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Abstract

We construct a robust stochastic discount factor (SDF) that summarizes the joint
explanatory power of a large number of cross-sectional stock return predictors. Our
method achieves robust out-of-sample performance in this high-dimensional setting by
imposing an economically motivated prior on SDF coefficients that shrinks the contri-
butions of low-variance principal components of the candidate factors. While empirical
asset pricing research has focused on SDFs with a small number of characteristics-based
factors—e.g., the four- or five-factor models discussed in the recent literature—we find
that such a characteristics-sparse SDF cannot adequately summarize the cross-section
of expected stock returns. However, a relatively small number of principal components
of the universe of potential characteristics-based factors can approximate the SDF quite
well.
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1 Introduction

The empirical asset pricing literature has found a large number of stock characteristics that
help predict cross-sectional variation in expected stock returns. Researchers have tried to
summarize this variation with factor models that include a small number of characteristics-
based factors. That is, they seek to find a characteristics-sparse stochastic discount factor
(SDF) representation which is linear in only a few such factors. Unfortunately, it seems
that as new cross-sectional predictors emerge, these factor models need to be modified and
expanded to capture the new evidence: Fama and French (1993) proposed a three factor
model, Hou et al. (2015) have moved on to four, Fama and French (2015) to five factors,
and Barillas and Shanken (2017) argue for a six-factor model. Even so, research in this
area has tested these factor models only on portfolios constructed from a relatively small
subset of known cross-sectional return predictors. These papers do not tell us how well
characteristics-sparse factor models would do if one confronted them with a much larger
set of cross-sectional return predictors—and an examination of this question is statistically
challenging due to the high-dimensional nature of the problem.1

In this paper, we tackle this challenge. We start by questioning the economic rationale for
a characteristics-sparse SDF. If it were possible to characterize the cross-section in terms of a
few characteristics, this would imply extreme redundancy among the many dozens of known
anomalies. However, upon closer examination, models based on present-value identities or
q-theory that researchers have used to interpret the relationship between characteristics and
expected returns do not really support the idea that only a few stock characteristics should
matter. For example, a present-value identity can motivate why the book-to-market ratio
and expected profitability could jointly explain expected returns. Expected profitability is not
directly observable, though. A large number of observable stock characteristics could poten-
tially be useful for predicting cross-sectional variation in future profitability—and, therefore,
also for predicting returns. For these reasons, we seek a method that allows us to estimate
the SDF’s loadings on potentially dozens or hundreds of characteristics-based factors without
imposing that the SDF is necessarily characteristics-sparse.

The conventional approach would be to estimate SDF coefficients with a cross-sectional
regression of average returns on covariances of returns and factors. Due to the large num-
ber of potential factors, this conventional approach would lead to spurious overfitting. To
overcome this high-dimensionality challenge, we use a Bayesian approach with a novel spec-
ification of prior beliefs. Asset pricing models of various kinds generally imply that much
of the variance of the SDF should be attributable to high-eigenvalue (i.e., high-variance)

1Cochrane (2011) refers to this issue as “the multidimensional challenge.”
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principal components (PCs) of the candidate factor returns. Put differently, first and second
moments of returns should be related. Therefore, if a factor earns high expected returns,
it must either itself be a major source of variance or load heavily on factors that are major
sources of variance. This is true not only in rational expectations models in which pervasive
macroeconomic risks are priced but also, under plausible restrictions, in models in which
cross-sectional variation in expected returns arises from biased investor beliefs (Kozak et al.,
2017).

We construct a prior distribution that reflects these economic considerations. Compared
to the naïve OLS estimator, the Bayesian posterior shrinks the SDF coefficients towards
zero. Our prior specification shares similarities with the prior in Pástor (2000) and Pástor
and Stambaugh (2000). Crucially, however, the degree of shrinkage in our case is not equal
for all assets. Instead, the posterior applies significantly more shrinkage to SDF coefficients
associated with low-eigenvalue PCs. This heterogeneity in shrinkage is consistent with our
economic motivation for the prior and it is empirically important as it leads to better out-
of-sample (OOS) performance. Our Bayesian estimator is similar to ridge regression—a
popular technique in machine learning—but with important differences. The ridge version
of the regression of average returns on factor covariances would add a penalty on the sum of
squared SDF coefficients (L2 norm) to the least-squares objective. In contrast, our estimator
imposes a penalty based on the maximum squared Sharpe Ratio implied by the SDF—in
line with our economic motivation that near-arbitrage opportunities are implausible and
likely spurious. This estimator is in turn equivalent to one that minimizes the Hansen and
Jagannathan (1997) distance and imposes a penalty on the sum of squared SDF coefficients
(L2 norm).

Our baseline Bayesian approach results in shrinkage of many SDF coefficients to nearly,
but not exactly zero. Thus, while the resulting SDF may put low weight on the contribution
of many characteristics-based factors, it will not be sparse in terms of characteristics. How-
ever, we also want to entertain the possibility that the weight of some of these candidate
factors could truly be zero. First, a substantial existing literature focuses on SDFs with just
a few characteristics-based factors. While we have argued above that the economic case for
this extreme degree of characteristics-sparsity is weak, we still want to entertain it as an
empirical hypothesis. Second, we may want to include among the set of candidate factors
ones that have not been previously analyzed in empirical studies and which may therefore
be more likely to have a zero risk price. For these reasons, we extend our Bayesian method
to allow for automatic factor selection, that is, finding a good sparse SDF approximation.

To allow for factor selection, we augment the estimation criterion with an additional
penalty on the sum of absolute SDF coefficients (L1 norm), which is typically used in Lasso
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regression (Tibshirani, 1996) and naturally leads to sparse solutions. Our combined speci-
fication employs both L1 and L2 penalties, similar to the elastic net technique in machine
learning. This combined specification achieves our two primary goals: (i) regularization
based on an economically motivated prior, and (ii) it allows for sparsity by setting some SDF
coefficients to zero. We pick the strength of penalization to maximize the (cross-validated)
cross-sectional OOS R2.

In our empirical application of these methods, we first look at a familiar setting in which
we know the answer that the method should deliver. We focus on the well known 25 ME/BM
sorted portfolios from Fama and French (1993). We show that our method automatically
recovers an SDF that is similar to the one based on the SMB and HML factors constructed
intuitively by Fama and French (1993).

We then move on to a more challenging application in which we examine 50 well known
anomaly portfolios, portfolios based on 80 lagged returns and financial ratios provided by
Wharton Research Data Services (WRDS), as well as more than a thousand powers and
interactions of these characteristics. We find that: (i) the L2-penalty-only based method
(our Bayesian approach) finds robust non-sparse SDF representations that perform well
OOS; therefore, if sparsity is not required, our Bayesian method provides a natural starting
point for most applications; (ii) L1-penalty-only based methods often struggle in delivering
good OOS performance in high-dimensional spaces of base characteristics; and (iii) sparsity
in the space of characteristics is limited in general, even with our dual-penalty method,
suggesting little redundancy among the anomalies represented in our data set. Thus, in
summary, achieving robustness requires shrinkage of SDF coefficients, but restricting the
SDF to just a few characteristics-based factors does not adequately capture the cross-section
of expected returns.

Interestingly, the results on sparsity are very different if we first transform the characteristics-
portfolio returns into their PCs before applying our dual-penalty method. A sparse SDF
that includes a few of the high-variance PCs delivers a good and robust out-of-sample fit of
the cross-section of expected returns. Little is lost, in terms of explanatory power, by setting
the SDF coefficients of low-variance PCs to zero. This finding is robust across our three
primary sets of portfolios and the two extremely high-dimensional datasets that include the
power and interactions of characteristics. No similarly sparse SDF based on the primitive
characteristics-based factors can compete in terms of OOS explanatory power with a sparse
PC-based SDF.

That there is much greater evidence for sparsity in the space of principal component
portfolios returns than in the original space of characteristics-based portfolio returns is eco-
nomically sensible. As we argued earlier, there are no compelling reasons why one should be
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able to summarize the cross-section of expected returns with just a few stock characteristics.
In contrast, a wide range of asset pricing models implies that a relatively small number
of high-variance PCs should be sufficient to explain most of the cross-sectional variation in
expected returns. As Kozak et al. (2017) discuss, absence of near-arbitrage opportunities im-
plies that factors earning substantial risk premia must be a major source of co-movement—in
models with rational investors as well as ones that allow for investors with biased beliefs.
Since typical sets of equity portfolio returns have a strong factor structure dominated by a
small number of high-variance PCs, a sparse SDF that includes some of the high-variance
PCs should then be sufficient to capture these risk premia.

In summary, our results suggest that the empirical asset-pricing literature’s multi-decade
quest for a sparse characteristics-based factor model (e.g., with 3, 4, or 5 characteristics-based
factors) is ultimately futile. There is just not enough redundancy among the large number
of cross-sectional return predictors for such a characteristics-sparse model to adequately
summarize pricing in the cross-section. As a final test, we confirm the statistical significance
of this finding in an out-of-sample test. We estimate the SDF coefficients, and hence the
weights of the mean-variance efficient (MVE) portfolio, based on data until the end of 2004.
We then show that this MVE portfolio earns an economically large and statistically highly
significant abnormal return relative to the Fama and French (2016) 5-factor model in the
out-of-sample period 2005–2016, allowing us to reject the hypothesis that the 5-factor model
describes the SDF.

Conceptually, our estimation approach is related to research on mean-variance portfolio
optimization in the presence of parameter uncertainty. SDF coefficients of factors are propor-
tional to their weights in the MVE portfolio. Accordingly, our L2-penalty estimator of SDF
coefficients maps into L2-norm constrained MVE portfolio weights obtained by DeMiguel
et al. (2009). Moreover, as DeMiguel et al. (2009) show, and as can be readily seen from
the analytic expression of our estimator, portfolio optimization under L2-norm constraints
on weights shares similarities with portfolio optimization with a covariance matrix shrunk
towards the identity matrix as in Ledoit and Wolf (2004a). However, despite some similarity
of the solutions, there are important differences. First, our L2-penalty results in level shrink-
age of all SDF coefficients towards zero. This would not be the case with a shrunk covariance
matrix. Second, in covariance matrix shrinkage approaches, the optimal amount of shrink-
age would depend on the size of the parameter uncertainty in covariance estimation. Higher
uncertainty about the covariance matrix parameters would call for stronger shrinkage. In
contrast, our estimator is derived under the assumption that the covariance matrix is known
(we use daily returns to estimate covariances precisely) and means are unknown. Shrinkage
in our case is due to this uncertainty about means and our economically motivated assump-
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tion that ties means to covariances in a particular way. Notably, the amount of shrinkage
required in our case of uncertain means is significantly higher than in the case of uncertain
covariances. In fact, when we allow for uncertainty in both means and covariances, we find
that covariance uncertainty has negligible impact on coefficient estimates once uncertainty
in means is accounted for.

Our paper contributes to an emerging literature that applies machine learning tech-
niques in asset pricing to deal with the high-dimensionality challenge. Kelly et al. (2017)
show how to perform dimensionality reduction of the characteristics space. They extend
PCA and Projected-PCA (Fan et al., 2016) to allow for time-varying factor loadings and
apply it to extract common latent factors from the cross-section of individual stock returns.
Their method explicitly maps these latent factors to principal components of characteristic-
managed portfolios (under certain conditions). Kelly et al. (2017) and Kozak et al. (2017)
further show that an SDF constructed using few such dominant principal components prices
the cross-section of expected returns well. While Kelly et al. (2017) focuses purely on a
factor variance criterion in selecting the factors, we exploit the asset pricing link between
expected returns and covariances and use information from both moments in constructing
an SDF.

DeMiguel et al. (2017), Freyberger et al. (2017) and Feng et al. (2017) focus on characteristics-
based factor selection in Lasso-style estimation with L1-norm penalties. Their findings are
suggestive of a relatively high degree of redundancy among cross-sectional stock return pre-
dictors. Yet, as our results show, for the purposes of SDF estimation with characteristics-
based factors, a focus purely on factor selection with L1-norm penalties is inferior to an
approach with L2-norm penalties that shrinks SDF coefficients towards zero to varying de-
grees, but does not impose sparsity on the SDF coefficient vector. This is in line with results
from the statistics literature where researchers have noted that Lasso does not perform well
when regressors are correlated and that ridge regression (with L2-norm penalty) or elastic net
(with a combination of L1- and L2-norm penalties) delivers better prediction performance
than Lasso in these cases (Tibshirani, 1996; Zou and Hastie, 2005). Since many of the can-
didate characteristics-based factors in our application have substantial correlation, it is to
be expected that an L1-norm penalty alone will lead to inferior prediction performance. For
example, instead of asking the estimation procedure to choose between the value factor and
the correlated long-run-reversals factor for the sake of sparsity in terms of characteristics,
there appears to be value, in terms of explaining the cross-section of expected returns, in
extracting the predictive information common to both.

Another important difference between our approach and much of this recent machine
learning literature in asset pricing lies in the objective. Many papers (e.g., Freyberger et al.
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(2017); Huerta et al. (2013); Moritz and Zimmermann (2016); Tsai et al. (2011), with the
exception of Feng et al. (2017)) focus on estimating risk premia, i.e., the extent to which a
stock characteristic is associated with variation in expected returns. In contrast, we focus on
estimation of risk prices, i.e., the extent to which the factor associated with a characteristic
helps price assets by contributing to variation in the SDF. The two perspectives are not the
same because a factor can earn a substantial risk premium simply by being correlated with
the pricing factors in the SDF, without being one of those pricing factors. Our objective is to
characterize the SDF, hence our focus on risk prices. This difference in objective from much of
the existing literature also explains why we pursue a different path in terms of methodology.
While papers focusing on risk premia can directly apply standard machine learning methods
to the cross-sectional regressions or portfolio sorts used for risk premia estimation, a key
contribution of our paper is to adapt the objective function of standard ridge and Lasso
estimators to be suitable for SDF estimation and consistent with our economically motivated
prior.

Finally, our analysis is also related to papers that consider the statistical problems arising
from researchers’ data mining of cross-sectional return predictors. The focus of this literature
is on assessing the statistical significance of individual characteristics-based factors when
researchers may have tried many other factors as well. Green et al. (2017) and Harvey et al.
(2015) adjust significance thresholds to account for such data mining. In contrast, rather
than examining individual factors in isolation, we focus on assessing the joint pricing role
of a large number of factors and the potential redundancy among the candidate factors.
While our tests do not directly adjust for data mining, our approach implicitly includes
some safeguards against data-mined factors. First, for data-mined factors there is no reason
for the (spurious in-sample) mean return to be tied to covariances with major sources of
return variance. Therefore, by imposing a prior that ties together means and covariances,
we effectively downweight data-mined factors. Second, our final test using the SDF-implied
MVE portfolio is based on data from 2005–2016, a period that starts after or overlaps very
little with the sample period used in studies that uncovered the anomalies (McLean and
Pontiff, 2016).

2 Asset Pricing with Characteristics-Based Factors

We start by laying out the basic asset pricing framework that underlies characteristics-based
factor models. We first describe this framework in terms of population moments, leaving
aside estimation issues for now. Building on this, we can then proceed to describe the
estimation problem and our proposed approach for dealing with the high-dimensionality of

7



this problem.
For any point in time t, let Rt denote an N × 1 vector of excess returns for N stocks.

Typical reduced-form factor models express the SDF as a linear function of excess returns
on stock portfolios. Along the lines of Hansen and Jagannathan (1991), one can find an SDF
in the linear span of excess returns,

Mt = 1− b′t−1 (Rt − ERt) , (1)

by solving for the N × 1 vector of SDF loadings bt−1 that satisfies the conditional pricing
equation

Et−1[MtRt] = 0. (2)

2.1 Characteristics-based factor SDF

Characteristics-based asset pricing models parametrize the SDF loadings as

bt−1 = Zt−1b, (3)

where Zt−1 is an N × H matrix of asset characteristics and b is an H × 1 vector of time-
invariant coefficients. Without further restrictions, this representation is without loss of
generality.2 To obtain models with empirical content, researchers search for a few measurable
asset attributes that approximately span bt−1. For example, Fama and French (1993) use
two characteristics: market capitalization and the book-to-market equity ratio. Our goal is
to develop a statistical methodology that allows us to entertain a large number of candidate
characteristics and estimate their coefficients b in such a high-dimensional setting.

Plugging eq. (3) into eq. (1) delivers an SDF that is in the linear span of the H

characteristics-based factor returns, Ft = Z ′t−1Rt, that can be created based on stock char-
acteristics, i.e.,

Mt = 1− b′ (Ft − EFt) . (4)

In line with much of the characteristics-based factor model literature, we focus on the un-
conditional asset pricing equation,

E [MtFt] = 0, (5)

2For example, at this general level, the SDF coefficient of an asset could serve as the “characteristic,”
Zt−1 = bt−1, with b = 1. That we have specified the relationship between bt−1 and characteristics as
linear is generally not restrictive as Zt−1 could also include nonlinear functions of some stock characteristics.
Similarly, by working with cross-sectionally centered and standardized characteristics, we focus on cross-
sectional variation, but it would be straightforward to generalize to Zt that includes variables with time-series
dynamics that could capture time-variation in conditional moments.
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where the factors Ft serve simultaneously as the assets whose returns we are trying to explain
as well as the candidate factors that can potentially enter as priced factors into the SDF.

In our empirical work we cross-sectionally demean each column of Z so that the factors in
Ft are returns on zero-investment long-short portfolios. Typical characteristics-based factor
models in the literature add a market factor to capture the level of the equity risk premium,
while the long-short characteristics factors explain cross-sectional variation. In our specifica-
tion, we focus on understanding the factors that help explain these cross-sectional differences
and we do not explicitly include a market factor, but we orthogonalize the characteristics-
based factors with respect to the market factor. This is equivalent, in terms of the effect on
pricing errors, to including a market factor in the SDF. It is therefore useful here to think
of the elements of F as factors that have been orthogonalized. In our empirical analysis, we
also work with factors orthogonalized with respect to the market return.

With knowledge of population moments, we could now solve eq. (4) and eq. (5) for the
SDF coefficients

b = Σ−1E (Ft) , (6)

where Σ ≡ E
[
(Ft − EFt) (Ft − EFt)′

]
. Rewriting this expression as

b = (ΣΣ)−1 ΣE (Ft) (7)

shows that the SDF coefficients can be interpreted as the coefficients in a cross-sectional
regression of the expected asset returns to be explained by the SDF, which in this case are
the H elements of E (Ft), on the H columns of covariances of each factor with the other
factors and with itself.

In practice, without knowledge of population moments, estimating the SDF coefficients
by running such a cross-sectional regression in sample would result in overfitting of noise, with
the consequence of poor out-of-sample performance, unlessH is small. Since SDF coefficients
are also weights of the mean-variance-efficient (MVE) portfolio, the difficulty of estimating
SDF coefficients with big H is closely related to the well-known problem of estimating the
weights of the MVE portfolio when the number of assets is large. The approach we propose
in Section 3 is designed to address this problem.

2.2 Sparsity in characteristics-based factor returns

Much of the existing characteristics-based factor model literature has sidestepped this high-
dimensionality problem by focusing on models that include only a small number of factors.
We will refer to such models as characteristics-sparse models. Whether such a characteristics-
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sparse model can adequately describe the SDF in a cross-section with a large number of stock
characteristics is a key empirical question that we aim to answer in this paper.

Before going into the empirical methods and analysis to tackle these questions, it is useful
to first briefly discuss what we might expect regarding characteristics-sparsity of the SDF
based on some basic economic arguments. While the literature’s focus on characteristics-
sparse factor models has been largely ad-hoc, there have been some attempts to motivate
the focus on a few specific characteristics.

One such approach is based on the q-theory of firm investment. Similar predictions
also result from present-value identity relationships like those discussed in Fama and French
(2015) or Vuolteenaho (2002). To provide a concrete example, we briefly discuss the two-
period q-theory model in Lin and Zhang (2013). The key idea of the model is that an
optimizing firm should choose investment policies such that it aligns expected returns (cost
of capital) and profitability (investment payoff). In the model, firms take the SDF as given
when making real investment decisions. A firm has a one-period investment opportunity.
For an investment I0 the firm will make profit ΠI0. The firm faces quadratic adjustment
costs with marginal cost cI0 and the investment fully depreciates after one period. Every
period, the firm has the objective

max
I0

E[MΠI0]− I0 −
c

2I
2
0 . (8)

Taking this SDF as given and using the firm’s first-order condition, I0 = 1
c

(E[MΠ]− 1), we
can compute a one-period expected return,

E [R] = E
(

Π
E [MΠ]

)
= E [Π]

1 + cI0
. (9)

For example, a firm with high expected return, and hence high cost of capital, must either
have high profitability or low investment, or a combination thereof. By the same token,
expected profitability and investment jointly reveal whether the firm has high or low load-
ings on the SDF. For this reason, factors for which stocks’ weights are based on expected
profitability and investment help capture the factors driving the SDF. The model therefore
implies a sparse characteristic-based factor model with two factors: expected profitability
E [Π] and investment I0, which seems to provide a partial motivation for the models in Hou
et al. (2015) and Fama and French (2015).

In practice, however, neither expected profitability nor (planned) investment are observ-
able. The usual approach is to use proxies, such as lagged profitability and lagged investment
as potential predictors of unobserved quantities. Yet many additional characteristics are
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likely relevant for capturing expected profitability and planned investment and, therefore,
expected returns. Moreover, considering that the model above is a vast simplification of
reality to begin with, many more factors are likely to be required to approximate an SDF of
a more realistic and complex model. The bottom line is that, in practice, q-theory does not
necessarily provide much economic reason to expect sparse SDFs in the space of observable
characteristics.

For this reason, we pursue an approach that does not impose that the SDF is necessarily
characteristics-sparse. Moreover, it leads us to seek a method that can accommodate an
SDF that involves a potentially very large number of characteristics-based factors, but at
the same time, still ensures good out-of-sample performance and robustness against in-sample
overfitting. At the same time, we would also like our method to be able to handle cases in
which some of the candidate factors are not contributing to the SDF at all. This situation
may be particularly likely to arise if the analysis includes characteristics that are not known,
from prior literature, to predict returns in the cross-section. It could also arise if there is truly
some redundancy among the cross-sectional return predictors documented in the literature.
To accommodate these cases, we want our approach to allow for the possibility of sparsity,
but without necessarily requiring sparsity to perform well out of sample. This will then allow
us to assess the degree of sparsity empirically.

2.3 Sparsity in principal components of characteristics-based fac-
tor returns

While there are not strong economic reasons to expect characteristics-sparsity of the SDF,
one may be able to find rotations of the characteristics factor data that admit, at least
approximately, a sparse SDF representation. Motivated by the analysis in Kozak et al.
(2017), we consider sparse SDF representations in the space of principal components (PCs)
of characteristic-based factor returns.

Based on the eigendecomposition of the factor covariance matrix,

Σ = QDQ′ with D = diag(d1, d2, ..., dH), (10)

where Q is the matrix of eigenvectors of Σ and D is the diagonal matrix of eigenvalues
ordered in decreasing magnitude, we can construct PC factors

Pt = Q′Ft. (11)
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Using all PCs, and with knowledge of population moments, we could express the SDF as

Mt = 1− b′P (Pt − EPt) , with bP = D−1E[Pt]. (12)

In Kozak et al. (2017) we argue that absence of near-arbitrage (extremely high Sharpe
Ratios) implies that factors earning substantial risk premium must be a major source of
co-movement. This conclusion obtains under very mild assumptions and applies equally to
“rational” and “behavioral” models. Furthermore, for typical sets of test assets, returns have
a strong factor structure dominated by a small number of PCs with the highest variance (or
eigenvalues dj). Under these two conditions, an SDF with a small number of these high-
variance PCs as factors should explain most of the cross-sectional variation in expected
returns. Motivated by this theoretical result, we explore empirically whether an SDF sparse
in PCs can be sufficient to describe the cross-section of expected returns and we compare it,
in terms of their pricing performance, with SDFs that are sparse in characteristics.

3 Methodology

Consider a sample with size T . We denote

µ̄ = 1
T

T∑
t=1

Ft, (13)

Σ = 1
T

T∑
t=1

(Ft − µ̄) (Ft − µ̄)′ . (14)

A natural, but naïve, GMM estimator of the coefficients b of the SDF in eq. (4), could be
constructed based on the sample moment conditions

µ− 1
T

T∑
t=1

Ft = 0, (15)

1
T

T∑
t=1

MtFt = 0. (16)

The resulting estimator is the sample version of eq. (6),3

b̂ = Σ−1
µ̄. (17)

3When T < H we use Moore-Penrose pseudoinverse of the covariance matrix.
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However, unless H is very small relative to T , this naïve estimator yields very imprecise
estimates of b. The main source of imprecision is the uncertainty about µ. Along the
same lines as for the population SDF coefficients in Section 2.1, the estimator b̂ effectively
results from regressing factor means on the covariances of these factors with each other. As is
generally the case in expected return estimation, the factor mean estimates are imprecise even
with fairly long samples of returns. In a high-dimensional setting with large H, the cross-
sectional regression effectively has a large number of explanatory variables. As a consequence,
the regression will end up spuriously overfitting the noise in the factor means, resulting in
a very imprecise b̂ estimate and bad out-of-sample performance. Estimation uncertainty in
the covariance matrix can further exacerbate the problem, but as we discuss in greater detail
in Appendices A and B, the main source of fragility in our setting are the factor means, not
the covariances.

To avoid spurious overfitting, we bring in economically motivated prior beliefs about the
factors’ expected returns. If the prior beliefs are well-motivated and truly informative, this
will help reduce the (posterior) uncertainty about the SDF coefficients. In other words,
bringing in prior information then regularizes the estimation problem sufficiently to produce
robust estimates that perform well in out-of-sample prediction. We first start with prior
beliefs that shrink the SDF coefficients away from the naïve estimator in eq. (17), but
without imposing sparsity. We then expand the framework to allow for some degree of
sparsity as well.

3.1 Shrinkage estimator

To focus on uncertainty about factor means, the most important source of fragility in the
estimation, we proceed under the assumption that Σ is known. Consider the family of priors,

µ ∼ N
(

0, κ
2

τ
Ση

)
, (18)

where τ = tr [Σ] and κ is a constant controlling the “scale” of µ that may depend on τ and H.
As we will discuss, this family encompasses priors that have appeared in earlier asset pricing
studies, albeit not in a high-dimensional setting. At this general level, this family of priors
can broadly capture the notion—consistent with a wide class of asset pricing theories—that
first moments of factor returns have some connection to their second moments. Parameter
η controls the “shape” of the prior. It is the key parameter for the economic interpretation
of the prior because it determines how exactly the relationship between first and second
moments of factor returns is believed to look like under the prior.
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To understand the economic implications of particular values of η, it is useful to consider
the PC portfolios Pt = Q′Ft with Σ = QDQ′ that we introduced in Section 2.3. Expressing
the family of priors (18) in terms of PC portfolios we get

µP ∼ N
(

0, κ
2

τ
Dη

)
. (19)

For the distribution of Sharpe Ratios of the PCs, we obtain

D−
1
2µP ∼ N

(
0, κ

2

τ
Dη−1

)
. (20)

We can evaluate the plausibility of assumptions about η by considering the implied prior
beliefs about Sharpe Ratios of small-eigenvalue PCs. For typical sets of asset returns, the
distribution of eigenvalues is highly skewed: a few high-eigenvalue PCs account for most of
the return variance, many PCs have much smaller eigenvalues, and the smallest eigenvalues
of high-order PCs are tiny.

This fact about the distribution of eigenvalues immediately makes clear that the assump-
tion of η = 0 (as, e.g., in Harvey et al. (2008)) is economically implausible. In this case,
the mean Sharpe Ratio of a PC factor in eq. (20) is inversely related to the PC’s eigen-
value. Therefore, the prior implies that the expected Sharpe Ratios of low-eigenvalue PCs
explode towards infinity. In other words, η = 0 would imply existence of near-arbitrage
opportunities. As Kozak et al. (2017) discuss, existence of near-arbitrage opportunities is
not only implausible in rational expectations models, but also in models in which investors
have biased beliefs, as long as some arbitrageurs are present in the market.

Pástor (2000) and Pástor and Stambaugh (2000) work with η = 1. This assumption is
more plausible in the sense that it is consistent with absence of near-arbitrage opportunities.
However, as eq. (20) makes clear, η = 1 implies that Sharpe Ratios of low-eigenvalue PCs
are expected to be of the same magnitude as Sharpe Ratios of high-eigenvalue PCs. We
do not view this as economically plausible. For instance, in rational expectations models in
which cross-sectional differences in expected returns arise from exposure to macroeconomic
risk factors, risk premia are typically concentrated in one or a few common factors. This
means that Sharpe Ratios of low-eigenvalue PCs should be smaller than those of the high-
eigenvalue PCs that are the major source of risk premia. Kozak et al. (2017) show that a
similar prediction also arises in plausible “behavioral” models in which investors have biased
beliefs. Kozak et al. argue that to be economically plausible, such a model should include
arbitrageurs in the investor population and it should have realistic position size limits (e.g.,
leverage constraints or limits on short selling) for the biased-belief investors (who are likely
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to be less sophisticated). As a consequence, biased beliefs can only have substantial pricing
effects in the cross-section if these biased beliefs align with high-eigenvalue PCs; otherwise
arbitrageurs would find it too attractive to aggressively lean against the demand from biased
investors, leaving very little price impact. To the extent it exists, mispricing then appears in
the SDF mainly through the risk prices of high-eigenvalue PCs. Thus, within both classes
of asset pricing models, we would expect Sharpe Ratios to be increasing in the eigenvalue,
which is inconsistent with η ≤ 1.

Moreover, the portfolio that an unconstrained rational investor holds in equilibrium
should have finite portfolio weights. Indeed, realistic position size limits for the biased-belief
investors in Kozak et al. (2017) discussed above translate into finite equilibrium arbitrageur
holdings, and therefore, finite SDF coefficients. Our prior should be consistent with this
prediction. Since the optimal portfolio weights of a rational investor and SDF coefficients
are equivalent, we want a prior which ensures that b′b remains bounded. A minimal require-
ment for this to be true is that E[b′b] remains bounded. With b = Σ−1µ, the decomposition
Σ = QDQ′, and the prior (18), we can show

E[b′b] = κ2

τ

H∑
i=1

dη−2
i , (21)

where di are the eigenvalues on the diagonal of D. Since the lowest eigenvalue, dH , in a
typical asset return data set is extremely close to zero, the corresponding summation term
dη−2
i is extremely big if η < 2. In other words, with η < 2 the prior would imply that the

optimal portfolio of a rational investor is likely to place huge bets on the lowest-eigenvalue
PCs. Setting η ≥ 2 avoids such unrealistic portfolio weights. To ensure the prior is plausible,
but at the same is also the least restrictive (“flattest”) Bayesian prior which deviates as little
as possible from more conventional prior assumptions like those in Pástor and Stambaugh’s
work, we set η = 2.

To the best of our knowledge, this prior specification is novel in the literature, but, as we
have argued, there are sound economic reasons for this choice. Based on this assumption,
we get an i.i.d. prior on SDF coefficients, b ∼ N

(
0, κ2

τ
I
)
. Combining these prior beliefs

with information about sample means µ̄ from a sample with size T , assuming a multivariate-
normal likelihood, we obtain the posterior mean of b

b̂ = (Σ + γI)−1 µ̄, (22)
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where γ = τ
κ2T

. The posterior variance of b is given by

var (b) = 1
T

(Σ + γI)−1 , (23)

which we use in Section 4 to construct confidence intervals.

3.1.1 Economic interpretation

To provide an economic interpretation of what this estimator does, it is convenient to consider
a rotation of the original space of returns into the space of principal components. Expressing
the SDF based on the estimator (22) in terms of PC portfolio returns, Pt = Q′Ft, with
coefficients b̂P = Q′b̂, we obtain a vector with elements

b̂P,j =
(

dj
dj + γ

)
µ̄P,j
dj

, (24)

Compared with the naïve exactly identified GMM estimator from eq. (17), which would
yield SDF coefficients for the PCs of

b̂ols
P,j = µ̄P,j

dj
, (25)

our Bayesian estimator (with γ > 0) shrinks the SDF coefficients towards zero with the
shrinkage factor dj/(dj +γ) < 1. Most importantly, the shrinkage is stronger the smaller the
eigenvalue dj associated with the PC. The economic interpretation is that we judge as im-
plausible that a PC with low eigenvalue could contribute substantially to the volatility of the
SDF and hence to the overall maximum squared Sharpe Ratio. For this reason, the estimator
shrinks the SDF coefficients of these low-eigenvalue PCs particularly strongly. In contrast,
with η = 1 in the prior—which we have argued earlier is economically implausible—the
estimator would shrink the SDF coefficients of all PCs equally.

3.1.2 Representation as a penalized estimator

We now show that our Bayesian estimator maps into a penalized estimator that resembles
estimators common in the machine learning literature. If we maximize the model cross-
sectional R2 subject to a penalty on the model-implied maximum squared Sharpe ratio
γb′Σb,

b̂ = arg min
b

{
(µ̄− Σb)′ (µ̄− Σb) + γb′Σb

}
, (26)
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the problem leads to exactly the same solution as in eq. (22). Equivalently, minimizing the
model HJ-distance (Hansen and Jagannathan, 1991) subject to an L2 norm penalty γb′b,

b̂ = arg min
b

{
(µ̄− Σb)′Σ−1 (µ̄− Σb) + γb′b

}
, (27)

leads again to the same solution as in eq. (22). Looking at this objective again in terms of
factor returns that are transformed into their principal components, one can see intuitively
how the penalty in this case induces shrinkage effects concentrated on low-eigenvalue PCs
in the same way as the prior beliefs do in the case of the Bayesian estimator above. Suppose
the estimation would shrink towards zero the coefficient b̂P,j on a low-eigenvalue PC. This
would bring a benefit in terms of the penalty, but little cost because for a given magnitude
of the SDF coefficient, a low eigenvalue PC contributes only very little to SDF volatility and
so shrinking its contribution has little effect on the HJ distance. In contrast, shrinking the
coefficient on a high-eigenvalue PC by the same magnitude would bring a similar penalty
benefit, but at a much larger cost because it would remove a major source of SDF volatility
from the SDF. As a consequence, the estimation tilts towards shrinking SDF coefficients of
low-eigenvalue PCs.

Equations (26) and (27) resemble ridge regression, a popular technique in machine learn-
ing (e.g., see Hastie et al., 2011), but with some important differences. A standard ridge
regression objective function would impose a penalty on the L2-norm of coefficients, b′b in
eq. (26), or, equivalently, weight the pricing errors with the identity matrix instead of Σ−1

in eq. (27). One can show that this standard ridge regression would correspond to a prior
with η = 3, which would imply even more shrinkage of low-eigenvalue PCs than with our
prior of η = 2. However, the estimator one obtains from a standard ridge approach is not
invariant to how the estimation problem is formulated. For example, if one estimates factor
risk premia λ in a beta-pricing formulation of the model, minimizing (µ̄− Iλ)′ (µ̄− Iλ) sub-
ject to a standard ridge penalty on λ′λ, the resulting estimator corresponds to a prior with
η = 1, that, as we have argued, is not economically plausible. In contrast, in our approach
the estimator is pinned down by the asset pricing equation (refeq:AP-eq) combined with the
economically motivated prior (18).

3.2 Sparsity

The method that we have presented so far deals with the high-dimensionality challenge by
shrinking SDF coefficients towards zero, but none of the coefficients are set to exactly zero.
In other words, the solution we obtain is not sparse. As we have argued in Section 2, the
economic case for extreme sparsity with characteristics-based factors is weak. However, it
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may be useful to allow for the possibility that some factors are truly redundant in terms
of their contribution to the SDF. Moreover, there are economic reasons to expect that a
representation of the SDF that is sparse in terms of PCs could provide a good approximation.

For these reasons, we now introduce an additional L1 penalty γ1
∑H
j=1 |bj| in the penalized

regression problem given by eq. (27). The approach is motivated by Lasso regression and
elastic net (Zou and Hastie, 2005), which combines Lasso and ridge penalties. Due to
the geometry of the L1 norm, it leads to some elements of b̂ being set to zero, that is, it
accomplishes sparsity and automatic factor selection. The degree of sparsity is controlled by
the strength of the penalty. Combining both L1 and L2 penalties, our estimator solves the
problem:4

b̂ = arg min
b

(µ̄− Σb)′Σ−1 (µ̄− Σb) + γ2b
′b+ γ1

H∑
i=1
|bi| . (28)

This dual-penalty method enjoys much of the economic motivation behind the L2-penalty-
only method with an added benefit of potentially delivering sparse SDF representations. We
can control the degree of sparsity by varying the strength of the L1 penalty and the degree
of economic shrinkage by varying the L2 penalty.

Despite the visual similarities, there are important, economically motivated differences
between our method and a standard elastic net estimator. First, we minimize the HJ-
distance instead of minimizing (unweighted) pricing errors. Second, unlike in typical elastic
net applications, we do not normalize or center variables: the economic structure of our setup
imposes strict restrictions between means and covariances and leaves no room for intercepts
or arbitrary normalizations.

While we will ultimately let the data speak about the optimal values of the penalties γ1

and γ2, there is reason to believe that completely switching off the L2 penalty and focusing
purely on Lasso-style estimation would not work well in this asset-pricing setting. Lasso is
known to suffer from relatively poor performance compared with ridge and elastic net when
regressors are highly correlated (Tibshirani, 1996; Zou and Hastie, 2005). An L2 penalty leads
the estimator to shrink coefficients of correlated predictors towards each other, allowing them
to borrow strength from each other (Hastie et al., 2011). In the extreme case of k identical
predictors, they each get identical coefficients with 1/k-th the size that any single one would
get if fit alone. The L1 penalty, on the other hand, ignores correlations and will tend to pick
one variable and disregard the rest. This hurts performance because if correlated regressors
each contain a common signal and uncorrelated noise, a linear combination of the regressors
formed based on an L2 penalty will typically do better in isolating the signal than a single
regressor alone. For instance, rather than picking book-to-market as the only characteristic

4To solve the optimization problem in eq. (28) we use the LARS-EN algorithm in Zou and Hastie (2005).

18



to represent the value effect in an SDF, it may be advantageous to consider a weighted
average of multiple measures of value, such as book-to-market, price-dividend, and cashflow-
to-price ratios. This reasoning also suggests that an L1-only penalty may work better when
we first transform the characteristics-based factors into their PCs before estimation. We
examine this question in our empirical work below.

3.3 Data-driven penalty choice

To implement the estimators (22) and (28), we need to set the values of the penalty param-
eters γ and γ1, γ2, respectively. In the L2-only penalty specification, the penalty parameter
γ = τ

κT
following from the prior (18) has an economic interpretation. With our choice of

η = 2, the root expected maximum squared Sharpe Ratio under the prior is

E[µΣ−1µ]1/2 = κ, (29)

and hence γ implicitly represents views about the expected squared Sharpe Ratio. For
example, an expectation that the maximum Sharpe Ratio cannot be very high, i.e., low κ,
would imply high γ and hence a high degree of shrinkage imposed on the estimation. Some
researchers pick a prior belief based on intuitive reasoning about the likely relationship
between the maximum squared Sharpe Ratio and the historical squared Sharpe Ratio of a
market index.5 However, these are intuitive guesses. It would be difficult to go further and
ground beliefs about κ in deeper economic analyses of plausible degrees of risk aversion,
risk-bearing capacity of arbitrageurs, and degree of mispricing. For this reason, we prefer
a data-driven approach. But we will make use of eq. (29) to express the magnitude of
the L2-penalty that we apply in estimation in terms of an economically interpretable root
expected maximum squared Sharpe Ratio.

The data-driven approach involves estimation of γ via K-fold cross validation. We divide
the historic data into K equal sub-samples. Then, for each possible γ (or each possible pair
of γ1, γ2 in the dual penalty specification), we compute b̂ by applying eq. (22) to K − 1 of
these sub-samples. We evaluate the “out-of-sample” (OOS) fit of the resulting model on the
single withheld subsample. Consistent with the penalized objective, eq. (26), we compute
the OOS R-squared as

R2
oos = 1−

(
µ̄2 − Σ2b̂

)′ (
µ̄2 − Σ2b̂

)
µ̄′2µ̄2

, (30)

where the subscript 2 indicates an OOS sample moment from the withheld sample. We

5Barillas and Shanken (2017) is a recent example. See, also, MacKinlay (1995) and Ross (1976) for
similar arguments.
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repeat this procedure K times, each time treating a different sub-sample as the OOS data.
We then average the R2 across these K estimates, yielding the cross-validated R2

oos. Finally,
we choose γ (or γ1, γ2) that generates the highest R2

oos.
We chose K = 3 as a compromise between estimation uncertainty in b̂ and estimation

uncertainty in the OOS covariance matrix Σ2. The latter rises as K increases due to difficul-
ties of estimating the OOS covariance matrix precisely. With high K, the withheld sample
becomes too short for Σ2 to be well-behaved, which distorts the fitted factor mean returns
Σ2b̂. However, our results are robust to using moderately higher K.

4 Empirical Analysis

4.1 Preliminary analysis: Fama-French SZ/BM portfolios

We start with an application of our proposed method to daily returns on the 25 Fama-French
ME/BM-sorted (FF25) portfolios from 1926 to 2016, which we orthogonalize with respect
to the CRSP value-weighted index return using βs estimated in the full sample.6 In this
analysis, we treat the 25 portfolio membership indicators as stock characteristics and we
estimate the SDF’s loadings on these 25 portfolios. These portfolios are not the challenging
high-dimensional setting for which our method is designed, but this initial step is useful to
verify that our method produces reasonable results before we apply it to more interesting
and statistically challenging high-dimensional sets of asset returns where classic techniques
are infeasible.

For the FF25 portfolios, we know quite well from earlier research what to expect and we
can check whether our method produces these expected results. From Lewellen et al. (2010),
we know that the FF25 portfolio returns have such a strong factor structure that the 25
portfolio returns (orthogonalized w.r.t. to the market index return) are close to being linear
combinations of the SMB and HML factors. As a consequence, essentially any selection
of four portfolios out of the 25 with somewhat different loadings on the SMB and HML
factors should suffice to span the SDF. Thus, treating the portfolio membership indicators
as characteristics, we should find a substantial degree of sparsity. From Kozak et al. (2017),
we know that the SMB and HML factors essentially match the first and the second PCs of
the FF25 (market-neutral) portfolio returns. Therefore, when we run the analysis using the
PCs of the FF25 portfolio returns as the basis assets, we should find even more sparsity: two
PCs at most should be sufficient to describe the SDF well.

6The resulting abnormal returns are Fi,t = F̃i,t−βiRm,t where F̃i,t is the raw portfolio return. We thank
Ken French for providing FF25 portfolio return data on his website.
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Figure 1: OOS R2 from dual-penalty specification (Fama-French 25 ME/BM port-
folios). OOS cross-sectional R2 for families of models that employ both L1 and L2 penalties
simultaneously using 25 Fama-French ME/BM sorted portfolios (Panel a) and 25 PCs based on
Fama and French portfolios (Panel b). We quantify the strength of the L2 penalty by prior root
expected SR2 (κ) on the x-axis. We show the number of retained variables in the SDF, which quan-
tifies the strength of the L1 penalty, on the y-axis. Warmer (yellow) colors depict higher values of
OOS R2. Both axes are plotted on logarithmic scale.

Figure 1 presents results for our dual-penalty estimator in eq. (28). The results using
the raw FF25 portfolio returns are shown in the left-hand side in Figure 1a; those using
PCs of these returns are shown in the right-hand side plot Figure 1b. Every point on the
plane in these plots represents a particular combination of the two penalties γ1 and γ2 that
control sparsity and L2-shrinkage, respectively. We vary the degree of L2-shrinkage on the
horizontal axis, going from extreme shrinkage on the left to no shrinkage at all at the right
border of the plot. To facilitate interpretation, we express the degree of shrinkage in terms
of κ. In the L2-only penalty case, κ has a natural economic interpretation: it is the square
root of the expected maximum squared Sharpe ratio under the prior in eq. (18) and it
is inversely related to the shrinkage penalty γ = τ

κ2T
. Variation along the vertical axis

represents different degrees of sparsity. We express the degree of sparsity in terms of how
many factors remain in the SDF with non-zero coefficients. Thus, there is no sparsity at
the top end of the plot and extreme sparsity at the bottom. Both axes are depicted on
logarithmic scale.

The contour maps show the OOS R2 calculated as in eq. (30) for each of these penalty
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combinations. Our data-driven penalty choice selects the combination with the highest OOS
R2, but in this figure we show the OOS R2 for a wide range of penalties to illustrate how L2-
shrinkage and sparsity (L1 penalty) influences the OOS R2. Warmer (yellow) colors indicate
higher OOS R2. To interpret the magnitudes it is useful to keep in mind that with our choice
of K = 3, we evaluate the OOS R2 in withheld samples of about 23 years in length, i.e., the
OOS R2 show how well the SDF explains returns averaged over a 23-year period.

Focusing first on the raw FF25 portfolio returns in Figure 1a, we can see that for this
set of portfolios, sparsity and L2-shrinkage are substitutes in terms of ensuring good OOS
performance: the contour plot features a diagonal ridge with high OOS R2 extending from
the top edge of the plot (substantial L2-shrinkage, no sparsity) to the right edge (substantial
sparsity, no shrinkage). As we outlined above, this is what we would expect for this set of
asset returns: a selection of 3-4 portfolios from these 25 should be sufficient to span the SDF
that prices all 25 well, and adding more portfolio returns to the SDF hurts OOS performance
unless more L2-shrinkage is imposed to avoid overfitting. Unregularized models that include
all 25 factors (top-right corner) perform extremely poorly in the OOS evaluation.7

Figure 1b, which is based on the PCs of the FF25 portfolio returns, also shows the
expected result: even one PC is already sufficient to get close to the maximum OOS R2

and two PCs are sufficient to attain the maximum. Adding more PCs to the SDF doesn’t
hurt the OOS performance as along as some L2-shrinkage is applied. However, with PCs,
the ridge of close-to-maximum OOS R2 is almost vertical and hence very little additional
L2-shrinkage is needed when sparsity is relaxed. The reason is that our estimator based
on the L2 penalty in eq. (27) already downweights low-variance PCs by pushing their SDF
coefficients close to zero. As a consequence, it makes little difference whether one leaves
these coefficients close to zero (without the L1 penalty at the top edge of the plot) or forces
them to exactly zero (with substantial L1 penalty towards the bottom edge of the plot).

In Figure 2, we further illustrate the role of L2-shrinkage and sparsity by taking some
cuts of the contour plots in Figure 1. Figure 2a focuses on L2-shrinkage by taking a cut
along the top edge of the contour plot for the raw FF25 portfolio returns in Figure 1a where
we only shrink using the L2-penalty, but do not impose sparsity. The OOS R2 is shown by
the solid red line. In line with Figure 1a, this plot shows that the OOS R2 is maximized for
κ ≈ 0.23. For comparison, we also show the in-sample cross-sectional R2 (dashed blue). The
contrast with the OOS R2 vividly illustrates how the in-sample R2 can be grossly misleading
about the ability of an SDF to explain expected returns OOS—and especially so without
substantial shrinkage.

7We impose a floor on negative R2 at -0.1 in these plots. In reality unregularized models deliver R2

significantly below this number.
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Figure 2: L2 Model Selection and Sparsity (Fama-French 25 ME/BM portfolios). Panel
(a) plots the in-sample cross-sectional R2 (dashed) and OOS cross-sectional R2 based on cross
validation (solid). Dotted lines depict ±1 s.e. bounds of the CV estimator. In Panel (b) we show
the maximum OOS cross-sectional R2 attained by a model with n factors (on the x-axis) across all
possible values of L2 shrinkage, for models based on original characteristics portfolios (solid) and
PCs (dashed). Dotted lines depict −1 s.e. bounds of the CV estimator. The “X” mark indicates
OOS performance of the Fama-French model that uses only SMB and HML factors.

Figure 2b presents the OOS R2 for various degrees of sparsity, choosing the optimal (i.e.,
OOS R2 maximizing) amount of L2-shrinkage for each level of sparsity. In other words, we
are following the ridge of the highest values in the contour plots from the bottom edge of
the plot to the top. The solid blue line is based on the raw FF25 portfolio returns and the
dashed red line based on the PCs. Dotted lines on the plot show approximate −1 standard
error bounds for the CV estimator.8 This plot makes even more transparent our earlier
point that a sparse SDF with just a few of the FF25 portfolio is sufficient to get maximal
OOS performance—comparable to the an SDF with SMB and HML shown by the black
“X”9—and that in PC-space even one PC is enough. The PC that is eliminated last as we
raise the degree of sparsity is PC1 (i.e., with the one with the highest variance). PC1 is

8We estimate these by computing variance of the CV estimator under the assumption that K = 3 CV
estimates are IID. In that case, var

(
R2

CV estimator
)

= var
(

1
K

∑K
j=1 R̂j

2)
≈ 1

K var
(
R̂j

2)
, where R̂j

2
is an

estimate of the OOS R2 in the j-th fold of the data. Standard errors of the CV estimator can thus be
computed as 1√

K
sd
(
R̂1

2
, ..., R̂K

2)
.

9To put both approaches on equal footing, we shrink Fama-French coefficients towards zero based on
the amount of “level” shrinkage implied by our method. This modification significantly improves OOS
performance of the FF factors. Since SMB and HML are long-short factors, one could also view them as
representing four portfolio returns rather than the two that we assumed here.
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highly correlated with the HML factor (and somewhat with SMB); the SDF based on PC1
is therefore effectively the same as Fama-French’s and performs similarly.

To summarize, these results confirm that our method can recover the SDF that Fama
and French (1993) constructed intuitively for this set of portfolios. The method also can
detect sparsity where it should (few portfolios and very few PCs are sufficient to represent
the SDF) for this well-known set of portfolios. The true strength of our method, however,
comes in dealing with multidimensional settings characterized by a vast abundance of char-
acteristics and unknown factors where classic techniques are inadequate. We turn to these
more challenging settings next.

4.2 Large sets of characteristics portfolios

We start with the universe of U.S. firms in CRSP. We construct two independent sets of
characteristics. The first set relies on characteristics underlying common “anomalies” in
the literature. We follow standard anomaly definitions in Novy-Marx and Velikov (2016),
McLean and Pontiff (2016), and Kogan and Tian (2015) and compile our own set of 50 such
characteristics. The second set of characteristic is based on 70 financial ratios as defined
by WRDS: “WRDS Industry Financial Ratios” (WFR) is a collection of most commonly
used financial ratios by academic researchers (often for purposes other than return predic-
tion). There are in total over 70 financial ratios grouped into the following seven categories:
Capitalization, Efficiency, Financial Soundness/Solvency, Liquidity, Profitability, Valuation,
and Others” (Table 6 in the Appendix lists the ratios). We supplement this dataset with
12 portfolios sorted on past monthly returns in months t− 1 through t− 12. The combined
dataset contains 80 managed portfolios (we drop two variables due to their short time series
and end up with 68 WRDS ratios in the final dataset).

In order to focus exclusively on the cross-sectional aspect of return predictability, remove
the influence of outliers, and keep constant leverage across all portfolios, we perform certain
normalizations of characteristics that define our characteristics-based factors. First, similarly
to Asness et al. (2014) and Freyberger et al. (2017), we perform a simple rank transformation
for each characteristic. For each characteristic i of a stock s at a given time t, denoted as
cis,t, we sort all stocks based on the values of their respective characteristics cis,t and rank
them cross-sectionally (across all s) from 1 to nt, where nt is the number of stocks at t for
which this characteristic is available.10 We then normalize all ranks by dividing by nt + 1 to

10If two stocks are “tied”, we assign the average rank to both. For example, if two firms have the lowest
value of c, they are both assigned a rank of 1.5 (the average of 1 and 2). This preserves any symmetry in
the underlying characteristic.
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obtain the value of the rank transform:

rcis,t =
rank

(
cis,t
)

nt + 1 . (31)

Next, we normalize each rank-transformed characteristic rcis,t by first centering it cross-
sectionally and then dividing by sum of absolute deviations from the mean of all stocks:

zis,t =

(
rcis,t − r̄cit

)
∑nt
s=1

∣∣∣rcis,t − r̄cit∣∣∣ , (32)

where r̄cit = 1
nt

∑nt
s=1 rc

i
s,t. The resulting zero-investment long-short portfolios of transformed

characteristics zis,t are insensitive to outliers and allow us to keep the absolute amount of
long and short positions invested in the characteristic-based strategy (i.e., leverage) fixed.
For instance, doubling the number of stocks at any time t has no effect on the strategy’s
gross exposure.11 Finally, we combine all transformed characteristics zis,t for all stocks into
a matrix of instruments Zt.12 Interaction with returns, Ft = Z ′t−1Rt, then yields one factor
for each characteristic.

To ensure that the results are not driven by very small illiquid stocks, we exclude small-
cap stocks with market caps below 0.01% of aggregate stock market capitalization at each
point in time.13 In all of our analysis we use daily returns from CRSP for each individual
stock. Using daily data allows us to estimate second moments much more precisely than
with monthly data and focus on uncertainty in means while largely ignoring negligibly small
uncertainty in covariance estimates (with exceptions as noted below). We adjust daily port-
folio weights on individual stocks within each month to correspond to a monthly-rebalanced
buy-and-hold strategy during that month. All portfolios’ returns are further rescaled to
have standard deviations equal to the in-sample standard deviation of the excess return on
the aggregate market index. Table 5 in the Appendix shows the annualized mean returns
for the anomaly portfolios. Mean returns for the WFR managed portfolios are reported in
Appendix Table 6. Finally, as in the previous section, we orthogonalize all portfolio returns
with respect to the CRSP value-weighted index return using βs estimated in the full sample.
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Figure 3: OOS R2 from dual-penalty specification (50 anomaly portfolios). OOS cross-
sectional R2 for families of models that employ both L1 and L2 penalties simultaneously using 50
anomaly portfolios (Panel a) and 50 PCs based on anomaly portfolios (Panel b). We quantify the
strength of the L2 penalty by prior root expected SR2 (κ) on the x-axis. We show the number
of retained variables in the SDF, which quantifies the strength of the L1 penalty, on the y-axis.
Warmer (yellow) colors depict higher values of OOS R2. Both axes are plotted on logarithmic scale.

4.2.1 50 anomaly characteristics

We now turn to our primary dataset of 50 portfolios based on anomaly characteristics. Fig-
ure 3 presents the OOS R2 from our dual-penalty specification as a function of κ (on the
x-axis) and the number of non-zero SDF coefficients (on the y-axis). A comparison with
our earlier Figure 1 for the FF25 portfolios shows some similarities, but also features that
are drastically different. Focusing on the left-hand Figure 3a based on raw returns of the
50 anomaly portfolios, one similarity is that unregularized models (top-right corner) demon-
strate extremely poor performance with OOS R2 substantially below 0. Hence, substantial
regularization is needed to get good OOS performance. However, unlike for the FF25 portfo-
lios, there isn’t much substitutability between L1 and L2-regularization here. To attain the
maximum OOS R2, the data calls for substantial L2-shrinkage, but essentially no sparsity.
Imposing sparsity (i.e., moving down in the plot) leads to a major deterioration in OOS R2.
This indicates that there is almost no redundancy among the 50 anomalies. The FF25 port-

11Since the portfolio is long-short the net exposure is always zero.
12If zis,t is missing we replace it with the mean value, zero.
13For example, for an aggregate stock market capitalization of $20tn, we keep only stocks with market

caps above $2bn.
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Figure 4: L2 Model Selection and Sparsity (50 anomaly portfolios). Panel (a) plots the
in-sample cross-sectional R2 (dashed), OOS cross-sectional R2 based on cross validation (solid), and
OOS cross-sectional R2 based on the proportional shrinkage (dash-dot) from Pástor and Stambaugh
(2000). In Panel (b) we show the maximum OOS cross-sectional R2 attained by a model with n
factors (on the x-axis) across all possible values of L2 shrinkage, for models based on original
characteristics portfolios (solid) and PCs (dashed). Dotted lines in Panel (b) depict −1 s.e. bounds
of the CV estimator.

folios have so much redundancy that a small subset of these portfolios is sufficient to span
the SDF. In contrast, to adequately capture the pricing information in the 50 anomalies one
needs to include basically all of these 50 factors in the SDF. Shrinking their SDF coefficients
is important to obtain good performance, but forcing any of them to zero to get a sparse
solution hurts the OOS R2. In other words, a characteristics-sparse SDF with good pricing
performance does not exist. Hence, many anomalies do in fact make substantial marginal
contributions to OOS explanatory power of the SDF.

If we take the PCs of the anomaly portfolio returns as basis assets, as shown in Figure 3b,
the situation is quite different. A relatively sparse SDF with only four PCs, for example,
does quite well in terms of OOS R2 and with 10 PCs we get close to the maximum OOS R2.
Thus, a PC -sparse SDF prices the anomaly portfolios quite well.

Figure 4 provides a more precise picture of the key properties of OOS R2 by taking cuts
of the contour plots. The solid red line in Figure 4a represents a cut along the top edge of
Figure 3 with varying degrees of L2-shrinkage, but no sparsity. As the figure shows, the OOS
R2 is maximized for κ ≈ 0.30. The standard error bounds indicate that OOS R2 around this
value of κ is not only economically, but also statistically quite far above zero. Table 1a lists
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Table 1: Largest SDF factors (50 anomaly portfolios)

Coefficient estimates and absolute t-statistics at the optimal value of the prior root expected SR2

(based on cross-validation). Panel (a) focuses on the original 50 anomaly portfolios. Panel (b)
pre-rotates returns into PC space and shows coefficient estimates corresponding to these PCs.
Coefficients are sorted descending on their absolute t-statistic values.

(a) Raw 50 anomaly portfolios

b t-stat
Industry Rel. Rev. (L.V.) -0.92 3.67
Ind. Mom-Reversals 0.50 1.98
Industry Rel. Reversals -0.44 1.75
Seasonality 0.36 1.44
Earnings Surprises 0.35 1.39
Return on Market Equity 0.32 1.28
Value-Profitablity 0.31 1.22
Composite Issuance -0.26 1.03
Return on Equity 0.24 0.94
Investment/Assets -0.23 0.92
Momentum (12m) 0.23 0.91

(b) PCs of 50 anomaly portfolios

b t-stat
PC 5 -0.91 3.82
PC 1 -0.57 3.41
PC 2 -0.54 2.58
PC 4 0.49 2.08
PC 11 -0.48 1.92
PC 15 0.42 1.66
PC 10 -0.36 1.41
PC 6 -0.30 1.25
PC 19 -0.26 1.00
PC 14 0.24 0.94
PC 9 0.21 0.84

the anomaly factors with the largest absolute t-statistics, where standard errors are based
on eq. (23). The largest coefficients and t-statistics are associated with industry relative
reversals (low vol.), industry momentum-reversals, industry relative-reversals, seasonality,
earnings surprises, ROE, value-profitability, momentum, etc. Not surprisingly, these are the
anomalies that have been found to be among the most robust in the literature. Our method
uncovers them naturally. The t-statistics are quite low, but it is important to keep in mind
that what matters for the SDF is the joint significance of linear combinations of 50 of these
factors. Table 1b shows t-statistics for particular linear combinations: the PCs of the 50
portfolio returns. As the table shows, the loadings on PC1, PC2, PC4, and PC5 are all
significantly different from zero at conventional significance levels.14 Our earlier analysis in
Figure 4b showed that the SDF already achieves a high OOS R2 with only these four PCs.
It is also consistent with our economic arguments in the beginning of the paper that the PCs
with the biggest absolute coefficients are PCs with the highest variance.

In Section 3.1 we argued on economic grounds that our prior specification with η = 2
is reasonable. However, it would be useful to check whether this economic motivation is

14Since L2 regularization is rotation invariant, we obtain the same solution (in terms of the weight that
an individual anomaly factor obtains in the SDF) whether we first estimate the model on the original assets
and then rotate into PC space or directly estimate in PC space. Thus, the coefficients Table 1b are linear
combinations of those in Table 1a.
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also accompanied by better performance in the data. To do this, the yellow dash-dot line
in Figure 4a plots the OOS R2 we would get with the more commonly used prior of Pástor
and Stambaugh (2000) with η = 1.15 Recall that our method performs both level shrinkage
of all coefficients, as well as relative shrinkage (twist) which down-weights the influence of
small PCs. The method in Pástor and Stambaugh (2000) employs only level shrinkage. We
can see that optimally-chosen level shrinkage alone achieves OOS R2 lower than 5% (an
improvement over the OLS solution), but falls substantially short of the 30% R2 delivered
by our method. Relative shrinkage, which is the key element of our method, therefore,
contributes a major fraction of the total out-of-sample performance.

Figure 4b takes a cut in the contour plots along the ridge of maximal OOS R2 from
bottom to top where we vary sparsity and choose the optimal L2-shrinkage for each level
of sparsity. The solid blue line shows very clearly how characteristics-sparse SDFs perform
poorly. The OOS R2 only starts rising substantially at the lowest sparsity levels towards the
very right of the plot. In PC space, on the contrary, very sparse models perform exceedingly
well: a model with a single PC-based factor captures roughly a third of the total OOS cross-
sectional R2, while adding a second factor raises the R2 to about 65% of the maximal one.
A model with 10 PC factors achieves nearly maximal R2, while a model with ten factors in
the space of characteristics-based factors achieves less a third of the maximum—as much as
a model with only one PC does. Many of the PC factors that our dual-penalty approach
picks in PC-sparse SDF representations are the same as the PCs with highest t-statistics in
Table 1. For instance, the first selected factor is PC1, followed by PC5, PC4, and PC2. (see
Figure 11 in the Appendix for more details).

To summarize, there is little redundancy among the 50 anomalies. As a consequence,
it is not possible to find a sparse SDF with just a few characteristics-based factors that
delivers good OOS performance. For this reason, it is also important to deal with the
high-dimensional nature of the estimation problem through an L2-shrinkage rather than
just an L1-penalty and sparsity. L2-shrinkage delivers much higher OOS R2 than a pure
L1-penalty Lasso-style approach and the dual-penalty approach with data-driven penalty
choice essentially turns off the L1 penalty for this set of portfolios. However, if these portfolio
returns are transformed into their PCs, a sparse representation of the SDF emerges. These
findings are consistent with the point we made in Section 2 that the economic arguments for
a characteristics-sparse SDF are rather weak, while there are good reasons to expect sparsity
in terms of PCs.

15For the Pástor and Stambaugh (2000) level shrinkage estimator we show E
(
SR2) under the prior on

the x-axis, but it no longer coincides with the κ parameter in this case.
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Figure 5: OOS R2 from dual-penalty specification (WFR portfolios). OOS cross-sectional
R2 for families of models that employ both L1 and L2 penalties simultaneously using 80 WFR
portfolios (Panel a) and 80 PCs based on WFR portfolios (Panel b). We quantify the strength of
the L2 penalty by prior root expected SR2 (κ) on the x-axis. We show the number of retained
variables in the SDF, which quantifies the strength of the L1 penalty, on the y-axis. Warmer
(yellow) colors depict higher values of OOS R2. Both axes are plotted on logarithmic scale.

4.2.2 WRDS financial ratios (WFR)

The dataset of 50 anomalies is special in the sense that all of these characteristics are known,
from the past literature, to be related to expected returns. Our method is useful to check for
redundancy among these anomalies, but this set of asset returns did not expose the method
to the challenge of identifying entirely new pricing factors from a high-dimensional data set.
For this reason, we now look at 80 characteristics-based factors formed based on the WFR
data set, including 12 portfolios sorted on past monthly returns in months t − 1 through
t− 12. Some of the characteristics in the WFR data set are known to be related to expected
returns (e.g., several versions of the P/E ratio), but many others are not. It is therefore
possible that a substantial number of these 80 factors are irrelevant for pricing. It will be
interesting to see whether our method can: (i) properly de-emphasize these pricing-irrelevant
factors and avoid overfitting them; (ii) pick out pricing factors that are similar to those that
our analysis of 50 anomalies found relevant; (iii) potentially find new pricing factors.

The contour map of OOS R2 in Figure 5 looks quite similar to the earlier one for the
50 anomaly portfolios in Figure 3. Unregularized models (top-right corner) again perform
extremely poorly with OOS R2 significantly below 0. L2-penalty-only based models (top
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Figure 6: L2 Model Selection and Sparsity (WFR portfolios). Panel (a) plots the in-sample
cross-sectional R2 (dashed) and OOS cross-sectional R2 based on cross validation (solid). In Panel
(b) we show the maximum OOS cross-sectional R2 attained by a model with n factors (on the
x-axis) across all possible values of the prior root expected SR2 (κ) for models based on original
characteristics portfolios (solid) and PCs (dashed). Dotted lines in Panel (b) depict −1 s.e. bounds
of the CV estimator.

edge of a plot) perform well for both raw portfolio returns and PCs. L1-penalty-only “Lasso”
based models (right edge of the plot) work poorly for raw portfolio returns in Figure 5a.

However, there are some differences as well. First, in Figure 5a, the area of very high
OOS R2 extends down from the top more than it does in the case of the 50 anomalies (due
to the log scale on the y-axis this feature is relatively subtle). This indicates that imposing a
small degree of sparsity is not harmful to OOS performance. Apparently, some of the WFR
characteristics are not important for pricing and can be left out. Second, as can be seen
towards the right-edge of Figure 5b, a PC-sparse SDF not only does quite well in terms of
OOS R2, but it does so even without much L2-shrinkage. A potential explanation of this
finding is that the data mining and publication bias towards in-sample significant factors
may play a bigger role in the anomalies data set, which is based on published anomalies,
than in the WFR data set. As a consequence, stronger shrinkage of SDF coefficients towards
zero may be needed in the anomalies data set to prevent these biases from impairing OOS
performance, while there is less need for shrinkage in the WFR data set because in- and
out-of-sample returns are not so different.

This explanation is further consistent with the fact that the OOS R2-maximizing κ ≈ 1,
which is much higher than in the anomalies data set. Figure 6a illustrates this even more
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Table 2: Largest SDF factors (WFR portfolios)

Coefficient estimates and t-statistics at the optimal value of the prior root expected SR2 (based on
cross-validation). Panel (a) focuses on the original WFR portfolios. Panel (b) pre-rotates returns
into PC space and shows coefficient estimates corresponding to these PCs. Coefficients are sorted
descending on their absolute t-statistic values.

(a) Raw WFR portfolios

b t-stat
Free Cash Flow/Operating Cash Flow 3.03 5.06
Accruals/Average Assets 2.41 3.89
P/E (Diluted, Incl. EI) -2.09 3.33
Month t− 9 1.59 2.86
Operating CF/Current Liabilities 1.72 2.73
Trailing P/E to Growth (PEG) ratio -1.46 2.53
Month t− 11 1.39 2.49
Cash Flow/Total Debt 1.53 2.37
P/E (Diluted, Excl. EI) -1.47 2.33
Month t− 12 1.21 2.17
Enterprise Value Multiple -1.31 2.16

(b) PCs of WFR portfolios

b t-stat
PC 7 -3.19 6.75
PC 19 -3.57 6.33
PC 26 2.58 4.32
PC 6 -1.90 4.22
PC 2 -0.51 2.37
PC 17 -1.31 2.35
PC 9 -1.20 2.34
PC 10 1.17 2.25
PC 18 1.22 2.19
PC 5 0.82 2.16
PC 25 1.14 1.93

transparently by taking a cut along the top edge of Figure 5a. The solid red line shows
the OOS R2. Its peak is much farther to the right than in the analogous figure for the
anomalies data set (Figure 4a), consistent with our intuition that WFR are less likely to
have been data-mined in an early part of the sample compared to the published anomalies
and therefore do not require as much shrinkage. Standard errors are smaller, too, due
to more stable performance of WFR portfolios across time periods relative to anomalies,
which experienced significant deterioration in the latest (not data-mined) part of the sample
(McLean and Pontiff, 2016).

Table 2 lists coefficient estimates at this optimal level of L2-only penalty. Coefficients
are sorted descending on their absolute t-statistic values. Table 2a focuses on original WFR
portfolio returns. It shows that our method tends to estimate high weights on factors based
on characteristics known to be associated with expected returns. Among the picks there
are few measures of valuation ratios (P/E, PEG, Enterprise Value Multiple), investment
(Free CF/Operating C, which equals 1 - Capital Expenditure/Operating CF), accruals (Ac-
cruals/Average Assets), financial soundness (Operating CF/Current Liabilities, Operating
CF/Total Debt), and momentum (months t − 9, t − 11, t − 12). None of these variables
on their own, however, are likely to be optimal measures of the “true” underlying signal
(factor). Our method combines information in many such imperfect measures (averaging
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them by the means of the L2 penalty) and delivers a robust SDF that performs well out
of sample. Combining several measures of each signal (e.g., valuation measures) performs
much better out of sample than using any single ratio.

Table 2b pre-rotates assets into PC space. Most of the entries in this table belong to the
top 20 high-variance PCs. However, compared with the anomaly portfolio PCs in Table 1b,
there are a few more of the lower variance PCs on this list as well. If we also impose
some sparsity through an L1 penalty in a dual-penalty specification, these lower variance
PCs drop out. For example, the best sparse model with 5 factors, which achieves about
three-quarters of the maximal OOS R2, includes PC 1, PC 2, PC 6, PC 7, PC 19. This
is broadly consistent with our economic arguments that important pricing factors are most
likely to be found among high-variance PCs, although, of course, not every high-variance
PC is necessarily an important factor in the SDF.

Figure 6b takes a cut in the contour plots along the ridge of maximal OOS R2 from
bottom to top where we vary sparsity and choose the optimal shrinkage for each level of
sparsity. This figure illustrates that—unlike in the case of the 50 anomalies—some degree
of sparsity does not hurt the OOS R2. As the solid blue line shows, the OOS R2 reaches its
maximum at around 45 characteristics, which means that half of the WFR characteristics-
based factors can be omitted from the SDF. Even so, sparsity is again much stronger in PC
space. A model with five factors captures a large fraction of the total OOS cross-sectional
R2, while a model with nine factors delivers nearly maximum OOS R2.

In summary, the analysis of the WFR data set shows that our method can handle well a
data set that mixes factors that are relevant for pricing with others that are not. Sensibly,
the characteristics-based factors that our method finds to be the ones most relevant with
the highest weight in the SDF are closely related to those that help price the 50 anomaly
portfolios. If sparsity is desired, a moderate level of L1-penalty can be used to omit the
pricing-irrelevant factors, but a L2-penalty-only method works just as well in terms of OOS
R2.

4.3 Interactions

To raise the statistical challenge, we now consider extremely high-dimensional data sets.
We supplement the sets of 50 anomaly and 80 WFR raw characteristics with characteristics
based on second and third powers and linear first-order interactions of characteristics. This
exercise is interesting not only in terms of the statistical challenge, but also because it allows
us to relax the rather arbitrary assumption of linearity of factor portfolio weights in the
characteristics when we construct the characteristics-based factors.
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In fact, for some anomalies like the idiosyncratic volatility anomaly, it is known that the
expected return effect is concentrated among stocks with extreme values of the characteristic.
Fama and French (2008); Freyberger et al. (2017) provide evidence of nonlinear effects for
other anomalies, but in terms of portfolio sorts and cross-sectional return prediction rather
than SDF estimation. Furthermore, while there is existing evidence of interaction effects for
a few anomalies (Asness et al., 2013; Fama and French, 2008), interactions have not been
explored in the literature for more than these few—presumably a consequence of the ex-
treme high-dimensionality of the problem. Interactions expand the set of possible predictors
exponentially. For instance, with only first-order interactions of 50 raw characteristics and
their powers, we obtain 1

2n (n+ 1) + 2n = 1, 375 candidate factors and test asset returns.
For 80 WFR characteristics, we obtain a set of 3, 400 portfolios.

We construct the nonlinear weights and interactions as follows. For any two given rank-
transformed characteristics zis,t and zjs,t of a stock s at time t, we define the first-order
interaction characteristic zijs,t as the product of two original characteristics that is further
re-normalized using eq. (32) as follows:
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We include all first-order interactions in our empirical tests. In addition to interactions, we
also include second and third powers of each characteristic, which are defined analogously
based on interaction of the characteristic with itself. Note that although we re-normalize all
characteristics after interacting or raising to powers, we do not re-rank them. For example,
the cube of any given characteristic then is a new different characteristic that has stronger
exposures to stocks with extreme realization of the original characteristic. We illustrate how
this approach maps into more conventional two-way portfolio sorts portfolios in Appendix
C.

Due to the extremely high number of characteristics-based factors in this case, our 3-fold
cross-validation method runs into numerical instability issues in covariance matrix inversion,
even with daily data. For this reason, we switch to 2-fold cross-validation. This gives us
a somewhat longer sample to estimate the covariance matrix and this sample extension is
sufficient to obtain stable behavior.

Figure 7 shows contour maps of the OOS cross-sectional R2 as a function of κ (on the
x-axis) and the number of non-zero SDF coefficients (on the y-axis). Plots for the raw
portfolio returns are shown in the top row and plots for the PCs are in the bottom row.
Focusing first on the results for the raw portfolio returns, it is apparent that a substantial
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Figure 7: OOS R2 from dual-penalty specification for models with interactions. OOS
cross-sectional R2 for families of models that employ both L1 and L2 penalties simultaneously
using portfolio returns based on interactions of 50 anomaly (Panel a) and 80 WFR (Panel b)
characteristics, and PCs of these portfolio returns (Panels c and d). We quantify the strength of
the L2 penalty by prior root expected SR2 (κ) on the x-axis. We show the number of retained
variables in the SDF, which quantifies the strength of the L1 penalty, on the y-axis. Warmer
(yellow) colors depict higher values of OOS R2. Both axes are plotted on logarithmic scale.
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Table 3: Largest SDF factors (models with interactions)

Coefficient estimates and t-statistics at the optimal value of the prior root expected SR2 (based on
cross-validation). Panel (a) focuses on the SDF constructed from PCs portfolio returns based on
interactions of 50 anomaly characteristics. Panel (b) shows coefficient estimates corresponding to
PCs of portfolio returns based on interactions of WFR. Coefficients are sorted descending on their
absolute t-statistic values.

(a) PCs of interactions of anomaly portfolios

b t-stat
PC 1 -0.24 3.97
PC 2 0.28 3.31
PC 17 0.28 2.28
PC 40 -0.30 2.28
PC 60 0.27 2.03
PC 19 0.23 1.89
PC 67 0.24 1.86
PC 30 -0.21 1.62
PC 63 -0.21 1.60
PC 10 -0.19 1.59
PC 21 -0.18 1.49

(b) PC of interactions of WFR portfolios

b t-stat
PC 1 -0.11 3.02
PC 5 -0.13 1.78
PC 2 -0.08 1.50
PC 50 0.13 1.45
PC 7 -0.10 1.23
PC 4 -0.08 1.17
PC101 -0.11 1.16
PC 20 0.10 1.15
PC 83 0.11 1.12
PC112 -0.11 1.11
PC 30 -0.09 1.04

degree of sparsity is now possible for both the anomalies and the WFR portfolios without
deterioration in the OOS R2. Strengthening the L1-penalty to the point that only around
200 of the characteristics and their powers and interactions remain in the SDF (out of 1, 375
and 3, 400, respectively) does not reduce the OOS R2 as long as one picks the L2-penalty
optimal for this level of sparsity. As before, an L1-penalty-only approach leads to poor OOS
performance.

The plots in the bottom row show contour maps for PCs. These results are drastically
different in terms of how much sparsity can be imposed without hurting OOS performance.
Very few PCs—or even just one—suffice to obtain substantial OOS explanatory power. But
here, too, the combination of sparsity with an optimally chosen L2 penalty is very important.
Adding more PCs does not hurt as long as substantial L2 shrinkage is imposed, but it does
not improve OOS performance much either.

Table 3 lists coefficient estimates at the optimal level of L2 regularization (i.e., the max-
imum along the top edge of the contour plots). Table 3a focuses on the SDF constructed
from PCs of portfolio returns based on interactions of 50 anomaly characteristics. Table 3b
shows coefficient estimates corresponding to PCs of portfolio returns based on interactions
of WRDS financial ratios (WFR). PC1 has the highest t-statistic for both sets of portfolios.
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Figure 8: L1 Sparsity of models with interactions. We show the maximum OOS cross-
sectional R2 attained by a model with n factors (on the x-axis) across all possible values of the
prior root expected SR2 (κ) for models based on interactions of original characteristics portfolios
(solid) and PCs (dashed). Panel (a) focuses on the SDF constructed from PCs of interactions
of 50 anomaly portfolios. Panel (b) shows coefficient estimates corresponding to PCs based on
interactions of WFR portfolios. Dotted lines depict −1 s.e. bounds of the CV estimator.

PC1 is also the last survivor if one imposes enough sparsity that only one PC remains. The
estimated SDF coefficients are quite similar for many of the other PCs in this table that are
ranked lower than PC1 in terms of their t-statistic. However, since these other PCs have
lower variance, their contribution to SDF variance, and hence the overall squared Sharpe
Ratio captured by the SDF, is lower.

The two plots in Figure 8 take a cut in the contour plots along the ridge of maximal OOS
R2 from bottom to top where we vary sparsity and choose the L2 optimal shrinkage for each
level of sparsity. These plots reinforce the point we noted from the contour plots that many of
the powers and interactions of the characteristics are not adding pricing-relevant information
to the SDF and can be omitted. The SDF which attains the highest OOS R2 is relatively
sparse with about 200 factors for both the anomalies in Figure 8a and the WFR portfolios
in Figure 8b. However, as the wide standard error bands show, statistical precision is quite
low. The very large number of portfolios in this case pushes the method to its statistical
limits.

Overall, these results show that many of the powers and interactions of characteristics
seem to be redundant in terms of their pricing implications. A majority of them can be
excluded from the SDF without adverse impact on OOS pricing performance. But, as before,
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L2-shrinkage is crucial for obtaining good OOS performance.

5 Asset Pricing Tests: Performance Compared with
Sparse Models

Our cross-validation method evaluates a model’s performance on the part of a sample not
used in the estimation of the SDF coefficients; it is, therefore, by construction an OOS
metric. Yet our choice of the strength of regularization (L1 and L2 penalties) is based on
the entire sample. It is possible that the penalty that is optimal within one sample does not
generalize well on new or fully withheld data. To address this potential issue we now conduct
a pure OOS test. Using our L2-penalty method, we conduct the entire estimation, including
the choice of penalty, based on data until the end of 2004. Post-2004 data is completely left
out of the estimation. We evaluate performance of this SDF in the 2005–2016 OOS period.
This analysis also allows us to assess the statistical significance of our earlier claim that
characteristics-sparse SDFs cannot adequately describe the cross-section of stock returns.

This OOS exercise further helps to gain robustness against the effects of data mining
in prior published research. Especially for the data set of 50 known anomalies, there is a
concern that the full-sample average returns may not be representative of the ex-ante ex-
pected returns of these largely ex-post selected portfolios. Implicitly, our analysis so far
has already employed some safeguards against data mining bias. For data-mined spurious
anomalies, there is no economic reason why their average returns should be related to ex-
posures to high-variance PCs—and if they are not, our L2 and dual-penalty specifications
strongly shrink their contribution to the SDF. Even so, an OOS test on a fully withheld sam-
ple of post-2004 data provides additional assurance that the results are not unduly driven
by data-mined anomalies.

We proceed as follows. We first orthogonalize all managed portfolio returns with respect
to the market using βs estimated in the pre-2005 sample.16 Given the estimate b̂ based on
our L2-penalty Bayesian method in this sample, we construct the time-series of the implied
mean-variance efficient (MVE) portfolio Pt = b̂′Ft in the 2005–2016 OOS period. We focus
on three sets of portfolios in constructing an SDF: the 50 anomaly portfolios, the 80 WFR
portfolios, and the interactions and powers of 50 anomaly characteristics.17 As in our earlier
estimation, we choose penalties by 3-fold cross-validation (2-fold if interactions are included),

16The resulting abnormal returns are Fi,t = F̃i,t − βiRm,t where F̃i,t is the raw portfolio return. In our
previous analysis, we used the full data to estimate βi.

17We do not report results for interactions of WFR portfolios due to issues in estimating covariances in
an even shorter sample with an extremely high number of characteristics-based factors in this case.
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Table 4: MVE portfolio’s annualized OOS α in the withheld sample (2005-2016), %

The table shows annualized alphas (in %) computed from the time-series regression of the SDF-
implied OOS-MVE portfolio’s returns (based on L2 shrinkage only) relative to four restricted
benchmarks: CAPM, Fama-French 5-factor model, optimal sparse model with 5 factors, and optimal
PC-sparse model with at most 5 PC-based factors. MVE portfolio returns are normalized to have
the same standard deviation as the aggregate market. Standard errors in parentheses.

SDF factors
Benchmark CAPM FF 5-factor Char.-sparse PC-sparse

50 anomaly portfolios 14.34 10.58 11.58 3.21
(5.67) (5.32) (4.42) (2.16)

80 WFR portfolios 20.23 20.19 17.26 2.88
(5.67) (5.70) (5.42) (2.92)

1,375 interactions of 27.38 24.97 24.76 13.54
anomalies (5.67) (5.56) (5.47) (3.31)

but with shorter blocks because we only use the pre-2005 sample here.18

We then estimate abnormal returns of this OOS-MVE portfolio with respect to three
characteristics-based benchmarks: CAPM; the 5-factor model of Fama and French (2016);
and our dual-penalty model where we have set the L1 penalty such that the SDF contains
only 5 characteristics-based factors. To compare the models on equal footing, we construct
the MVE portfolio implied by these benchmarks. Since we work with candidate factor
returns orthogonalized to the market return, the benchmark in the CAPM case is simply a
mean return of zero. For Fama-French 5-factor model, we estimate the unregularized MVE
portfolio weights, ŵ = Σ̂−1µ̂, from the 5 non-market factors in the pre-2005 period.19 We
then apply these weights to the 5 factor returns in the OOS period to construct a single
benchmark return. Finally, for the dual-penalty sparse model with 5 factors, we estimate
b̂ in the pre-2005 period and then apply these optimal portfolio weights to returns in the
OOS period. If our earlier claim is correct that the SDF cannot be summarized by a small
number of characteristics-based factors, then our OOS-MVE portfolio constructed from the
full set of candidate factors should generate abnormal returns relative to the MVE portfolio
constructed from these sparse benchmarks.

Table 4 confirms that the MVE portfolio implied by our SDF performs well in the withheld
data. The table presents the intercepts (alphas) from time-series regressions of the OOS-
MVE portfolio returns on the benchmark portfolio return in %, annualized, with standard

18We plot the time-series of returns of the MVE portfolios in Figure 13 in the Appendix.
19As before, we orthogonalize these factors (SMB, HML, UMD, RMW, CMA) with respect to the market

using βs estimated in the pre-2005 sample.
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errors in parentheses. To facilitate interpretation of magnitudes, we scale MVE portfolio
returns so that they have the same standard deviation as the market index return in the
OOS period. The first column shows that the OOS-MVE portfolio offers a large abnormal
return relative to the CAPM for all three sets of candidate factor returns. For example,
for the OOS-MVE portfolio based on the 50 anomalies, we estimate an abnormal return of
14.34% which is more than two standard errors from zero, despite the short length of the
evaluation sample. The abnormal returns are even larger for the other two sets of portfolios.
As the second column shows, the abnormal returns are very similar in magnitude for the FF
5-factor model and we can reject the hypothesis of zero abnormal returns at a 5% level or
less for all three sets of candidate factor portfolios. The third column shows that the results
for the sparse 5-factor model based on our dual-penalty method is almost identical to the FF
5-factor model. Overall, the evidence in this table confirms our claim that characteristics-
sparse models do not adequately describe the cross-section of expected stock returns.

In our earlier analysis, we also found that sparse models based on PCs do much better
than sparse characteristics-based models. This result also holds up in this OOS analysis.
The last column shows that the PC-sparse MVE portfolio, which includes only 5 optimally-
selected PC-based factors using our dual-penalty method, performs uniformly better than
characteristics-sparse models. Abnormal returns are much smaller and in two cases (50
anomaly portfolios and 80 WFR portfolios), not statistically significantly different from
zero.

6 Conclusion

Our results suggest that the multi-decade quest to summarize the cross-section of stock re-
turns with sparse characteristics-based factor models containing only a few (e.g., 3, 4, or
5) characteristics-based factors is ultimately futile. There is simply not enough redundancy
among the large number of cross-sectional return predictors that have appeared in the litera-
ture for such a characteristics-sparse model to adequately price the cross-section. To perform
well, the SDF needs to load on a large number of characteristics-based factors. Sparsity is
generally elusive.

In this high-dimensional setting, shrinkage of estimated SDF coefficients towards zero
is critical for finding an SDF representation that performs well out-of-sample. L2-penalty
(ridge) based methods that shrink, but do not set to zero, the contributions of candidate
factors to the SDF work very well. In contrast, purely L1-penalty (lasso) based techniques
perform poorly because they tend to impose sparsity even where there is none. For some
data sets—e.g., one where we include an extremely large number of interactions and powers
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of stock characteristics—inclusion of the L1-penalty in combination with an L2-penalty can
help eliminate some useless factors, but the L2-penalty is still most important for out-of-
sample performance and the number of required factors in the SDF is still very large.

In addition to being empirically successful, the L2-penalty approach also has an economic
motivation. We derive our particular L2-penalty specification from an economically plausible
prior that existence of near-arbitrage opportunities is implausible and major sources of return
co-movement are the most likely sources of expected return premia. Lasso-style L1-penalty
approaches, on the other hand, lack such an economic justification.

In line with this economic motivation, a sparse SDF approximation is achievable if one
seeks it in the space of principal components of characteristics-based portfolio returns, rather
than raw characteristics-sorted portfolio returns. A relatively small number of high-variance
principal components in the SDF typically suffices to achieve good out-of-sample perfor-
mance. This approach inherently still uses all characteristics (factors) in constructing an
optimal SDF, but distilling their SDF contributions in a few principal components factors
can be fruitful for future research on the economic interpretation of the SDF. Researchers
can focus their efforts on linking these few factors to sources of economic risk or investor
sentiment.

The mean-variance efficient portfolio implied by our estimated SDF can also serve as a
useful test asset to evaluate any potential model of the cross-section of equity returns. This
portfolio summarizes the pricing information contained in a large number of characteristics-
based factors, and a candidate factor model can be tested in a single time-series regression.
In an application of this sort, we have shown that the 5-factor model of Fama and French
(2016) leaves much of the cross-section of equity returns unexplained.
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Appendix

A Properties of the Naive SDF Coefficient Estimator
Consider an orthogonal rotation Pt = Q′Ft with ΣT = QDTQ

′, Q is the matrix of eigenvectors of
ΣT and DT is the sample diagonal matrix of eigenvalues, dj , ordered in decreasing magnitude. If
we express the SDF as Mt = 1− b′P (Pt − EPt) we have

b̂P =
(
T −N − 2

T

)
D−1
T µ̄P . (34)

Consider the analytically simple case when D is known and replace
(
T−N−2

T

)
D−1
T with D−1.20

Then we have √
T
(
b̂P − bP

)
∼ N

(
0, D−1

)
, (35)

which shows that estimated SDF coefficients on small-eigenvalue PCs (small di) have explosive
uncertainty.

The above results give exact small sample distributions, assuming returns are jointly normal.
As a simple robustness exercise, consider dividing the data into k = 5 sub-samples and estimating
bP separately in each.21 Then we can compute the theoretical variance of these estimates is simply,

var
(
b̂
)

= k

T
D−1, (36)

which is larger than in eq. (35) by a factor of k due to the shorter samples. Figure 9 plots the
sample values of var

(
b̂i
)
vs d−1

i (on a log-log scale) for the PCs of the 50 anomaly portfolios we use
in Section 4. The solid line plots the relationship derived in eq. (36). The good fit confirms that the
theoretical relationship given in eq. (35) is valid even with non-normally distributed actual return
data.22 Notice that the ratio of largest to smallest eigenvalue is of the order 103. This implies that
the variance of the estimated b associated with the smallest eigenvalue portfolio has 3 orders of
magnitude larger sampling variance as the b associated with the largest eigenvalue portfolio.

This problem is somewhat exacerbated when D−1 is unknown, and thus, estimated. It is
well known that the sample eigenvalues of D (equivalently, Σ) are “over-dispersed” relative to
true eigenvalues, especially when the number of characteristics, H, is comparable to the sample
size, T . This implies that, on average, the smallest estimated eigenvalue is too small and hence the
corresponding b̂i has even greater variance than shown above. In Appendix B we discuss covariance
estimation uncertainty.

B Covariance Estimation Uncertainty
In the prior analyses, we have treated covariances (Σ and D) as known. Many papers highlight the
empirical difficulty in accurately estimating covariance matrices when the number of assets, H, is
of the same order of magnitude as the number of time periods, T . In our main estimation with

20With high-frequency data (daily) and even hundreds of factors, D−1 is estimated quite well as measured
by the loss function tr

(
D−1
T D − I

)2
/N2.

21Throughout, we assume D is known. For this exercise, we estimate D from the full sample.
22This is simply an example of the central limit theorem in full effect.
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Figure 9: Sampling variance of b. The figure shows sample values of var
(
b̂i
)
vs reciprocal

eigenvalue d−1
i (on a log-log scale) for the PCs of the 50 anomaly portfolios we use in Section 4.

The solid line plots the theoretical relationship derived in eq. (36).

anomalies, this should not be of great concern, since H = 50 and T ≈ 11, 000. Still, we now analyze
methods for dealing with covariance uncertainty in our empirical setting.

In a series of papers, Ledoit and Wolf (L&W) propose robust estimators of Σ which trade
off small sample bias and variance by (asymptotically) optimally shrinking the sample covariance
towards an a priori target.23 They are conceptually similar but use different shrinkage targets, Σ0:

Σ̂ = aΣ0 + (1− a) ΣT

One choice of Σ0 is the diagonal matrix tr(ΣT )
H I. The other preserves sample variances, but all

correlations are set to ρ̄, the average correlation coefficient extracted from ΣT . The shrinkage
parameter, a, is chosen to optimally balance bias and variance (to minimize estimated RMSE),
given the choice of Σ0. The scaled identity matrix proposed in Ledoit and Wolf (2004a) is most
appropriate in our empirical setting of zero-β anomaly portfolios. We implement their algorithm
on the 50 anomaly portfolios and find a ≈ 0.7% for both methods. Ledoit and Wolf “concentrate
on the covariance matrix alone without worrying about expected returns.” Hence, they set µ̂ = µT .
The final estimator of SDF coefficients is

b̂ = (aΣ0 + (1− a) ΣT )−1µT ,

which appears similar to our estimator given in eq. (22).
A fully Bayesian approach (which delivers similar results) is to specify a Wishart prior for Σ−1,

with a “flat” prior on µ, p (µ|Σ) ∝ 1, with

Σ−1 ∼ W
(
H,

1
H

Σ−1
0

)
, (37)

23See Ledoit and Wolf (2004a), and Ledoit and Wolf (2004b).
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where Σ0 = 1
H tr (ΣT ) I, which ensures the total expected variation under the prior matches the

data, as in the L&W method. Setting the degrees of freedom to H makes the prior relatively
“diffuse.” For any choice of Σ0, the posterior is given by

Σ−1 ∼ W
(
H + T, [HΣ0 + TΣT ]−1

)
,

with expected value

E
(
Σ−1

)
=
[(

H

H + T

)
Σ0 +

(
T

H + T

)
ΣT

]−1
.

For the 50 anomaly portfolios, H
H+T ≈ 0.5%, similar to the shrinkage coefficient of the L&W

method. We augment this with a “flat” prior on µ so that µ̂ = µT . The final estimator of SDF
coefficients is

b̂ =
[(

H

H + T

)
Σ0 +

(
T

H + T

)
ΣT

]−1
µT ,

which is the same as the L&W estimator except that the shrinkage constant is now deterministic.
Both the L&W method and the Bayesian approach address the known phenomenon that eigen-

values of sample covariance matrices are “over-dispersed.” That is, the largest estimated eigenvalue
tends to be too large while the smallest is too small. Both methods end up shrinking all eigenvalues
towards the average, d̄ = 1

H tr (ΣT ), while preserving the eigenvectors, Q. Since both use a flat prior
for µ, they explicitly do not address uncertainty in estimating means.

Figure 10a shows the relative shrinkage applied to each PC portfolio of the anomalies (our main
dataset) for the L&W, Wishart, and our mean-shrinkage method given by eq. (22). We define rel-
ative shrinkage as b̂P,j

b̂ols
P,j

, with b̂ols
P = Q′Σ−1

T µ̄. For comparison, we include the P&S “level” shrinkage

of Pástor and Stambaugh (2000), which corresponds to our η = 1 prior.24 That plot shows that
this prior shrinks all coefficients uniformly towards zero.25 The L&W and Wishart methods deliver
very similar estimators. Importantly, these covariance shrinkage methods are characteristically
different from our method (KNS) though they appear superficially similar. Whereas we shrink all
coefficients, with greater shrinkage applied to smaller PCs, those methods actually slightly inflate
the SDF coefficients associated with large PCs and apply much less shrinkage to small PCs. Indeed,
for the smallest PC, the ratio of the L&W estimator to our estimator is approximately equal to
1, 700.

B.1 Σ and µ both uncertain
We now analyze the impact of recognizing uncertainty in both µ and Σ. As in our main estimation,
we specify

µ|Σ ∼ N
(

0, κ
2

τ
Σ2
)
, (38)

where τ = tr (ΣT ). For Σ, we use a similar prior to eq. (37), with a slight modification for
numerical tractability since the posterior is not fully analytic. First, we assume eigenvectors (but

24We repeat the cross-validation exercise using the prior η = 1, which induces the posterior estimate
µ̂ = 1

1+γµT . For this shrinkage, the cross-validated optimum is attained at 1
1+γ ≈ 4.3%.

25The degree of shrinkage is determined by cross-validation, as described in Section 3.3.
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Figure 10: Relative Shrinkage by Method. Panel (a) plots the ratio of regularized estimates
of PC SDF coefficients to OLS estimates for various methods. Panel (b) plots the relative difference
between the fully Bayesian estimates taking into consideration uncertainty in both µ and Σ and
two alternative estimators. The line “µ only” represents the estimator which treats the sample
covariance matrix as the truth. The line “µ and Σ” represents the approximate Bayesian solution
which first computes the posterior variance assuming sample means are the true means, then
computes posterior means assuming the posterior variance is the true variance.

not eigenvalues) are known a priori, so the return covariance matrix can be orthogonalized. Let D
be the covariance of PC portfolios. The marginal prior for each PC (each diagonal element of D−1)
is an independent scaled inverse-chi squared priors. Let σ2 = tr (DT ) /H, where DT is the sample
covariance matrix of eigen-portfolios. Under the identity Wishart prior for D−1 (with known µ),
we had Eprior

(
d−1
i

)
= σ2. The independent priors can be constructed by letting each diagonal

element of D−1 have a Wishart prior with the same parameters, except to collapse the distribution
to one-dimensional:

d−1
i ∼ W

(
H,

1
H

1
σ

)
,

which preserves the level of uncertainty (degrees of freedom) relative to eq. (37). The assumption
that eigenvectors are known implies that off-diagonals of D are set to identically 0 under the prior
(and hence under the posterior). Along with conditional independence of µ|D, this assumption
implies that the prior, likelihood, and posterior can be factored into independent terms, one for
each PC. Hence inference can be done PC-by-PC instead of jointly.26

We also consider an approximation given by the following procedure: first regularize the covari-
ance matrix according to the Wishart prior, eq. (37). Then, we estimate b̂ treating the covariance
matrix as known. This method is fully analytic and closely approximates the fully Bayesian so-
lution. Figure 10b shows the ratio of the full Bayes estimate to the approximate Bayes estimate,

26Since µ|D is multivariate normal with zero correlation across PCs, the elements of µ are conditionally
independent.
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and to the estimator which ignores covariance uncertainty, b̂P = (DT + γI)−1 µ̄ with γ = τ
κ2T . As

the figure shows, even the simple estimator which treats covariances as known provides a good
approximation to the (numerically solved) Bayesian solution. The approximate solution is even
better, delivering nearly identical estimates. Throughout our empirical work we use this approx-
imate solution, since covariance uncertainty is potentially important when we consider thousands
of portfolios in Section 4.3.

C Interpreting Interactions
What is the economic interpretation of interactions portfolios? For simplicity, consider two binary
strategies with characteristic values that can be either high or low (±1). Let z1

s and z2
s be the

characteristic values for stock s. The pair
{
z1
s z

2
s

}
takes on four values, shown in the table below:

z1
s\z2

s −1 +1
+1 A B
−1 C D

The letters A to D are names attached to each cell. Let µi, i ∈ {A,B,C,D} by the mean re-
turns of stocks in each cell. For simplicity, suppose the characteristics are uncorrelated so that
each cell contains the same number of firms. Further, suppose returns are cross-sectionally de-
meaned (equivalent to including a time fixed-effect, or an equal-weight market portfolio factor).
What is the expected return on the z1

s mimicking portfolio? That is, what is λ1 ≡ E
[
z1
sRs

]
?

Simply 1
2 (µA + µB − µC − µD). Similarly, λ2 ≡ E

[
z2
sRs

]
= 1

2 (−µA + µB − µC + µD) and λ12 ≡
E
[(
z1
sz

2
s

)
Rs
]

= 1
2 (−µA + µB + µC − µD). Aggregate market clearing implies (µA + µB + µC + µD) =

0, so we can easily recover µi from knowledge of λ1, λ2, λ12 by the identity

λ ≡


0
λ1
λ2
λ12

 = 1
2


1 1 1 1
1 1 −1 −1
−1 1 −1 1
−1 1 1 −1



µA
µB
µC
µD

 = Gµ (39)

since the matrix is invertible, where the first equation imposes market clearing (all our assets are
market neutral, so the total risk premium on the portfolio of all stocks in the economy is zero).

Given the three managed portfolios, how would we construct something like the “small×value”
strategy which buys small-value stocks and shorts small-growth stocks?27 If z1 measures market
capitalization and z2 measures BE/ME, the strategy is long D and short C. Let G be the square
matrix in eq. (39). The mean of the desired strategy is µD − µC , which is also equal to

µD − µC = ι′DCG
−1λ

where ιDC =
[

0 0 −1 1
]′
, which shows the desired strategy of long D and short C can be

constructed with weights equal to
[

0 0 1 −1
]
on the four managed portfolio strategies.28

Hence, combining the interaction with the base strategies allows for construction of any “mixed”
strategies. Conceptually, what is required is that the managed portfolios form an approximate
“basis” of the potential strategies.

27The value anomaly is larger for small stocks, which we would like our methodology to recover.
28We include the risk-free strategy (with zero excess) return for algebraic convenience.
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Figure 11: L1 coefficient paths for the optimal model (50 anomaly portfolios). Paths
of coefficients based on the optimal (dual-penalty) sparse model that uses 50 anomaly portfolios
sorted portfolios (Panel a) and 50 PCs based on anomaly portfolios (Panel b). Labels are ordered
according to the vertical ordering of estimates at the right edge of the plot. In Panel b coefficient
paths are truncated at the first 15 variables.
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Figure 12: L1 coefficient paths for the optimal model (WFR portfolios). Paths of
coefficients based on the optimal (dual-penalty) sparse model that uses 80 WFR portfolios sorted
portfolios (Panel a) and 80 PCs based on WFR portfolios (Panel b). Labels are ordered according
to the vertical ordering of estimates at the right edge of the plot.
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(a) Returns on MVE portfolio based on 50 anomalies in withheld sample
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(b) Returns on MVE portfolio based on interactions of 50 anomalies in withheld sample
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(c) Returns on MVE portfolio based on interactions of 50 anomalies in full sample

Figure 13: Time-series of returns on the MVE portfolio. The figure plots the time-series
of one-year overlapping returns on the regularized market-neutral MVE portfolio implied by our
SDF (blue solid line) and returns on the market (for comparison only; red dashed line). Panel
(a) plots MVE portfolio returns in the withheld sample (2005-present) implied by the SDF that
was constructed using 50 anomaly portfolios. Panel (b) plots MVE returns in the withheld sample
using a model based on interactions of 50 anomalies. Panel (c) plots MVE returns in full sample
implied by the model with interactions.
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Table 5: Part I: Mean annualized returns on anomaly portfolios, %

The table lists all basic “anomaly” characteristics used in our analysis and shows annualized mean
returns on managed portfolios which are linear in characteristics. Columns (1)-(3) show mean
annualized returns (in %) for managed portfolios corresponding to all characteristics in the full
sample, pre-2005 sample, and post-2005 sample, respectively. All managed portfolios’ returns are
based on a monthly-rebalanced buy-and-hold strategy and are further rescaled to have standard
deviations equal to the in-sample standard deviation of excess returns on the aggregate market
index. The sample is daily from May 1, 1974 till December 30, 2016.

(1) (2) (3)

Full Sample Pre 2005 Post 2005
1. Size -2.6 -2.8 -2.0
2. Value (A) 6.9 9.2 0.8
3. Gross Profitability 3.3 2.3 5.6
4. Value-Profitablity 14.0 17.8 4.0
5. F-score 8.1 10.0 3.3
6. Debt Issuance 1.3 1.0 2.2
7. Share Repurchases 7.0 7.6 5.5
8. Net Issuance (A) -9.6 -11.5 -4.7
9. Accruals -5.4 -7.8 0.9
10. Asset Growth -9.2 -11.2 -4.1
11. Asset Turnover 5.1 3.9 8.4
12. Gross Margins -1.4 0.1 -5.2
13. Dividend/Price 4.0 5.5 -0.0
14. Earnings/Price 8.7 10.7 3.6
15. Cash Flows/Price 8.6 10.4 3.6
16. Net Operating Assets 2.2 3.6 -1.5
17. Investment/Assets -10.1 -12.6 -3.5
18. Investment/Capital -4.5 -4.9 -3.2
19. Investment Growth -9.5 -11.0 -5.8
20. Sales Growth -6.2 -5.9 -7.0
21. Leverage 5.6 7.8 -0.1
22. Return on Assets (A) 2.0 0.4 6.2
23. Return on Book Equity (A) 4.5 4.7 4.0
24. Sales/Price 10.0 11.6 5.8
25. Growth in LTNOA -2.4 -1.7 -4.1
26. Momentum (6m) 2.1 4.1 -3.1
27. Industry Momentum 5.8 8.0 0.1
28. Value-Momentum 5.5 7.8 -0.5
29. Value-Momentum-Prof. 6.8 9.6 -0.5
30. Short Interest 0.3 1.6 -2.9

continued on next page...
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Table 5: Part II: Mean annualized returns on anomaly portfolios, %

(1) (2) (3)
31. Momentum (12m) 9.2 12.7 -0.0
32. Momentum-Reversals -6.1 -7.9 -1.6
33. Long Run Reversals -6.1 -7.9 -1.3
34. Value (M) 6.0 8.0 1.0
35. Net Issuance (M) -8.8 -9.9 -6.0
36. Earnings Surprises 12.4 15.2 5.1
37. Return on Equity 10.2 12.1 5.4
38. Return on Market Equity 12.4 15.3 5.0
39. Return on Assets 6.7 7.1 5.7
40. Short-Term Reversals -8.1 -12.0 1.9
41. Idiosyncratic Volatility -3.1 -3.7 -1.7
42. Beta Arbitrage -0.8 -0.3 -2.0
43. Seasonality 12.3 18.7 -4.6
44. Industry Rel. Reversals -18.1 -25.6 1.4
45. Industry Rel. Rev. (L.V.) -35.7 -47.6 -4.5
46. Ind. Mom-Reversals 20.8 29.3 -1.2
47. Composite Issuance -8.4 -10.2 -3.6
48. Price -1.4 -1.1 -2.4
49. Age 3.8 4.7 1.3
50. Share Volume -1.3 -1.3 -1.2
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Table 6: Part I: Mean annualized returns on WFR portfolios, %

The table lists all basic WFR characteristics used in our analysis and shows annualized mean
returns on managed portfolios which are linear in characteristics. Columns (1)-(3) show mean
annualized returns (in %) for managed portfolios corresponding to all characteristics in the full
sample, pre-2005 sample, and post-2005 sample, respectively. All managed portfolios’ returns are
based on a monthly-rebalanced buy-an-hold strategy and are further rescaled to have standard
deviations equal to the in-sample standard deviation of excess returns on the aggregate market
index. The sample is daily from May 1, 1974 till December 30, 2016.

(1) (2) (3)

Full
Sample

Pre 2005 Post 2005

1. P/E (Diluted, Excl. EI) -10.7 -11.8 -7.0
2. P/E (Diluted, Incl. EI) -13.5 -15.4 -7.3
3. Price/Sales -8.1 -9.0 -5.1
4. Price/Cash flow -5.0 -5.0 -4.8
5. Enterprise Value Multiple -10.5 -11.5 -7.1
6. Book/Market 4.5 5.7 0.4
7. Shillers Cyclically Adjusted P/E Ratio -5.9 -7.8 0.4
8. Dividend Payout Ratio -1.6 -1.9 -0.5
9. Net Profit Margin 1.9 2.9 -1.4
10. Operating Profit Margin Before Depreciation 2.3 3.9 -2.8
11. Operating Profit Margin After Depreciation 2.6 4.1 -2.3
12. Gross Profit Margin 1.0 2.5 -4.2
13. Pre-tax Profit Margin 2.7 3.7 -0.7
14. Cash Flow Margin 1.1 1.9 -1.8
15. Return on Assets 6.8 6.8 6.5
16. Return on Equity 7.0 7.6 4.9
17. Return on Capital Employed 8.7 8.6 9.0
18. After-tax Return on Average Common Equity 7.8 8.8 4.4
19. After-tax Return on Invested Capital 5.7 6.0 4.8
20. After-tax Return on Total Stockholders Equity 7.6 8.6 4.3
21. Pre-tax return on Net Operating Assets 7.0 8.1 3.2
22. Pre-tax Return on Total Earning Assets 6.6 7.8 2.7
23. Common Equity/Invested Capital 1.0 1.0 1.3
24. Long-term Debt/Invested Capital -0.3 -0.1 -0.9
25. Total Debt/Invested Capital -0.3 0.0 -1.6
26. Interest/Average Long-term Debt 3.5 4.4 0.6
27. Interest/Average Total Debt 3.7 4.3 1.5
28. Cash Balance/Total Liabilities 0.8 1.1 -0.3
29. Inventory/Current Assets 0.2 -0.8 3.8
30. Receivables/Current Assets 0.6 0.4 1.1

continued on next page...
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Table 6: Part II: Mean annualized returns on WFR portfolios, %

(1) (2) (3)
31. Total Debt/Total Assets -2.5 -2.7 -2.0
32. Short-Term Debt/Total Debt -0.2 0.8 -3.5
33. Current Liabilities/Total Liabilities 2.2 3.0 -0.4
34. Long-term Debt/Total Liabilities -4.9 -6.0 -1.2
35. Free Cash Flow/Operating Cash Flow 17.0 21.1 3.4
36. Avertising Expenses/Sales 2.1 2.2 1.5
37. Profit Before Depreciation/Current Liabilities 3.3 4.3 -0.2
38. Total Debt/EBITDA -1.4 -1.1 -2.5
39. Operating CF/Current Liabilities 11.6 14.8 1.0
40. Total Liabilities/Total Tangible Assets 2.9 4.2 -1.4
41. Long-term Debt/Book Equity -1.1 -1.0 -1.4
42. Total Debt/Total Assets 2.5 2.8 1.5
43. Total Debt/Capital 1.3 1.8 -0.1
44. Total Debt/Equity 2.2 2.5 1.2
45. After-tax Interest Coverage 4.7 5.1 3.5
46. Cash Ratio 0.4 1.2 -2.0
47. Quick Ratio (Acid Test) -1.6 -1.4 -2.5
48. Current Ratio -1.9 -2.0 -1.6
49. Capitalization Ratio -0.2 -0.1 -0.5
50. Cash Flow/Total Debt 11.3 13.0 5.6
51. Inventory Turnover 2.9 3.7 0.1
52. Asset Turnover 6.2 5.7 7.8
53. Receivables Turnover 3.4 3.0 4.9
54. Payables Turnover -1.9 -4.5 6.6
55. Sales/Invested Capital 8.7 8.3 9.8
56. Sales/Stockholders Equity 7.8 7.9 7.4
57. Sales/Working Capital 3.0 3.6 1.0
58. Research and Development/Sales 3.2 3.6 1.9
59. Accruals/Average Assets 12.5 13.7 8.5
60. Gross Profit/Total Assets 6.4 6.3 6.6
61. Book Equity 1.0 1.4 -0.4
62. Cash Conversion Cycle (Days) -3.7 -4.2 -2.1
63. Effective Tax Rate 3.8 4.0 3.1
64. Interest Coverage Ratio 6.3 6.6 5.5
65. Labor Expenses/Sales 0.9 1.8 -1.9
66. Dividend Yield 3.7 4.7 0.5
67. Price/Book -5.5 -6.8 -1.1
68. Trailing P/E to Growth (PEG) ratio -10.5 -11.9 -5.8
69. Month t− 1 -8.7 -11.8 1.7
70. Month t− 2 0.1 0.7 -1.6

continued on next page...
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Table 6: Part III: Mean annualized returns on WFR portfolios, %

(1) (2) (3)
71. Month t− 3 3.2 4.5 -0.9
72. Month t− 4 3.2 3.1 3.6
73. Month t− 5 2.7 3.5 0.2
74. Month t− 6 5.9 8.6 -2.9
75. Month t− 7 3.2 4.6 -1.4
76. Month t− 8 3.4 3.6 2.8
77. Month t− 9 9.9 12.3 1.9
78. Month t− 10 5.0 8.0 -5.0
79. Month t− 11 9.0 8.4 10.9
80. Month t− 12 7.9 10.0 0.8
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