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Abstract

We develop a model of investment, financing, and cash management decisions in which firms

face capital supply uncertainty and have to search for investors when in need of capital. We

characterize optimal policies explicitly and show that the smooth-pasting conditions used

in prior contributions are necessary, but may not be sufficient, for an optimum. Instead of

the standard Miller and Orr (1966) double-barrier policy for financing and payout, firms

may optimally raise outside funds before exhausting internal resources and the optimal

payout policy may feature several payout regions, with both smooth and discrete dividend

payments. In the model, firms with high investment costs are qualitatively as well as

quantitatively different in their behaviors from firms with low investment costs. Finally,

investment and payout do not always increase with slack, challenging the use of investment-

cash flow sensitivities or payout ratios as measures of financing constraints.

Keywords: Capital supply uncertainty; cash management; lumpy investment; inventory

models.

JEL Classification Numbers: D83; G24; G31; G32; G35.



Introduction

Following Modigliani and Miller (1958), standard models of investment decisions under

uncertainty assume that capital markets are frictionless so that firms are always able to

secure funding for positive net present value projects and cash reserves are irrelevant.1 This

traditional view has recently been called into question by a large number of empirical studies.2

These studies show that firms often face uncertainty regarding their future access to capital

markets and that this uncertainty has important feedback effects on corporate decisions.

They also reveal that the resulting liquidity risk has led firms to accumulate large amounts

of cash, with an average cash-to-assets ratio for U.S. industrial firms that has increased from

10.5% in 1980 to 23.2% in 2006 (see Bates, Kahle, and Stulz, BKS 2009).

While it may be clear to most economists that capital supply frictions can affect corporate

policies, it is much less clear exactly how they do so. In this paper, we develop a dynamic

model of cash management, financing, and investment decisions in which the Modigliani and

Miller assumption of infinitely elastic supply of capital is relaxed and firms have to search

for investors when in need of funds. With this model, we seek to understand when and how

capital supply uncertainty affects real investment. We are also interested in determining the

effects of capital markets frictions on firms’ financing and cash management policies, i.e. on

the decision to pay out or retain earnings and the decision to issue securities.

Our paper makes three main contributions. First, we show that when capital supply is

uncertain the optimal policy choices of the firm are in stark contrast with the theoretical

predictions of canonical inventory models applied to liquid assets. In particular, a striking

feature of the model is that it may not be optimal for firms to follow the standard Miller and

Orr (1966) double-barrier policy. Second, our analysis of optimal policies breaks some new

grounds on the mathematical analysis of inventory models. Notably, we demonstrate that

the smooth-pasting conditions used to characterize optimal polices in prior contributions are

necessary, but not sufficient, for an optimum and provide a full characterization of optimal

polices. Third, we show that accounting for capital supply uncertainty and lumpy investment

changes the predictions of models of financing constraints in ways that are consistent with

stylized facts concerning firms’ cash management behavior.

1See for example McDonald and Siegel (1986), Dixit (1989), Abel and Eberly (1996, 2011), Bar-Ilan and
Strange (1996), Boyarchenko (2004), Guo et al. (2005), Manso (2008), or Carlson et al. (2010). Dixit and
Pindyck (1994) and Stokey (2009) provide excellent surveys of this literature.

2See for example, Gan (2007), Becker (2007), Massa, Yasuda, and Zhang (2010), Duchin, Ozbas, and
Sensoy (2010), Campello, Graham, and Harvey (2010), and Lemmon and Roberts (2010). See also the early
contributions of Kashyap, Stein and Wilcox (1993) and Kashyap, Lamont, and Stein (1994).
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In order to aid in the intuition of the model, consider the following two settings in which

capital supply uncertainty and search frictions are likely to be especially important:3

1. Public equity offerings and capital injections for private firms : Firms first sell their

equity to the public through an initial public offering (IPO). One of the main features of

IPOs is the book building process, whereby the lead underwriter and firm management

search for investors until it is unlikely that the issue will fail. Yet, the risk of failure

is often not eliminated and a number of IPOs are withdrawn every year. For example,

Busaba, Benveniste, and Guo (2001) show that between the mid-1980s and mid-1990s

almost one in five IPOs was withdrawn. Evidence from more recent periods suggests

that this fraction has increased to over one in two in some years (see Dunbar and

Foerster, 2008). Search frictions are also important for firms that remain private but

need new capital injections. Indeed, when a private company decides to raise private

equity capital, it must search for investors such as angel investors, venture capital firms,

or institutional investors. Even when initial investors are found, the firm will need to

search for new investors in every subsequent financing round.

2. Financial crises and economic downturns : Search frictions are also important for large,

publicly traded firms when capital becomes scarce, e.g. during a financial crisis or an

economic downturn. The recent global financial crisis has provided a crisp illustration

of the potential effects of capital supply (or liquidity) dry ups on corporate behavior,

with a number of studies (e.g. Duchin, Ozbas, and Sensoy (2010)) documenting a

significant decline in corporate investment following the onset of the crisis (controlling

for firm fixed effects and time variation in investment opportunities). A survey of 1,050

CFOs by Campello, Graham, and Harvey (2010) also indicates that the contraction in

capital supply during the recent financial crisis led firms to burn through more cash to

fund their operations and to bypass attractive investment opportunities.

A prerequisite for our study is a model that captures in a simple fashion the effects

of frictions on firms’ policy choices. In this paper, we base our analysis on a dynamic

inventory model in which firms’ investment, cash management and financing strategies are

jointly and endogenously determined. Specifically, we consider a firm with assets in place

that generate stochastic cash flows as well as a finite number of opportunities to expand

operations (i.e. growth options). In the model, the firm faces two types of frictions: capital

supply frictions and lumpiness in investment. Notably, we consider that the firm has to

3We thank Darrell Duffie for suggesting these applications.
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search for investors when in need of capital. Therefore, it faces uncertainty regarding its

future ability to raise funds. In addition, we assume that the firm has to pay a lump-sum

cost when investing. Indeed, as noted in Caballero and Engel (1999), “minor upgrades and

repairs aside, investment projects are intermittent and lumpy rather than smooth” (see also

Doms and Dunne (1998) and Cooper, Haltiwanger, and Power (1999). The firm maximizes

its value by making three interrelated decisions: How much cash to retain and pay out,

when to invest, and whether to finance investment with internal or external funds. Using

this model, we show that capital supply frictions lead firms to value financial slack. Second,

and more importantly, we demonstrate that the interplay between lumpiness in investment

and capital supply frictions implies that barrier policies for investment, payout, and financing

decisions may not be optimal. We then use these results to shed light on existing empirical

facts and to generate a rich set of testable predictions.

To understand the effects of capital markets frictions on corporate policies, consider first

the case of a firm with assets in place but no growth option. For such a firm cash holdings

only serve to cover potential operating losses and, thus, avoid inefficient closure. We show

that in this case, the marginal value of cash is decreasing so that optimal policies are always

of barrier type. Specifically, we show that there exists a target level for cash holdings such

that (i) the optimal payout policy is to distribute dividends to maintain cash holdings at

or below the target level, and (ii) when cash holdings are below the target, it is optimal to

retain earnings and search for investors so as to increase cash holdings to the target.

Consider next a firm with both assets in place and growth options. For such a firm,

cash holdings generally serve two purposes: Reducing the risk of inefficient closure and

financing investment. Our analysis demonstrates that when the cost of investment is low

(i.e. for “growth firms”with profitable options), it is again optimal to follow a barrier strategy

whereby the firm retains earnings and invests if cash reserves reach some target level or upon

obtaining outside funds. We show however that when the cost of investment is high (i.e.

for “value firms”), it is no longer optimal to follow a barrier strategy. Notably, we find

that when cash reserves are high, the firm optimally retains earnings and invests if cash

reserves reach some target level or upon obtaining outside funds. However, if cash reserves

go down to a critical level following a series of operating losses, the firm abandons the option

of financing investment internally as it becomes too expensive to accumulate enough cash

to invest. At this point, the marginal value of cash drops to one and it is optimal to make

a lump-sum payment to shareholders. After making this payment, the firm retains earnings

again but finances investment exclusively with outside funds. Importantly, we also show that
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these results do not depend on the number of growth options available to the firm or on the

severity of financial frictions.

Our theory of investment with capital supply frictions differs from prior contributions in

two important respects. First, with very few exceptions, the literature on inventory models

applied to liquid assets assumes that the cumulated net cash consumption has continuous

path and, therefore, does not allow for lumpy investment. Second, unlike prior contributions

in which liquid assets holdings may be subject to jumps (see e.g. Alvarez and Lippi (2009,

2012) or Bar-Ilan, Perry, and Stadje (2004)), our paper provides a complete characterization

of optimal decision rules without restricting the class of strategies available to the decision

maker. These unique features allow us to provide several insights on corporate policies that

do not arise from previous models.

We highlight the main implications. First, we show that capital supply frictions and

lumpiness in investment can give rise to convexity of firm value and lead firms to follow

financing and payout policies that differ from the Miller and Orr double barrier policy.

Notably, firms may optimally raise funds before exhausting internal resources and the optimal

payout policy may feature several payout regions, with both smooth and discrete dividend

payments. We also demonstrate that constrained firms with low cash reserves will not finance

investment internally and may decide to pay dividends early. By contrast, constrained firms

with high cash reserves may finance investment internally and will retain earnings. Therefore,

in our model investment and payout do not always increase with slack, challenging the use

of investment-cash flow sensitivities or payout ratios as measures of financing constraints.

Second, we show that the choice between internal and external funds for financing

investment does not follow a strict pecking order, in that any firm can use both internal

and external funds to finance investment. We find however that firms usually wait until

external financing arrives before investing, consistent with the studies of Opler, Pinkowitz,

Stulz, and Williamson (OPSW, 1999), BKS (2009), and Lins, Servaes, and Tufano (2010).

We also find that (i) the probability of investment with internal funds increases with asset

tangibility and agency costs and decreases with cash flow volatility and market depth, and

(ii) when financing investment with external funds, firms should increase their cash reserves,

consistent with Kim and Weisbach (2008) and McLean (2010). Finally, we show that negative

capital supply shocks should hamper investment even if firms have enough slack to finance

investment, consistent with Gan (2007), Becker (2007), Lemmon and Roberts (2010).

The present paper relates to several strands of literature. First, it relates to the literature

on inventory models applied to liquid assets. Classic contributions in this literature include
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Baumol (1952), Miller and Orr (1966), and Tobin (1968). Recent contributions include

Bar-Ilan (1990), Décamps, Mariotti, Rochet, and Villeneuve (2011), and Bolton, Chen, and

Wang (2011). This literature generally assumes that liquid assets holdings have continuous

paths. Notable exceptions are Alvarez and Lippi (2009, 2012) and Bar-Ilan, Perry, and

Stadje (2004).4 One important difference between our paper and these contributions is that

jumps in our model correspond to endogenous investment or financing decisions. Another

key difference is that these papers restrict their attention to barrier strategies and only

derive necessary conditions for optimality within that class of strategies. By contrast, our

paper provides a complete characterization of optimal decision rules and shows that barrier

strategies may not be optimal when investment is lumpy.

Second, our paper relates to the large literature on investment under uncertainty, in

which it is generally assumed that firms can instantaneously tap capital markets at no cost

to finance investment (see footnote 1 and the references therein). In these models, there is

no role for cash holdings, investment is financed exclusively with outside funds, and firms

may raise funds infinitely many times to cover temporary losses.

Third, our paper relates to the literature on financing constraints. While early models

in this literature ignore the role of cash holdings (see Gomes (2001)), recent contributions

recognize that it may be optimal for firms to hoard cash when facing financing constraints

(see Décamps, Mariotti, Rochet, and Villeneuve (2011) or Morellec, Nikolov, and Zucchi

(2013)). In these recent contributions, firms can always access capital markets. Depending

on whether the costs of external finance are high or low, firms either never raise funds or

are never liquidated. In addition, when the cost of external finance is low, there is a strict

inside/outside funds dominance in that firms only raise funds when their cash buffer is

completely depleted. In stark contrast with these papers, the optimal policy in our model

may not take the form of a double-barrier policy. In addition, firms raise external funds in

discrete amounts on a regular basis and some firms can be liquidated even when issuance

costs are low. Also, with firms can use both internal and external funds to finance investment

in our model, investment is financed exclusively with internal funds in other contributions.

The remainder of the paper is organized as follows. Section 1 presents the model for a

firm holding one growth option. Section 2 derives the firm’s optimal financing, investment,

and payout policies. Section 3 extends the model to finitely many growth options. Section

4 discusses the implications of the model. The proofs are gathered in the Appendix.

4Another exception is the study of Décamps and Villeneuve (2007), that examines the dividend policy of
a firm that owns a single growth option and has no access to outside funds.
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1 Model and assumptions

Throughout the paper, agents are risk neutral and discount cash flows at rate ρ > 0. Time is

continuous and uncertainty is modelled by a probability space (Ω,F ,F, P ) with the filtration

F = {Ft : t ≥ 0} satisfying the usual conditions. We start our analysis by solving a model in

which the firm has assets in place and a single growth option and is not required to pay any

search costs when looking for outside investors and issuance costs when raising funds. We

show in Section 3 that our results naturally extend to the case where the firm has a finite

number of growth options and pays both issuance or search costs.

We consider that before investment, assets in place generate a continuous stream of cash

flows dXt satisfying

dXt = µ0dt+ σdBt,

where the process Bt is a Brownian motion and (µ0, σ) are constant parameters representing

the mean and volatility of cash flows. The growth option allows the firm to increase cash

flows to dXt + (µ1 − µ0) dt, where µ1 > µ0. The cost of investment is constant and denoted

by K. The firm has full flexibility in the timing of investment.

Management acts in the best interest of shareholders and chooses not only the firm’s

investment policy but also its financing, payout, and liquidation policies. Notably, we allow

management to retain earnings inside the firm and denote by Ct the amount of cash that

the firm holds at any time t ≥ 0, i.e. its cash buffer (in what follows, we use indifferently the

terms cash buffer, cash holdings, and cash reserves). Cash holdings earn a constant rate of

interest r < ρ inside the firm and can be used to fund investment or to cover operating losses

if other sources of funds are costly and/or unavailable. The wedge δ ≡ ρ− r > 0 should be

interpreted as a carry cost of cash.

The firm can increase its cash buffer either by retaining earnings or by raising funds

in capital markets. A key difference between our setup and previous contributions is that

we explicitly take into account capital supply frictions by considering that it takes time to

secure outside funding and that capital supply is uncertain. Specifically, we assume that the

firm needs to search for investors in order to raise funds and that, conditional on searching,

it meets investors at the jump times of a Poisson process Nt with arrival rate λ ≥ 0. Under

these assumptions, the cash reserves of the firm evolve according to

dCt =
(
rCt− + µ0 + 1{T≤t}(µ1 − µ0)

)
dt+ σdBt + ftdNt − dDt − 1{t=T}K,
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where T is a stopping time representing the time of investment, ft is a nonnegative predictable

process representing the funds raised upon finding investors, and Dt is a non-decreasing

adapted process with D0− = 0 representing the cumulative dividends paid to shareholders.

In our model, T , D, and f are endogenously determined.

Because capital supply is uncertain, new investors may be able to capture part of the

surplus generated at refinancing dates. That is, we consider that once management and

investors meet, they bargain over the terms of the new issue to determine the cost of

capital or, equivalently, the proceeds from the stock issue. We assume that the allocation of

the financing surplus between incumbent shareholders and new investors results from Nash

bargaining. Denoting the bargaining power of new investors by η ∈ [0, 1], we therefore have

that the amount π∗ that new investors can extract at financing dates satisfies

π∗ = argmax
π≥0

πη [SV (c)− π]1−η = η SV (c).

where V (c) gives the value of the firm as a function its cash holdings and the nonnegative

operator

SV (c) = sup
f≥0

(V (c+ f)− f − V (c))

gives the maximal financing surplus. This specification implies that whenever η 6= 0 issuance

costs are stochastic and time varying. In the model, the bargaining power of new investors

can be related to the supply of funds in capital markets by assuming for example that

η ≡ a/(a + λ) for some a > 0. In this case, the fraction of the surplus captured by outside

investors and the cost of capital decrease with capital supply.

The firm can be liquidated if its cash buffer reaches zero following a series of negative cash

flow shocks. Alternatively, it can choose to abandon its assets at any time by distributing all

of its cash reserves. We consider that the liquidation value of the assets of a firm with mean

cash flow rate µi is given by `i = ϕµi
ρ

where the constant 1− ϕ ∈ [0, 1] represents a haircut

related to the partial irreversibility of investment. When this constant is one, investment

is completely irreversible and the liquidation value of assets is zero. When this constant is

zero, investment is costlessly reversible. In the analysis below, we denote by τ0 the stochastic

liquidation time, refer to ϕ as the tangibility of assets, and consider that ϕ < 1.

Because management can decide to pay a liquidating dividend at any point in time and

capital supply is uncerain, liquidation is automatically triggered when the cash buffer reaches

zero. The problem of management is therefore to maximize the present value of future
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dividends by choosing the firm’s payout (D), financing (f), and investment (T ) policies.

That is, management solves:

V (c) = sup
(f,D,T )

Ec

[ ∫ τ0

0

e−ρt[dDt − (ft + ηSV (Ct−))dNt] + e−ρτ0
(
`0 + 1{τ0>T}(`1 − `0)

)]
.

The first term in this expression represents the present value of payments to shareholders

until liquidation net of the claim of new investors on future cash flows. The second term

represents the present value of the cash flow to shareholders in liquidation.

Since firm value appears in the objective function via the surplus generated at refinancing

dates, the above optimization problem is akin to a rational expectations problem: When

bargaining over the terms of financing, outside investors have to correctly anticipate the

strategy that the firm will use in the future. We show in the Appendix that introducing

bargaining in the model and solving the corresponding rational expectations equilibrium is

equivalent to reducing the arrival rate of investors from λ to λ∗ = λ(1− η) in an otherwise

similar model where investors have no bargaining power.

2 Model solution

2.1 Value of the firm with no growth option

To facilitate the analysis of the optimization problem, we start by deriving the value Vi(c)

of a firm with mean cash flow rate µi and no growth option. When i = 1, this function also

gives the value of the firm after the exercise of the growth option.

When there is no growth option, management only needs to determine the firm’s payout,

liquidation, and financing policies. In line with previous models in the literature (see e.g.

Décamps et al. (2011) and the references therein), we conjecture and later verify that there

exists some level C∗i for the cash buffer below which the marginal value of cash is strictly

higher than one and above which it is equal to one. Accordingly, the optimal payout policy

should take the form of a barrier policy whereby the firm makes dividend payments to

maintain its cash holdings at or below C∗i . In addition, since there are no issuance costs

other than those generated by the bargaining friction, we expect that below C∗i it is optimal

for the firm to search for new investors so as to increase its cash buffer back to the target.

Finally, since the marginal value of cash is strictly higher than one below the target, our

conjecture implies that the firm only liquidates if its cash holdings reach zero.
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Denote by vi(c; b) the value of a firm that follows a barrier policy as above with target

level b ≥ 0. Standard arguments show that in the region (0, b) where the firm retains earnings

and searches for investors, vi(c; b) is twice continuously differentiable and satisfies

ρvi(c; b) = v′i(c; b)(rc+ µi) +
σ2

2
v′′i (c; b) + λ∗ [vi(b; b)− b+ c− vi(c; b)] , (1)

with λ∗ = λ(1− η) and the boundary condition

vi(0; b) = `i (2)

at the point where the firm runs out of cash. The left-hand side of the differential equation

(1) represents the required rate of return for investing in the firm. The first and second

terms on the right hand side capture the effects of cash savings and of cash flow volatility.

The third term reflects the effect of capital supply uncertainty. This last term is the product

of the instantaneous probability of meeting investors and the fraction of the surplus that

accrues to incumbent shareholders when raising the cash buffer to the given target level.

Consider next the payout region [b,∞) over which the firm distributes any cash holdings

in excess of the given target level. In this region, we have

vi(c; b) = vi(b; b) + c− b, c ≥ b, (3)

and the fact that the firm pays dividends in a minimal way to maintain its cash holdings at

or below b requires that

lim
c↑b

v′i(c, b) = 1. (4)

This boundary condition allows to uniquely determine the value of the firm at the payout

boundary and completes the characterization of firm value under a given barrier strategy.

In order to derive a closed form solution for vi(c; b), we first need to introduce some

notation. Denote by Ci,t the uncontrolled cash buffer process associated with µi, let τi,x be

the stopping time at which this process reaches the level x ∈ R for the first time, and define

a pair of bounded functions by setting

Li(c; b) = Ec
[
e−(ρ+λ∗)τi,01{τi,0≤τi,b}

]
, (5)

Hi(c; b) = Ec
[
e−(ρ+λ∗)τi,0∧τi,b

]
− Li(c; b) = Ec

[
e−(ρ+λ∗)τi,b1{τi,b≤τi,0}

]
. (6)
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Li(x; b) is a discount factor that gives the present value of one dollar to be paid in liquidation,

should it occur before the uncontrolled cash buffer reaches b > 0 or finding new investors.

Similarly, Hi(c; b) gives the present value of one dollar to be received when the uncontrolled

cash buffer reaches b > 0, should this occur before liquidation or finding new investors.

Closed form expressions for these two functions are provided in the Appendix.

Using the above notation, together with basic properties of diffusion processes as found

for example in Stockey (2009, Chapter V), it can be shown that over the region (0, b) the

unique solution to equations (1), (2) and (3) satisfies

vi(c; b) = vi(b; b)Hi(c; b) + `iLi(c; b) (7)

+ Πi(c; b)− Πi(b; b)Hi(c; b)− Πi(0; b)Li(c; b)

with the function

Πi(c; b) =
λ∗

ρ+ λ∗

(
vi(b; b)− b+ c+

µi + rc

ρ+ λ∗ − r

)
.

To better understand this solution, recall that over (0, b) the firm retains earnings. This

implies that over this region firm value is the sum of the present value of the payments

that incumbent shareholders obtain if cash holdings reach either the payout trigger or the

liquidation point before external financing can be secured (first line), plus the present value

of the claim that they receive if the firm gets an opportunity to raise funds from outside

investors before its cash holding reach either endpoints of the region (second line).

Equations (1), (2), (3) and (4), or equivalently (4) and (7), characterize the value of a

given barrier strategy. To determine the optimal target level C∗i , we further require that

the value of the firm be twice continuously differentiable over the whole positive real line by

imposing the high-contact condition (see e.g. Dumas (1991))

lim
c↑C∗i

v′′i (c;C∗i ) = 0 (8)

at the dividend distribution boundary. Given (1) and (4), the high contact condition implies

lim
c↑C∗i

vi(c;C
∗
i ) =

µi
ρ

+ C∗i −
(

1− r

ρ

)
C∗i . (9)

Thus, the value of the firm at the optimal target level equals the first best value of the firm

minus the present value of the cost of keeping the optimal amount of cash.
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In the Appendix we show that there exists a unique target level that solves (9) and, relying

on a verification theorem for the Bellman equation (32) associated with our optimization

problem, we prove that the corresponding barrier strategy is optimal among all strategies.

The following proposition summarizes these results and provides some basic comparative

statics on the optimal target level.

Proposition 1 (Firm value without growth option) The value of a firm with mean

cash flow rate µi and no growth option is Vi(c) = vi(c;C
∗
i ), where C∗i is the unique solution

to (9). The optimal target C∗i increases with cash flow volatility σ2 and decreases with capital

supply λ and asset tangibility ϕ.

2.2 Value of the firm with a growth option

We now turn to the analysis of corporate policies when the firm has the option to increase

the mean cash flow rate by paying a lump sum cost K. The growth option changes the firm’s

policy choices and value only if the project has positive net present value. The following

proposition provides a necessary and sufficient condition for this to be the case.

Proposition 2 The option to invest has positive net present value if and only if the cost of

investment is lower than K∗ defined by:

µ1 − µ0

ρ
= K∗ +

(
1− r

ρ

)
(C∗1 − C∗0) , (10)

where the constant C∗i is the optimal level of cash reserves for a firm with mean cash flow

rate µi and no growth option.

The intuition for this result is clear. The left hand side of equation (10) represents the

expected present value of the increase in cash flows following the exercise of the growth

option. The right hand side represents the total cost of investment, which incorporates both

the direct cost of investment and the change in the carry cost of the optimal cash balance.

In the following, we consider that the cost of investment is below K∗. If this was not the

case, the firm would simply follow the barrier strategy described in Proposition 1.

2.2.1 Optimality of a barrier strategy

Following the logic of the previous section, it is natural to conjecture that for a firm with a

growth option there exists a cutoff level C∗U ≥ K for the cash buffer such that it is optimal
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to retain earnings and search for investors when c < C∗U and to invest when the cash buffer

reaches C∗U or upon obtaining outside funds. As before, the firm is liquidated if a sequence

of operating losses depletes its cash reserves before financing can be secured. The expected

shape and properties of the value function under such a policy are illustrated in Figure 1.

Insert

Figure 1

Here

To determine when such a barrier strategy is optimal, we start by calculating the value

u(c; b) of a firm that follows a barrier strategy with some investment trigger b ≥ K. Standard

arguments show that in the region (0, b) over which the firm retains earnings and searches

for investors, u(c; b) is twice continuously differentiable and satisfies the differential equation

ρu(c; b) = u′(c; b)(rc+ µ0) +
σ2

2
u′′(c; b) + λ∗ [V1(C∗1)− C∗1 −K + c− u(c; b)] (11)

subject to the value matching conditions

u(0; b) = `0, (12)

u(c; b) = V1(c−K), c ≥ b, (13)

at the point where the firm runs out of cash and in the region where it uses its cash reserves

to invest. This equation is similar to that derived in the previous section for the value of

the firm after investment. The only difference is that the financing surplus is now given

by V1(C∗1) − C∗1 −K + c − u(c; b) since, upon obtaining outside funds, the firm invests and

simultaneously readjusts its cash buffer to the level C∗1 that is optimal after investment.

Basic properties of diffusion processes show that the unique solution to (11), (12), (13)

is given by

u(c; b) = V1(b−K)H0(c; b) + `0L0(c; b) + Φ(c)− Φ(b)H0(c; b)− Φ(0)L0(c; b) (14)

with the function

Φ(c) =
λ∗

ρ+ λ∗

(
V1(C∗1)− C∗1 −K + c+

µ0 + rc

ρ+ λ∗ − r

)
. (15)

The interpretation of this solution is similar to that of (7). The first two terms give the

present value of the payments that incumbent shareholders receive if the firm invests with

internal funds or is liquidated before external funding can be secured. The other terms gives

the present value of the payments that they receive if the firm invests with external funds

before its cash holdings reach either zero or the given investment trigger.
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Equations (13) and (14) provide a complete characterization of the value associated with

a given barrier strategy for investment and financing. Since the decision to invest with

internal funds can be seen as an optimal stopping problem, it is natural to expect that the

optimal trigger is determined by the smooth pasting condition

lim
c↑C∗U

u′(c;C∗U) = 1. (16)

We show in the Appendix that this is indeed the case if the investment cost is not too small in

that K > K, for some threshold K < K∗ for which we provide an explicit characterization.

If the investment cost lies below this threshold, then the smooth pasting pasting no longer

characterizes the optimal investment trigger and we have the corner solution C∗U = K. In this

case, the growth option is so profitable that it becomes optimal to invest as soon as possible

and liquidate immediately thereafter. In either case, the barrier policy associated with the

investment trigger C∗U is optimal in the class of barrier policies but it is not necessarily

optimal among all strategies. A detailed analysis of the Bellman equation presented in the

Appendix allows us to determine the conditions under which this is indeed the case and leads

to the following theorem.

Theorem 3 There exists a constant K∗∗ < K∗ such that a barrier strategy is optimal if and

only if K ≤ K∗∗. In this case, the value of the firm is given by V (c) = u(c;C∗U) where C∗U is

the unique solution to (16) when K > K and C∗U = K otherwise.

2.2.2 Optimality of a band strategy

The function defined by U(c) ≡ u(c;C∗U) gives the value of the firm under the optimal barrier

policy and can be constructed for any investment cost. However, Theorem 3 shows that this

barrier strategy is suboptimal if the investment cost is high, in which case the smooth pasting

condition is not sufficient to determine the globally optimal strategy. The intuition for this

finding is that with a sufficiently high investment cost, it becomes too expensive for a firm

with low cash holdings to accumulate the amount of cash necessary to invest with internal

funds. Specifically, we show in the Appendix that the barrier strategy fails to be optimal

because, with a high investment cost, there exists a level below C∗U where the marginal value

of cash U ′(c) drops to one. At that point, incumbent shareholders would rather abandon the

option of financing investment internally and receive dividends, than continue hoarding cash

inside the firm. Figure 2 provides an illustration of the marginal value of cash associated

Insert

Figure 2
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with the optimal barrier strategy in this case.
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Following this line of argument, we conjecture and later verify that, when the investment

cost is high, the optimal strategy includes an intermediate payout region and can be described

in terms of thresholds C∗W ≤ C∗L ≤ C∗H as follows: When cash holdings are in (C∗L, C
∗
H),

the firm retains earnings and invests either upon obtaining outside funds or when its cash

holdings reach the level C∗H ≥ K. If cash holdings drop to the level C∗L following a sequence of

operating losses, the firm abandons the option of financing investment internally and makes

a lump-sum payment C∗L−C∗W to shareholders. Finally, if cash holdings are at or below the

level C∗W , the firm retains earnings, pays dividends to keep its cash reserves in (0, C∗W ), and

finances investment exclusively with outside funds. As in the case of a barrier strategy, the

firm is liquidated only if its cash buffer reaches zero. The shape and properties of the firm

value under such a strategy are illustrated in Figure 3.
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Figure 3
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To verify our conjecture, we start by constructing the value v(c; b) of a firm that follows

a strategy as above with thresholds b = (b1, b2, b3) for some arbitrary constants b1 ≤ b2 ≤ b3

with b3 ≥ K. Standard arguments show that in the region (0, b1) ∪ (b2, b3) over which the

firm retains earnings, v(c; b) is twice continuously differentiable and satisfies:

ρv(c; b) = v′(c; b)(rc+ µ0) +
σ2

2
v′′(c; b) + λ∗ [V1(C∗1)− C∗1 −K + c− w(c; b2)] , (17)

subject to the value matching conditions

v(0; b) = `0, (18)

v(c; b) = V1(c−K), c ≥ b3. (19)

This differential equation is the same as (11), but the solutions we are looking for differ

because the strategy now includes an intermediate payout region [b1, b2] over which the value

does not satisfy (17). Instead, the value of the firm over this intermediate region is given by

v(c; b) = v(b1; b) + c− b1, b1 ≤ c ≤ b2. (20)

and the fact that once below b1 the firm distributes dividends so as to maintain its cash

holdings at or below this level implies that we have

lim
c↑b1

v′(c; b1) = 1. (21)

From these boundary conditions, it is clear that since v(0; b) = U(0) = `0 we must necessarily
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have v′(0; b) > U ′(0) for our candidate strategy to dominate the optimal barrier strategy

of the previous section. We show in the Appendix that given the optimal thresholds, this

condition is equivalent to the restriction K > K∗∗.

Proceeding as in the two previous cases, it is easily shown that the unique solution to

(17), (18), (19), (20) and (21) satisfies

v(c; b) = v(b1; b)H0(c; b1) + `0L0(c; b1) (22)

+ Φ(c)− Φ(0)L0(c; b1)− Φ(b1)H0(c; b1)

in the retention interval (0, b1), and

v(c; b) = V1(b3 −K)H0(c; b2, b3) + v(b2; b)L0(c; b2, b3) (23)

+ Φ(c)− Φ(b2)L0(c; b2, b3)− Φ(b3)H0(c; b2, b3)

in the retention interval (b2, b3) where the discount factors are defined as in (5) and (6), but

with the first hitting time of the level b2 instead of the liquidation time, and the function

Φ(c) is defined as in (15). The first line in (22) gives the present value of the payments that

incumbent shareholders receive if the cash buffer reaches either the liquidation point or the

payout trigger b1 before external financing can be secured. The second line gives the value

of the payment that they receive if the firm finds new investors before its cash buffer reaches

either zero or b1. Similarly, the first line in (23) gives the present value of the payments

that incumbent shareholders receive if the cash buffer reaches either the intermediate payout

trigger b2 or the internal investment trigger b3 before external financing can be secured. The

second line gives the present value of the claims that they receive if external funds are raised

before the cash buffer reaches either b2 or b3.

Equations (20), (22), and (23) provide a complete characterization of the value of the

firm for a given set of thresholds b = (b1, b2, b3). It remains to determine the triple C∗ =

(C∗W , C
∗
L, C

∗
H) of optimal thresholds. Following the same logic as in the case without growth

option, we determine the point C∗W below which the firm invests exclusively with outside

funds by imposing the high-contact condition

lim
c↑C∗W

v′′(c;C∗) = 0 (24)

at the lower end of the intermediate payout region. In addition, since the decision to invest

with internal funds and the decision to make an intermediate dividend payment can be seen
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as a joint optimal stopping problem, it is natural to expect that the two remaining thresholds

are determined by the smooth pasting conditions

lim
c↓C∗L

v′(c;C∗) = 1, (25)

lim
c↑C∗H

v′(c;C∗) = V ′1(C∗H −K). (26)

We show in the Appendix that these boundary conditions uniquely determine a triple of

thresholds C∗ and we prove that the corresponding strategy is globally optimal when the

investment cost is above K∗∗. The following theorem summarizes our findings.

Theorem 4 If the investment cost is such that K ∈ (K∗∗, K∗), then the value of the firm

with a growth option is given by V (c) = v(c;C∗) where the thresholds are the unique solutions

to (24), (25) and (26).

The above results show that when the investment cost is high, the optimal strategy depends

on the level of cash reserves. When cash reserves are below C∗W , it is optimal to finance the

capital expenditure exclusively with external funds and to use cash reserves only to cover

operating losses. When cash holdings are between C∗W and C∗L, the firm pays a specially

designated dividend to lower its cash holdings and abandons the option of investing with

internal funds. Finally, when cash holdings are above C∗L the firm finances the capital

expenditure using either internal or external funds and the optimal policy is to retain earnings

until the firm invests or its cash buffer drops to C∗L.

Interestingly, the change in the optimal financing policy that occurs at C∗L implies that

we have V ′(C∗L) = 1. Since the marginal value of cash is constantly above or equal to one,

it follows that firm value is not globally concave. In fact, we show in the Appendix that the

value of the firm is strictly convex over the whole interval (C∗L, C
∗
H) when the investment cost

is high. To understand this feature, recall that in our model cash holdings generally serve two

purposes: Reducing the risk of inefficient closure and financing investment. However, when

the investment cost is high and cash reserves are below C∗L, it is optimal to invest exclusively

with outside funds and the value of cash holdings only comes from their mitigating effect on

liquidation risk. At the point C∗L the marginal value of cash is equal to one and it is optimal

to start paying dividends. Above this point, the possibility to finance investment internally

introduces a second motive for holding cash and pushes the marginal value of cash above

one, leading firm value to be convex. Figure 4 provides an illustration of the marginal value
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of cash under the globally optimal band strategy when the cost of investment is high.
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3 Finitely many growth options

A key and novel feature of the optimal policy for a firm with a growth option is that it may

include an intermediate payout region where shareholders optimally abandon the option of

investing with internal funds. This feature is unexpected, but we contend that it is in fact

universal in models with fixed costs and capital supply frictions.

To make this point, we consider in this section a firm with assets in place and N ≥ 1

growth options that arrive sequentially over time. The initial mean cash flow rate of the

firm is µ0 and the exercise of the i’th growth option allows to increase the mean cash flow

rate from µi−1 to µi > µi−1 by paying a constant cost Ki. To prevent the simultaneous

exercise of multiple growth options, we assume that the firm can hold at most one growth

option at a time and that, after exercising each growth option, the firm enters a waiting

phase in which the next growth option arrives at an exponentially distributed random time

with intensity λo. As in the benchmark model, management seeks to maximize shareholders’

wealth and has full flexibility over the investment, payout, and financing policies of the firm.

The sequential arrival and exercise of the growth options is illustrated in Figure 5. Lastly,
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we do not consider for simplicity the case when λi and ϕi may depend on i. We provide

comparative static results on this more general case in Propositions 6 and 9 below.

To solve this extension of the model, we use the fact that there are finitely many

investment opportunities and proceed backwards in time starting from the last period where

the firm has exhausted its growth potential. Let Vo,i(c) denote the value of the firm as a

function of its cash holdings in the period where it holds the i’th growth option, and Vn,i(c)

denote the value of the firm in the waiting period following the exercise of this growth option.

After the exercise of the last growth option, the value of the firm is Vn,N(c) = VN(c),

where the later is the value of a firm with a mean cash flow rate µN and no growth option

that was derived in section 2.1. Similarly, in the period prior to the exercise of the last

growth option, the value of the firm is given by Vo,N(c) = V (c) where the later is the value

of a firm with a single growth option that was derived in section 2.2. To proceed further in

this backward recursion, we now have to solve the problem of the firm in the waiting period

between the exercise of a growth option and the arrival of the next one.

3.1 Optimal policy in the waiting period

In the waiting period following the exercise of the i’th growth option, the firm may retain

earnings to avoid inefficient closure and to exercise not only the next growth option but
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potentially each of the N − i growth options that it stands to receive. Following the logic of

the previous section, we therefore conjecture that the optimal strategy in the waiting period

can be characterized in terms of an optimal target level and up to N − i intermediate payout

intervals, whose upper ends correspond to the points where the firm decides to temporarily

stop hoarding cash to finance a future investment opportunity.

In order to describe the class of all such strategies, let s = (a, b, x) where x ≥ 0 is

a constant that represents the target level for the cash holdings of the firm when raising

outside funds and a, b ∈ Rn
+ for some n ∈ [0, N − i] are vectors with

a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ x

that specify the earnings retention intervals and the intermediate dividend distribution

intervals associated with the strategy. Specifically, for every given s as above, the set

R(s) = (0, a1) ∪ (b1, a2) ∪ · · · ∪ (bn−1, an) ∪ (bn, x) =
n⋃
k=0

Rk(s)

gives the region over which the firm retains earnings and searches for new investors while its

complement in [0, x], that is

D(s) =
n⋃
k=1

Dk(s) =
n⋃
k=1

[ak, bk],

gives the collection of intermediate dividend distribution intervals (i.e. the “bands”). When

its cash holdings are above the target x, the firm makes a lump sum payment c− x. When

its cash holdings are in Rk(s), the firm retains earnings, distributes dividends to remain in

the same interval, and searches for new investors in order to adjust its cash holdings to the

target level x. If its cash holdings fall to the lower endpoint of the interval before outside

funds can be secured, then the firm is liquidated if k = 0 and otherwise stops hoarding cash

towards the exercise of one of its future growth options. In the latter case, the firm makes

a lump sum payment to shareholders given by

bk − ak = |Dk(s)| = inf(Rk(s))− sup(Rk−1(s)) ≥ 0,

in order to bring its cash buffer down to the next earnings retention interval and then

follows an entirely similar payout, financing and liquidation strategy. Figure 6 provides an
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illustration of the value of a firm as a function of its cash holdings in the waiting period.

Let vn,i(c, s) denote firm value under such a strategy. Standard arguments show that in

in the retention region R(s) this function is twice continuously differentiable and satisfies

ρvn,i(c; s) = (rc+ µi)v
′
n,i(c; s) +

σ2

2
v′′n,i(c; s)

+ λ∗ [vn,i(x; s)− x+ c− vn,i(c; s)] + λo [Vo,i+1(c)− vn,i(c; s)] ,

subject to the value matching conditions

vn,i(0, s) = `i

at the point where the firm is liquidated. This differential equation is similar to (1) with the

exception of the last term on the second line which accounts for the change in the value of

the firm that occurs upon the arrival of the next investment opportunity.

In each of the dividend distribution intervals, the value of the firm is defined by imposing

the value matching condition

vn,i(c; s) = c− ak + vn,i(ak; s), c ∈ Dk(s),

and the fact that, once in the interval Rk(s), the firm distributes dividends to maintain its

cash holdings at or below the right endpoint of the interval implies that

lim
c↑ak

v′n,i (c; s) = lim
c↑x

v′n,i (c; s) = 1.

The above equations provide a complete characterization of the value associated with a

given band strategy and can be solved using techniques similar to those of section 2.2. To

determine the optimal strategy, we further impose the smooth pasting conditions

lim
c↓b∗i,k

v′n,i (c; s
∗
i ) = 1, (27)

at each of the points where the firm stops hoarding cash towards the exercise of one of its

future growth opportunities, and the high contact conditions

lim
c↑a∗i,k

v′′n,i (c; s
∗
i ) = lim

c↑x∗i
v′′n,i (c; s

∗
i ) = 0. (28)
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at the target level x∗i and each of the intermediate target levels a∗i,k. In the Appendix,

we show that there always exist a unique s∗i such that these conditions are satisfied and a

detailed analysis of the Bellman equation associated with the problem of the firm in the

waiting period allows us to prove that the corresponding strategy is optimal among all the

strategies available to the firm. The following proposition summarizes our findings.

Theorem 5 The value of the firm in the waiting period following the exercise of the i’th

growth option is given by

Vn,i(c) = vn,i(c; s
∗
i )

and satisfies

Vn,i(x
∗
i ) =

1

ρ+ λo
(rx∗i + µi + λoVo,i+1 (x∗i ))

where the triple s∗i that determines the optimal earnings retention and dividend distribution

intervals is the unique solution to (27) and (28).

Theorem 5 shows that in the waiting period that follows the exercise of the i’th growth

option, the optimal strategy may include up to N − i intermediate dividend distribution

intervals (bands). But this upper bound is rough as many of these intervals may actually

collapse. While it does not seem possible to determine ex-ante the number of intermediate

payout intervals, we provide in the Appendix an explicit algorithm that allows to analytically

construct these intervals for each given target level. We also prove the following comparative

static result.

Proposition 6 Suppose that the exercise of the i’th growth option changes the tangibility of

assets from ϕi−1 to ϕi and capital supply from λi−1 to λi. Then, the dividend distribution

region D in the waiting period following the exercise of the i’th growth option is increasing

with respect to ϕi in the inclusion order, and the target cash level x∗i is monotone decreasing

with respect ϕi and λi.

3.2 Optimal strategy for a firm with a growth option

Having constructed the value of the firm in the waiting period, we now consider the optimal

policy of a firm that already holds a growth option. As a first step towards the solution to
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this problem, the next result provides sufficient conditions for the growth option to have a

positive net present value.

Proposition 7 A sufficient condition for the i’th growth option to have positive net present

value is that

Vn,i(x
∗
i )− x∗i −Ki ≥ Vi−1(C∗i−1)− C∗i−1,

where the function Vi−1(c) and the constant C∗i−1 denote the value and optimal target level

of a firm with mean cash flow rate µi−1 and no growth option.

The intuition for this result is clear. Indeed, the left hand side of the inequality gives the

maximal value that the firm can attain by exercising the growth option. The right hand side

gives the maximal value that it can achieve by abandoning the growth option. In the later

case, the firm not only abandons the next growth option but also all subsequent ones.

To simplify the presentation of our results, we assume below that

Ki ≤ K∗i = min

{
Vn,i(x

∗
i )− x∗i + C∗i−1 − Vi−1(C∗i−1),

µi − µi−1

r

}
(29)

for all i. In the single option case, this condition is necessary for a positive net present

value but this is not so with multiple options because in that case the net present value of

an individual option can no longer be determined on a stand-alone basis. In the present

context, this assumption allows us to guarantee that the regions over which the firm invests

with internal funds are half-lines instead of unions of disjoint intervals. This assumption can

be relaxed at the cost of significantly more involved notation.

When the firm holds a growth option, cash holdings serve two purposes: Reducing the risk

of inefficient closure and financing investment. Following the logic of the single option case,

we therefore conjecture that the optimal strategy can be described in terms of thresholds

C∗i,W ≤ C∗i,L ≤ C∗i,H with C∗i,H ≥ Ki. When the investment cost is low, it should never be

optimal for the firm to abandon the option of investing with internal funds. We therefore

expect the firm to follow a barrier strategy as in section 2.2.1 with 0 = C∗i,W = C∗i,L. On the

contrary, when the investment cost is high, we expect the firm to follow a strategy similar to

that of section 2.2.2, with an intermediate dividend distribution interval at the point where

the firm optimally abandons the option to invest with internal funds.

To verify our conjecture, we start by constructing the value vo,i(c; b) of a firm that follows

a strategy as above with thresholds b = (b1, b2, b3) where b1 ≤ b2 ≤ b3 and b3 ≥ K. Standard

21



arguments imply that in the region (0, b1)∪ (b2, b3) over which the firm retains earnings and

searches for investors, vo,i(c; b) is twice continuously differentiable and satisfies

ρvo,i(c; b) = (rc+ µi−1)v′o,i(c; b) +
σ2

2
v′′o,i(c; b) + λ∗ [Vn,i(x

∗
i )− x∗i −Ki + c− vo,i(c; b)]

subject to the value matching conditions

vo,i(0; b) = `i−1.

vo,i(c; b) = Vn,i(c−Ki), c ≥ b3.

This differential equation is similar to that of section 2.2.2 with the exception of the last

term which reflect the fact that upon finding new investors the firm raises funds to invest and

simultaneously adjust its cash holdings to the target level x∗i that is optimal in the waiting

period following the exercise of the growth option.

If the thresholds under consideration are such that [b1, b2] = {0}, then the above equations

are sufficient to determine the value of the firm and can be solved in closed form using a

modification of (14). Otherwise, the value of the firm satisfies

vo,i(c; b) = c− b1 + vo,i(b1; b), c ∈ [b1, b2],

and the fact that in the lowest retention region (0, b1) the firm distributes dividends to

maintain its cash holdings at or below b1 implies that we have

lim
c↑b1

v′o,i(c; b) = 1.

In this case, the value of the firm under the given strategy can be derived in closed-form

using a modification of (22) and (23).

To determine the optimal strategy, we distinguish two cases depending on the level of

the investment cost. If the investment cost is sufficiently low, then we set b∗i = (0, 0, C∗i,H)

and determine the optimal investment trigger by imposing the smooth pasting condition

lim
c↑C∗i,H

vo,i(c; b
∗
i ) = V ′n,i(C

∗
i,H −Ki). (30)

If the investment cost is high then, the optimal investment trigger is still determined by the

above smooth pasting condition but this equation now needs to be solved in conjunction
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with the smooth pasting and high contact conditions

lim
c↑C∗i,W

v′′o,i(c; b
∗
i ) = lim

c↓C∗i,L
v′o,i(c; b

∗
i )− 1 = 0 (31)

that determine the intermediate payout interval.

In the Appendix, we show that in either case the above equations admit a unique solution

and a detailed analysis of the Bellman equation associated with the problem of the firm allows

us to confirm our conjecture regarding the optimality of the corresponding strategies.

Theorem 8 Assume that condition (29) holds. Then there exists a constant K∗∗i ≤ K∗i such

that the value of a firm holding a growth option is

Vo,i(c) = vo,i(c; b
∗
i )

where the thresholds b∗i are given by the unique solutions to (30) and (31) when Ki ≥ K∗∗i

and by the unique solution to (30) such that C∗i,W = C∗i,L = 0 otherwise.

Theorem 8 shows that the results derived in the one growth option case naturally extend

to a model in which the firm has multiple growth options. In the Appendix, we show that

these results also hold if we incorporate search and issuance costs in the model. In this case

however, firms only raise funds when the cash buffer is below some threshold C∗F , where the

financing surplus equals 0. We conclude this section with the following proposition, which

provides analytic comparative static results on the optimal investment trigger.

Proposition 9 Suppose that the exercise of the i’th growth option changes the mean cash

flow rate from µi−1 to µi, the asset tangibility from ϕi−1 to ϕi, and capital supply from λi−1

to λi. Then, the investment trigger C∗i,H is monotone increasing in current capital supply

λi−1, drift µi−1 and asset tangibility ϕi−1, and is decreasing in future tangibility ϕi.

4 Discussion

4.1 General properties of the model

Following Modigliani and Miller (1958), extant theoretical research on costly external finance

generally assumes that capital supply is infinitely elastic so that corporate behavior depend

solely on firm characteristics. In this literature, it is always optimal for firms to follow a
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double barrier (financing/liquidation and payout) policy. In addition, firms either never

raise funds when the cost of external finance is high or are never liquidated when the cost

is low. Finally, when the cost of external finance is low, firms only raise funds when their

cash buffer is completely depleted. That is, firms never simultaneously hold cash and raise

external funds and they only tap capital market following a series of negative shocks.

In this paper, we take a first step in constructing a dynamic model of investment,

financing, and cash management policies with capital supply effects. Using this model,

we show that when firms face capital supply uncertainty it is optimal to safeguard against

future liquidity needs by hoarding cash. Second, and more importantly, we demonstrate that

the interplay between lumpiness in investment and capital supply frictions can give rise to

convexity of firm value and lead firms to follow optimal investment, financing, and payout

policies that differ from the Miller and Orr double barrier policy.

In our model, firms only follow a double-barrier policy when the cost of investment is low

or, equivalently, when the net present value of the project is high. Firms may raise outside

funds before exhausting internal resources, some firms may be liquidated even with low

issuance costs, and the optimal payout policy may feature several payout regions, with both

smooth and discrete dividend payments. Our analysis also demonstrates that constrained

firms with low cash holdings will not finance investment internally and may decide to

pay dividends early. By contrast, constrained firms with high cash holdings may finance

investment internally and will retain earnings. These results are in sharp contrast with

those in standard models of financing constraints as they imply that investment and payout

do not always increase with slack. Our results also challenge the use of investment-cash flow

sensitivities or payout ratios as measures of financing constraints.

Another prediction of our model is that, when financing investment with external funds,

the optimal policy is to raise enough funds to finance both the capital expenditure and the

potential gap between current cash holdings and the optimal level after investment. That

is, firms always increase their cash buffer when raising outside funds. This prediction of the

model is consistent with the evidence in Kim and Weisbach (2008) and McLean (2010), who

find that firms’ decisions to issue equity are essentially driven by their desire to build up

cash reserves. Also, while in prior contributions firms always raise the same amount of cash

when accessing financial markets, there exists some time series variation in the amount of

funds raised in our model since firms raise (C∗i − Ct)+ upon meeting investors at time t.

Another key implication of the model is to show that, with capital supply uncertainty,

the choice between internal and external funds for financing investment does not follow a
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strict pecking order, in that any given firm can use both internal and external funds. This

is in sharp contrast with the financing policy in prior contributions, in which firms exhaust

internal funds before issuing securities and finance investment exclusively with internal funds

(see for example Décamps et al. (2011), or Bolton, Chen, and Wang (2011, 2012)).

4.2 Additional model implications

The section provides additional implications of our model for investment, cash holdings,

and financing decisions using numerical examples. Throughout the section we assume for

simplicity that the firm has a single growth option.

4.2.1 Characterizing the firm’s optimal strategy

A key feature of our model is that firms only follow a double-barrier policy when the cost

of investment is low (i.e. K < K∗∗). To better understand this property of optimal policies,

Figure 7, Panel A, plots the zero−NPV threshold K∗ and the threshold K∗∗ that triggers a

change in corporate policies, as functions of the arrival rate of investors λ, asset tangibility

ϕ, cash flow volatility σ, and the carry cost of cash δ ≡ ρ− r. Figure 7, Panel B, plots the

Insert

Figure 7

Here

internal rate of return of the project when K = K∗∗ (solid line) and K = K∗ (dashed line)

defined as the solution to

µ1 − µ0

R
= K +

(
1− r

R

)
(C∗1(R)− C∗0(R))

where C∗i (R) is the optimal cash buffer for a discount rate R. Firms with projects that fall

below the solid line in panel B are firms for which K > K∗∗.

In our numerical analysis, we use the following parameter values: ρ = 0.06, r = 0.02,

µ0 = 0.10, µ1 = 0.125, σ = 0.10, ϕ = 0.75, η = 0.5, λ = 6 and N = 1. These values imply

an expected financing lag of 1/λ = 2 months, a haircut of 35% of asset value in liquidation,

and a 25% increase in the cash flow mean after investment.

Figure 7 shows that only projects with very high internal rates of return (or very low cost

of investment) will lead to a double-barrier policy that mirrors those in prior contributions.

In our base case environment in which the cost of capital is ρ = 6%, only projects with an

internal rate of return above 13.02% will induce the firm to follow barrier policies. As shown

by the figure, the cutoff level for the internal rate of return increases with capital supply and

the carry cost of cash and decreases with volatility and asset tangibility.
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4.2.2 Determinants of cash holdings

Proposition 1 provides an analytical characterization of the properties of the cash buffer

after investment, C∗1 . This section examines instead the determinants of target cash holdings

before investment. In our base case, we have K∗∗ = 0.19. Therefore, we consider two cases:

one in which the cost of investment is low in that K = 0.12 and one in which it is high in

that K = 0.32. Figure 8, Panel A, plots the target cash buffer C∗U of the low investment cost
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case as a function of capital supply λ, asset tangibility ϕ, cash flow volatility σ, and agency

costs δ. Panel B plots the target cash buffers C∗W and C∗H as well as the intermediate payout

threshold C∗L of the high investment cost case as functions of these same parameters.

The figure shows that the three target cash buffers C∗U , C∗W , and C∗H decrease with the

arrival rate of investors. That is, as λ increases, the likelihood of finding outside investors

increases and the need to hoard cash within the firm decreases. This result is consistent with

the evidence in OPSW (1999) and BKS (2009), who find that firms hold more cash when

their access to external capital markets is more limited.

Another prediction of the model illustrated by the figure is that cash holdings should

increase with cash flow volatility (since the risk of closure increases with σ), consistent with

the evidence in Harford (1999) and BKS (2009). Interpreting δ ≡ ρ − r as an agency cost

associated with free cash in the firm, the model also predicts that cash holdings decrease with

the severity of agency conflicts, consistent with Harford, Mansi, and Maxwell (2008). Finally,

the model predicts that target cash holdings decrease with asset tangibility ϕ, consistent with

the evidence in Almeida and Campello (2007).

4.2.3 Financing investment

An important question is whether capital supply uncertainty affects investment and the

source of funds used by firms when financing investment. To answer this question, we

examine the determinants of the probabilities of investment with internal (PI(c)) and external

(PE(c)). Appendix J shows how to compute these probabilities.
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The top four panels of Figure 9 plot the average probability of investment with internal

funds for a cross-section of firms with cash buffers uniformly distributed between 0 and C∗U
(K < K∗∗; dashed line) and between 0 and C∗H (K > K∗∗; solid line) as a function of the

arrival rate of investors λ, asset tangibility ϕ, cash flow volatility σ, and the carry cost of

cash δ. The two lower panels plot the total probability of investing over a one-year (solid

line) and over a three-year (dashed line) horizon as functions of the arrival rate of investors
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λ for a firm with low investment cost (left) and high investment cost (right). In both cases,

we assume that c = K so that firms have enough cash to finance investment internally.

Consider the probability of investment with internal funds (top four panels). In our base

case environment, the probability that the average firm invests with internal funds is 15.60%

when the cost of investment is low and 2.87% when the cost of investment is high. This

suggests that, in most environments, cash holdings will be used mostly to cover operating

losses and that firms will wait until external financing arrives before investing, consistent

with the large sample studies by OPSW (1999) and BKS (2009) and the survey of Lins,

Servaes, and Tufano (2010). As expected, the probability of investment with internal funds

is much smaller when the cost of investment is high because more firms find it optimal to

invest exclusively with outside funds. Another property of the model illustrated by the figure

is that the probability of financing investment with internal funds decreases with the arrival

rate of investors and increases with asset tangibility. This last feature follows from the fact

that C∗U decreases with ϕ and implies that the investment-cash flow sensitivity increases with

the tangibility of assets, consistent with Almeida and Campello (2007).

Lastly, the lower panels of Figure 9 show that the overall probability of investment

decreases as λ decreases. Thus, our model predicts that a negative shock to the supply

of capital may hamper investment even if firms have enough financial slack to fund all

investment opportunities internally, consistent with the evidence in Gan (2007), Becker

(2007), Lemmon and Roberts (2007), and Campello, Graham, and Harvey (2010).

5 Concluding remarks

We develop a model of investment, financing, and cash management decisions in which firms

face capital supply uncertainty and have to search for investors when in need of capital. We

characterize optimal policies explicitly and demonstrate that the smooth-pasting conditions

used to characterize optimal polices in prior contributions are necessary, but may not be

sufficient, for an optimum. We then show that a striking implication of this result is that

it may not be optimal for firms to follow the standard Miller and Orr (1966) double-barrier

policy. Lastly, we show that accounting for capital supply uncertainty and lumpy investment

changes the predictions of models of financing constraints in ways that are consistent with

stylized facts concerning firms’ policy choices.
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Appendix

A Bargaining with outside investors

See the supplementary appendix for a proof that introducing bargaining is equivalent to reducing

the arrival rate of outside investors.

B Proofs of the results in Section 2.1

B.1 Intuition and road map

To facilitate the proofs, we start by introducing some notation that will be of repeated use

throughout the appendix. Let Li denote the differential operator defined by

Liφ(c) := φ′(c)(rc+ µi) +
σ2

2
φ′′(c)− ρφ(c),

set

Fφ(c) := max
f≥0

λ{φ(c+ f)− φ(c)− f},

and denote by Θ the set of dividend and financing strategies such that

Ec

[∫ τ0

0
e−ρs(dDs + fsdNs)

]
<∞

for all c ≥ 0 where τ0 is the first time that the firm’s cash holdings fall to zero and Ec[·] denotes

an expectation conditional on the initial value C0− = c.

Let V̂i(c) denote the value of a firm with no growth option when the mean cash flow rate is µi.

In order to apply dynamic programming techniques, we will proceed in four steps.

1. Derive the Hamilton-Jacobi-Bellmamn (HJB) equation.

2. Show that any smooth solution φ(c) to the HJB equation dominates the value function.

3. Conjecture an optimal policy and derive the corresponding firm value.

4. Show that the value of the firm associated with the conjectured optimal policy of Step 3 is

indeed a smooth solution to the HJB equation.

In accordance with the theory of singular stochastic control (see Fleming and Soner (1993)),

the HJB equation for the value of a firm with no option is given by

max{Liφ(c) + Fφ(c), 1− φ′(c), `i(c)− φ(c)} = 0, (32)
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where `i(c) ≡ `i + c denotes the liquidation value of the firm. Thus, we are done with Step 1.

Lemma B.1 below accomplishes Step 2. In order to proceed to Step 3, we conjecture that the

optimal policy is of a threshold form and show that the system defined by (1)-(4) and (8) has a

unique smooth solution that is given by (Vi(c), C
∗
i ) = (vi(c;C

∗
i ), C∗i ) for some C∗i > 0. Finally, to

complete Step 4, we will show that this solution solves (32), i.e. that

(a) V ′i (c) ≥ 1 for all c ≥ 0,

(b) φ(c) = `i(c) satisfies Liφ(c) + Fφ(c) ≤ 0 for all c ≤ C∗i ,

(c) Vi(c) ≥ `i(c) for all c ≥ 0.

As we show below, Vi(c) is concave and therefore items (a) and (c) easily follow.5 Item (b) follows

by direct calculation. Finally, step 4 is proved in Lemma B.9. Thus, it remains to implement step

3.i and show that a solution exists and that it is concave. To this end, we will introduce another

function w(c; b) defined as the unique solution to (1) satisfying (4) and (8). As we note in the main

text, (1) implies that (8) is equivalent to (9), that is

wi(b; b) = (rb+ µi)/ρ.

Thus, for any fixed b, equation (1) turns into a standard ordinary differential equation that can

be explicitly solved via special functions as we show below in Lemma B.2. Lemma B.4 proves the

concavity of wi(c; b). The value function vi(c; b) satisfies (4)-(3). Thus, it order to determine the

optimal threshold b = C∗i , it remains to find the b such that wi(0; b) = `i(0). This is done in Lemma

B.8. Obviously, wi(c;C
∗
i ) = vi(c;C

∗
i ) and the proof is complete.

B.2 Proofs

Lemma B.1 If φ ∈ C2((0,+∞)) is a solution to (32) then φ(c) ≥ V̂i(c).

Proof. Let φ be as in the statement, fix a strategy (D, f) ∈ Θ and consider the process

Yt := e−ρtφ(Ct) +

∫ t

0+
e−ρs(dDs − fsdNs).

Using the assumption of the statement in conjunction with Itô’s formula for semimartingales (see

Dellacherie and Meyer (1980, Theorem VIII–25)), we get that dYt = dMt − e−ρtdAt where the

process M is a local martingale and

dAt = (φ(Ct− + ft)− φ(Ct−)− ft −Fφ(Ct−))dt

+ (∆Dt − φ(Ct− −∆Dt) + φ(Ct−)) + (φ′(Ct−)− 1)dDc
t .

5Concavity is a rare and useful property for this class of models. As we show below, firm value is no
longer globally concave when the firm has a growth option and, without this property, the verification of
property (a) above become a lot more difficult.
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where ∆Dt and Dc
t denote respectively the jump and the continuous components of the dividend

policy under consideration, i.e.

∆Dt = Dt − lim
s↑t

Ds = Dt −Dt−

Dc
t = Dt −

∑
s≤t

∆Ds.

The definition of F and the fact that φ′ ≥ 1 then imply that A is nondecreasing and it follows that

Y is a local supermartingale. The liquidation value being nonnegative, we have

Zt := Yt∧τ0 ≥ −
∫ τ0

0
e−ρsfsdNs

and since the random variable on the right hand side is integrable by definition of the set Θ, we

conclude that Z is a supermartingale. In particular,

φ(C0−) = φ(C0)−∆φ(C0) = Z0 −∆φ(C0) ≥ Ec[Zτ0 ]−∆φ(C0)

= Ec

[
e−ρτ0φ(Cτ0) +

∫ τ0

0+
e−ρs(dDs − fsdNs)

]
−∆φ(C0)

= Ec

[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dDs − fsdNs)

]
−∆D0 −∆φ(C0)

≥ Ec
[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dDs − fsdNs)

]
(33)

where the first inequality follows from the optional sampling theorem for supermartingales, the

fifth equality follows from Cτ0 = 0, and the last inequality follows from

∆D0 + ∆φ(C0) = ∆D0 + φ(C0− −∆D0)− φ(C0−) =

∫ C0−

C0−−∆D0

(1− φ′(c))dc ≤ 0

The desired result follows by taking supremum over (D, f) ∈ Θ on both sides of (33). �

Lemma B.2 Let b ≥ 0 be fixed. Fix two constants φ(0) and φ(b). Then, the unique continuously

differentiable solution to

Liφ(c) + λ(φ(b)− b+ c− φ(c)) = 0, c ≤ b, (34)

φ(c)− φ(b) + b− c = 0, c ≥ b, (35)

satisfies

φ(c) = φ(b)Hi(c; b) + φ(0)Li(c; b)

+ Πi(c; b)−Πi(b; b)Hi(c; b)−Πi(0; b)Li(c; b).
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In this equation, we have

Πi(c; b) =
λ

ρ+ λ

[
φ(b)− b+ c+

µi + rc

ρ+ λ− r

]
and

Li(c; b) =
Gi(b)Fi(c)− Fi(b)Gi(c)
Gi(b)Fi(0)− Fi(b)Gi(0)

and Hi(c; b) =
Fi(0)Gi(c)−Gi(0)Fi(c)

Gi(b)Fi(0)− Fi(b)Gi(0)

with

Fi(x) = M(−0.5ν; 0.5;−(rx+ µi)
2/(σ2r)), (36)

Gi(x) =
rx+ µi
σ
√
r
M(−0.5(ν − 1); 1.5;−(rx+ µi)

2/(σ2r)), (37)

where ν = (ρ + λ)/r and M is the confluent hypergeometric function defined by (see Dixit and

Pindyck, 1994, pp.163):

M (a, b; z) = 1 +
a

b
z +

a (a+ 1)

b (b+ 1)

z2

2!
+
a (a+ 1) (a+ 2)

b (b+ 1) (b+ 2)

z3

3!
+ · · ·

The first claim of Lemma B.2 follows by standard arguments. The proof of the second claim is

based on the following auxiliary result.

Lemma B.3 The general solution to the homogenous equation

λφi(c) = Liφi(c) (38)

is explicitly given by φi(c) = γ1Fi(c) + γ2Gi(c) for some constants γ1, γ2 where the functions Fi,

Gi are defined as in equations (36) and (37).

Proof. The change of variable φi(c) = gi(−(rc+µi)
2/(rσ2)) transforms (38) for φi into Kummer’s

ODE for gi and the conclusion now follows from standard results. �

Let wi(c; b) be the unique solution to (34)-(35) with w′i(b; b)− 1 = w′′i (b; b) = 0.

Lemma B.4 The function wi(c; b) is increasing and concave with respect to c ≤ b, and strictly

monotone decreasing with respect to b.

In order to prove Lemma B.4, we will rely on the following three useful results.

Lemma B.5 Suppose that k is a solution to

Lik(c) + φ(c) = 0 (39)

for some φ. Then, k does not have negative local minima if φ(c) ≥ 0 and does not have positive

local maxima if φ(c) ≤ 0.
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Proof. At a local minimum we have k′(c) = 0, k′′(c) ≥ 0 and the claim follows from (39) and the

nonnegativity of φ. The case of a non-positive φ is analogous. �

Lemma B.6 Suppose that k is a solution to (39) for some φ(c) ≤ 0 and that k′(c0) ≤ 0, k(c0) ≥ 0

and |k(c0)|+ |k′(c0)|+ |φ(c0)| > 0. Then, k(c) > 0 and k′(c) < 0 for all c < c0.

Proof. Suppose on the contrary that k′(c) is not always negative for c < c0 and let z be the largest

value of c < c0 at which k′(c) changes sign. Then, z is a positive local maximum and the claim

follows from Lemma B.5. �

Lemma B.7 Suppose that k is a solution to (39) for some φ such that φ′(c) ≤ 0 and that k′(c0) ≥ 0,

k′′(c0) ≤ 0 and |k′(c0)| + |k′′(c0)| + |φ′(c0)| > 0. Then, k′(c) > 0 and k′′(c) < 0 for all c < c0.

Furthermore, if k′′(c0) = 0, then k′′(c) > 0 for c > c0 and k′(c0) = minc≥0 k
′(c).

Proof. Differentiating (39) shows that m = k′ is a solution to Lim(c) + rm(c) + φ′(c) = 0 and the

conclusion follows from Lemma B.6. The case c > c0 is analogous. �

Proof of Lemma B.4. As is easily seen, the function

k(c) = wi(c; b)−
λ

λ+ ρ

(
wi(b; b)− b+

(ρ+ λ)c+ µi
λ+ ρ− r

)
is a solution to (38) and satisfies k′(b) = 1 > 0 as well as k′′(b) = 0. Together with Lemma B.7

this implies that k(c), and hence also wi(b; b), is increasing and concave for c ≤ b.To establish the

required monotonicity, let b1 < b2 be fixed and consider the function m(c) = wi(c; b1) − wi(c; b2).

Using the first part of the proof it is easily seen that m solves

Lim(c)− λm(c)− λ(1− r/ρ)(b1 − b2) = 0

with the boundary conditions m′(b1) = 1 − w′i(b1; b2) < 0, m′′(b1) = −w′′i (b1; b2) ≥ 0. Thus, it

follows by a straightforward modification of Lemma B.7 that m is monotone decreasing and it only

remains to show that m(b1) > 0. To this end, observe that

m(b1) = wi(b1; b1)− wi(b1; b2)

= wi(b1; b1)− wi(b2; b2) +

∫ b1

b2

w′i(c; b2)dc

≥ wi(b1; b1)− wi(b2; b2) + b2 − b1 = (r/ρ− 1)(b1 − b2) > 0

where the first inequality follows from w′i(b; b) = 1 and the first part of the proof, and the last

inequality follows from the fact that by assumption ρ > r. �

Lemma B.8 There exists a unique solution C∗i to wi(0;C∗i ) = 0 and the function

Vi(c) = wi(c ∧ C∗i ;C∗i ) + (c− C∗i )+

is a twice continuously differentiable solution to (32).
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Proof. By Lemma B.2 we have that Vi(c) is twice continuously differentiable, solves (1) subject

to (4), (8) and (3) so we only need to show that

wi(0;C∗i ) = `i(0) (40)

does have a unique solution C∗i . By Lemma B.4, we have that wi(0; b) is monotone decreasing in

b. On the other hand, a direct calculation shows that wi(0; 0) = µi/ρ > `i(0), wi(0;∞) < 0 and

it follows that (40) has a unique solution. To complete the proof, it remains to show that Vi is a

solution to the HJB equation. Using the concavity of Vi(c) in conjunction with the smooth pasting

condition we obtain that 1− V ′i (c) is negative below the threshold C∗i and zero otherwise so that

`i(c)− Vi(c) =

∫ c

0
(1− V ′i (x))dx ≤ 0.

On the other hand, using the concavity of Vi(c) in conjunction with Lemma B.2 and the smooth

pasting condition we obtain

(Li + F)Vi(c) = LiVi(c) + 1{c<C∗i }λ(Vi(C
∗
i )− b+ c− Vi(c)) = 1{c≥C∗i }LiVi(c)

= (r − ρ)(c− C∗i )+ ≤ 0

Combining the above results shows that Vi is a solution to (32). �

Lemma B.9 We have V̂i(c) ≥ Vi(c) for all c ≥ 0.

Proof of Lemma B.9. Combining the results of Lemmas B.1 and B.8 shows that Vi ≥ V̂i. In

order to establish the reverse inequality, consider the dividend and financing strategy defined by

D∗t = Lt and f∗t = (C∗i − Ct−)+ where the process C evolves according to

dCt = (rCt− + µi)dt+ σdBt − dD∗t + f∗t−dNt

with initial condition C0− = c ≥ 0 and Lt = sups≤t(bt − C∗i )+ where

dbt = (rbt− + µi)dt+ σdBt + (C∗i − bt−)+dNt.

In order to show that the strategy (D∗, f∗) is admissible, we start by observing that

Ec

[∫ ∞
0

e−ρtf∗t−dNt

]
≤ Ec

[∫ ∞
0

e−ρtC∗i dNt

]
=
λC∗i
ρ

where the inequality follows from the definition of f∗. Using this bound in conjunction with Itô’s
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lemma and the assumption that r < ρ we then obtain

Ec

[∫ t

0
e−ρsdD∗s

]
= C0 + Ec

[∫ t

0
e−ρs((r − ρ)Cs− + µi)ds+

∫ t

0
e−ρsf∗s−dNs

]
≤ C0 + Ec

[∫ ∞
0

e−ρsµids+

∫ ∞
0

e−ρsf∗s−dNs

]
≤ C0 +

1

ρ
(µi + λC∗i )

for any t < ∞ and it now follows from Fatou’s lemma that (D∗, f∗) ∈ Θ. Applying Itô’s formula

for semimartingales to the process

Yt = e−ρ(t∧τ0)Vi(Ct∧τ0) +

∫ t∧τ0

0+
e−ρs(dD∗s − f∗s−dNs)

and using the definition of (D∗, f∗) in conjunction with the fact that the function Vi solves the HJB

equation we obtain that the process Y is a local martingale. Now, using the fact that Ct ∈ [0, C∗i ]

for all t ≥ 0 together with the increase of Vi we deduce that

|Yθ| ≤ |Vi(C∗i )|+
∫ ∞

0
e−ρt(dD∗t + f∗t−dNt)

for any stopping time θ and, since the right hand side is integrable, we conclude that the process

Y is a uniformly integrable martingale. In particular, we have

Vi(c) = Y0− = Y0 −∆Y0 = Y0 + ∆D∗0 = Ec[Yτ0 ] + ∆D∗0

= Ec

[
e−ρτ0Vi(Cτ0) +

∫ τ0

0+
e−ρs(dD∗s − f∗s−dNs)

]
+ ∆D∗0

= Ec

[
e−ρτ0`i(0) +

∫ τ0

0
e−ρs(dD∗s − f∗s−dNs)

]
where the third equality follows from the definition of Vi and the fourth from the martingale

property of Y . This shows that Vi ≥ V̂i and establishes the desired result. �

Lemma B.10 The level of cash holdings C∗i that is optimal for a firm with no growth option is

monotone decreasing in λ and ϕ and increasing in σ2.

Proof. Monotonicity in ϕ follows from the definition of C∗i and the monotonicity of `i. To establish

the required monotonicity in λ, it suffices to show that wi(0; b, λ) is monotone decreasing in λ.

Indeed, in this case we have

`i(0) = wi(0;C∗i (λ1), λ1) ≤ wi(0;C∗i (λ1);λ2)

for all λ1 < λ2 and therefore C∗i (λ2) ≤ C∗i (λ1) due to the fact that wi(0; b, λ) is decreasing in b.

To establish the required monotonicity observe that wi(b; b, λ) = rb+µi
ρ does not depend on λ. As

a result, it follows from Lemma B.2 that the function defined by

k(c) = wi(c; b, λ1)− wi(c; b, λ2)
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for some λ1 < λ2 satisfies

k(b) = k′(b) = k′′(b) = k(3)(b) = k(4)(b) = 0

and solves the ODE

Lik(c)− λ1k(c) = (λ2 − λ1)(wi(b; b, λ2)− wi(c; b, λ2)− (b− c)). (41)

Since, by Lemma B.4, wi(c; b, λ2) is concave in c and w′i(b; b, λ2) = 1, the right hand side of (41) is

nonnegative for all c ≤ b. It follows by a slight modification of Lemma B.5 that k(c) cannot have a

positive local maximum. Since

k(5)(b) =
2

σ2
(λ1 − λ2)w

(3)
i (b; b, λ2) =

2

σ2
(λ1 − λ2)(ρ− r) < 0,

we conclude that k is decreasing in a small neighborhood of b. Therefore, k(c) is decreasing

for all c ≤ b and hence k(c) > k(b) = 0 for all c ≤ b. Similarly, if σ2
1 > σ2

2, then k(c) =

wi(c; b;σ
2
1)− wi(c; b;σ2

2) satisfies

Li(σ2
1)k(c)− λk(c) = 0.5(σ2

2 − σ2
1)w′′i (c; b;σ2

2) > 0

for c ≤ b and the required monotonicity follows by the same arguments as above. �

C Proof of Proposition 2

The proof of Proposition 2 will be based on a series of lemmas. To facilitate the presentation, let

V̂ denote the value of the firm and Π denote the set of triples π = (τ,D, f) where τ is a stopping

time and (D, f) ∈ Θ is an admissible dividend and financing strategy.

Our first result shows that for any fixed policy π, the value of the firm is equal to the present

value of all dividends net of issuing costs, up to the time τ of investment, plus the present value of

the value of the firm at the time of investment.

Lemma C.1 The value of the firm satisfies

V̂ (c) = sup
π∈Π

Ec

[∫ τ∧τ0

0
e−ρt (dDt − ftdNt) + 1{τ≥τ0}e

−ρτ0`0(0) + 1{τ<τ0}e
−ρτV1(Cτ )

]
.

If V0(c) ≥ V1(c−K) for all c ≥ K then it is optimal to abandon the growth option.

Proof. The proof of the first part follows from standard dynamic programming arguments and

therefore is omitted. To establish the second part assume that V0(c) ≥ V1(c − K) for all c ≥ K

and observe that ∆Cτ = −K + 1{τ∈N}fτ where N denotes the set of jump times of the Poisson
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process. Using this identity in conjunction with the first part, we obtain

V (c) ≤ sup
π∈Π

Ec

[∫ τ∧τ0

0
e−ρt(dDt − ftdNt)

+ 1{τ≥τ0}e
−ρτ0`0(0) + 1{τ<τ0}e

−ρτV0(Cτ− + 1{τ∈N}fτ−)

]
.

and the desired result follows since the right hand side of this inequality is equal to V0(c) by standard

dynamic programming arguments. �

By Lemma C.1, the option has a non-positive net present value if and only if V0(c) ≥ V1(c−K)

for all c ≥ 0. Thus, in order to establish Proposition 2 it now suffices to show that this condition is

equivalent to the inequality K ≥ K∗. This is the objective of the following:

Lemma C.2 The constant K∗ is nonnegative and the following are equivalent:

(1) K ≥ K∗

(2) K ≥ V1(C∗1 )− V0(C∗0 )− (C∗1 − C∗0 )

(3) V0(c) ≥ V1(c−K) for all c ≥ K.

Proof. The equivalence of (1) and (2) follows from the definition of K∗ and the fact that

Vi(C
∗
i ) = (rC∗i + µi)/ρ.

In order to show that the constant K∗ is nonnegative we argue as follows: Since µ0 < µ1, the set of

feasible strategies for V0 is included in the set of feasible strategies for V1. It follows that V0 ≤ V1

and combining this with the definition of C∗i shows that

K∗ = V1(C∗1 )− V0(C∗0 )− (C∗1 − C∗0 ) = max
C≥0
{V1(C)− C} −max

C≥0
{V0(C)− C} ≥ 0.

To establish the implication (1)⇒ (3) it suffices to show that under (1) we have V1(c−K∗) ≤ V0(c)

for all c ≥ K∗. Indeed, if that is the case then (3) also holds since

V1(c−K) ≤ V1(c−K∗), c ≥ K ≥ K∗

due to the increase of the function V1. For c ≥ K∗ ∨C∗0 the concavity of V1 and the fact that V0 is

linear with slope one above the level C∗0 imply that

V1(c−K∗) ≤ V1(C∗1 ) + (c−K∗ − C∗1 ) = V0(c) + C∗0 − V0(C∗0 )−K∗ − C∗1 = V0(c)

and it remains to prove the result for c ∈ [K∗, C∗0 ]. Consider the function k(c) = V0(c)−V1(c−K∗).
Using Lemma B.2 in conjunction with the fact that C∗0 < C∗1 +K∗ by Lemma C.3 below we have

that the function k is a solution to

L0k(c)− λk(c) + (−µ1 + µ0 + rK∗)V ′1(c−K∗) = 0
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on the interval [K∗, C∗0 ]. Combining Lemma C.3 below with the increase of V1 shows that the last

term on the left hand side is positive and since

k(C∗0 ) = V0(C∗0 )− V1(C∗0 −K∗) ≥ V0(C∗0 )− V1(C∗)− (C∗0 −K∗ − C∗1 ) = 0,

k′(C∗0 ) = V ′0(C∗0 )− V ′1(C∗0 −K∗) = 1− V ′1(C∗0 −K∗) ≤ 0

by the concavity of V1, we can apply Lemma B.6 to conclude that k(c) ≥ 0 for all c ≤ C∗0 . Finally,

the implication (3)⇒ (2) follows by taking c > C∗0 ∨ (C∗1 +K). �

The optimal cash levels before and after investment are given by C∗0 and C∗1 +K respectively.

By Lemma ??, V0(c) ≥ V1(c−K∗). Therefore, it is natural to expect that the better-off firm V0(c)

will have a lower optimal cash level, that is C∗0 ≤ C∗1 + K∗. Furthermore, it is also natural to

expect that the increase in the mean cash flow rate net of cost is nonnegative for K ≤ K∗, that is

(µ1 − µ0)/r ≤ K. It turns out that both of these intuitive results are indeed true, as is shown by

the following lemma.

Lemma C.3 We have C∗0 < C∗1 +K∗ and µ1 − µ0 − rK∗ > 0.

Proof. The definition of K∗ implies that the first inequality is equivalent to the second which is in

turn equivalent to C∗1−C∗0 > (µ0−µ1)/r. Denote by C∗(µ) the optimal cash holdings of the firm with

mean cash flow rate µ and without a growth option. To prove the inequality C∗1−C∗0 > (µ0−µ1)/r,

it suffices to show that C∗(µ)

−∂C∗(µ)/∂µ < 1/r. (42)

Let w(c; b, µ) be the function w0(c; b) with µ0 = µ. By Lemma B.2, using the identity w(b; b, µ) =
µ+br
ρ , we get that

w(c; b, µ) = Ṽ (c; b, µ) +
λ

ρ+ λ

[
µ+ br

ρ
− b+ c+

µi + rc

ρ+ λ− r

]
where the function Ṽ is defined by

Ṽ (c; b, µ) = α(b;µ)F (c;µ)− β(b;µ)G(c;µ)

for α and β are defined as

αi (c) =
−G′′i (c) (ρ− r)

2σ−3
√
r (ρ+ λ− r) (ρ+ λ) e−(σ2r)−1(rC+µ)2

,

βi (c) =
−F ′′i (c) (ρ− r)

2σ−3
√
r (ρ+ λ− r) (ρ+ λ) e−(σ2r)−1(rC+µ)2
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Therefore, equation w(0;C∗(µ), µ) = ϕ
ρµ takes the form

Ṽ (0;C∗(µ), µ) +
λ∗

λ∗ + ρ

(
µ+ (r − ρ)C∗(µ)

ρ
+

µ

λ∗ + ρ− r

)
= ϕ

µ

ρ
.

Using equations (36) and (37) in conjunction with the definition of the functions α and β, we obtain

Ṽµ(0; b, µ) = (Ṽc(0; b, µ) + Ṽb(0; b, µ))/r,

where a subscript denotes a partial derivative. It follows that

∂C∗(µ)

∂µ
=
−Ṽb(0;C∗(µ), µ)/r − Ṽc(0;C∗(µ);µ)/r + ϕ/ρ−B

Ṽb(0;C∗(µ), µ)−A

where we have set

A =
λ

λ+ ρ

(
1− r

ρ

)
, B =

λ

λ+ ρ

(
1

ρ
+

1

λ+ ρ− r

)
.

By Lemma B.4 we have that Ṽ is decreasing in b and since A > 0 it follows that the validity of

equation (42) is equivalent to

−Ṽb(0;C∗(µ), µ)− Ṽc(0; b;µ)− r (B − ϕ/ρ) < A− Ṽb(0;C∗(µ), µ),

which in turn follows from

Ṽc(0; b;µ) + r(B − 1/ρ) > 0. (43)

Since the difference Ṽ − V is a linear function of c we have from Lemma B.4 that the function Ṽ

is concave. Thus, it follows from the smooth pasting condition that

Ṽc(0;C∗(µ), µ) = Vc(0;C∗(µ), µ)− λ

λ+ ρ− r

≥ Vc(C∗(µ);C∗(µ), µ)− λ

λ+ ρ− r
=

ρ− r
λ+ ρ− r

and combining this with a straightforward calculation shows that (43) holds. �

D Additional proofs

These proofs are relegated to the Supplementary Appendix.
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Figure 1: Value of a firm with a growth option when K < K ≤ K∗∗
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This figure represents the value of a firm with a growth option as a function of its cash holdings

when K < K ≤ K∗∗. In the shaded area below the investment trigger C∗U , the optimal policy is

to retain earnings and search for investors. In the unshaded area between C∗U and C∗1 + K, the

optimal policy is to invest in the growth option from internal funds. In the hatched area above

C∗1 + K, the optimal policy is to invest with internal funds and distribute dividends to decrease

cash holdings to the target level C∗1 after investment.



Figure 2: Marginal value of cash under the optimal barrier strategy

C↓ C∗U,low C↑ C∗U,high

1

Cash holdings

M
ar

gi
n

al
va

lu
e

of
ca

sh

Low cost

High cost

This figure plots the marginal value of cash U ′(c) under the optimal barrier strategy in an

environment where the investment cost is low (dashed line) and in an environment where the costs

of investment is high (solid line). In the latter case the marginal value of the cash drops to one at

the point C↓ and remains below one over the interval (C↓, C↑) indicating that shareholders would

rather abandon the option of investing from internal funds and receive dividends than continue

hoarding cash in side the firm.



Figure 3: Value of a firm with a growth option when K∗∗ < K ≤ K∗
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This figure represents the value of a firm with a growth option as a function of its cash holdings

when K∗∗ ≤ K < K∗. In the shaded areas the optimal policy is to retain earnings and search for

investors. In the first hatched area, the optimal policy is to distribute dividends to decrease the

level of cash holdings to C∗W . In the unshaded area between C∗H and C∗1 +K the optimal policy is

to invest in the growth option with internal funds. In the second hatched area, the optimal policy

is to invest with internal funds and distribute dividends in order to decrease cash holdings to the

target level C∗1 after investment.



Figure 4: Marginal value of cash for a firm with a growth option
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This figure plots the marginal value of cash V ′(c) under the globally optimal strategy (dashed

line) and the marginal value of cash U ′(c) under the optimal barrier strategy (solid line) in an

environment where the investment cost is high. In the latter case the failure of global optimality

is due to the fact that the marginal value of the cash drops below one indicating that shareholders

would rather abandon the option of investing from internal funds and receive dividends than

continue hoarding cash in side the firm.



Figure 5: The model with multiple growth options
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This figure illustrates the model with multiple options: The firm initially has mean cash flow rate

µ0 and does not any growth option. At the exponentially distributed time ζ1 the firm receives its

first growth option and exercises optimally at the stopping time θ1. The second growth option then

arrives after the exponentially distributed time ζ2−θ1 has elapsed and is optimally exercised at the

stopping time θ2. This goes on until the optimal exercise of the last growth option at the stopping

time θN . After that time the mean cash flow rate of the firm remains constant.



Figure 6: Value of the firm in the waiting period between growth options
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This figure represents the value of a firm as a function of its cash holdings in the waiting period

between the exercise of the i’th growth option and the arrival of the next one. In this picture

the optimal strategy includes two intermediate dividend distribution intervals and three earnings

retention intervals whose location are specified by the vectors (a∗i , b
∗
i ) and the target x∗i .



Figure 7: Critical investment costs and internal rates of return
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Panel A plots the critical investment costs K (dotted), K∗∗ (solid) and K∗ (dashed) as functions of

the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash δ and the volatility

of cash flows σ. Panel B plots the internal rate of returns associated with K∗∗ (solid) and K∗

(dashed) as functions of the same parameters. In each plot the vertical line indicates the base value

of the parameter.



Figure 8: Optimal cash holdings for a firm with a growth option
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Panel A plots the investment threshold C∗U for a firm with a low investment cost as a function of

the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash δ and the volatility

of cash flows σ. Panel B plots the investment threshold C∗H (solid) and the payout thresholds

C∗L (dashed) and C∗W (dotted) for a firm with a high investment cost as functions of the same

parameters. In each plot the vertical line indicates the base value of the parameter.



Figure 9: Probabilities of investment
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The top four panels plots the average probability of investment with internal funds for a firm with a

low investment cost (dashed line) and a firm with a high investment cost (solid line) as functions of

the arrival rate of investors λ, the tangibility of assets ϕ, the carry cost of cash δ and the volatility

of cash flows σ. The two lower panels plot the total probability of investment at an horizon of one

year (solid line) and three years (dashed line) for a firm with cash holdings C = K < K∗∗ (left)

and C = K > K∗∗ (right) as functions of the arrival rate of investors λ. In each plot the vertical

line indicates the base value of the parameter.
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