Since St is affine in the variance state vector, XG
t ≡ (X1

t , X
2
t , ..., X

M
t )′, the instanta-

nenous variance, V
Ψ
τf
t

t , is also affine in XG
t . This result establishes the fundamental

link between the M variance states XG
t and the cross section of instantenous variances

of implied discount rates. Virtually in all low dimensional affine term structure models

of the form AM (N) (see the canonical forms in Collin–Dufresne, Goldstein, and Jones

(2009) and Joslin (2017)), the time variation in the instantenous volatility of the implied

discount rates is driven solely by the M variance states XG.

In the rest of the paper, implied three–month gross rate, Ψ
τf
t , will be the main

quantity of interest, rather than the Eurodollar futures prices, FEDt (τf ). The reason

for this is that given the affine model specification under the risk neutral measure in

Equations (2.1-2.2), Ψ
τf
t is an exponential affine function of the underlying states, see

Equation (2.14). Hence,
dΨ

τf
t

Ψ
τf
t

has spot variance dynamics that are affine only in the

volatility states XG = (X1, X2, ..., XM )′.

2.3. The Conditional Mean of
∫ t+τv
t

V Ψτf
u du

I now analyze the implications of the underlying AM (N) model for the first moment

of integrated variance to enable testing based only on volatility sensitive quantities. In

order to derive the conditional expectation of integrated variance, it is useful to first start

with the conditional expectation of XG
u . The conditional expectation of XG

u is given by

EQ [XG
u |Ft

]
= ΘG

(
I − e−K

G(u−t)
)

+ e−K
G(u−t)XG

t . (2.17)
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Now, using the result above, the risk neutral conditional mean of integrated variance

over [t, t+ τv] for a general AM(N) model is given by

EQ
[∫ t+τv

t

V Ψτf
u du

∣∣∣∣ Ft] = Λ
τf ,τv
0 + Λ

τf ,τv
1

>
XG
t , (2.18)

with

Λ
τf ,τv
0 =

(
Φ
τf
0 + Φτf>ΘG

)
τv − Φτf>

(
KG−1 −KG−1

e−K
Gτv
)

ΘG,

Λ
τf ,τv
1 = Φτf>

(
KG−1 −KG−1

e−K
Gτv
)>

.

A detailed proof is provided in Appendix A.

Hence, the conditional expectation of the integrated variance is tied to the contem-

poraneous variance states via an affine mapping. In all AM (N) style models, the time

variation in the risk neutral expectation of the integrated variance is solely determined

by the time variation of the M variance states. This feature is in common with the spot

variance V Ψτf
t , see Equation (2.16).

Note that the conditional expectation of the integrated variance given in Equa-

tion (2.18) is essentially equal to the variance swap rate on the implied discount rate,

Ψ
τf
t , denoted henceforth by SW τv

t . A variance swap is a forward contract on the future

integrated variance, with a payoff at expiration given by the integrated variance over the

contract horizon minus the variance swap rate. Variance swaps do not require a payment

to enter, consequently they represent the risk neutral expected value of future integrated

volatility. In Section 3.2, I show that the variance swap rate on the implied discount rate

Ψ
τf
t can be obtained in a model–free fashion by using out–of–the money put and call

options on Ψ
τf
t .

Several studies in the term structure literature focus on low–dimensional affine term

structure models where a single factor drives the yield variation, such as A1(3) and A1(4).

It has been documented that these models, when estimated with bond yields as well as

with bond derivaties, capture the time variation in yield volatility reasonably well and

the price dynamics in both fixed income and fixed income derivatives, see, e.g., Almeida,
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Graveline, and Joslin (2011).4 Hence, I close this section by illustrating the two key

quantities for the A1(3) model, V Ψτf
t and SW τv

t , that enable the testing of variance

specification.

A1(3) Model: In this canonical form, one of the state variables, here X1, determines the

spot volatility of all three state variables. Under the admissibility conditions, the A1(3)

specification leads to Equation (2.16) being an affine function of X1 only. In particular,

• The instantaneous variance, V Ψτf
t is given by

V Ψτf
t = Φ

τf
0 + ΦτfX1

t .

• The integrated variance is given by

SW τv
t = EQ

[∫ t+τv

t

V Ψτf
u du

∣∣∣∣ Ft] = Λ
τf ,τv
0 + Λ

τf ,τv
1 X1

t , (2.19)

where

Λ
τf ,τv
0 = Φ

τf
0 τv + Φ

τf
1

(
θ1τv −

θ1

κ11

(
1− e−κ11τv

))
,

and

Λ
τf ,τv
1 =

Φ
τf
1

κ11

(
1− e−κ11τv

)
.

Hence, under the A1(3) specification, both the instantenous variance V Ψτf
t and the

variance swap rate SW τv
t are determined by the factor X1

t , which is the only factor

driving the covariance of all three factors.

2.4. Affine Variance Spanning Condition

The analytical solutions for the variance swap rate in Equation (2.18) and for the in-

stantenous variance in Equation (2.16) set the baseline for a variance spanning condition

implied by the AM (N) model. In this section, I derive this variance spanning condition.

A variance swap at time t with maturity t+ τv is a contract with payoff at expiration

given by the integrated variance over the horizon of the contract minus the variance swap

4See also Collin–Dufresne, Goldstein, and Jones (2009), Bikbov and Chernov (2009) among others.
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rate. In principle, a variance swap contract can be designed for any maturity τv, which

yields a term–structure of variance swap rates. The result in Equation (2.18) establishes

the fundamental link between the term–structure of the variance swap rates and the

variance states XG.

TheM×1 vector of variance swap rates is denoted by V St = (SW τ1
t , SW τ2

t , ..., SW τM
t )

′
.

Defining the M × 1 vector Ξ0 = (Λτ10 ,Λ
τ2
0 , ...,Λ

τM
0 )
′

and the M × M matrix Ξ1 =(
Λ
τf ,τ1
1 ,Λ

τf ,τ2
1 , ...,Λ

τf ,τM
1

)>
, Equation (2.18) can be written as a system of equations:

V St = Ξ0 + Ξ1X
G
t . (2.20)

We can invert this system in order to express the variance states XG
t as an affine

function of the swap rates V St. This yields,

XG
t = Ξ−1

1 Ξ0 + Ξ−1
1 V St = ζ + Ξ−1

1 V St. (2.21)

Now, since the instantaneous variation of the implied discount rate V Ψτf
t is an affine

function of the variance states XG (shown in Equation (2.16)), for any τf , one can find

a set of constants α
τf
j , j = 0, ...,M such that

V Ψτf
t = α

τf
0 +

M∑
j=1

α
τf
j SW

τj
t . (2.22)

Hence, the instantenous variation V Ψτf
t is tied to the term–structure of the contempora-

neous variance swap rates via an affine mapping in Equation (2.22). Note that this is a

strict realization by realization identity which holds at all times.

The class of low–dimensional AM (N) style affine term structure structure models,

where the covariance of all states is driven solely by the M variance factors, all imply

an affine mapping of the spot variance in M swap rates. In particular, for the model of

A1(3), the variance spanning condition boils down to

V Ψτf
t = α

τf
0 + α

τf
1 SW τ1

t . (2.23)
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The variance spanning condition in Equation (2.22) is valid for the unspanned s-

tochastic volatility (USV) models, which impose parametric restrictions on the AM (N)

canonical form such that the variance factors do not affect the cross section of yields (see

Joslin (2017)). In principle, such USV models are nested under the AM (N) style affine

term structure models.

The spot variance on the left hand side of Equation (2.22) is a latent process and

is not directly observable. Most of the existing studies in low-dimensional affine term

structure models focus on the conditional volatility yield dynamics backed out from the

estimated underlying model. Such parametric conditional variance estimates are sensitive

to the misspecification of the underlying model and can in fact even be unrelated to time

series of GARCH–type estimates of the conditional variances, see, e.g., Collin–Dufresne,

Goldstein, and Jones (2009).

While the parametric model in Equation (4.31) specifies the dynamics under the

risk–neutral measure, Q, there are implications for the data generating measure, P under

the assumption of no–arbitrage. In particular, the no–arbitrage condition implies that

the instantaneous diffusive variance is invariant to changes of the probability measure.

Hence, the spot variance, V Ψτf
t , stays the same under both the data generating measure,

P, and the (parameterized) equivalent martingale measure, Q. Thanks to the availability

of the high frequency data, the instantaneous variance V Ψτf
t can be estimated in a model

free way. Specifically, these estimators enable non–parametric inference, i.e., they are

not based on a parametric specification of the data generating law, Xt, and accordingly,

do not rely on the data generating law of Ψ
τf ,τL
t . In this paper, I employ these estimators

to measure spot variance V Ψτf
t .

The variance swap rates on the right hand side of Equation (2.22) can also be mea-

sured in a model free way by using a portfolio of put and call options. Building on

the previous work of Neuberger (1994) and Demeterfi, Derman, Kamal, and Zou (1999),

Carr and Wu (2009), and Mele and Obayashi (2013), I show that this quantity can be

synthesized using a portfolio of put and call options on Ψ
τf ,τL
t in a model–free way. I
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provide the contract designs of such variance swaps and the derivation of model–free

prices of these variance swaps with a portfolio of put and call options in Section 3.2.

I develop a testing procedure in Section 3 for the variance spanning condition in

Equation (2.22) implied by the class of parametric AM (N) models. Such tests serve as a

diagnostic tool for the affine specification of the model with M variance factors under the

risk neutral measure. The test statistic employs model–free measures of spot variance

V Ψτf
t and variance swap rates SW

τj
t , which I introduce in the next section.

3. Testing the Affine Variance Spanning Condition

This section introduces a specification test for evaluating the affine variance spanning

condition in Equation (2.22) and states the asymptotic results for the test statistic. The

structure of this section is as follows: I start with defining the model–free measures

(non–parametric estimators) of the spot variance V Ψτf
t and variance swap rates SW

τj
t .

Then, I develop the limit theory necessary to devise the formal specification tests for the

variance spanning condition. Last, I provide the test statistic and the associated limit

theory. The developed test statistic is a diagnostic tool for the variance dynamics implied

by the underlying model under the pricing measure, and does not restrict P dynamics

of the states over what is implied by the no–arbitage condition. In that sense, it relies

on the hypothesis that the model is correctly specified under the pricing measure, free

from the parametric specifications about the dynamics of the states under the physical

measure.

3.1. Non–Parametric Inference for Spot Volatility

I start by defining the non–parametric estimators of spot variance V Ψτf
t that are

used in this paper. Thanks to the availability of high–frequency data, realized variance

and realized power variance estimators have been extensively studied both empirically

and theoretically, see Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and

Labys (2001, 2003), Barndorf–Nielsen and Shephard (2001, 2002a,b, 2003, 2004) among

many others. The advantage of these estimators is that the pathwise realizations of
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volatility at specific times can be recovered non–parametrically. They employ in–fill

asymptotics; they are consistent as the observations are sampled more frequently and

feature an asymptotic variance that can be estimated by using the observed prices of the

underlying asset.

The details about the non–parametric estimator to recover the volatility realizations

used in this paper are as follows. The time unit is normalized to a year. Suppose we

have equidistant high–frequency observations y
τf
s = log(Ψ

τf
s ) over t − h to t with grid

size δ = h
n (e.g. 5 min.). Then, the annualized spot volatility estimator V̂t

Ψ,kn,n
is given

by

V̂t
Ψ,Kn,n

=
1

Knδ

∑
j∈I

(∆jy
τf )

2
, (3.24)

with I = −Kn + 1, ...., 0 intraday increments ∆jΨ = y
τf
t+jδ − y

τf
t+(j−1)δ. The block size

Kn < n is a deterministic sequence of integers. This estimator is the localized counterpart

of the realized variance estimator.5

V̂t
Ψ,Kn,n

is consistent for V Ψτf
t as Kn → ∞ and Knδ → 0. For the construction of

the test statistic devised in the later sections, the spot volatility needs to be estimated

only at finite sample of points.

In the empirical implementation, 10 minutes observations of the Eurodollar futures

prices just prior to the close at 2pm (CDT) are used to calculate the spot variance

estimator V̂t
Ψ,Kn,n

for each day. Note that Eurodollar futures prices are transformed to

Ψ for the corresponding maturities via Equation (2.14). To be precise, in the empirical

implementation, the unit of time is a year, where h = 1
360 refers to a day. The trading

part of the day is divided into n intervals and Kn observations prior to the close of the

day are employed for the construction of the spot variance estimator V̂ Ψ,Kn,n
t .

5In settings with jumps, we can construct spot counterparts of the integrated truncated variation
estimators of Mancini (2001), see also Jacod and Protter (2012).
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3.2. Model–free Construction of Variance Swap Rates on Ψ
τf
t

There is an extensive literature focusing on the pricing of equity volatility, see Deme-

terfi, Derman, Kamal, and Zou (1999), Bakshi and Madan (2000), Carr and Madan

(2009) among many others. In fact, the theoretical results provided for the model–free

replication of the theoretical price of the variance swaps are used by the CBOE to cal-

culate the popular VIX index. The VIX index has become a benchmark over years for

measuring and trading US equity market volatility. Although pricing of future volatility

is well–understood in equity markets, it is still in its infancy for fixed income markets.

Design and pricing of variance swaps in fixed income markets is a delicate issue because

of the stochastic interest rates.

In this section, I provide contract designs for variance swaps on the implied discount

rate Ψτf and provide the theory regarding the model–free construction of these variance

swap rates. In that context, model–free refers to the circumstance that the theoretical

value of the variance swap rates can be replicated by a portfolio of European style options,

without hinging upon any parametric assumptions.6

A variance swap is a forward contract such that at maturity one party pays the

quadratic variation over the contract horizon and the other party pays a fixed rate in

exchange, which is termed as the variance swap rate. Variance swaps require no initial

payment. In particular, I consider a variance swap based on Ψτf with the contract

horizon from t to t+ τv. The payoff at maturity on the long side of the swap is equal to

1

τv

∫ t+τv

t

V Ψτf
u du− SW τv

t , (3.25)

where SW τv
t is the fixed variance swap rate determined at time t. The value of the swap

rate SW τv
t is determined at time t. A variance swap costs zero to enter. Consequently,

under the assumption that the short rate is uncorrelated with integrated volatility,7 the

6Excluding mild assumptions such as absence of arbitrage and the frictionless markets
7See the literature on unspanned stochastic volatility
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variance swap rate is given by

SW τv
t =

1

τv
EQ
t

[∫ t+τv

t

V Ψτf
u du

]
. (3.26)

The variance swap rate SW τv
t can be replicated by the continuum of European out–of–the

money put and call options. A proof for the following result is provided in Appendix C.

SW τv
t =

2

τv

∫ Ψ
τf
t

0

Putt(τv,KΨ)

KΨ
2Pt(τv)

dKΨ +
2

τv

∫ ∞
Ψ
τf
t

Callt(τv,KΨ)

KΨ
2Pt(τv)

dKΨ + ετvt ,(3.27)

where Putt(τv,KΨ) and Callt(τv,KΨ) are time t prices of the out–of–the–money Euro-

pean put and call options with strike KΨ and with expiration at time t + τv, written

on the simple implied three–month rate Ψ
τf
t . I document, with simulations based on

empirically relevant parameter values for the Eurodollar futures market, that the effect

of the last part is not significant for practical purposes. Hence, I exclude this term in

the implementation and obtain the variance swap rate in a model–free fashion by a port-

folio of out–of–the–money put and call options. The simulation results are presented in

Appendix C.2.

Equation (3.27) means that on each day one can synthesize the variance swap rate

with a horizon τv by using the options (with corresponding maturity) available on that

day. Since Equation (3.27) holds for any τv, variance swap rates for various horizons,

i.e. term structure of swap rates, can be constructed depending on the availability of the

option data. Consequently, variance swap rates are approximated by a discretization of

the portfolio of the continuum of options such that

ŜWt

τv
=

2

τv

∑
i

Õt(τv,Ki
Ψ)

Pt(τv)

∆KΨ

Ki
Ψ

2 −
1

τv

(
FΨ,τv
t

K0
Ψ

− 1

)2

, (3.28)

where Ot(τv,Ki
Ψ) is the time–t price of an out–of–the money option with strike price KΨ

and maturity t+ τv. Pt(τv) is the time–t price of a zero–coupon bond with maturity τv.

FΨ,τv
t is the forward level approximated from the option prices (via the strike where the
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absolute difference between the call and put is smallest), and K0
Ψ is the first available

strike below the forward level FΨ,τv
t . The last part in Equation (3.28) is a correction

for the error introduced by the substition of K0
Ψ instead of the forward price. ∆Ki

Ψ
is

set as
Ki−1

Ψ +Ki+1
Ψ

2 for all strikes, excluding the smallest and the largest strikes. For the

smallest and the largest strikes, ∆Ki
Ψ

is set as the distance to the next higher strike and

next lower strike respectively.

Eurodollar futures contracts do not have constant maturities over days, instead their

maturities follow a seesaw pattern over days. Then, the swap rate ŜWt

τ
for a fixed

time to maturity τ can be calculated from the available options with the two nearest

maturities τv1 and τv2 via the following linear interpolation

ŜWt

τ
=

1

τ

(
τv1
ŜWt

τv1 τv2
− τ

τv2
− τv1

+ τv2
ŜWt

τv2 τ − τv1

τv2
− τv1

)
, (3.29)

where SWt
τv1 and SWt

τv2 are variance swap rates with time to maturity τv1
and τv2

,

respectively.

I construct the variance swap rates by using the settlement prices of options at each

day for which the Eurodollar option data is available. The available option data covers

the period from January 1, 2004 to July 13, 2010. At each day in the sample, I construct a

term–structure of variance swap rates on the implied discount rate Ψ for fixed maturities

of three, six, nine months, one year and one and a half years by using Equation (3.29). As

the data is not directly available on the implied discount rates and options on them but

on Eurodollar futures and options, we need to transform the prices of Eurodollar futures

and options to the corresponding measures on the implied discount rates. I provide the

details regarding the construction variance swap rates on the implied discount rates later

in Section 5.1.

This paper is not the first one to analyze the variance contracts in fixed income

markets. Mele and Obayashi (2013) provide the theory underlying the pricing of variance

contracts on Treasury futures. Choi, Mueller, and Vedolin (2017) study variance risk
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premiums in the Treasury market. Grishchenko, Song, and Zhou (2015) examine the

role of variance risk premiums based on interest rate swaps and swaptions in predicting

Treasury excess returns. The theoretical and empirical results regarding the variance

swaps documented in this paper complement the work above as the focus here is on the

pricing of the variance in Eurodollar markets (on implied discount rates).

4. Test Statistics and the Limiting Theory

This section formalizes the set–up underlying the econometric analysis of the paper.

Our interest is on the process, Ψτf defined on a probability space

(
Ω(0),F (0),

(
Ft(0)

)
t≥0

,P(0)

)
follows the general dynamics under P(0):

dΨ
τf
t

Ψ
τf
t

= µΨτf
t dt+ σΨτf

t dWt, (4.30)

where W is an N–dimensional Wiener process, µΨτf
t and σΨτf

t are càdlàg and Ft–adapted

processes. The spot variance process is V
τf
t = σΨτf

t σΨτf
t

>
takes its values in the set

D+ ≡ (0,∞). See Assumption 1 in Appendix D for precise assumptions regarding

regularity conditions on Ψ
τf
t .

Under the assumption of no–arbitrage, there exists a risk–neutral probability measure

Q (see, e.g., Duffie (2001)) which is locally equivalent to P(0). To be specific, Ψτf under

Q follows

dΨ
τf
t

Ψ
τf
t

= µΨ,Q
t dt+ σΨτf

t dWQ
t , (4.31)

where WQ
t is an N–dimensional Q–Wiener process. Similarly, µΨ,Q

t is càdlàg and adapted.

Note that I stress that I do not assume any parametric functional forms on µΨτf
t ,

µΨ,Q
t and σΨτf

t , i.e. recall that µΨτf
t , µΨ,Q

t and σΨτf
t carry an affine parametric form

in the underlying (latent) states under low–dimensional affine term–structure models.

Moreover, the setting in this section allows the instantenous variance process V
Ψτf
t to be

an Itô semi–martingale with general forms of vol–of–vol and jumps.

We have observations from options written on Ψτf at integer times (i.e. days) t =
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1, ..., T , within a time span [0, T ]. In particular, at a given time t, we have a cross–section

of out–of–the money option prices {Ot(τj ,KΨj); j = 1, ...., NK} for some integer NK . For

a tenor of τ , there are Nτ
K number of options, and hence

∑
τ N

τ
K = NK .

Suppose for each tenor τ , Km(τ) and KM (τ) represent the minimum and the max-

imum strikes. To this end, I assume that the strikes between Km(τ) and KM (τ) are

equidistant, with grid size ∆K = KM (τ)−Km(τ)
NτK

.

Option prices are assumed to be observed with error:

Õt(τ,KΨ) = Ot(τ,KΨ) + ετ,KΨ

t , (4.32)

where the observation errors, ετ,KΨ

t , are defined on space Ω(1). We endow the space Ω(1)

with the product Borel σ–field F (1) and the filtration F (1) = σ(ετ,KΨ
s : s ≤ t) and the

probability P(1)(w(0), dw(1)). Then, the extended probability space (Ω,F , (Ft)t≥0,P) is

given by

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft = ∩s>t(F (0)
s ×F (1)

s ),

P
(
dw(0), dw(1)

)
= P(0)

(
dw(0)

)
P(1)

(
w(0), dw(1))

)
.

Observation errors are assumed to be conditionally centered and to display stochastic

volatility which can also depend on the tenor:

E
[
ετ,K

Ψ

t |F (0)
]

= 0, and E

[
ετ,K

Ψ

t

2
|F (0)

]
= ηt,KΨ,τ . (4.33)

See Appendix 2 for additional assumptions regarding the observation errors.

Now, we are at a stage to establish the asymptotic distribution of the estimators. I

first start with the limiting distribution of the high–frequency based variance estimator

V̂t
Ψ,Kn,n

given in Equation (3.24).

Theorem 4.1. Let Ψ be a stochastic process solution to (4.31). Let Assumption 1 holds.
If Kn →∞, δ → 0 and Kn

√
δ → 0, then for all t in (0, T ], we have

V̂t
Ψ,Kn,n − V Ψτf

t√
2
Kn

(
V̂t

Ψ,Kn,n
)2

L−s−−−→ U , (4.34)
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where conditionally on F , U is an N (0, 1) variable.

See Alvarez, Panloup, Pontier, and Savy (2012) for a proof.8

Theorem 4.2. Let Assumption 2 holds. Nτv
K is the number of options on a given day t

with tenor τv and with equally spaced strikes of grid size ∆K between [Km(τv),KM (τv)].

Let ŜW
τv

t is given as in Equation (3.28) with FΨ,τv
t = K0

Ψ. Moreover, assume there
exists

η̂t,KΨ,τv
P−→ ηt,KΨ,τv , (4.35)

uniformly on [Km(τv),KM (τv)]. Then, as ∆K → 0, we have

ŜW
τv

t − SW
τv,m,M
t√

∆KŴNK
t

L−s−−−→ N (0, 1), (4.36)

where

SW τv,m,M
t =

2

τv

∫ KM (τv)

Km(τv)

Ot(τv,KΨ)

KΨ
2 dKΨ, (4.37)

and

ŴNK
t =

4

Pt(τv)
2

NτvK∑
j=1

η̂t,Kj ,τv

Kj
Ψ

4 ∆K . (4.38)

See Appendix D for a proof.

The limiting distribution of a test statistic for the affine variance spanning condition is

provided next. Specifically, the underlying null hypothesis is the affine variance spanning

condition

V Ψτf
t = α

τf
0 +

M∑
j=1

α
τf
j SW

τj
t .

.

Theorem 4.3. Let Assumption 1 and 2 hold. Suppose T →∞, NK →∞ with NK
T → 0,

Kn →∞, Kn

√
δ → 0, with Kn

NK
→ ρ and Kn

T → 0.

Ẑt =
V̂t

Ψ,Kn,n − α̂τf0 −
∑M
j=1 α̂

τf
j ŜWt

τj√
2
Kn

(
V̂t

Ψ,Kn,n
)2

+ ∆K

∑M
j=1(α̂

τf
j )2ŴNK ,j

t

L−s−−−→ N (0, 1), (4.39)

8In a setting with price jumps, similar results have been established for the localized versions of the
truncated variation estimators (see, e.g., Jacod and Protter (2012), Andersen, Fusari, and Todorov
(2015)).
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where (α̂0, α̂1, ..., α̂M )> = argmin
{α
τf
j }Mj=0

∑T
t=1

(
V̂t

Ψ,Kn,n − ατf0 −
∑M
j=1 α

τf
j ŜWt

τj
)2

and ŴNK
t

is given as in Theorem 4.2.

See Appendix D for a proof.

I adjust the variance spanning condition in Equation (2.22) for logarithmic variances

as

log V Ψτf
t = α

τf
0,log +

M∑
j=1

α
τf
j,log logSW

τj
t ,

where α
τf
j,log, j = 0, ...,M is a set of constants. I term this relation as the logarithmic

variance spanning condition. Next, I provide the limiting distribution of a test statistic

under the null of the logaritmic affine spanning condition.

Theorem 4.4. Let Assumption 1 and 2 hold. Suppose T →∞, NK →∞ with NK
T → 0,

Kn →∞, Kn

√
δ → 0, with Kn

NK
→ ρ and Kn

T → 0. Then, we have

Ẑlogt =
log V̂t

Ψ,Kn,n − α̂τf0,log −
∑M
j=1 α̂

τf
j,log log ŜWt

τj√
2
Kn

+ ∆K

∑M
j=1(α̂

τf
j )2Π̂NK ,j

t

L−s−−−→ N (0, 1), (4.40)

where

(α̂0,log, α̂1,log, ..., α̂M,log)
> = argmin

{α
τf
j,log}

M
j=0

log V̂t
Ψ,Kn,n − ατf0,log −

M∑
j=1

α
τf
j,log log ŜWt

τj

2

,

and Π̂NK ,j
t =

ŴNK,j
t

(ŜWt
τj )2

.

See Appendix D for a proof.

5. Data and Preliminary Analyses

The analysis in this paper relies on Eurodollar futures and options data traded at

the CME from January 1, 2004 to July 13, 2010. Eurodollar futures contracts are cash

settled contracts with the delivery based on the 3–month LIBOR. These contracts are

issued quarterly with maturities ranging from three months to ten years. Consequently,

at each date there are up to fourty contracts available with contract months March,

June, September and December. Note that Eurodollar futures do not have constant
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maturities. Accordingly in order to get one time series, I roll the futures data at the end

of the month preceeding the contract month. Therefore, the time–to–maturities follow a

seesaw pattern over days for each maturity.

The CME offers both quarterly and serial option contracts. The contract months

for quarterly options are March, June, September and December and they exercise into

the Eurodollar futures contracts with the corresponding maturities. Although the CME

recently introduced quarterly options with maturities up to four years, the analysis here is

based on the options with maturities up to two years because these contracts are the most

liquid ones. The serials’ contract months are the two non–quarterly front months and

they exercise into the corresponding quarterly Eurodollar futures contract immediately

following the serial. Note that these contracts are much less liquid than the quarterly

options. Consequently, I discard all the serial options from the sample. Consistent with

the rolling procedure implemented for the Eurodollar futures, options are rolled at the

end of the month preceeding the contract month.

5.1. Construction of the Swap Rates

In order to construct the term–structure of the variance swap rates in a model free way,

I use the daily settlement prices of the CME standard quarterly options from January 1,

2004 to July 13, 2010. Daily data on Eurodollar futures and options is obtained from the

CME.9 I apply the following filters to the option data before constructing the variance

swap rates: I eliminate 1) the options with zero settlement prices 2) the options with zero

strikes 3) the options with zero time–to–maturity 4) the options with zero open interest.

Since the model–free construction of variance swap rates employs only out–of–the money

options, I discard all in–the–money options.

In order to construct the variance swap rates on the implied discount rate Ψτf , we

need to transform the Eurodollar futures and options prices to the corresponding val-

ues for the implied discount rate. Appendix B outlines the procedures regarding these

9I use settlement prices of options, which prevents issues related to stale trading or microstructure
noise. CME calculates these prices based on the Globex trades between 13.59 and 14.00.
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tranformations.

I choose horizons of 6–month and 1 year and 6–months for the synthetic variance swap

rates. The remaining horizons are excluded because of liquidity concerns. On a given

date, I choose the two closest maturities to a given horizon (i.e. 6–months) and construct

the variance swap rates in a model free way by implementing the discretization (3.28)

for these two maturities and linearly interpolate the horizon to obtain fixed horizons of

interest via Equation (3.29).

Figure 1 plots the time series of the square root of the variance swap rates for the

maturities of 6 months and 1.5 years. The figure depicts all values in annualized basis

point units. The variance swap rates for 1.5 year maturity is usually larger than the

variance swap rates for 6 months maturity. However, in times of distress such as the

crisis period during 2007 and 2008, the swap rates with the short maturity occasionally

go above the swap rates with the longer maturity. These findings could be explained by

the markets pricing the long term contracts with the expectation that volatility would

fall back from the crisis levels. Such behaviors regarding the term structure of variance

swap rates are consistent with the findings in the literature with regards to the variance

swap rates in equity markets, see, for example Dew-Becker, Giglio, Le, and Rodriguez

(2017).

5.2. Construction of Spot Variance

In order to construct a non–parameteric estimator of the spot variance, I obtain the

intraday series of Eurodollar Futures prices from TickData for the period from January

1, 2004 to July 13, 2010. Note that Eurodollar futures are traded both open outcry (pit

trading) and electronically (Globex); I use intraday trades data from both the electronic

and the pit trading sessions. In line with the pit trading hours, I start the intraday

record at 7:20 am (CDT) and end it at 2:00 pm (CDT). I sample Eurodollar futures

trades at a 10–minutes frequency over a 6 hours 40 minutes trading period and convert

them into the corresponding implied discount rates based on the procedure outlined in

Appendix B. After implementing the necessary transformations, the returns on log Ψτf
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Figure 1: Variance Swap Rates
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The figure plots the time series of the square root of the variance swap rates per annum in basis points.

The red line represents the daily variance swap rate for 6–months maturity. The blue line represents the

daily swap rate for 1.5–years maturity. The sample covers the period from 06/29/2004 to 07/13/2010.

are computed. Note that, via the rolling procedure, it is possible to obtain single series

for up to fourty maturities. The maturity structure of each of these series has a seesaw

pattern over days.

Before constructing the non–parametric variance estimator, I apply the following

filters to clean the intraday data: I eliminate the days with no trading activity, half–

trading days, and the days with early market closures which typically happens before

holidays. Moreover, I exclude the days where there is no price change during the last

two thirds of the day.10 Consequently, we have 40 intraday changes on each trading day

over approximately 1600 trading days for the series included in the sample. I construct

the non–parametric variance estimator for each series (with maturities up to 4 years) by

implementing Equation (3.24), where n = 40 and Kn is set as 30. Note that these series

are in annualized terms since h = 1
360 . To obtain a spot variance series with a fixed

10These events result in low trading activities for these days.
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maturity of S days, I choose the two spot variance series with the closest maturities to

S and linearly interpolate the two spot variance estimators on each day.

Figure 2 depicts the daily values for the square root of the non–parametric variance

estimator for 6–months log(Ψ) constructed from high–frequency data. The figure shows

the series in annualized basis point units. Casual inspection shows that volatility follows

higher levels during the crisis period from mid 2007 to the end of 2008. After 2009,

it goes back, on average, to the levels observed before the crisis period. Moreover, the

6–months volatility in Eurodollar markets shows occasional spikes, which is in line with

corresponding findings in Treasury markets, see for example, Andersen and Benzoni

(2010).

Figure 2: Non–parametric Spot Volatility Estimate with 6–month maturity
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This figure plots the time series the non–parametric estimate of the instantenous variance of 6–month

implied discount rate (per annum in basis points). The sample covers the period from 06/29/2004 to

07/13/2010.
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6. Evidence on Testing the Affine Variance Spanning Condition

I now present my main empirical findings. This section studies whether the affine

variance spanning condition in Equation (2.22), implied by AM (N) style affine term

structure models, is satisfied in the Eurodollar data. In particular, I test the affine

variance spanning condition by implementing the test statistic Ẑt (see Theorem 4.3).

Recall that the test statistic relies on the high–frequency based non–parametric spot

variance estimator as well as on the model–free measures of variance swap rates. I focus

on the results for the 6–month maturity spot variance, that is V Ψτf
t where τf = 1

2 . The

findings for the 3–months, 1 year, 1.5 years and 3 years maturity spot variances are

provided in the Appendix. I rely on the model–free measures of the variance swap rates

for 6–months and 1.5–years maturities to construct the test statistic.

I test the variance spanning implication for the two most often used models, A1(3)

and A2(3), in the low–dimensional term structure literature. I inititally focus on the

diagnostic analysis of the variance spanning condition under the A1(3) model, where

the covariance of all states is solely driven by a single factor. Recall that the variance

spanning condition in that case boils down to a specification with one factor only (see

Equation (2.23)). Consequently, the diagnostic analysis of the variance spanning condi-

tion under A1(3) model relies on the non–parametric measure of the variance swap rate

with 6–months maturity only.

Figure 3 depicts the daily times series of the test statistic Ẑt from Theorem 4.3

for the variance spanning condition implied by the A1(3) model. The test statistic is

employed dynamically at each point in time via a rolling window of length of 120 days.

Remarkably, the test statistic exhibits very large negative values (considerably below the

1st percentile value) over the crisis period of 2008 to 2010, which indicates the failure of

the affine variance spanning condition under the one volatility factor model. Moreover,

the A1(3) model struggles occasionally during the calm period of 2004–2007. From an

econometric perspective, the A1(3) model is rejected.

Casual inspection shows persistent behavior of the test statistic over periods where
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Ẑ
t

is
co

n
stru

cted
ev

ery
d

a
y

b
y

u
sin

g
ro

llin
g

w
in

d
o
w

s
o
f

len
g
th

1
2
0

d
a
y
s.

T
h

e
tra

d
in

g
p

erio
d

o
v
er

a
d

a
y

is
6

h
o
u

rs

4
0

m
in

s
w

h
ich

lea
d

s
to

n
=

4
0
.
K
n

is
fi

x
ed

to
3
0
.

T
h

e
sa

m
p

le
co

v
ers

th
e

p
erio

d
fro

m
J
a
n
u

a
ry

1
,

2
0
0
4

to
J
u

ly
1
3
,

2
0
1
0
.

30



the spanning condition under the A1(3) model fails. This may indicate the necessity

of a second volatility factor. Given the failure of the A1(3) model, a natural next step

would be to explore extensions with additional volatility factors. Accordingly, I test the

variance spanning condition implied by the A2(3) model, where the covariances of all

states are driven by two factors. Recall that the variance spanning condition in that case

boils down to a specification with two variance swap rates. The test statistic in that case

relies on the 6–months variance swap rate and the 1.5–years variance swap rate.

Figure 4 illustrates the results for the test statistic for the A2(3) model. Not surpris-

ingly, the additional factor improves the performance of the affine model in satisfying the

variance spanning condition, especially during the tranquil period of 2004–2007. Howev-

er, the test statistic still exhibits large negative values during the 2008–2010 crisis period.

Consequently, from an econometric perspective, the affine specification with two volatili-

ty factors is strongly rejected during the periods of major market disruptions. The results

for testing the affine variance spanning condition under the A2(3) model for 3–months,

1–year, 1.5–years and 3–years maturities are provided in Appendix E. Consistent with

the results with regards to 6–month maturity, the test statistic exhibits often large neg-

ative spikes during the crisis period, implying also the failure of the affine specification

also with two volatility factors.

6.1. Logarithmic Affine Variance Spanning Condition

There is substantial empirical evidence in the equity and foreign exchange literature

that the distributions of the logarithms of daily realized variances are approximately

Gaussian, see for example Andersen, Bollerslev, Diebold and Labys(2000, 2001, 2003).

Accordingly, Andersen, Bollerslev, and Diebold (2007) study volatility forecasting via

modelling the logarithms of realized variances and find a substantial improvement in the

forecasting perfomance (see, also, Andersen, Bollerslev, and Meddahi (2005) for volatility

forecast evaluations). Chernov, Gallant, Ghysels, and Tauchen (2003) employs log–linear

specifications of volatility for modelling the distributions of equity returns. Exponential–

OU processes are moreover studied in Todorov and Tauchen (2011), Todorov, Tauchen,
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2Ŵ

N
K
,2

t

,

w
h

ere
(α̂

0
,α̂

1
,,α̂

2
) >

=
a
r
g
m
in
α
τ
f
j

;j
=

0
,1 ∑

Tt=
1 (
V̂
t
Ψ
,K
n
,n
−
α
τ
f

0
−
α
τ
f

1
Ŝ
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and Grynkiv (2014). The results in the literature regarding equity and foreign exchange

markets provide a foundation for exploring the affine specifications based on logarithmic

variances. Consequently, I explore whether the affine specification of logarithmic variance

is satisfied in data. More precisely, for any maturity τf , I adjust the variance spanning

condition in Equation (2.22) for logarithmic variances as follows

log V Ψτf
t = α

τf
0,log +

M∑
j=1

α
τf
j,log logSW

τj
t , (6.42)

where α
τf
j,log; j = 0, ...,M is a set of constants. I term this relation as the logarithmic

affine variance spanning condition.

Recall that the test statistic for the logarithmic affine variance spanning condition is

as follows

Ẑlogt =
log V̂t

Ψ,Kn,n − α̂τf0,log −
∑M
j=1 α̂

τf
j,log log ŜWt

τj√
2
Kn

+ ∆K

∑M
j=1(α̂

τf
j )2Π̂NK ,j

t

, (6.43)

where (α̂0,log, α̂1,log, ..., α̂M,log)
> and Π̂NK ,j

t are as defined in Theorem 4.4. The limiting

distribution of Ẑlogt is provided in Theorem 4.4. Note that this test statistic can be

constructed for spot variances with any maturity τf . In the main text, the focus is on

the 6–months maturity. However, the results for maturities up to 3–years are presented

in Appendix E.

Next, I provide empirical evidence on whether the logarithmic variance spanning

condition is satisfied in the Eurodollar data. Specifically, the test statistic is constructed

every day in the sample by employing high–frequency spot variance measures and the

variance swap rates. As with the empirical analyses regarding the variance spanning

condition, I focus on the spot variance with 6–months maturity in the main text. I start

with testing a simple specification with only M = 1 factor and rely on the variance swap

rate with the 6–months maturity for this factor.

Figure 5 illustrates the results for the 1–factor logarithmic spanning condition. The

test statistic is constructed dynamically with rolling windows of window length 120 days.

The model fit improves remarkably, especially during the crisis period of 2008–2010. In
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contrast to the case with the affine spanning, the test statistic for the logarithmic vari-

ance spanning condition exhibits much more moderate values in magnitude, occasionally

outside of the region between the 1st and 99th percentile values of the standard normal

distribution. Specifically, during the crisis period of 2008-2010, the absolute value of

the test statistic based on the affine variance spanning condition is on average 3.2 and

exhibits a standard deviation of 3.5 and a kurtosis of 10.1. Moreover, the absolute value

of the test statistic reaches extreme values of up to 20 around specific crisis events such

as the bankruptcy of Lehman Brothers and the European sovereign debt crisis. On the

other hand, the mean value, the standard deviation and the kurtosis decrease to 1.9, 1.5

and 4.2 respectively for the absolute value of the test statistic based on the logarithmic

variance spanning

Next, I explore an extension of the logarithmic variance specification involving two

factors. In particular, the logarithmic specification in Equation (6.42) is tested for M = 2

factors. The first factor is the same as in the case of the one factor specification. The

second factor is based on the variance swap rate with 1.5–years maturity. Figure 6 depicts

the time series of the test statistic with M = 2 factors. The logarithmic specification with

two factors improves the performance of the test statistic, however the improvements are

not substantial. The average value of the test statistic goes down to 1.52 from 1.63 for

the full sample. The standard deviation also decreases to 1.37 from 1.45.

All in all, the logaritmic variance specification in Equation (6.42) provides a remark-

ably better fit for the spot variances compared to the affine variance specification implied

by the affine term structure models. More general specifications with two factors further

improve the performance, however the qualitative implications remain unchanged. In

particular, the affine variance spanning condition is strongly rejected especially during

the crisis periods for both one factor and two factor specifications. Moreover, although

the two factor logarithmic specification performs better than the one factor logarithmic

specification, the time series behavior of the test statistic does not change substantially

by adding the second factor.
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7. Conclusion

The recent fixed income literature is centered around the class of low–dimensional

multi–factor affine term structure models. One key implication of the affine term struc-

ture models is that the yield variances are spanned linearly by the contemporaneous

cross–sections of the variance swap rates. This paper designs novel specification tests for

evaluating these variance spanning implications.

By relying on model–free measures of the variance swap rates for implied discount

rates and the respective high–frequency estimates of the instantaneous variances, I for-

mally test whether the affine variance spanning condition holds for the Eurodollar data.

I find strong statistical evidence against the affine variance spanning condition in Eu-

rodollar futures markets. As an alternative to the affine–model specification, I explore

whether an affine specification of logarithmic variances provides a more satisfactory char-

acterization of the data. I document that the logarithmic affine specification of variances

provides a remarkably improved fit for the variance dynamics in the Eurodollar market.
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Ŝ
W
t
τ
1

√
2
K
n

+
∆
K

(α̂
τ
f

1
)
2
Π̂
N
K
,1

t

,

w
h

ere
(α̂

0
,lo
g
,α̂

1
,lo
g
) >

=
a
r
g
m
in
α
τ
f
j
,lo
g
;j

=
0
,1 ∑

Tt=
1 (

lo
g
V̂
t
Ψ
,K
n
,n
−
α
τ
f

0
,lo
g
−
α
τ
f

1
,lo
g

lo
g
Ŝ
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Ŝ
W
t
τ
1
−
−
α̂
τ
f

2
,l
o
g

lo
g
Ŝ
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A. Proof for the First Moment of
∫ t+τv
t

V Ψτf
u du - Equation (2.18)

EQ
[∫ t+τv

t

V Ψτf
u du

∣∣∣∣ Ft] =

∫ t+τv

t

EQ
[
V Ψτf
u

∣∣∣Ft] du
=

∫ t+τv

t

EQ
[
Φ
τf
0 + Φτf>XG

t

∣∣∣Ft] du
= Φ

τf
0 (τv) +

(∫ t+τv

t

Φτf>
[
ΘG

(
I − e−K

G(u−t)
)

+ e−K
G(u−t)XG

t

]
du

)
.

SW τv
t ≡ EQ

[∫ t+τv

t

V Ψτf
u du

∣∣∣∣ Ft]
= Φ

τf
0 (τv) +

∫ t+τv

t

Φτf>EQ
[
XG
u

∣∣∣∣ Ft] du.
TransformXu such thatKG is diagonal: U−1XG

u = Y Gu , UKGU−1 = D, U−1ΘG = ΘDG.

Then,

EQ
[∫ t+τv

t

V Ψτf
u du

∣∣∣∣ Ft] = Φ
τf
0 τv +

∫ t+τv

t

Φτf
>UU−1EQ
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XG
u

∣∣∣∣ Ft] du
= Φ
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0 τv +
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Y Gu
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]
du
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0 τv + ΦτfUΘDGτv − ΦτfU
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D−1 −D−1e−Dτv

)
ΘDG

+ΦτfU
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D−1 −D−1e−Dτv
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= Φ
τf
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Gτv
)
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+Φτf
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e−K
Gτv
)
XG
t

≡ Λ
τf ,τv
0 + Λ

τf ,τv
1 XG

t .

B. Transformations of Option Prices

In this section, I derive the option prices written on Ψ
τf
t by transforming the option

prices written on Eurodollar futures prices, F τLt (τf ). In particular, I will mainly make
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use of the transformation

Ψ
τf
t = 1 + τL −

τL
100

F τLt (τf ) . (B.1)

In particular, the price of a put option written on Ψτf is given by

Putt(T − t,KΨ) = EQ
t

[
e−

∫ T
t
rsds

(
KΨ −Ψ

τf
T

)+]
= EQ

t

[
e−

∫ T
t
rsds
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τLF

τL
T (τf )

100
− τLKF

100

)+
]

=
τL
100

EQ
t

[
e−

∫ T
t
rsds (F τLT (τf )−KF )

+
]

=
τL
100

Callt(T − t,KF ), (B.2)

where the second equality follows from substituting (B.1).

Similarly, the price of a call option written on Ψτf is

Callt(T − t,KΨ) = EQ
t

[
e−

∫ T
t
rsds

(
Ψ
τf
T −KΨ

)+]
= EQ

t
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EQ
t
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∫ T
t
rsds (KF − F τLT (τf ))

+
]

=
τL
100

Putt(T − t,KF ), (B.3)

where the second equality follows from substituting (B.1). Moreover, by implementing

change of variables via (B.1), I obtain∫ Ψ
τf
t

0

Putt(T − t,KΨ)

K2
Ψ

dKΨ =
τL
100

∫ KFU

KFL

Callt(T − t,KF )(
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100KF

)2 × −τL100
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=
τ2
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where KFU = 100×
(

1+τL
τL

)
and KFL = 100×

(
1+τL−Ψ

τf
t

τL

)
= FEDt (τf ).

Similarly,∫ ∞
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100KF
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where the equality follows from substituting (B.1).

C. Replication of variance swap rates from options

In this section, I provide the theory underlying the model–free construction of variance

swap rates on Ψ
τf
t . There are two steps involved. First one is to link the price of the

integrated variance to the price of the log contract. The second step is to replicate the

price of this contract in a model–free way with a position in a portfolio of options.

C.1. Theory

Consider the variance swap with the following payoff at maturity over the period from

t to T , ∫ T

t

V Ψτf
u du− SWT−t

t , (C.6)

where SWT−t
t is the fixed variance swap rate determined at time t and it is the value

for which the contract has zero value at initiation. Under the assumption that the short

rate is uncorrelated with the integrated variance,11 the variance swap rate is given by

SWT−t
t = EQ

t

[∫ T

t

V Ψτf
u du

]
. (C.7)

From here, we can infer SWT−t
t in a model–free way in a few steps only.

First apply Itô’s lemma to lnΨτf and obtain

ln
Ψ
τf
T

Ψ
τf
t

=

∫ T

t

dΨ
τf
t

Ψ
τf
t

− 1

2

∫ T

t

V Ψτf
u du. (C.8)

Following the results in Carr and Madan (2009), I apply a Taylor expansion of lnΨ
τf
T

about the point Ψ
τf
t and obtain the spanning result,

lnΨ
τf
T = lnΨ

τf
t +

Ψ
τf
T −Ψ

τf
t

Ψ
τf
t

−
∫ Ψ

τf
t

0

(KΨ −Ψ
τf
T )+

K2
Ψ

dKΨ

−
∫ ∞

Ψ
τf
t

(Ψ
τf
T −KΨ)+

K2
Ψ

dKΨ. (C.9)

11See the literature on unspanned stochastic volatility
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Combining Eq. (C.8) and Eq. (C.9), we have

1

2

∫ T

t

V Ψτf
u du =

∫ Ψ
τf
t

0

(KΨ −Ψ
τf
T )+

K2
Ψ

dKΨ +

∫ ∞
Ψ
τf
t

(Ψ
τf
T −KΨ)+

K2
Ψ

dKΨ

+

∫ t+T

t

[
1

Ψ
τf
u
− 1

Ψ
τf
t

]
dΨ

τf
u . (C.10)

Multiplying both parts by e−
∫ T
t
rsds and taking expectations under Q yields

EQ
t

[∫ T

t

V Ψτf
u du

]
=

2

Pt (T − t)

∫ Ψ
τf
t

0

Putt(T − t,KΨ)

KΨ2

dKΨ (C.11)

+
2

Pt (T − t)

∫ ∞
Ψ
τf
t

Callt(T − t,KΨ)

KΨ2

dKΨ

+
2

Pt (T − t)
EQ
t

[
e−

∫ T
t
rsds

{∫ T

t

[
1

Ψ
τf
u
− 1

Ψ
τf
t

]
dΨ

τf
u .

}]
,

where Putt(T − t,KΨ) and Callt(T − t,KΨ) are time t prices of the out–of–the–money

European put and call options with strike KΨ and with expiry at time T , written on the

simple implied three–month rate Ψ
τf
t . The last component is the discounted risk–neutral

expectation of the total return from a dynamic trading strategy holding 2
[

1

Ψ
τf
u

− 1

Ψ
τf
t

]
in Ψτf at time u, scaled by the inverse of the price of the zero–coupon bond, Pt (T − t).

I document, with simulations based on empirically relevant parameter values for the

Eurodollar futures market, that the effect of the last part is very small with approx. 3%.

Hence, I exclude this term in the implementation and obtain the variance swap rate in a

model–free fashion by a portfolio of out–of–the–money put and call options.

C.2. Monte Carlo Analyzes

The model–free, risk–neutral expectation of the integrated variance in Eq. (C.11)

relies on the validity of the assumptions that a) the short rate is uncorrelated with the

integrated variance and b) that the last term in Eq. (C.11) is sufficiently small. In this

section, I provide simulation evidence for these two items.

As the benchmark model for our Monte Carlo experiment I choose the one–stochastic

volatility three–factor, A1(3), model with parameters from Bikbov and Chernov (2009,

their Table 1) estimated via maximum likelihood methods based on Eurodollar futures
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and options market data.

Assume that X follows affine dynamics under both the P and Q measure, and that

the short rate is affine in X. Note that I apply the change of measure to the short rate

dynamics under the physical measure and use their estimates of the prices of risk and

obtain the model under the risk–neutral measure.

I simulate the dynamics of Ψτf for one year with a 360 day count convention of. I

present our results for three–month integrated variance. Table ?? exhibits the simulation

results for the components of Eq. (C.11)

• EQ
t

[∫ T
t
V Ψτf
u du

]
,

• MAQF = 2
Pt(T−t)EQ

t

[
e−

∫ T
t
rsds

{∫ T
t

[
1

Ψ
τf
u

− 1

Ψ
τf
t

]
dΨ

τf
u

}]
,

as well as

• EQF
t

[∫ T
t
V Ψτf
u du

]
= 1

Pt(T )EQ
t

[
e−

∫ T
t
rsds

∫ T
t
V Ψτf
u du

]
,

• bias in IV= (EQ
t

[∫ T
t
V Ψτf
u du

]
− EQF

t

[∫ T
t
V Ψτf
u du

]
)/EQF

t

[∫ T
t
V Ψτf
u du

]
) ,

• MAQF /E
Q
t

[∫ T
t
V Ψτf
u du

]
.

In particular, for each quantity above, I present the average estimate over S = 50, 000 sim-

ulations runs. First, note that the difference between EQ
t

[∫ T
t
V Ψτf
u du

]
and EQF

t

[∫ T
t
V Ψτf
u du

]
is very small with a percentage difference of 1.82%, which is in line with our assumption

that e−
∫ T
t
rsds and

∫ T
t
V Ψτf
u du are uncorrelated. Remember that these two quantities

are equal when e−
∫ T
t
rsds and

∫ T
t
V Ψτf
u du are uncorrelated.

Moreover, observe that the effect of the last component in Eq. (C.11) is small in

variance swap rate, with MAQF /E
Q
t

[∫ T
t
V Ψτf
u du

]
being approx. 3%. Accordingly, I

exclude this model dependent component in our construction of variance swap rate and

obtain the variance swap rate in a model–free way based on Eurodollar options.

D. Assumptions and Proofs of Section 3

Assumption 1. The process Ψτf

t in Equation (4.30) satisfies:
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• µΨτf
t and σΨtauf

t are locally bounded.

• There exists a sequence of stopping times Tp increasing to ∞. For each inte-

ger p there exists a bounded process V Ψτf
t = V

(p)
t for all t ≤ Tp, and satisfying

E
[
|V (p)
t − V (p)

s |2
]
|F (0)
s ≤ Kp|t− s| for s < t and Kp is a positive constant.

Assumption 2. The measurement error process ετ,KΨ

t satisfies the following conditions:

• E
[
ετ,KΨ

t |F (0)
]

= 0,

• E
[
ετ,KΨ

t

2
|F (0)

]
= ηt,KΨ,τ ,

• For t 6= t′, τ 6= τ ′ and KΨ 6= KΨ
′, ετ,KΨ

t and ετ
′,KΨ

′

t′ are independent conditionally
on F (0),

• Conditional on F (0), ετ,KΨ

t has a finite 4th moment almost surely.

Proof of Theorem 4.2. First I will show that the following Lemma holds.

Lemma D.1. Under the conditions of Theorem 4.2, we have

1√
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(
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τv − SW τv,m,M
t
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t E ,

where E is an N (0, 1) variable.

Proof. Observe that
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As the grid between strikes decreases, for the first part we trivially have
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The consistency of the second term is trivial under Assumption 2.
As the grid between strikes decreases,, we have by central limit theorem
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Under Assumption 2, we have as the grid size between strikes decreases to zero
∆K → 0
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Morover, given that
η̂t,KΨ,τv → ηt,KΨ,τv , (D.13)

we trivially have,

ŴNK
t =

4

Pt(τv)
2

NτvK∑
j=1

η̂t,Kj ,τv

Kj
Ψ

4 ∆K →WNK
t . (D.14)

in probability, which completes the proof of Theorem 4.2.

Table 1: Monte Carlo Simulations

This table illustrates simulation results for the components of. (C.11) based on the empirically rele-

vant parameters obtained from Bikbov and Chernov (2009) for Eurodollar futures and options market.

MAQF = 2
Pt(T−t)

EQ
t

[
e−

∫ T
t rsds

{∫ T
t

[
1

Ψ
τf
u

− 1

Ψ
τf
t

]
dΨ

τf
u

}]
and bias in IV= (EQ

t

[∫ t+τv
t V Ψ

τf

u du
]
−

EQF
t

[∫ t+τv
t V Ψ

τf

u du
]
)/EQF

t

[∫ t+τv
t V Ψ

τf

u du
]
). (T-t) represents three months and τf and τd are also

fixed to three months. The results are based on S=50000 simulations.

EQ
t

[∫ t+τv
t

V Ψτf
u du

]
1.26E-06

EQF
t

[∫ t+τv
t

V Ψτf
u du

]
1.24E-06

bias in IV 1.18E-02

MAQF -3.89E-08

MAQF /E
Q
t

[∫ t+τv
t

V Ψτf
u du

]
-3.09E-02

E. Test Statistics for Various Maturities
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