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This Version: September 15, 2014

1We are grateful to Bruno Biais, Giovanni Cespa, Thierry Foucault, Sylvain Friedrich, Andras
Fulop, José Miguel Gaspar, Alexander Guembel, Stefano Lovo (discussant), Albert Menkveld,
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Abstract

Market fragmentation and technology have given rise to new trading strategies. One

of them is to supply liquidity simultaneously across multiple trading venues, which re-

quires multi-venue management of inventory risk. We build an inventory model in which

order flow fragments across two venues, and show that multi-venue market-makers might

consolidate the fragmented order flow, leading to lower transaction costs. We also show

that multi-venue market-making strategies result in interrelated spreads. We empirically

investigate the main predictions of our model using Euronext proprietary data that con-

tains member’s orders and trades identities for multi-listed firms. We find evidence of

cross-venue inventory control, in particular for formally registered market-makers. We

also find that bid-ask spreads vary with inventories of multi-venue market-makers and

the way order flow fragments across all venues, as uniquely predicted by our model.

Keywords: Market fragmentation, multi-venue market-making, bid-ask spreads

EFM Classification code: 360.



Article 17(4) of MiFID II: A“market making strategy” should be considered when

the “strategy involves posting firm, simultaneous two-way quotes [...] on a single trading

venue or across different trading venues, with the result of providing liquidity on a regular

and frequent basis to the overall market”

1 Introduction

In the last decade, falling technology costs and changes in regulation both in the U.S.

(RegNMS) and in Europe (MiFID) have fostered the proliferation of alternative trading

venues, giving rise to the emergence of multi-venue dealers, that is, intermediaries making

the market simultaneously across more than one trading venue. For instance, KCG Hold-

ings Inc., one of the largest U.S. trading firms, trades NYSE-listed securities in ARCA,

GETMATCHED, BATS-Z, NYSE, EDGA, NASDAQ, BATS-Y, BX, or LIGHTPOOL.

Recent empirical evidence (e.g. Brogaard et al, 2014, Jovanovic and Menkveld, 2011,

Menkveld, 2013, or van Kervel, 2014) shows that high frequency traders, namely financial

institutions which have invested in high speed capacity, informally undertake this role by

engaging in market making across different electronic trading venues.

In this paper, we develop a multi-venue inventory model to analyze how competing

dealers strategically supply liquidity across multiple trading venues. We then test the

predictions of our model using a proprietary dataset from Euronext on multi-traded stocks,

in which we can identify financial institutions involved in multi-venue market-making

strategies.

Intuitively, when a dealer has the right to make the market across multiple trading

venues, such dealer is able to aggregate orders from the various venues by simultaneously

executing them. This form of consolidation might impact her inventory exposure and

thus her quoting aggressiveness. Besides, the opportunity to split liquidity supply across

venues enables a dealer to specialize in one venue and may lower her incentives to post

aggressive prices in other venues. We investigate this intuition using an inventory model

based on Ho and Stoll (1983), in which order flow fragments between two trading venues.

Two risk averse dealers have to simultaneously post prices in the two venues to absorb

the incoming part of the order flow. We introduce an asymmetry by assuming that the

venue termed as the dominant market receives a larger portion of the order flow than the
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alternative venue termed as the satellite market.

We show that the execution of the order flow may remain fragmented if the different

parts of the fragmented order flow are executed by different dealers (“fragmentation”). It

may also be the case that the total fragmented order flow is executed by a single/unique

dealer (“consolidation”). This result depends on whether order flows sent to the dominant

and the satellite market have the same sign or not, and on how divergent the dealers’

inventory positions are from each other.

When order flows have the same sign across venues, a dealer faces a “dual liability

risk”: in case her quotes are hit, the dealer executes, say, a cumulated buy transaction.

The premium due to this additional risk could have lead to larger spreads. This is not

the case. Actually, the dealer is willing to consolidate the fragmented order flow when her

inventory position is extreme relative to her opponent. Attracting the total order flow

allows her to reduce her inventory exposure, she thus sets very aggressive quotes across

venues. In contrast, when her inventory position is close to her opponent, she may choose

to execute only the part of the fragmented order flow which best reduces her relative

inventory exposure, thus specializing in one venue.

When order flows have opposite signs, the impact of the cumulated transaction across

venues is smaller due to an “offsetting”effect. Counter-intuitively, this might not be

desirable for dealers. For instance, when a dealer’s inventory position is very long relative

to her opponent’s, she is reluctant to execute more sell orders that would exacerbate her

inventory exposure. She will thus post attractive prices only in the venue receiving buy

orders to reduce her inventory risk (specialization). When her position is less long and

close to her opponent’s, the dealer may be interested in executing orders that offset each

other to benefit from the resulting small impact on inventory. She thus may be willing to

execute the total fragmented order flow across venues.

Overall we show that our results depend on the possibility of dealers to compete

across all venues, or just one of them. When a multi-venue dealer need to consolidate

the total order flow to reduce her relative inventory exposure, she is forced to choose very

competitive prices in all venues due to the potential specialization in one venue of the

opponent. This case of consolidation of the fragmented order flow is thus characterized by

a very strong price competition, which yields to lower spreads compared to a batch auction

in which the total order flow would have been sent to a single venue (Ho and Stoll, 1983).

2



We also show that dealers’ multi-venue quoting strategies are strategically interdependent,

making liquidity, measured by bid-ask spreads, interconnected across venues.

The model implies cross-venues inventory effects. A multi-venue dealer is expected to

update her quotes in one venue in response to a transaction in another venue. At the

venue level, the model predicts that variations in bid-ask spreads within one venue are

related to the way the total order flow fragments and to the relative positioning of dealers’

inventories. In particular, a high divergence between dealers’ inventories combined with

order flows of same sign across venues should be related to more liquidity (tighter bid-ask

spreads) in our model due to the higher degree of price competition across venues in this

case.

We test these predictions using a proprietary dataset on multi-venue traded stocks

from Euronext on a four-month period in 2007. When Euronext was created in 2000

as a result of the merger of three European Stock Exchanges, namely Paris, Brussels

and Amsterdam, the stocks which used to be multi-listed in different Exchanges fell

into the Euronext jurisdiction. Within Euronext, trading rules in all markets have been

harmonized and structured on the Paris Bourse limit order book model, while remaining

separated order books with price-time priority enforced within each market, but not across

markets, until 2009. Besides, during that period (that is, before the implementation of

MiFID in November 2007), Euronext was virtually collecting all the trades.1 For these

reasons, Euronext provides an excellent laboratory, in line with our theoretical framework,

to test our predictions. In our dataset, orders and trades sent to or executed in any limit

order book are flagged with a unique ID code and the account used by the financial

institution. This enables us to identify 46 multi-venue dealers, that is, members acting

either as proprietary traders or as exchange-regulated market makers, who post order

messages (submission, revision, or cancellation) and trade at least once in each of the two

exchanges on which the stock is traded. Due to the supremacy of Euronext during our

time period, our reconstitution of dealers’ end-of-day positions, that accounts for their

trades in all the limit order books of Euronext, is a good proxy for dealers’ aggregated

(“global”) inventories.

Our empirical analysis finds evidence of cross-venue inventory effects. First, the global

1For instance, Gresse (2012) or Degryse, De Jong, and van Kervel (2011) report a market share of
more than 95% for French and Dutch stocks respectively over our sample period.
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inventories of some multi-venue liquidity suppliers in some stocks exhibit mean reversion.

Second, using a logit model, we find that multi-venue liquidity suppliers are more likely

to submit messages in direction of inventory reduction in a venue when their preexisting

orders have been passively hit in the other venue. When they do an active transaction,

we find that their activity is more related to arbitrage trading strategy than multi-venue

inventory management. Last, our empirical analysis shows that bid-ask spreads within

one venue are significantly lower when the divergence of inventory position among dealers

is large and when order flows across venues have the same sign, in line with our main

prediction.

Our empirical analysis is motivated by a new theoretical approach to multi-market

trading. Traditional models including Pagano (1989), Chowdhry and Nanda (1991), Bern-

hardt and Hughson (1997), Easley, Kiefer and O’Hara (1996), and Foucault and Menkveld

(2008) assume that quotes are competitively set by independent pools of market makers

in multiple markets to satisfy the zero-profit condition. They focus on the routing or

order splitting decisions of strategic liquidity demanders, who can either be informed or

not. Naturally, these splitting strategies are anticipated by the liquidity suppliers who ad-

just their quotes in the different markets. We instead exogenously fix order flows routed

towards each market to focus on the inter-dependent quoting strategies of multi-venue

market-makers. As Seppi (1997) and Parlour and Seppi (2003), we model competition for

order flow based on liquidity provision when liquidity suppliers are not perfectly competi-

tive. Parlour and Seppi (2003) extend the model proposed by Seppi (1997) to analyze the

quotes set by a monopolist specialist competing against a competitive order book, and

incorporate liquidity demander’s optimal splitting. The specialist has a timing advantage

over limit orders traders. In our model, market-makers post their quotes simultaneously.

We show that risk averse liquidity suppliers using multi-venue strategies make the spreads

interrelated across venues, even in the absence of private information.

Few empirical papers focus on the extent to which traders exploit multi-market envi-

ronments. Menkveld (2008) and Halling, Moulton, and Panayides (2013) focus on how

investors adjust their trading strategies to multi-trading. In contrast, we investigate how

liquidity suppliers deal with a multi-market environment, and our empirical analysis is

most closely related to van Kervel (2014) and Jovanovic and Menkveld (2011). van Kervel

(2014) finds that trades on the most active venues for 10 FTSE100 stocks are often fol-
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lowed by immediate cancellations of limit orders on competing venues, which would be

expected in the presence of a multi-venue dealers facing a dual liability risk. Jovanovic

and Menkveld (2011) statistically identify a multi-venue dealer actively trading across Eu-

ronext and Chi-X, and find that the participation of this dealer has an impact on spreads

and volumes. Both findings are in line with our theoretical predictions and complement

our empirical analysis. Since each institution in our sample is identified by a unique

ID across the multiple limit order books we are able to precisely analyze the quoting

strategies of all the members who exploit the multi-market environment.

The paper is organized as follows. Section 2 describes the model and investigates

the price formation in a two-venue market-making environment. Section 3 describes the

data, provides summary statistics and tests the main predictions. Section 4 concludes the

paper. All proofs are available in the Appendix.

2 The Model

This section analyzes how the existence of multiple trading venues influences the price-

setting strategies of risk-averse dealers.

2.1 The basic setting

We consider the market for a risky asset, whose final cash flow is a normal random variable

ṽ characterized by an expected value µ and a variance σ2. There are two types of market

participants: investors who demand liquidity and dealers who supply liquidity.

Dealers’ reservation price. Liquidity is supplied by two dealers i = 1, 2. Each dealer

i is endowed with a different initial inventory position of the risky asset Ii, where Ii is

the realization of the random variable Ĩi uniformly distributed on [Id, Iu]. Dealers are

risk-averse and have the following common CARA utility function:

u (w̃i) = − exp(−ρw̃i), (1)

where ρ is the risk aversion, and w̃i the terminal wealth of dealer i endowed with an initial

position Ii.
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As Ho and Stoll (1983) demonstrate, dealer i’s reservation price ri to execute the

incoming order flow Q is such that:

ri (Q) = µ− ρσ2Ii +
ρσ2

2
Q, i = 1, 2. (2)

By convention, we denote by Q > 0 a buy incoming order flow, and by Q < 0 a sell

incoming order flow. Note that the marginal valuation of dealer i, (µ − ρσ2Ii), depends

on the risk of holding an inventory position. A dealer in a long position is reluctant to

increase her exposure to inventory risk by adding more inventory and posts relatively low

ask and bid prices to encourage selling operations. The second component of reservation

prices ((ρσ2/2)Q) represents the price impact of trades and is thus increasing in trade

size: larger buy orders will drive dealer i’ selling price more above dealer i’s marginal

valuation (and vice versa).

For ease of exposition, we consider that dealer 1 is endowed with a longer inventory

position, i.e. I1 ≥ I2.
2

Fragmentation of order flow. Liquidity demanders exogenously split their order flow

across two trading venues denoted D and S.3 We assume that the part sent to venue D,

denoted QD, is larger than that routed to venue S, i.e. |QD| ≥ |QS|. We thus term venue

D as the dominant market, and venue S as the satellite market. The analysis provided

below is restricted to the case in which the total order flow is net-buying and fragments

such that QD ≥ 0, while QS might be either buy or sell order flow: QS ≥ 0 or QS ≤ 0.

Symmetric results are obtained for a net-selling order flow.

Quoting strategies of multi-venue dealers. We assume that dealers have access to

all trading venues. Conditional on observing QD and QS, multi-venue dealers post their

quotes simultaneously in venues D and S. The dealer who posts the lowest ask price

in venue D executes QD, while the dealer with the most attractive price (lowest ask or

highest bid, depending on the sign of QS) in venue S executes QS.

A quoting strategy for dealer i is a couple of quoted prices (aDi , p
S
i ) where aDi is the

ask price posted by dealer i in market D and pSi is the price posted by i in market S

2...
3In the base model, order flows are exogenously fragmented. We address the case of endogenizing

order flow splitting by liquidity demanders in section 2.4.
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(which is an ask price if QS > 0 or a bid price if QS < 0). In the next section, we analyze

the Nash equilibria of the quoting game, defined as a vector of the quoting strategies of

the two dealers. In equilibrium, dealer i executes the order flow Qm if pmi Qm < pm−iQm

for m ∈ {D,S} (see Preliminary Remarks in Appendix for detailed trading profits). All

random variables are independent and their distributions are common knowledge.

In our set-up dealers must manage their risky inventory position by keeping track of

orders across all trading venues. Because making the market “globally”, i.e. across various

venues, affects dealer’s total exposure to inventory risk, we also qualify their inventory as

“global” inventory as opposed to ordinary inventory that guides a dealer taking risks just

in one venue.4

Figure 1 shows the extensive form of the trading game. The focus of the paper is

to analyze price formation across venues when QD and QS are simultaneously non-zero,

which occurs with probability λ, and to investigate differences between the case in which

QD and QS have same sign (with probability γ), or opposite sign (with probability 1−γ).

We find the solution of this game by backward induction.

2.2 Equilibrium quotes in fragmented markets

In this paper, we assume that dealers observe competitors’ quotes, as if markets were

transparent. Consider the benchmark case where order flow is batched and sent to a

single venue, which is the case analyzed by Ho and Stoll (1983). The dealer with the

longer inventory position (dealer 1 by assumption) posts the most competitive ask quote,

by quoting the second lowest reservation price ((abatch)∗ = r2(QD +QS)− ε, in our case).

This section analyzes how order flow fragmentation might alter this result.

2.2.1 Preliminary results

When dealers have access to more than one venue, they can choose to post competitive

quotes across all venues, or just one of them, and compete to execute the total fragmented

order flow, or just a part of it. The outcome of whether the fragmented order flow might

4Our definition of “global” inventory is close to the definition of equivalent or total inventory em-
phasized by Ho and Stoll (1983) and discussed in Naik and Yadav (2002). However, while equivalent
inventory is the overall position of a dealer across all stocks, global inventory is the net aggregated
inventory position of a dealer in a single stock but across all available trading venues.
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be consolidated or not through the execution by a single dealer depends on the conditions

described by Lemma 1.

Lemma 1 Assume that I1 > I2 and that QD +QS > 0.

1. If (I1 − I2 −QD)QS < 0, and if an equilibrium exists, then it is such that the total

order flow remains fragmented: orders submitted to the different venues are executed by

different dealers. Conversely, if (I1−I2−QD)QS > 0, and if an equilibrium exists, then it

is characterized by the consolidation of the fragmented order flow, through a multi-venue

execution by a single dealer.

2. If there exists an equilibrium such that the total order flow remains fragmented, then

the more extreme dealer specializes in the dominant venue, while the less extreme dealer

in the satellite venue. If there exists an equilibrium characterized by the consolidation

of the fragmented order flow, then the more extreme dealer executes the total order flow

across venues.

The outcome of Lemma 1 (consolidation versus fragmentation) depends on two con-

ditions: the price impact of the total fragmented order flow and the relative positioning

of dealers’ inventory. Regarding the first condition, when QD and QS have the same

sign, the price impact of trading in the two venues is cumulative. When order flows have

opposite signs, the reverse effect or offsetting effect is observed: trading in both venues

enables dealers to reduce the impact of a trade executed within a single venue.

Regarding the second condition, dealers’ incentives to trade only a part versus the

total fragmented order flow depend on their exposure to inventory risk, and in particular

on their relative inventory positions. Under our assumption that dealer 1 is endowed with

a longer inventory position, she has more incentives to sell than dealer 2. The total order

flow (QD +QS), which is net-buying, is more attractive to her. She is thus willing to post

more aggressive selling prices across venues. The price aggressiveness however depends

on how divergent her inventory position is to dealer 2’ s. When her inventory position is

more extreme (I1− I2 > QD), dealer 1 would rather execute the largest buy order flow as

possible, which is QD + QS when QD and QS have the same sign, or only QD when QS

has an opposite sign. Executing the selling order flow QS would instead exacerbate her

inventory risk exposure. When her inventory position is less extreme and closer to her

opponent’s position, she finds less desirable to execute order flows with large price impact
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and thus prefers to execute only QD, and, in some cases, the order flow with the smallest

possible price impact, which is QD +QS when QD and QS have opposite signs.

Note that our results are in line with the outcome of the Vickrey-Clarke-Groves (VCG)

mechanism for combinatorial auctions.5 In particular, order flows across venues can be

seen as substitutes when they have the same sign, and as complements when they have

opposite signs. Indeed, when QD and QS have same signs, the marginal gain of trading

QD > 0 when the dealer also trades QS > 0 is lower than when he does not trade QS,

while the marginal gain is higher when QS < 0. Substitutability is also a key determinant

of the outcome of the VCG mechanism.6

2.2.2 Equilibrium quotes

Lemma 1 shows that dealers’ willingness to execute a part or the entire fragmented order

flow depends on the divergence of inventories and on whether order flows routed to trading

venues have the same sign or not. The interaction of these two characteristics determines

the prices posted by dealers at equilibrium as shown in Proposition 1 below.

Proposition 1 Assume that I1 > I2 and QD +QS > 0.

1. If (I1− I2−QD)QS > 0, there exists a Nash equilibrium, in which dealer 1, the longer

dealer, consolidates the fragmented order flow by posting the best prices across venues,

while dealer 2 quotes his own reservation prices, that is:

1.1. If QS > 0, dealer 1 chooses the following best selling prices in venue D and venue

S: (
(aD1 )∗, (aS1 )∗

)
= (r2(QD)− ε, r2(QS)− ε) ;

1.2. If QS < 0, dealer 1 simultaneously posts the best selling price in venue D and the

best bid price in venue S, as follows:

(
(
aD1
)∗
,
(
bS1
)∗

) = (r2(QD)− ρσ2 (−QS)− ε, r2 (QS) + ε);

5In combinatorial auctions, multiple items, which are related but not necessarily identical, are sold
simultaneously and bidders may submit bids on packages of items.

6To illustrate the VCG mechanism, suppose that there are two items for sale (D and S) and two
bidders. Let us denote by vi(D) bidder i’s value for item D, by vi(S) bidder i’s value for item S, and
by vi(DS) bidder i’s value for the bundle D and S. In this mechanism, if v1(DS) > v1(D) + v2(S), then
the outcome is that bidder 1 wins both items. This condition corresponds to the condition described in
Lemma 1 and Proposition 1, which is: (I1− I2−QD)QS > 0. See Vickrey (1961), Clarke (1971), Groves
(1973), and Ausubel and Milgrom (2006) for a discussion of the VCG mechanism.
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2. If (I1 − I2 − QD)QS ≤ 0, there exists a unique Nash equilibrium, in which the longer

dealer is the first seller in the dominant market while the shorter dealer quotes the best

price in the satellite market, that is:

2.1. If QS > 0, dealers post the following ask prices:

(
(aD1 )∗, aS1

)
=

(
r2(QD) + ρσ2QS

(
QD − (I1 − I2)

QD

)
− ε, r1(QS) + ρσ2QD

)
,

(
aD2 , (aS2 )∗

)
=

(
r2(QD) + ρσ2QS

(
QD − (I1 − I2)

QD

)
, r1(QS) + ρσ2QD − ε

)
;

2.2. If QS < 0, dealers post the following ask prices in venue D and bid prices in venue

S:

(
(aD1 )∗, bS1

)
=

(
r2(QD)− ρσ2(−QS)− ε, r1(QS) + ρσ2QD

)
,(

aD2 , (bS2 )∗
)

=
(
r2(QD)− ρσ2(−QS), r1(QS) + ρσ2QD + ε

)
;

where ε corresponds to one tick.

Note that the simultaneous price formation across more than one venue depends on

three characteristics. First, dealers are not constrained to post competitive prices for

the total fragmented order flow, and may choose to compete just for a part of it in one

venue. Second, order flows may execute at different prices across venues given that dealers

post prices reflecting the different impact of order flows which are of different magnitude

(second-degree price differentiation).7 Third, similar to inventory models like Ho and Stoll

(1983) or Biais (1993), the relative distance between dealers’ inventory position conditions

the competitiveness of dealers’ quotes across venues. When the divergence is low (resp.

high), dealer 1’s inventory position is close to (resp. away from) that of dealer 2, and

dealers are less (resp. more) able to post competitive prices.

Figure 2 summarizes Proposition 1. Consider first the case in which dealer 1 consol-

idates the total order flow, i.e. (I1 − I2 − QD)QS > 0 (the first row “Consolidation” in

the Figure). Suppose that order flows have same sign, and dealer 1’s inventory is extreme

(I1 − I2 > QD) relative to dealer 2. Dealer 1 is more willing to post very competitive

7In Europe, a consolidated tape in which all trades and quotes of all exchanges and multi-trading
facilities would be recorded does not exist, orders sometimes execute at prices different that the best
existing quoted prices in the market (trade-throughs are allowed).
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prices in order to benefit from the large impact of QD +QS to decumulate her inventory.

Dealer 2 is however able to post competitive selling prices just in one venue to execute

either QD or QS, forcing dealer 1 to choose very aggressive prices across venues to be

sure to attract the total order flow. In this case fragmentation increases intra-market

competition. Observe that, relative to the batch auction, (ex post) transaction costs are

lower: TC −TCbatch = (aD)∗QD + (aS)∗QS − abatch(QD +QS) = −ρσ2QDQS < 0. In case

order flows have opposite signs and dealer 1’ s inventory is closer to her competitor’s, an-

tisymmetric effects are observed. Dealer 1 is willing to execute the net order flow QD+QS

to benefit from a smaller impact compared to a single trade in venue D or S. The ability

of dealer 2 to compete in just one venue forces dealer 1 to post competitive (but not

too aggressive) prices due to the closeness of dealers’ inventories. In this case, there is a

multiplicity of equilibria. We select the equilibrium in which there is price continuity at

I1 − I2 = QD in market D. At any equilibrium though, the weighted averaged price paid

by investors is equal to r2(QD +QS), that is, the price formed at equilibrium in the batch

auction. In this case, ex post transaction costs in fragmented markets are thus equal to

transaction costs paid in the batch auction.

Consider now the case in which the execution of the total order flow QD +QS is split

among dealers and remains fragmented (the second row termed “Fragmentation” in Figure

2). Suppose that order flows have the same sign, and dealer’s 1 inventory is close to dealer

2 (I1− I2 < QD). Then dealer 1 is less able to post simultaneous aggressive selling prices

across venues. It is more profitable to let her opponent execute the smaller part QS and

post a competitive selling price just in one venue, D. Transaction costs thus vary with the

degree of price competition, related to divergence of inventories. When dealers’ inventories

are very close (I1 − I2 → 0), they cannot post very different prices from each other and

competition is weak (TC − TCbatch → ρσ2QDQS > 0). When dealers’ inventories are

more divergent (I1 − I2 → QD), prices are more aggressive, transaction costs are smaller:

TC − TCbatch → −ρσ2QDQS < 0. Suppose now that QD and QS have opposite signs,

dealer 1’s inventory is extreme relative to dealer 2. She is very keen to execute the

large buy order QD to decumulate her extreme inventory position and reluctant to add

more inventory by trading the sell order QS, which is anticipated by dealer 2. Dealer

2 therefore posts a non-aggressive price in market S, even less aggressive that dealer 1’

inventory is more extreme. Ex post transaction costs are thus worse: TC − TCbatch =
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ρσ2(I1 − I2 −QD)(−QS) ≥ 0.

It is worth noticing that in case order flows remain fragmented (“Fragmentation”),

dealers obtain a better allocation of risk compared to the batch auction, as shown in the

following lemma.

Lemma 2 The fragmented market generates a more efficient outcome in risk sharing

among dealers than the batch market in the sense that dealers bear lower aggregate security

risk in the fragmented market.

The better allocation of risk does not however necessarily lead to more competitive prices

as detailed above since dealers have less incentives to undercut each other. This result is

in the spirit of the one obtained in Biais, Foucault and Salanié (1998).

2.2.3 Expected best offers

In our model, because dealers manage their position globally, they place quotes in one

venue taking into account the potential impact of trading in the other venue. Dealers’

quoting aggressiveness depends on their eagerness to consolidate or not the total frag-

mented order flow given their global inventory position. The inter-dependent quoting

aggressiveness across venues in turn impacts the magnitude of market spreads in each

venue.

Using Proposition 1, we compute the expected best prices in the dominant and satellite

markets for any set of inventory positions and any sign for the order flows QD and QS

in Proposition 2 below. For ease of exposition, we denote by qm the magnitude of the

order flow routed to market m: −qm = Qm for a net-selling order flow and qm = Qm for

a net-buying order flow (m = D,S).

Proposition 2 Under the assumption that qD < (Iu− Id), the expected (half-) spreads in

the dominant and the satellite venues respectively write:

E
(
sD
)

=
ρσ2

2

(
qD −

2Id + Iu
3

)
+ λSρσ

2qS

[
γ

(
qD

(Iu − Id)
− (qD)2

3 (Iu − Id)2

)
− (1− γ)

]
,

(3)
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E
(
sS
)

=
ρσ2

2

(
qS −

2Id + Iu
3

)
+ λDρσ

2qD

[
qD

(Iu − Id)
− (qD)2

3 (Iu − Id)2
− (1− γ)

]
, (4)

where γ is the probability that order flows routed to D and to S have the same sign

and λ−m is the conditional probability to observe simultaneously a non-zero order flow

routed to the alternative venue given that the order flow routed to market m is non-zero

(λ−m = Pr(q−m 6= 0|qm 6= 0)) (m = D,S).

In line with the intuitions exposed above, the first component of the expected best offer

(Eq. (3) and (4)) is the direct price impact of the order flow routed to this venue. It

corresponds to the expected best offer that would prevail if q−m is zero (or λ−m = 0). The

second component consists of the indirect price impact of trading in another venue (q−m)

resulting from the interdependent quoting strategies of multi-venue market-making. In

particular, note that the order flow routed to the dominant market has a bigger impact

on spreads in the satellite market than the reverse (given that λD ≥ λS, qD ≥ qS, and

(1− γ)(qD/rd − ru − (qD/rd − ru)2) ≥ 0). It is also worth noticing that expected spreads

across venues are increasing with the probability that order flows QD and QS have same

signs (γ).

Proposition 2 shows that spreads in one venue are indirectly influenced by orders sent

to other venues due to the presence of strategic multi-venue dealers. Multi-venue market-

making strategy makes the liquidity (measured by quoted spreads) of different venues

interrelated in our model, as stated by the following Corollary:

Proposition 3 Expected spreads co-vary jointly:

cov(sD, sS)

4 (ρσ2)2 (Iu − Id)2
=

1

18

(
3γ − 1

2

)
−φ2

D

(
1

6
− 2

9
φD + γ

φ2
D

12

)
−γφDφS

(
φ4
D

9
− 2φ3

D

3
+

5φ2
D

4
− 8φD

9
+

1

6

)
(5)

where φD = qD
(Iu−Id)

and φS = qS
(Iu−Id)

, and sm is the half-spread in venue m (sm =

(am − µ)× 2).

Our model proposes a new explanation to the interconnectedness of trading venues. Mar-

ket interrelations might be explained by arbitrage strategies (Rahi and Zigrand, 2013),

duplicate strategies (van Kervel, 2014) or directional trading strategies (Chowdhry and
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Nanda, 1991), and also by inventory management strategies of multi-venues market-

makers.8

2.2.4 Market quality

The previous results raise a natural question: overall, is market performance better or

worse when liquidity supply is strategically supplied across multiple venues?

From Proposition 2, we compute the total expected transaction costs in order to

determine whether making the market across multiple venues has a positive or negative

impact on investors. The next corollary compares them to expected transaction costs

that would prevail in a batch market (our natural benchmark).

Corollary 1 Expected transaction costs are lower in fragmented markets than in a batch

market if γ > 1
3

and qD is neither too large, nor too small (r1γ(Iu−Id) < qD < r2γ(Iu−Id)).

The intuition of the corollary is as follows. For large values of γ, if qD is large, the

probability that dealers’ inventory are highly divergent is low, which in turn implies that

the probability to observe more aggressive quoting strategies than in the benchmark is

also low. Expected transaction costs are thus higher in case of fragmented trading. When

qD is small enough, dealers’ prices are more likely to be more competitive, and even more

competitive than the benchmark, leading to lower average transaction costs. For small

values of γ, if qD is small, a small divergence between dealers’ inventory position is less

likely, and the probability to observe quoting strategies as aggressive as in the benchmark

is small. If qD is large, this probability is higher. The higher competitiveness of dealers’

quotes is thus obtained in two opposite situations: for large qD when γ is small and for

small qD when γ is large. The second situation has on average a larger impact, resulting

in more competitive spreads when qD is small enough but not too small (depending on

γ).

This ambiguous result of fragmentation on market performance is consistent with the

mixed empirical evidence investigating market performance in the context of fragmented

markets (see, e.g., the literature review in O’Hara and Ye, 2011). In our model, multi-

venue market-makers consolidate the order flow through their inventory management,

which may have a positive externality in some cases. Few theoretical models find positive

8See Cespa and Foucault (2013) for interconnectedness across different assets.
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impacts of fragmentation of trading. Foucault and Menkveld (2008) show that the total

depth is larger due to the presence of investors who consolidate the market through their

queue jumping strategy across limit order books.

2.3 Discussion

The aim of this section is to assess the impact of relaxing some of the model’s assumptions.

We analyze two extensions. First, we relax the hypothesis that order flows sent to markets

D and S are exogenously split and analyze the impact of endogenizing fragmentation.

Second, we investigate whether inventory divergences between dealers are so large that

dealers would prefer trading and sharing risks in the inter-dealer market in a first stage,

before trading or not in the customer-dealer market in a second stage.

2.3.1 Endogenous fragmentation of the total order flow

This sub-section investigates the case in which investors must trade a given quantity

denoted Q and might choose to split orders across venues in order to optimize their

execution costs.9 Note that the strategic decision to spatially split up order flow extends

the case in which order flows sent to D and S are exogenously of same sign. As in section

2.1, we suppose that dealer 1 is longer than dealer 2 and that Q is a buy order flow, i.e.

Q > 0 (results about a sell order flow, or dealer 2 longer than dealer 1 are deduced by

symmetry).

We consider that liquidity demanders enjoy some private benefits denoted δm to trade

in venue m. We assume that δD > δS, consistently with the dominant market defined

above, and that δD − δS < ρσ2Q.10,11 Liquidity demanders choose the proportion α of

the order flow routed to market D (and (1 − α) to market S) so as to minimize their

9See Degryse et al (2013) for an analysis of “order splitting” by liquidity demanders over time rather
than over venues.

10Numerous studies (Froot and Dabora, 1999, Gagnon and Karolyi, 2004, Foerster and Karolyi, 1999,
Shleifer and Vishny, 1997, or Stulz, 2005) document the existence of a domestic bias, due to investment
barriers, e.g., regulatory barriers, taxes, or information constraints. Still in 2013 in Europe, brokerage
fees charged to a trade in a foreign country or trading venue are 15 to 40% higher than those charged to
trade in a national exchange, but the situation was even worse back in 2007 (see documents on Fees and
Commissions of various brokers from 2007 to 2013).

11When δD−δS ≥ ρσ2Q, the private benefits of trading in venue D are so large that it is never optimal
for investors to split the quantity to be traded across trading platforms.
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transaction costs.12 Let us show that there exists an equilibrium such that α ∈ (1
2
; 1),

that is, such that investors optimally split order flows across platforms.13 In this interval,

transaction costs write:

TC(α) = [(aD(αQ)− δD − µ)α + (aS((1− α)Q)− δS − µ)(1− α)]×Q.

In the Appendix, we show the existence and the characterization of an equilibrium α∗.

This yields the following proposition.

Proposition 4 If I1 − I2 > (δD−δS)
2ρσ2 , there exists an interior equilibrium α∗, such that it

is optimal for investors to split their order flow across venues.

We find that there exists cases in which α∗ is strictly lower than 1, which means that liq-

uidity demanders may choose to split order flows across platforms to optimize transaction

costs. Liquidity demanders trade-off the benefits of price competition through fragmenta-

tion (related to inventories divergence, I1− I2) to the private benefits of sending the total

quantity in the dominant market (δD − δS), that is, when r2(Q)− r1(Q) > (δD − δS).

2.3.2 Introduction of an inter-dealer market

In this section, we analyze the sensitivity of our results to the introduction of an inter-

dealer market in which dealers are able to optimally share inventory risks (stage 1) before

setting quotes in the customer-dealer market (stage 2).

In a conservative approach, we assume that dealers independently and unstrategically

maximize their expected profit in the inter-dealer market, then their expected profit in

the customer-dealer market (the model is solved sequentially).14

In the first stage, we find that at the symmetric equilibrium, dealers perfectly share

inventory risk in the inter-dealer market, that is, they trade a quantity q∗ = I1−I2
2

at price

12Following our set up in which markets are transparent, we suppose that liquidity demanders perfectly
anticipate what the best bid and ask prices are.

13See Supplementary Appendix for a complete proof of the existence and characterization of the equi-
libria.

14When considering the case in which dealers strategically trade in the inter-dealer market after ob-
serving the realization of the order flows in markets D and S, we find that dealers may find it optimal to
reinforce the divergence in their inventory positions. We would like to show that our analysis is robust to
non-strategic risk sharing among dealers, that is the reason why our paper focuses on the case in which
the two stages are independent.

16



p∗ = µ − ρσ2 I1+I2
2

such that their new inventory positions (I ′1, I
′
2) write I ′1 = I ′2 = I1+I2

2
.

In the second stage, we simply use the equilibrium in the customer-dealer market derived

in section 2.2 for the limit case where I ′1 → I ′2. Finally, we compute and compare the

dealers’ expected profits whether they trade or not in the inter-dealer market. This yields

the following corollary.

Corollary 2 The set of parameters for which dealers choose not to trade in the inter-

dealer market is non-empty.

2.4 Testable implications

Our multi-venue inventory model implies two types of testable predictions: at the liq-

uidity supplier level, changes in inventories of multi-venue market-makers might drive

their cross-venue quote submission/revision strategies ; at the venue level, risk-aversion

and inventories divergence affect the degree of price competition, potentially generating

variations in bid-ask spreads.

At the liquidity supplier level, our model predicts that reservation prices depend on

dealers’ risk aversion, the variance of the risky asset, the total quantity that might be

executed across venues and the level of dealers’ global inventory in the asset across venues.

Define a trader’s global inventory as her aggregate net volume across all trading venues:

Ii,t = Ii,0+
∑τ=t

τ=0Q
D
τ +
∑τ=t

τ=0Q
S
τ . We can thus formulate the following testable hypothesis:

Hypothesis 1 If dealers provide liquidity across multiple venues, their global inventories

should display mean reversion.

Our model implies that, after a trade, say in venue S, that increases the inventory ex-

posure, a multi-venue dealer should update quotes in venue S, but also in venue D to

elicit inventory-reducing orders. Within-venue inventory effects are tested in Hansh, Naik

and Viswanathan (1999) or Reiss and Werner (1998) for dealers markets, and Raman and

Yadav (2013) for limit order book markets. We specifically focus on cross-venue inventory

effect, that has to be formulated in the context of our experiment, i.e. the limit-order-book

environment of Euronext. We thus posit the following hypothesis:

Hypothesis 2 Multi-venue market-makers should update existing limit orders or submit
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new orders in one venue after a trade in another venue, in a direction that is associated

with their inventory changes.

For instance, after executing a sell order in the satellite venue that increases the total

inventory exposure, a multi-venue market-maker should be more likely to cancel an exist-

ing buy order in the dominant market, or modify it for a less aggressive price (negative

revision), or post a new sell limit order in the dominant market or modify an existing sell

order for a more aggressive price (positive revision). We acknowledge that other trad-

ing motives could yield to inventory-like orders placement strategies, such as cross-venue

arbitrage strategies. In case, say, the bid price in market S jumps above the best ask

in market D, an arbitrageur might step in and sell one share in market S, and buy one

in market D to reduce the existing price discrepancy. The buy and sell orders submis-

sions from the arbitrageur are empirically similar to inventory-driven strategies. We thus

control for arbitrage opportunities in our empirical analysis.

At the trading venue level, Proposition 1 shows that price competition is strong when

inventories divergence among dealers is large and when order flows across venues have same

signs. We thus expect more liquidity, or tighter spreads, when both are true. Comerton-

Forde et al (2010) finds that variation in spreads on the NYSE are related to the aggregate

level of the committed capital by market-makers (inventories) and in particular to the

tightness of the funding market. We use a measure of differences in inventory positions

across dealers to test whether it matters for liquidity variations, while controlling for the

signs of order flows across venues:

Hypothesis 3 Variation is spreads in one venue depends on both the directions of or-

der flows across venues (identical or opposite), and on how extreme dealers’ inventory

positions are relative to each other.

This prediction is interesting because it allows us to distinguish our theory from a compet-

ing adverse-selection hypothesis: in case an informed trader would split his orders across

venues, the adverse selection component of multi-venue market-makers should increase.

Liquidity should thus decrease in all venues if order flows across venues have same di-

rection. The impact of the interaction on (lagged) inventories divergence and order flow

direction should however have a positive impact on liquidity, as predicted by our model.
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3 Empirical analysis

In order to test the predictions of the model, we use a proprietary dataset from Euronext

on multi-listed stocks.

3.1 Forming the sample

Euronext was created in 2000 as a result of the merger of three European exchanges,

namely Amsterdam, Brussels and Paris. Lisbon joined in 2002. Before the introduction

of the Universal Trading Platform (UTP) in 2009, the four exchanges maintained their

domestic market. As a result, firms could be multi-listed on several Euronext exchanges;

for example, Air France-KLM was traded in Amsterdam and in Paris.

Our sample consists of all multi-traded stocks within Euronext, spanning four months

(79 trading days) from January 1, 2007 to April 30, 2007.15 The data on orders and

quotes are provided by Euronext. Euronext files also provide us with the identification

of the member participating in each quote or transaction, and whether the member is

acting as an agent or as a principal. The data assigns the same code to a member across

stocks and across exchanges, enabling us to trace members’ inventory changes and quoting

behavior across time and across exchanges. Euronext exchanges follow the same market

model (same trading hours, and same trading rules), and the payment of membership

fees grants access to all Euronext markets. Note also that, during our sample period

(pre-MiFID environment), trading was concentrated in Euronext.16 For all these reasons,

Euronext is an excellent environment to test the predictions of our model.

We keep firms that trade in euros using a continuous trading session in at least two

exchanges on which they are traded. We also restrict our analysis to members acting

in their capacity as a principal (that is, either proprietary traders or exchange-regulated

market makers) who post order messages (submission, revision, cancellation) and trade

at least once in each of the two exchanges on which the stock is traded. Overall, we

follow 46 members, denominated as “multi-venue dealers”. Because these dealers do

15Three trading days are dropped in January due to missing data about best limits.
16Some French stocks were traded on the LSE or the Deutsche Boerse, while some Dutch stocks were

traded in Xetra. Gresse (2012) finds a market share of 96.45% for CAC40 stocks and even 99.99% for
other SBF120 stocks in October 2007. Degryse, De Jong, and van Kervel (2011) show that Euronext
concentrates the trading volume of the 52 AEX Large and Mid cap constituents on our sample period.
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not necessarily follow the same stocks, our sample finally consists of 178 couples (stock,

dealer), among which 20% involve an exchange-regulated market-maker, called thereafter

Designated Market-Maker (DMM) (see Panel C of Table 1).17

The final sample contains 20 firms with at least one multi-venue dealer with non-

missing data, trading continuously in two Euronext exchanges. Among them, 11 are

traded on Euronext Amsterdam, 12 are traded on Euronext Brussels and 17 on Euronext

Paris. To determine which is the dominant market (market D in the model) and which is

the satellite market (market S in the model), we use the primary market as the (exoge-

nous) dominant platform.

3.1.1 Measuring liquidity

We measure the spread in the market m as the equally-weighted average bid-ask spread

for stock j, during a twenty-minutes interval t.18 We focus on the relative bid-ask spread

RBAS m, and the variation of the relative spread between two consecutive intervals,

∆RBAS m, where m = DOM,SAT .

3.1.2 Measuring global inventory

As pointed out by Hansch et al. (1998), dealers differ in the amount of capital at risk

they commit to their trading activities and/or in their risk aversion. We follow their

methodology by building standardized inventory positions to control for these differences.

Let IP s
i,t denote the inventory position of multi-venue dealer i in stock s at the end of

day t. We use the record of all trades executed by each multi-venue dealer in multiple

markets as a principal, plus the direction of these trades in both markets to obtain her

inventory position at the end of each day. We thus construct a time series for each multi-

venue dealer’s inventory position in each stock from the start to the end of our sample

period. Since more than 95% of the volumes are traded in Euronext during our sample

period, our inventory variable is a good proxy for dealers’ global inventories. We compute

17Our paper does not compare the liquidity provision of exchange-regulated market-makers versus
endogenous market-makers, as Anand and Venkatamaran (2013) do using Toronto Stock Exchange data.
We however keep trace of their difference in trading behaviors as suggested by the literature.

18We compute both equally-weighted and time-weighted averages of the quoted spreads. As the results
for the two weighting schemes are virtually identical, we restrict the presentation to the equally-weighted
spread measures.
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the mean (IP
s

i ) and the standard deviation (Ssi ) for each of these inventory series. The

standardized inventory is defined as follows:

Isi,t =
IP s

i,t − IP
s

i

Ssi
.

We then build a measure of the inventory divergence. Let IsM,t denote the median

inventory on day t in stock s, and let IDi,t = |Isi,t− IsM,t| denote the member i’s inventory

position relative to the median inventory. The larger IDi, the more divergent the inventory

position of member i relative to the median is, and the more aggressively she will quote,

in order to reduce her inventory exposure (Hansh et al., 1998). We take the mean of the

inventory divergence across dealers for each interval t and each stock s, RI
s

t , to get the

degree of quoting aggressiveness induced by inventory management. We use this measure

as a proxy of the difference I1 − I2 in our model.

3.1.3 Determining the direction of order flows across venues

The model’s predictions depend on whether order flows sent across venues have the same

or the opposite direction. We define the net order flow in market m (i.e. trade imbalance)

in stock s during a twenty-minutes interval t, TrIMB m, as the number of buyer-initiated

trades minus the number of seller-initiated trades. The dummy variable d POS takes the

value of one if the order flows have the same direction (TrIMB DOM×TrIMB SAT >

0) on a given twenty-minutes interval, and zero otherwise. Note that we exclude the

first and last five minutes of trading in order to avoid contamination by specific trading

behaviors during the open or close of the markets.19

3.1.4 Control variables

In regressions, we control for the existence of arbitrage opportunities given that arbi-

trageurs by buying the asset in one venue and reselling it in the other venue behave as

inventory-driven market-makers. The dummy d AO takes the value of one if the best bid

in one venue exceeds the best ask in the other venue, i.e. max(Bid SAT ,Bid DOM) >

min(Ask SAT ,Ask DOM). We also expect arbitrageurs to use more often aggressive

19On February 19, 2007, the closing fixing moved from 5:25 pm to 5:30 pm. We therefore drop all
observations before 9:05 am and after 5:20 pm.
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transactions (marketable orders) than passive transactions (non-aggressive limit orders)

to take fast arbitrage opportunities. We thus use the dummy d AT which takes the value

of one if the origin of transaction executed by the dealer is an aggressive order, and zero

if it is a limit order hit. In some regressions, we also control for the pending time to the

next market close (TimeClos), the (log) transaction size in number of shares (TrSize),

and the number of trades NbTr.

3.2 Summary statistics

Table 1 presents summary statistics for our sample. Panel A presents statistics across

stocks. The average (median) firm has a stock price of 53.3 (50.09) Euros, a market cap

of 31.5 (23.2) billion Euros, and 10 (6) multi-venue dealers trading on the stock. There

is an average number of 3 arbitrage opportunities per day, and 60% of order flows across

venues have the same direction. Panel B presents statistics computed within each market.

Relative (quoted) spreads of the satellite market are five to ten times larger than those of

the dominant market, depending if one takes means or medians. The number of trades

is much smaller (twenty five times in average) in the satellite market, reflecting lack of

trade activity, and transaction size is also much smaller. Surprisingly, the number of best

limit updates is only three times less in average in the satellite venue, which attracts also

33% of order messages in average. It seems that the satellite market is not a very active

trading place, but it is closely monitored. T-tests of the difference in means between the

two markets (not shown) confirm the statistical significance of these differences. Panel

C presents statistics computed for each multi-venue dealer. In particular, we test for

mean reversion in dealer global inventories, by considering the following standard model

of inventory time series,

∆Iit = α + βIit−1 + εt

where ∆Iit is the change in inventory from the previous trade. Mean reversion predicts

that β < 0 (if β = 0, it has a unit root and it is non-stationary).

Across the 178 couples dealers-stock, Panel C shows that the average mean-reversion

parameter (β) is -0.073, which means that dealers reduce, in average, inventory by 7.3%

during the next trade. Mean reversion might be strong. The null hypothesis of a unit

root is rejected at the 1% level by the Phillips-Perron test (Perron, 1988) in 11 cases, at
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5% in 11 cases and at 10% in 2 cases.

3.3 Multivariate analysis

3.3.1 Inventory management across venues

The main implication of our multi-venue inventory model is that dealers actively manage

their inventory position across venues. The aim of the paper is in particular to investigate

cross-venues inventory management strategies. We thus test whether a multi-venue dealer

updates his orders in one venue in response to a transaction in another venue (a change

in his global inventory). We focus on the use of the dominant more liquid market after

a transaction in the satellite market. For example, after a buy in the satellite market, a

multi-venue dealer should cancel, negatively revise existing buy orders, or submit new sell

orders or positively modify sell orders in the dominant market, and symmetrically after

a sell. We thus implement the following Logit regression for each multi-venue dealer:

Pr(d i) = α + β1d DMM + β2|Ii,τ−1|+ β3d DMM × |Ii,τ−1|

+β4d AOs,τ + β5log(TrSizes,τ ) + β6TimeCloss,τ + εs,τ (6)

where d i is the dummy variable that takes 1 if dealer i sends an order in the dominant

market in direction of inventory following a trade at time τ in the satellite market.20 The

explanatory variables are the lagged absolute inventory position of dealer i, the dummy

variable for designated market-makers, and the interaction between both. We also control

for the existence of an arbitrage opportunity at the time of the trade, the size of the trade,

and the pending time to the close. Our specification also includes firm fixed-effects to

control for time-invariant firm heterogeneity. We run the regression both after an active

and a passive transaction.

The results of the Logit analysis are presented in Table 2. Panel A reports the results

for order submissions after a passive transaction, while Panel B reports the results for

order submissions after an active transaction. In both cases, the likelihood that multi-

venue dealers manage actively their inventory across venues is larger when they are ded-

icated market-makers. However cross-venues trading strategies seem different according

20Orders are tracked through their first 10 seconds after a trade.
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to whether the change in global inventory has been caused by a passive transaction or an

active transaction. The probability to post cross-venues management orders is negatively

related to the existence of an arbitrage opportunity when the transaction is passive, while

it is positively related when it is active. Dealers are thus more likely to submit messages

in direction of inventory in dominant market when their preexisting orders have been

passively hit in the satellite market, while they might use arbitrage strategies when they

cause active transactions. Consistent with this finding, we find that dedicated market-

makers are more likely to use cross-inventory management when their inventory position

is more extreme and when the transaction is passive. When the transaction is active, the

inventory position of dedicated market-makers has no influence, in favor of an arbitrage

trading strategy. In summary, these results are consistent with the main implication of

our model that multi-venue dealers might implement active inventory management across

venues.

3.3.2 Spreads

To test the prediction on spreads of our model, we estimate the relation between the vari-

ation in twenty-minute bid-ask spreads in the satellite market and the price competition

among multi-venue dealers which is related to their inventory divergence (RI
s
) and to the

direction of order flows across venues (i.e., whether the dummy d POS is equal to one).

We run the following panel regression model:

∆RBAS SAT st = α+β1RI
s

t−1+β2d POS
s
t +β3d POSt×RI t−1+β4NbTr SAT

s
t +εst (7)

Lemma 1 predicts that the sign of the order flows routed across platforms impacts the

spreads. More specifically, from Corollary 1, we expect the following sign: β2 > 0. Given

that the average inventory divergence, RI, is a proxy for quoting aggressiveness, we expect

that in case of extreme inventory divergence and same direction of order flows across

venues, dealers compete aggressively to execute both orders, β3 < 0. This interaction

term allows us to depart from any adverse selection effect which would predict β3 > 0.

Finally, the number of trades in the satellite market, NbTr SAT , controls for the impact

of trades, we thus expect β4 > 0.

All specifications include day dummies and use clustered standard errors by stock to
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accommodate the possibility that relative spreads are strongly correlated within firms.

Table 3 presents estimation results. We report two specifications: the first with time

fixed-effect (Column 1)) and the second with day and firm fixed-effects. The main conclu-

sions from the analysis are as follows. First, spreads in the satellite market vary with the

direction of order flows across venues (coeff. 0.108, t-stat. 2.14 in column 1), consistently

with our predictions. Second, the variable of interest which is the interaction term be-

tween the direction of order flows and inventory divergence has a negative and statistical

significant impact on spreads (coeff. -0.12, t-stat. -2.00). Dealers post more aggressive

prices when there is a high difference of inventories between them and when order flows

have the same direction, as predicted by Proposition 1. Results for other control variables

are not statistically significant.

The most important result of Table 3 is that spreads in the satellite market are signif-

icantly lower when the divergence of inventory position among dealers is large and when

order flows across venues have the same sign, as uniquely predicted by Proposition 1.

4 Conclusion

A better understanding of fragmentation and cross-venues trading strategies is all the

rage these days. We develop a multi-venue inventory model in which risk averse market

makers quote a single asset in two venues. Counter-intuitively, we find that cross-venue

inventory control may yield a consolidation of liquidity. Our model has interesting policy

implications as we show that fragmentation may decrease total transaction costs. The

intuition for this result is that the opportunity to execute only the portion of the order

flow that best reduces inventory exposure, and to post competitive quotes in either venue,

obliges competitors to post aggressive quotes across all venues.

Our model also yields unique empirical predictions. In particular, we show that quote

aggressiveness depends i. on the way order flow fragments between venues, ii. on the

divergence of dealers’ inventory positions, and iii. on the interaction between the two.

We exploit the co-existence of multiple order books for the same security within Euronext

to test these predictions. Our empirical results are as follows. First, we document the

presence of multi-venue market makers. Second, we find evidence of cross-venue inventory

control effects. Third, our panel regression analysis reveals that bid-ask spreads in a venue
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vary with the order flow routed to the alternative venue, and to its interaction with the

dispersion in inventory positions. These empirical findings are in line with the predictions

of the model and cannot be explained by alternative theories, e.g. arbitrage strategies.

Overall, our results complement the existing literature on liquidity interconnectedness

across multiple venues. We suggest the existence of an alternative common factor in

liquidity that differs from the traditional public or private information channels, related

to multi-venue market makers’ inventory management. This raises intriguing issues. For

practitioners, it calls for new measures of idiosyncratic liquidity that would enable brokers

looking for best execution to assess the relative performance of each trading venue. For

regulators, it calls for a better understanding of the potential consequences of a volatility

shock, since we exhibit the presence of indirect effects of the asset’s volatility on bid-ask

spreads due to the covariance between spreads.
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Figure 1: Tree of the quoting game across trading venues

Figure 1 represents the tree of the trading game. At date 1 (not represented on the Figure), dealer
i is endowed with an inventory position denoted Ii. At date 2, liquidity demanders are affected by
a liquidity shock with probability ε and send a net buying order flow with probability 1/2. This
order flow fragments between two trading venues D and S . With probability λ, the part sent to
D denoted QD and the other part sent to S denoted QS are simultaneously different from zero,
and are of same sign with probability γ. Dealers observe . At date 3, they post an ask price if
Qm > 0 or a bid price if Qm < 0 in market m. Simultaneously, if Q−m 6= 0, they post an ask price
if Q−m > 0 or a bid price if Q−m < 0 in market −m. In Section 3, we find the equilibrium quotes
of the subgames (1+) and (1-) for m = D, and (1+) and (3-) for m = S.
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Intense competition - Consolidation of the 

total fragmented order flow through dealer 1

Normal competition - Consolidation of the 

total fragmented order flow through dealer 1

Competition : dealer 1 executes QD and 

dealer 2 executes QS

Weak competition:  dealer 1 executes QD 

and dealer 2 executes QS.

Consolidation

Fragmentation

2.

1.

Figure 2: Outcome of the quoting game - Summary of Proposition 1
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5 Appendix – Proofs

Preliminary elements used in the proofs: Trading Profits

When QS > 0, dealer i’s trading profit is simply given by:

vi
(
aD1 , a

D
2 , a

S
1 , a

S
2

)
=


aDi QD + aSi QS − ri (QD +QS) (QD +QS) if aDi < aD−i and aSi < aS−i,(

aDi − ri (QD)
)
QD if aDi < aD−i and aSi > aS−i,(

aSi − ri (QS)
)
QS if aDi > aD−i and aSi < aS−i,

0 if aDi > aD−i and aSi > aS−i.

When QS < 0, dealer i’s trading profit is given by:

vi
(
aD1 , a

D
2 , b

S
1 , b

S
2

)
=


aDi QD − bSi |QS| − ri (QD +QS) (QD +QS) if aDi < aD−i and bSi > bS−i,(

aDi − ri (QD)
)
QD if aDi < aD−i and bSi < bS−i,(

ri (QS)− bSi
)
|QS| if aDi > aD−i and bSi > bS−i,

0 if aDi > aD−i and bSi < bS−i.

where ami (resp. bmi ) denote the ask (resp. bid) price set by dealer i ∈ {1; 2} in market

m ∈ {D;S}.21

Proof of Lemma 1

Case 1. We first look for the necessary conditions that must be simultaneously fulfilled

to guarantee the existence of an equilibrium characterized by the consolidation of the

order flow.

Dealer i ∈ {1, 2} trades the total fragmented order flow in equilibrium if and only if the

ask price aD prevailing in market D (in which QD > 0), and the ask or the bid price pS

prevailing in market S (in which QS > 0 or QS < 0) are the maximum (resp. minimum

in market S if QS < 0) prices such that: (i) trading QD +QS is profitable for dealer i (i.e.

vi(QD + QS) ≥ 0), but not for dealer −i (i.e. v−i(QD + QS) < 0); (ii) for m = {D,S},
even if he expects to trade Qm, dealer i is willing to trade Q−m (i.e. vi(QD+QS) ≥ vi(QS)

and vi(QD + QS) ≥ vi(QD)); (iii) dealer −i is not willing to undercut dealer i neither in

21As in Biais (1993), the utility function of dealers given in (1) is linearized, under the assumption
QD < Iu − Id. Note that, in our centralized setting, the criticism on the linear approximation used by
Biais (1993) for the fragmented market raised by de Frutos and Manzano (2002) does not apply. The
assumption QD < Iu − Id also guarantees that ex ante, dealer i (for i = 1, 2) has a probability to post
the best price in market m (m = D,S) which is strictly greater than 0 and strictly lower than 1.
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market D nor in market S (i.e. v−i(QD) < 0 and v−i(QS) < 0). Using the definition of

dealers’ reservation prices and trading profits, these conditions rewrite as follows:

i : aDQD + pSQS ≥ ri(QD +QS)(QD +QS),

i’ : aDQD + pSQS < r−i(QD +QS)(QD +QS);

ii : aD ≥ ri(QD) + ρσ2QS

ii’ : pSQS ≥
(
ri(QS) + ρσ2QD

)
QS

iii : aD < r−i(QD)

iii’ : pSQS < r−i(QS)QS

Suppose that dealer 1 trades QD+QS. If (I1−I2−QD)QS ≤ 0, then (r1(QS) + ρσ2QD)QS ≥
r2(QS)QS. Thus conditions (ii’) and (iii’) cannot hold simultaneously. A necessary condi-

tion for such an equilibrium to exist is thus (I1−I2−QD)QS > 0, i.e., either I1−I2 > QD

if QS > 0 or I1 − I2 < QD if QS < 0.

Suppose that dealer 2 trades QD +QS. Recall that by assumption I1 > I2 (implying that

r1(QD + QS) < r2(QD + QS)) and QD + QS > 0. Thus conditions (i) and (i’) cannot

simultaneously hold for i = 2. Therefore, there exists no equilibrium such that dealer 2

trades the total order flow.

Case 2. We now look for the necessary conditions that must be simultaneously fulfilled

to guarantee the existence of an equilibrium characterized by the fragmentation of the

order flow.

There exists an equilibrium such that dealer i ∈ {1, 2} trades QD and dealer −i trades

QS if and only if the ask price aD prevailing in market D (where QD > 0), and the ask

or bid price pS prevailing in market S (where QS is either positive or negative) are the

maximum (resp. minimum in market S if QS < 0) prices such that: (I) dealer i is better

off trading QD rather than QS (i.e. vi(QD) > vi(QS)) and dealer −i is better off trading

QS rather than QD (i.e. v−i(QS) > v−i(QD)); (II) dealer −i is better off trading QS only

rather than QD +QS (i.e. v−i(QD +QS) < v−i(QS)) and dealer i is better off trading QD

only rather than QD + QS (i.e. vi(QD + QS) < vi(QD)) ; (III) trading QD is profitable

for dealer i (i.e. vi(QD) ≥ 0) and trading QS is profitable for dealer −i (i.e. vi(QS) ≥ 0).
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These latter conditions may be rewritten as follows:

I : aD > ri(QD) + (pS − ri(QS))
QS

QD

I ’ : pSQS > r−i(QS)QS + (aD − r−i(QD))QD

II : aD < r−i(QD) + ρσ2QS

II’ : pSQS <
(
ri(QS) + ρσ2QD

)
QS

III : aD ≥ ri(QD)

III’ : pSQS ≥ r−i(QS)QS

Suppose that dealer 1 trades QD and dealer 2 trades QS. If (I1 − I2 − QD)QS ≥ 0, then

conditions II’ and III’ cannot hold simultaneously. A necessary condition for such an

equilibrium to exist is thus (I1 − I2 −QD)QS < 0, that is, either I1 − I2 < QD if QS > 0

or I1 − I2 > QD if QS < 0.

Suppose that dealer 1 trades QS and dealer 2 trades QD. If QS < 0, then conditions II and

III cannot hold simultaneously, since r1(QD) + ρσ2QS < r2(QD). If QS > 0, a necessary

condition for conditions I and I’ to hold simultaneously is

r1(QS) + (aD − r1(QD))
QD

QS

< r2(QS) + (aD − r2(QD))
QD

QS

,

which is never true since I1 > I2 and |QD| > |QS|. Consequently, there exists no equi-

librium in which the longer dealer (here, dealer 1) would be the first buyer in market S

while the shorter dealer 2 would be the first seller in market D.

Case 3. Suppose finally that (I1 − I2 − QD)QS = 0, then (r1(QS) + ρσ2QD) = r2(QS).

If dealer 1 expects to trade QD in market D, dealers 1 and 2 have the same reservation

prices for QS in market S. We show below that in equilibrium, dealer 1 trades QD, and

both dealers are equally likely to execute QS and post the same price in market S, that

is, the price at which they both are indifferent between trading or not: (pS1 )∗ = (pS2 )∗ =

(r1(QS) + ρσ2QD) = r2(QS). �

Proof of Proposition 1

From Lemma 1, there are various cases to consider, depending on the signs of I1−I2−QD

and QS.

40



Case 1.1.: QS > 0 and I1 − I2 > QD, i.e., (I1 − I2 −QD)QS > 0.

From Lemma 1, we know that dealer 1 consolidates the total fragmented order flow by

posting the best ask prices in both market D and S. The ask prices aD and aS are the

maximum prices that satisfy the set of conditions i to iii’ (Case 1 in the proof of Lemma

1).

ii and iii : r1(QD) + ρσ2QS ≤ aD < r2(QD)

ii’ and iii’ : r1(QS) + ρσ2QD ≤ aS < r2(QS)

i : r1(QD +QS)(QD +QS) ≤ aDQD + aSQS

i’ : aDQD + aSQS < r2(QD +QS)(QD +QS)

From the two first inequalities, (aD)∗ = r2(QD) − ε and (aS)∗ = r2(QS) − ε are natural

candidates for the equilibrium, as they are the maximum prices that satisfy conditions ii,

ii’, iii and iii’. Straightforward computations show that they also satisfy conditions i and

i’ (details are omitted for brevity).

Case 1.2: QS < 0 and I1 − I2 < QD, i.e., (I1 − I2 −QD)QS > 0.

From Lemma 1, we know that dealer 1 consolidates the total fragmented order flow by

posting the best ask price in market D and the best bid price in market S. The ask price

aD in market D and the bid price bS in market S are respectively the maximum and the

minimum prices that satisfy the set of conditions i to iii’ (Case 1 in the proof of Lemma

1).

ii and iii : r1(QD)− ρσ2(−QS) ≤ aD < r2(QD)

ii’ and iii’ : r2(QS) < bS ≤ r1(QS) + ρσ2QD

i and i’ : r1(QD +QS)(QD +QS) ≤ aDQD + bSQS < r2(QD +QS)(QD +QS)

The natural candidates for the equilibrium aD = r2(QD) − ε and bS = r2(QS) + ε do

not satisfy condition i’. Consequently, the constraint i’ is binding at equilibrium, and
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equilibrium prices must be such that:

(aD)∗ = r2(QD +QS) + (b∗S − r2(QD +QS))
(−QS)

QD

− ε

First, we use the expression of (aD)∗ in dealer 1’s trading profit (conditional on the fact

that she executes QD and QS): v−L1 (QD + QS) = ρσ2(I1 − I2)(QD + QS). This trading

profit does not depend on equilibrium prices. Consequently, there may exist a continuum

of prices that may sustain the equilibrium. Second, inputing (aD)∗ into conditions ii to

iii’, the equilibrium price in market S must satisfy:

ii and iii : (r1 − r2)
QD

−QS

+ r2(QS) ≤ (bS)∗ < (r2 − r1)
QD

−QS

+ r2(QS)− ρσ2QD

ii’ and iii’ : r2(QS) < (bS)∗ ≤ r1(QS) + ρσ2QD

Obviously, since I1 > I2, we have (r1 − r2) QD
−QS

< r2(QS) and r1(QS) + ρσ2QD < (r2 −
r1)

QD
−QS

+ r2(QS)− ρσ2QD. Thus the second inequality is constraining both the minimum

and the maximum possible price in market S. Within all equilibria defined by:

(aD)∗ = r2(QD +QS)
QD +QS

QD

+ (bS)∗
(−QS)

QD

− ε,

(bS)∗ ∈ (r2(QS) + ε, r1(QS) + ρσ2QD + ε],

we select the only equilibrium that is continuous at I1 − I2 = QD, that is, (aD)∗ =

r2(QD)− ρσ2(−QS)− ε, from which we deduce that (bs)
∗ = r2(QS) + ε .

Case 2.1.: QS > 0 and I1 − I2 < QD, i.e., (I1 − I2 −QD)QS < 0.

From Lemma 1, we know that dealer 1 executes QD while dealer 2 executes QS. The ask

prices aD and aS are the maximum prices that satisfy the set of conditions I to III’ (Case
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2 in the proof of Lemma 1).

II and III : r1(QD) ≤ aD < r2(QD) + ρσ2QS

II’ and III’ : r2(QS) ≤ aS < r1(QS) + ρσ2QD

I : aD > r1(QD) + (aS − r1(QS))
QS

QD

I’ : aS > r2(QS) + (aD − r2(QD))
QD

QS

The candidates for the equilibrium aD = r2(QD)+ρσ2QS−ε and aS = r1(QS)+ρσ2QD−ε
from the two first inequalities do not satisfy condition I’. Consequently, the constraint I’

is binding at equilibrium, and equilibrium prices must be such that:

(aD)∗ = r2(QD) + ((aS)∗ − r2(QS))
QS

QD

− ε (8)

First, notice that under the latter condition, condition I always holds (given that (I1 −
I2)(QD − QS) > 0). Second, inputting (aD)∗ defined in Eq.8 into conditions (II and III)

and (II’ and III’) yields the following restrictions on (aS)∗:

II and III:r2(QS) + (r1(QD)− r2(QD))
QD

QS

≤ (aS)∗ < r2(QS) + ρσ2QD

II’ and III’:r2(QS) ≤ (aS)∗ < r1(QS) + ρσ2QD

Third, we input (aD)∗ (defined in Eq.(8)) in both the trading profit of dealer 1, conditional

on the fact that she executes QD, and the trading profit of dealer 2, conditional on the

fact that he executes QS:

v1(QD) =

(
r2(QD) + ((aS)∗ − r2(QS))

QS

QD

− r1(QD)

)
QD,

v2(QS) = ((aS)∗ − r2(QS))QS.

We observe that dealers’ profits are strictly increasing in aS. Consequently, dealers’

reaction functions are such that the best ask price in market S is the highest possible one.

From conditions (II and III) and (II’ and III’), and under the hypothesis that I1−I2 < QD,
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we deduce that condition (II’ and III’) is binding and that (aS)∗ is such that:

(aS)∗ = r1(QS) + ρσ2QD − ε,

from which we deduce that

(aD)∗ = r2(QD) + ρσ2(I2 − I1 +QD)
QS

QD

− ε

Consequently, there exists a unique equilibrium such that dealer 1 post (aD)∗ and trades

QD while dealer 2 posts the best ask price equal to (aS)∗ and trades QS.

Case 2.2.: QS < 0 and I1 − I2 > QD, i.e., (I1 − I2 −QD)QS < 0.

From Lemma 1, we know that dealer 1 executes QD while dealer 2 executes QS. The ask

price aD in market D and the bid price bS in market S are respectively the maximum

and the minimum prices that satisfy the set of conditions I to III’ (Case 2 in the proof of

Lemma 1).

II and III : r1(QD) ≤ aD < r2(QD) + ρσ2QS

II’ and III’ : r1(QS) + ρσ2QD < bS ≤ r2(QS)

I : aD > r1(QD) + (bS − r1(QS))
QS

QD

I ’ : bS < r2(QS) + (r2(QD)− aD)
QD

−QS

From the two first inequalities, aD = r2(QD)−ρσ2(−QS)−ε and bS = r1(QS)+ρσ2QD+ε

are natural candidates for the equilibrium. It is easily shown that they also satisfy con-

ditions I and I’. Therefore, there exists a unique equilibrium such that dealer 1 posts the

best ask price in market D, equal to (aD)∗ = r2(QD)−ρσ2(−QS)−ε, while dealer 2 posts

the best ask in market S equal to (bS)∗ = r1(QS) + ρσ2QD + ε.

Case 3: I1 − I2 = QD, i.e., (I1 − I2 −QD)QS > 0.

Notice that if I1 − I2 = QD, then the equilibrium described in 1.1. cannot be sustained

because conditions ii’ and iii’ (i.e. r1(QS)+ρσ2QD ≤ aS = r2(QS)) cannot hold simultane-
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ously due to the strict inequality, which contradicts the equality r1(QS)+ρσ2QD = r2(QS).

If (aD)∗ = r2(QD)− ε and (aS)∗ = r2(QS) = r1(QS) + ρσ2QD however, conditions i, i’, ii,

ii’ and iii hold. Thus at these prices, dealer 2 becomes indifferent between trading QS or

not, and so is dealer 1.

�

Proof of Proposition 2

We decompose the proof into two results, depending on the sign of QS.

Result 1 Suppose that order flows have the same sign (with probability γ). Then, the

expected ask prices in the dominant (D) and the satellite (S) markets are equal to:

E
(
am,+

)
=

2rd (qm) + ru (qm)

3
+ ρσ2q−m

(
qD

Iu − Id
− 1

3

(
qD

Iu − Id

)2
)
,m = S,D. (9)

Proof. We first compute the expected ask that prevails in market D. For sake of brevity,

let us define rd (qD) = rd, ru (qD) = ru, r1 (qD) = x and r2 (qD) = y. The support of the

uniform distribution function of x and y simplifies to [ru, rd].

By definition,

E
(
aD,+

)
= E

(
min

(
aD,+1 , aD,+2

))
.

Given Proposition ?? and the symmetry of our hypotheses, the latter equation writes:

E
(
aD,+

)
= 2× E

(
y1x+ρσ2QD<y +

(
y + ρσ2QS

ρσ2QD − (y − x)

ρσ2QD

)
1x+ρσ2QD>y

)
The latter expression rewrites

E
(
aD,+

)
=

2

(rd − ru)2

[∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

ydydx+

∫ rd

ru

∫ rd

x

(
y + ρσ2QS

(
ρσ2QD − (y − x)

ρσ2QD

))
dydx

−
∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

(
y + ρσ2QS

(
ρσ2QD − (y − x)

ρσ2QD

))
dydx

]
.

After straightforward calculations, we get:

E
(
aD,+

)
=

2rd (qD) + ru (qD)

3
+ ρσ2qS

(
qD

(Iu − Id)
− (qD)2

3 (Iu − Id)2

)
.
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We now turn to the expected ask prevailing in market S using a similar reasoning. The

expression writes:

E
(
aS,+

)
= E

(
min

(
aS,+1 , aS,+2

))
= 2× E

(
y1x+ρσ2qD<y +

(
x+ ρσ2qD

)
1x+ρσ2qD>y

)
Using similar computations to those used in the previous case, the latter expression

rewrites:

E
(
aS,+

)
=

2rd(qS) + ru(qS)

3
+ ρσ2qD

(
qD

Iu − Id
− (qD)2

3 (Iu − Id)2

)
.

Q.E.D.

Result 2 (Opposite signs) Suppose that order flows have opposite signs (with probability

1− γ). The expected asks in markets D and S respectively write:

E
(
aD,−

)
=

2rd (qD) + ru (qD)

3
− ρσ2qS, (10)

E
(
aS,−

)
=

2rd (qS) + ru (qS)

3
− ρσ2qD +

(ρσ2qD)
2

(rd − ru)
− (ρσ2qD)

3

3 (rd − ru)2
.

Proof. We first compute the expected ask prevailing in market D (for QD > 0 and

QS < 0).

E
(
aD,−

)
= E

(
min

(
aD,−1 , aD,−2

))
Straightforward computations yield:

E
(
aD,−

)
=

2rd (qD) + ru (qD)

3
− ρσ2 (qS) .

Symmetrically, the expected ask prevailing in market S (considering that QD < 0 and

QS > 0) writes:

E
(
aS,−

)
= E

(
min

(
aS,−1 , aS,−2

))
= E

 r2 (QS)1r2(QS)>r1(QS)−ρσ2(−QD) + (r1 (QS)− ρσ2 (−QD))1r2(QS)<r1(QS)−ρσ2(−QD)

+r1 (QS)1r1(QS)>r2(QS)−ρσ2(−QD) + (r2 (QS)− ρσ2 (−QD))1r1(QS)<r2(QS)−ρσ2(−QD)

 .
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This can be developed as follows:

E
(
aS,−

)
=

1

(rd − ru)2

[∫ rd

ru+ρσ2(−QD)

∫ x−ρσ2(−QD)

ru

(
x− ρσ2 (−QD)

)
dydx

+

∫ rd−ρσ2(−QD)

ru

∫ rd

x+ρσ2(−QD)

(
y − ρσ2 (−QD)

)
dydx

+

(∫ rd

ru

∫ rd

x

(x) dydx−
∫ rd−ρσ2QD

ru

∫ rd

x+ρσ2QD

ydydx

)

+

(∫ rd

ru

∫ x

ru

(
y + ρσ2QD

)
dydx−

∫ rd

ru+ρσ2QD

∫ x−ρσ2QD

ru

(y) dydx

)]
.

This finally yields:

E
(
aS,−

)
=

2rd (QS) + ru (QS)

3
− ρσ2 (−QD) +

(ρσ2 (−QD))
2

(rd − ru)
− (ρσ2 (−QD))

3

3 (rd − ru)2
.

Q.E.D.

Proposition ?? is obtained from Results 1 and 2 considering the extensive form of the

game represented in Figure 1. Note that we change slightly notations qm = Qm for a

net-buying order flow and qm = −Qm for a net-selling order flow (m = S,D) in order to

ease computations of the Corollaries. �

Proof of Proposition 3

By definition:

covar(sD, sS) = 2covar(aD, aS) = 2
(
γcovar(aD,+, aS,+) + (1− γ)covar(aD,−, aS,−)

)
We decompose the proof into two results, depending on the sign of QS, that is, on whether

γ = 1 or γ = 0.

Result 3 (Same signs) Suppose that λS = λD = 1 and that order flows have same signs

(γ = 1). The covariance between the ask prices in the dominant (D) and the satellite (S)

markets is equal to:

covar
(
aD,+, aS,+

)
=
ρσ4

18
(Iu − Id)2

− ρσ4qD ×
(
− qD−qS

6
+ 2

9
(qS − qD) qD

(Iu−Id)
+ 15qS−qD

12

q2D
(Iu−Id)2

+ 2
3
qS

q3D
(Iu−Id)3

+ qS
9

q4D
(Iu−Id)4

)
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Proof.

By definition,

E
(
aD,+aS,+

)
= E

(
min

(
aD,+1 , aD,+2

)
×min

(
aS,+1 , aS,+2

))
We develop the expectation below, considering equilibrium prices for each couple of re-

alizations of (I1, I2) as a function of the reservation prices of the dealers, as given in

Proposition ??.

E
(
aD,+aS,+

)

=

∫ Iu−qD

Id+qD



∫ I1−qD
Id

(r2(qD)) (r2(qS)) f(I1)f(I2)dI2

+
∫ I1
I1−qD

(
r2(qD) + ρσ2qS

qD−(I1−I2)
qD

)
(r1(qS) + ρσ2qD) f(I1)f(I2)dI2

+
∫ I1+qD
I1

(
r1(qD) + ρσ2qS

qD−(I2−I1)
qD

)
(r2(qS) + ρσ2qD) f(I1)f(I2)dI2

+
∫ Iu
I1+qD

(r1(qD)) (r1(qS)) f(I1)f(I2)dI2

 dI1

+

∫ Id+qD

Id


∫ I1
Id

(
r2(qD) + ρσ2qS

qD−(I1−I2)
qD

)
(r1(qS) + ρσ2qD) f(I1)f(I2)dI2

+
∫ I1+qD
I1

(
r1(qD) + ρσ2qS

qD−(I2−I1)
qD

)
(r2(qS) + ρσ2qD) f(I1)f(I2)dI2

+
∫ Iu
I1+qD

(r1(qD)) (r1(qS)) f(I1)f(I2)dI2

 dI1

+

∫ Iu

Iu−qD


∫ I1−qD
Id

(r2(qD)) (r2(qS)) f(I1)f(I2)dI2

+
∫ I1
I1−qD

(
r2(qD) + ρσ2qS

qD−(I1−I2)
qD

)
(r1(qS) + ρσ2qD) f(I1)f(I2)dI2

+
∫ Iu
I1

(
r1(qD) + ρσ2qS

qD−(I2−I1)
qD

)
(r2(qS) + ρσ2qD) f(I1)f(I2)dI2

 dI1.

Computation yields:

E
(
aD,+aS,+

)
=

ρσ4

12(Iu − Id)2

×



−3q4D+

−q3D(6Id + 3qS − 10Iu)

−2q2D(−3I2d + 4IdqS + q2S − 6qSIu + 3I2u)

−qD(Id − Iu)(4I2d − 9IdqS + 6q2S − 2IdIu − 3qSIu − 2I2u)

+2(Id − Iu)2(3I2d − 2IdqS + 2IdIu − qSIu + I2u)


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Besides, E
(
aD,+

)
and E

(
aS,+

)
are given in Proposition ??, which yields:

E
(
aD,+)E(aS,+

)
=

ρσ4

36(Iu − Id)4
×

(
2q2DqS − 3qD(Id − Iu)(Id − 2qS − Iu) + 2(Id − Iu)2(2Id + Iu)

)
×

(
2q3D + 6q2D(Id − Iu) + (Id − Iu)2(4Id + 2Iu − 3qS)

)
Result 3 is finally obtained from the definition of the covariance:

covar
(
aD,+, aS,+

)
= E

(
aD,+aS,+

)
− E

(
aD,+

)
E
(
aS,+

)
Q.E.D.

Result 4 (Opposite signs) Suppose that λS = λD = 1 and that order flows have opposite

signs (γ = 0). The covariance between ask prices in markets D and S writes:

covar
(
aD,−, aS,−

)
=

ρσ4

18
(Iu − Id)2

− ρσ4

36
q2D ×

(
3

q2D
(Id − Iu)2

+ 8
qD

(Id − Iu)
+ 6

)
Proof. By definition,

E
(
aD,−aS,−

)
= E

(
min

(
aD,−1 , aD,−2

)
×min

(
aS,−1 , aS,−2

))
.

We consider equilibrium prices for each couple of realizations of (I1, I2) as a function of

the reservation prices of the dealers. According to Proposition ??:

(aD−H)∗ = r2(qD)− ρσ2qS

(aD−L)∗ = r2(qD)− ρσ2qS

and by symmetry:

(aS−H)∗ = r2(qS)− ρσ2qD

(aS−L)∗ = r1(qS)
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We develop the expectation below:

E
(
aD,−aS,−

)

=

∫ Iu−qD

Id+qD


∫ I1−qD
Id

(r2(qD)− ρσ2qS) (r2(qS)− ρσ2qD) f(I1)f(I2)dI2

+
∫ I1
I1−qD

(r2(qD)− ρσ2qS) (r1(qS)) f(I1)f(I2)dI2

+
∫ I1+qD
I1

(r1(qD)− ρσ2qS) (r2(qS)) f(I1)f(I2)dI2

+
∫ Iu
I1+qD

(r1(qD)− ρσ2qS) (r1(qS)− ρσ2qD) f(I1)f(I2)dI2

 dI1

+

∫ Id+qD

Id


∫ I1
Id

(r2(qD)− ρσ2qS) (r1(qS)) f(I1)f(I2)dI2

+
∫ I1+qD
I1

(r1(qD)− ρσ2qS) (r2(qS)) f(I1)f(I2)dI2

+
∫ Iu
I1+qD

(r1(qD)− ρσ2qS) (r1(qS)− ρσ2qD) f(I1)f(I2)dI2

 dI1

+

∫ Iu

Iu−qD


∫ I1−qD
Id

(r2(qD)− ρσ2qS) (r2(qS)− ρσ2qD) f(I1)f(I2)dI2

+
∫ I1
I1−qD

(r2(qD)− ρσ2qS) (r1(qS)) f(I1)f(I2)dI2

+
∫ Iu
I1

(r1(qD)− ρσ2qS) (r2(qS)) f(I1)f(I2)dI2

 dI1.

Computation yields:

E
(
aD,−aS,−

)
=

ρσ4

12(Iu − Id)2

×


−3q4D + 2q3D(−3Id + 2qS + 5Iu)

+qD(Id − Iu)2(4Id + 15qS + 2Iu)

+12q2D(Id − Iu)(qS + Iu)

+2(Id − Iu)2(3I2d − 3q2S + qSIu + I2u + 2IdqS + 2IdIu)


Besides, E

(
aD,−

)
and E

(
aS,−

)
are given in Proposition ??, which yields:

E
(
aD,−)E(aS,−

)
=

ρσ4

36(Iu − Id)2
× (−3qD + 4Id + 6qS + 2Iu)

×
(
2q3D − 6q2D(Iu − Id) + (Iu − Id)2(6qD + 4Id − 3qS + 2Iu)

)
Result 4 is finally obtained from the definition of the covariance:

covar
(
aD,−, aS,−

)
= E

(
aD,−aS,−

)
− E

(
aD,−

)
E
(
aS,−

)
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Q.E.D.

Corollary ?? is obtained from Results 3 and 4 considering the extensive form of the game

represented in Figure 1. �

Proof of Corollary 1

Remind that abatch denotes the minimum ask price in the benchmark model in which the

total order flow is consolidated. From Ho and Stoll (1983), we know that:

E
(
abatch

)
=

2rd (qm + q−m) + ru (qm + q−m)

3
.

Using Eq. (9) and (10) and the symmetry of the game, we deduce that the difference in

transactions costs between a fragmented or a consolidated order flow is:

∆TC = γ
(
E
(
aD,+

)
qD + E

(
aS,+

)
qS − E

(
abatch

)
(qD + qS)

)
+ (1− γ)

(
E
(
aD,−

)
qD − E

(
b
S,−
)
qS − E

(
abatch

)
(qD − qS)

)
.

After straightforward computations the latter expression is equal to:

∆TC = ρσ2qS (Iu − Id)
(
−(γ + 1)

3

)
Pγ(

qD
Iu − Id

)

where

Pγ(x) = x3 − 3x2 +
3

(γ + 1)
x+

(γ − 1)

(γ + 1)

for x ∈ [0, 1].

To investigate whether transaction costs are larger or smaller in the batch auction, let us

analyze the sign of this cubic polynomial. First, note that:

P ′γ (x) = 3x2 − 6x+
3

(1 + γ)
= 3

(
x−

(
1−

√
γ

1 + γ

))(
x−

(
1 +

√
γ

1 + γ

))
.

Given that x ∈ [0, 1], then x−
(

1 +
√

γ
1+γ

)
< 0, and the sign of P ′γ (x) only depends on

the sign of
(
x−

(
1−

√
γ

1+γ

))
. Pγ is increasing if x <

(
1−

√
γ

1+γ

)
and is decreasing if

x >
(

1−
√

γ
1+γ

)
. Thus, the local maximum is Pγ(1−

√
γ

1+γ
) =

γ(−1+2
√

γ
1+γ )

1+γ
.

Consider the case where γ ≤ 1
3
. Straightforward computations show that Pγ(1−

√
γ

1+γ
) ≤
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0 (with Pγ(1−
√

γ
1+γ

) = 0 if γ = 1
3
). We therefore deduce that Pγ ≤ 0, i.e., ∆TC > 0 if

γ ≤ 1
3
.

Consider now the case where γ > 1
3
. Then Pγ > 0, or, equivalently, ∆TC < 0 if x ∈ [r1γ, r

2
γ]

where Pγ(r
1
γ) = 0 = Pγ(r

2
γ). Note that if γ = 1, then it is direct to show that P1 > 0 if

x ∈ [0, (3−
√
3)

2
], or equivalently, ∆TC < 0 if qD < (3−

√
3)

2
(Iu − Id). �

Proof of Lemma 2

In our set up (identical risk aversion and identical pre-trade inventory distribution), we

can measure the dealers’ aggregate posttrade risk by the sum of the variance of their

posttrade assets (Yin, 2005). In the batch auction, the longer dealer executes the total

order flow, thus the aggregate posttrade risk is equal to:

(σ2
agg)

batch = V ar((I1 −QD −QS)ṽ) + V ar((I2)ṽ)

In the fragmented market, the posttrade allocations depend on the sign of (I1 − I2 −QD )QS.

• If (I1 − I2 −QD ) > 0 and QS > 0, or if (I1 − I2 −QD ) < 0 and QS < 0, the

aggregate posttrade risk is similar to that in the batch auction, because the longer

dealer consolidates the total order flow:

(σ2
agg)

cons = V ar((I1 −QD −QS)ṽ) + V ar((I2)ṽ) = (σ2
agg)

batch

• If (I1 − I2 −QD ) < 0 and QS > 0 , or if (I1 − I2 −QD ) > 0 and QS < 0, dealers

share the order flow and the aggregate posttrade risk is equal to:

(σ2
agg)

share = (σ2
agg)

H− = V ar((I1 −QD)ṽ) + V ar((I2 −QS)ṽ)

In the latter situation, the difference of posttrade risk between the fragmented market

and the batch auction is equal to:

(σ2
agg)

share − (σ2
agg)

batch =

 (V ar((I1 −QD)ṽ) + V ar((I2 −QS)ṽ))

− (V ar((I1 −QD −QS)ṽ) + V ar((I2)ṽ))


= 2QS(I1 − I2 −QD),
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which is strictly negative in the case we considered.

�

Proof of Proposition 4

Given the equilibrium prices
(
(aD)∗, (aS)∗

)
derived in Proposition 1, transaction costs

write:

TC(α) = [(aD(αQ)− δD − µ)α + (aS((1− α)Q)− δS − µ)(1− α)]×Q (11)

We want to show that there exists an interior equilibrium, that is, an α∗ ∈ [1
2
, 1) that

minimizes transaction costs TC(.). We first conjecture that there exists an equilibrium

characterized by a high divergence in dealers position, i.e., 1
2
≤ α < I1−I2

Q
. The first order

condition yields:

αH =
1

2
+
δD − δS
2ρσ2Q

The two conditions for an interior equilibrium α ∈ [1
2
, 1) to exist are thus: i. a condition

ensuring that our conjecture holds, i.e., αH < I1−I2
Q

, and ii. a condition ensuring that

the equilibrium is interior, i.e., αH < 1. The latter always holds under our assumption

δD − δS < ρσ2Q. Condition i. thus translates into a condition on the divergence of

inventory positions, i.e.

I1 − I2 >
1

2

(
Q+

δD − δS
ρσ2

)
. (12)

We now conjecture that there exists an equilibrium characterized by a low divergence

in dealers position, i.e., α ≥ I1−I2
Q

. The first order condition yields:

αL =
1

2
− δD − δS

2ρσ2Q
+

(I1 − I2)
Q

The three conditions for an interior equilibrium to exist are thus: i. a condition ensuring

that our conjecture holds, i.e., αL ≥ I1−I2
Q

, ii. a condition ensuring that the equilibrium

is interior, i.e., αL < 1, and iii. a condition ensuring that αL ≥ 1
2
. The first condition

always holds under our assumption δD− δS < ρσ2Q. The second condition translates into

I1 − I2 < Q
2

+ δD−δS
2ρσ2 , which is the complement of the condition (12) above. Notice that

if I1 − I2 = Q
2

+ δD−δS
2ρσ2 , then there exists an equilibrium such that α∗ = 1. The third

condition imposes I1 − I2 ≥ δD−δS
2ρσ2 .
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If I1 − I2 < δD−δS
2ρσ2 , then αL < 1

2
, which contradicts our first result that α ≥ 1

2
. The

investor would like to send a larger fraction to market S even though δD > δS, in order to

benefit from a lower price in S. However, if he did, this would switch the dominant and

satellite markets, thus prices. There is no solution to the FOC in[1
2
, 1). There is a corner

equilibrium: α∗ = 1. �

Proof of Corollary 2

First stage: the inter-dealer market. If dealer 1 sells a quantity x at price p to dealer

2 in the inter-dealer market, dealers’ profits write:(
vID1 =

[
p− µ− ρσ2

2
(x− 2I1)

]
x; vID2 =

[
µ− ρσ2

2
(x+ 2I2)− p

])
.

We maximize dealers’ profit with respect to x to find their supply and demand functions

respectively. The crossing of the supply and demand curves yields the following symmetric

equilibrium in the inter-dealer market:(
x∗ID =

I1 − I2
2

; p∗ID = µ− ρσ2 I1 + I2
2

)
.

Dealers’ equilibrium profits in the inter-dealer market are thus v∗ID1 = v∗ID2 = ρσ2

8
(I1−I2)2.

Second stage: the customer-dealer market. Notice that dealers find it optimally

to perfectly share risk: after trading in the inter-dealer market, dealers 1 and 2 end up

with the same inventory position, I ′1 = I ′2. From the equilibrium in the customer-dealer

market derived in section 2.2 for I ′1 = I ′2, we get the following profits: v
∗CD|ID
1 = v

∗CD|ID
2 =

ρσ2QDQS1QS>0.

Comparison. We now compute dealers’ expected profits in the presence of an inter-

dealer market, namely V ∗CD+ID = E(v
∗CD|ID
i + v∗IDi ), and compare them with the ex-

pected profits they obtain in the absence of an inter-dealer market, namely V ∗CD =

E(v∗CDi ). Computations yield:

V ∗CD+ID =
ρσ2

48
(Iu − Id)2 + γρσ2qDqS,
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and

V ∗CD =
ρσ2

6
(Iu − Id) (qD + (2γ − 1)qS)

+
ρσ2qS

(Iu − Id)2
×

 (1− γ)(Iu − Id)3 −
(
3(1− γ)qD + 1

2
γqS
)

(Iu − Id)2

+
{

(1− γ)qD + 1
2
γqS
}
qD (3(Iu − Id)− qD)

 .
The inequality V ∗BD − V BD+ID > 0 could be solved in closed-form but the complexity

of the solutions makes it difficult to interpret. We therefore compare expected profits

numerically for various sets of parameters’ values. �
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