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Abstract

The Solvency II regulatory framework specifies procedures and parame-

ters for determining solvency capital requirements (SCRs) for insurance com-

panies. The proposed standard SCR calculations involve two steps. The

Value–at–Risk (VaR) of each risk driver is measured and, in a second step, all

components are aggregated to the company’s overall SCR, using the Standard

Formula. This formula has two inputs: the VaRs of the individual risk drivers

and their correlations. The appropriate calibration of these input parameters

has been the purpose of various Quantitative Impact Studies that have been

conducted during recent years.

This paper demonstrates that the parameter calibration for the equity–risk

module—overall, with about 25%, the most significant risk component—is se-

riously flawed, giving rise to spurious and highly erratic parameter values. As

a consequence, an implementation of the Standard Formula with the currently

proposed calibration settings for equity–risk is likely to produce inaccurate,

biased and, over time, highly erratic capital requirements.
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Zusammenfassung

Das Rahmenwerk Solvency II gibt Verfahren und Parameter zur künftigen Bes-

timmung der Solvenzkapitalanforderung (SCR) für europäische Versicherungsun-

ternehmen vor. Der vorgeschlagene Standardansatz zur SCR-Berechnung erfolgt in

zwei Stufen. Zunächst wird der Value–at–Risk (VaR) für jede einzelne Risikokom-

ponenten ermittelt, die dann mittels der Standardformel zum Gesamt–SCR des Un-

ternehmens aggregiert wird. Die Standardformel hat zwei Gruppen von Inputpa-

rametern: die VaRs der einzelnen Risikokomponenten sowie deren Korrelationen.

Die korrekte Bestimmung dieser Parameter ist somit die Voraussetzung für eine

zuverlässige Berechnung von Kapitalanforderungen.

In dieser Studie wird gezeigt, dass die Kalibirerung der Inputparameter des

Aktienrisiko–Moduls mit erheblichen Mängeln behaftet ist, so dass die Parameter,

die in die Standardformel einfließen, im wesentlichen Zufallsprodukte sind. Eine

Implementation der Standardformel mit der jetzige Kalibirierung wird unweiger-

lich zu verzerrten und fehlerhaften Kapitalanforderungen für Aktien- und Beteili-

gungsrisiken führen.

Bereits zuvor wurden verschiedene Aspekte der Solvency–II–Kalibrierung kri-

tisiert – wie z.B. die Instabilität der Standardformel hinsichtlich unterschiedlicher

Verteilungsszenarios oder die Wahl unpassender Indizes für spezifische Asset–Klassen.

Die hier angesprochene Problematik ist jedoch wesentlich grundlegender. Eine vor

der Parameter–Kalibrierung durchgeführte Annualisierung der historischen Tages-

daten führt zu Parameterwerten, die so gut wie keine Aussagekraft besitzen. Beson-

ders folgenschwere Konsequenzen der vorgenommenen Annualisierung sind:

• Die Annualisierung induziert starke temporale Abhängigkeiten in Rendite–

und Risikoverläufen, was zu instabilen und willkürlichen VaR–Werten führt.

• Sie produziert Pseudo–Korrelsationsstrukturen zwischen Asset–Klassen. Dies

gilt besonders für Tail–Korrelationen, die in Solvency II favorisiert werden.

Insbesondere kann es zu signifikanten (Tail–)Korrelationen kommen, obwohl

die Daten in Wahrheit völlig unabhängig voneinander sind.

• Weisen die original Daten eine schwache, positive Korrelation auf, so liegen

die Tail–Korrelationen der annualisierten Daten häufig bei +1. Somit wird die

Abhängigkeit zwischen Asset–Klassen erheblich überschätzt.

• Andererseits reduziert oder gar eliminiert die Annualisierung in den Original-

daten vorhandene Tail–Abhängigkeiten (also das gleichzeitige Auftreten großer

Verluste in mehreren Asset–Klassen), so dass wichtige Information hinsichtlich

der Verlustanfälligkeit von Portfolien vernichtet wird

Vor diesem Hintergrund und der Tatsache, dass andere Marktrisiko-Teilmodule

ebenfalls von der Annulisierungsproblematik betroffen sind, ist von der Umsetzung

der in der gegenwärtigen Form vorliegenden Solvency–II–Kalibrierungen abzuraten.

Eine Neukalibrierung, die auf die fragliche Annualisierungstransformation verzichtet

und stattdessen die Risikodynamik adäquat erfasst ist dringend erforderlich.
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Summary

The Solvency II framework specifies procedures and parameters for determining

solvency capital requirements (SCRs) for European insurance companies. The pro-

posed standard SCR calculation involves two steps, namely, assessing the Value–at–

Risk (VaR) of each risk component and aggregating these to the company’s overall

SCR, using the Standard Formula. The Standard Formula has two groups of input

parameters: the VaRs of the individual risk components and their correlations. The

correct specification of these parameters is, therefore, essential for deriving reliable

capital–requirement estimates.

This paper demonstrates that the calibration of the input–parameters for the

equity–risk module is seriously flawed and that it gives rise to spurious parameter

values. As a result, an implementation of the Standard Formula with the currently

proposed calibration settings is likely to produce biased and inaccurate capital re-

quirements for equity–risk.

Criticism against Solvency II calibrations has been raised before, arguing, for ex-

ample, that the Standard Formula is unstable with respect to distributional settings

or the inappropriate choice of indices proxying specific equity classes. The problems

discussed here are, however, more fundamental. By subjecting historical market

data to a particular annualization procedure prior to performing the calibration ex-

ercises, much of the equity–risk calibrations are meaningless. Particularly harmful

consequences of the chosen annualization procedure are:

• The annualization causes strong temporal return and risk dependencies in the

data. This makes the VaR estimates highly unstable and rather arbitrary.

• It also produces spurious correlational structures between asset classes. This

applies especially to the tail–correlation measures favored in the Solvency II

framework. Specifically, it can lead to significant (tail–)correlations even when

data are independent.

• If the original data exhibit at a weak, positive correlation, tail–correlation

estimates from annualized data are likely to be at or near +1 and, thus, greatly

exaggerate the correlation between asset classes.

• On the other hand, the annualization reduces or even eliminates tail depen-

dence (i.e., the tendency of extreme losses occurring simultaneously across

asset classes) present in the original data. In other words, it destroys informa-

tion that is of extreme importance for regulators and asset managers.

In view of these findings and the fact that other market–risk submodules suffer

form the same annualization problem, the adoption of the Solvency II framework

with the currently proposed calibrations would be far from prudent. A recalibration,

which avoids the questionable annualization step and instead adequately captures

the risk dynamics, is urgently needed.
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1 Introduction

In 2007, the European Commission (2007a) proposed a revision of the insurance law

in the European Union with the objective1

...to ensure the financial soundness of insurance undertakings, and in

particular that they can survive difficult periods. This is to protect policy-

holders (consumers, businesses) and the stability of the financial system

as a whole.

To achieve this, the Solvency II Directive (see European Parliament (2009)) aims

at linking regulatory and economic capital more closely and improving risk man-

agement practices. In addition to pure insurance risks, Solvency II also includes

Solvency Capital Requirements for market, credit and operational risks. The EU

Directive specifies in detail the kind of losses the capital requirements should be able

to absorb:2

...the Solvency Capital Requirement should be determined as the eco-

nomic capital to be held by insurance and reinsurance undertakings in

order to ensure that ... those undertakings will still be in a position, with

a probability of at least 99.5%, to meet their obligations to policy holders

and beneficiaries over the following 12 months. That economic capital

should be calculated on the basis of the true risk profile of those undertak-

ings, taking account of the impact of possible risk-mitigation techniques,

as well as diversification effects.

In other words, the Solvency Capital Requirement (SCR) represents the amount of

own funds that would potentially be consumed by unexpected loss events, occurring

with a probability of 0.5% or less in a one–year period. This definition equates

the SCR directly to the Value–at–Risk (VaR) risk measure at the 99.5% confidence

level and a one–year holding period. Moreover, the Directive requires that SCR

calculations take risk reduction due to diversification effects into account.

To determine its SCR, an insurer can use the Standard Formula with the param-

eters provided by the regulator, use its own internal model, or use a combination

of the two. The Standard Formula has a modular structure and is to be applied

in a stepwise, bottom–up fashion. First, capital charges are derived for each risk

(sub–)module and then, level by level, aggregated to the overall SCR, with corre-

lations entering the calculations to allow for diversification effects among the risk

components. At the top level, the main risk modules are:

1. market risk
2. counterparty risk
3. life underwriting risk
4. health underwriting risk
5. non–life underwriting risk

1Paragraph 1, European Commission (2007b).
2Paragraph 65, European Parliament (2009)

1



The Basic Solvency Capital Requirement (BSCR) comprises these five main mod-

ules. They are aggregated, allowing for diversification effects, by use of the Standard

Formula

BSCR =

√√√√
5∑

i=1

5∑

j=1

ρij × SCRi × SCRj, (1)

where SCRi represents the ith risk module’s capital charge and is given by the 99.5%

VaR associated with that module; and ρi,j denotes the correlation between the risk

modules i and j. If a module consists of several submodules, they are aggregated

analogous to the Standard Formula.

According to the report (EIOPA, 2011) on the fifth Quantitative Impact Study

(QIS5), initiated by the Committee of the European Insurance and Occupational

Pension Supervisors (CEIOPS),3 the market–risk module—with a weight of more

than 60% of overall SCR—is the most important module. It consists of several

submodules, of which equity risk is the largest.4 It makes up about 40% of market

risk and, thus, contributes about 25% to the overall SCR.5 To compute the standard

capital charge, equities are divided into “global equities,” defined as equities on

exchanges listed in countries belonging to the European Economic Area (EEA) or

the OECD, and “other equities,” which include

– equities listed in countries not belonging to the EEA or OECD
– non-listed and private equities
– hedge funds
– commodities
– other alternative investments

In the analysis below, we focus exclusively on equity risk. However, it is to be

expected that the findings also apply to most other submodules within the market–

risk module—specifically, currency risk, property risk, spread risk, and concentra-

tion risk—as their calibration appears to suffer from the same critical annualization

procedure discussed below.6

The Standard Formula will play a crucial role in future regulation and manage-

ment of insurers’ risk, as it is likely to be—fully or partially—adopted by most

insurance companies. Only for large and/or “sophisticated” companies will it be

economical to develop their own internal model. But even then, the Standard For-

mula will, in one way or another, be a kind of anchor for any (partial) internal

3See CEIOPS (2010).
4The other submodules are: interest rate risk, currency risk, property risk, spread risk, and

concentration risk.
5See Graph 11 in EIOPA (2011) for the relative weights of the individual risk components.
6Unfortunately, not adhering to conventional standard towards reproducibility of empirical

analysis, the QIS5 Calibration Paper CEIOPS (2010) lacks necessary information about how data

were analyzed and handled before calibrating the various submodules.
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model. Therefore, a proper calibration of the input parameters entering the Stan-

dard Formula, i.e., risk–specific SCR factors and correlations, are crucial to ensure

a sound regulatory framework.

In the following, focusing on the equity–risk submodule, we will demonstrate

that the QIS5 calibration procedure leads to SCR factors and correlations that are

“spurious” and far from reliable. Here, the term “spurious correlation” refers to the

situation, where the observed correlation between two variables is not genuine, but

“...the special case in which a correlation is not present in the original observations

but is produced by the way the data are handled” (see Voigt (2005)).

It turns out that a certain annualization procedure, which transforms daily return

data into annual returns, causes the calibration parameters to be severely distorted.

The chosen annualization strategy has serious implications, as it affects dispersion

and dependence structures in the data used for calibration. On the one hand,

it induces spurious dependence patterns, which are not genuinely present in the

observed data and, on the other hand, may eliminate dependence existing in the

data.

Two specific two types of dependencies matter in risk assessment: (i) temporal

or dynamic dependencies, describing an asset’s return and risk behavior over time;

and (ii) cross–sectional dependencies, i.e., the relationship between several assets at

a given point in time. The dependencies along both dimensions need to be under-

stood and properly modeled, in order to reliably assess the risk of equity portfolios.

Unfortunately, the currently proposed Solvency II calibrations for equity risk ham-

per understanding and modeling of risk and rather tend to obfuscate insurers’ risk

assessment efforts.

It should be emphasized that the issues raised here differ from the criticism against

specific calibration choices that has been voiced before.7 They are more fundamental

and call the calibration procedure as such and, therefore, virtually all parameters

derived for the equity–risk module into question, as they turn out to be largely a

product of chance.

The organization of this paper follows the two dimensions in which dependencies

can take affect: in the temporal and the cross–sectional direction. After reviewing

next the annualization procedure chosen for QIS calibrations, Section 3 investi-

gates consequences for return and risk dynamics that arise from this procedure,

and Section 4 those for dependencies between asset classes. Section 5 discusses the

implications of our findings. Some technicalities are treated in the appendix.

7See, for example, EIOPA (2011).
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2 Rolling–window Annualization

Solvency II calibrations for equity–risk assume a one–year holding period for invest-

ments. All SCR or, for that matter, VaR–calibrations are tuned to that horizon.

Therefore, all inputs for the Standard Formula need to be VaRs and correlations

associated with annual returns. A straightforward calibration strategy would rely

on annual return data for deriving the input parameters. For most asset classes

in the equity–risk module, there exist only rather short histories, however, so that

the analysis would rest on very few annual return observations. Specifically, having

daily data with histories ranging from about 12 to close to 40 years,8 it is not possi-

ble to assess risks associated with once–in–two–hundred–years events as the VaR99.5

measure implies. Given 12 to 40 non–overlapping annual return observations, we

cannot directly derive empirical VaR–estimates at the 99.5% confidence level nor

the type of correlation, i.e., tail correlation, adopted in QIS calibrations.

To still make use of historical market data, QIS calibrations employ a rolling–

window approach to obtain annual returns at a daily frequency. Let Pt denote the

price of an asset at day t, and w the window length (measured in trading days)9 for

which the multi–period return, denoted by Rw
t , is to be computed, i.e.,

Rw
t =

Pt − Pt−w

Pt−w

, w ≥ 1, t = w + 1, w + 2, . . . . (2)

Given, say, 10 years of daily return data, the rolling–window approach gives rise

to 9 years of annual return observations at a daily frequency. However, annual re-

turns generated in this manner overlap to a large extent. Annual returns computed

for two consecutive days have more than 99% of daily return information in com-

mon and differ only by two daily observations. Clearly, the use of non–overlapping

annual return data is preferable, because only they represent independent pieces of

information. CEIOPS analysts were well aware of this problem and write:10

There is a balance to be struck between an analysis based on the richest

possible set of relevant data and the possibility of distortion resulting from

autocorrelation. In this case, we have chosen to take a rolling one-year

window in order to make use of the greatest possible quantity of relevant

data .

As will be demonstrated below, the “distortions” induced by the rolling one–

year window approach are not as inconsequential as the above quote may suggest.

8To compute correlations among the indices used to proxy the asset–classes, CEIOPS used

about 40 years of daily observations for the asset pair Global Equities/Commodities, about 15 for

the pairs Global Equities/Private Equities and Global Equities/Emerging–Markets Equities, and

about 12 for the pair Global Equities/Hedge Funds.
9In the simulations discussed below, we choose window lengths ranging from w = 1 (i.e., no

temporal aggregation) and w = 259 (the average annual number of trading days recorded for the

MSCI World index) representing an aggregation over one calendar year.
10See Paragraph 3.56 in CEIOPS (2010).
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The most damaging implication is that the annualization tends to induce spurious

dependence patterns, both over time and across assets, which, in turn, produce

artifactual risk structures.

Before continuing, it should be noted that returns calculated via (2) will be re-

ferred to below as discrete returns. For reasons of analytical tractability, empirical

and theoretical analyses in finance typically employ approximations in form of con-

tinuous returns, denoted by lower–case rwt and defined by rwt = logPt − logPt−w.
11

3 Annualization and Temporal Dependence

Our analyses of the impact on temporal dependence, when conducting equity–risk

calibrations with annualized rolling–window returns, are threefold. We, first, in-

vestigate the consequences of the annualization step for the dynamic properties of

the returns themselves and then of the volatility of returns. Finally, we examine

the implications of the calibration of the VaR stress factors entering the Standard

Formula.

3.1 Return Dynamics

The determination of VaR parameters from historical rolling–window return data

may, at first sight, seem reasonable, as this amounts to searching for worst–case

outcomes over all possible one–year holding periods in the sample at hand. However,

construction of a daily series of annual returns via overlapping rolling–windows

causes the resulting return series to be highly autocorrelated. The autocorrelation

between consecutive multi–period returns, rwt and rwt−1, becomes stronger as the

length of the rolling window, w, grows, so that

Corr(rwt , r
w
t−1)

w→∞−→ +1. (3)

As w increases, the times series rwt approaches a random–walk–type process and,

thus, approaches nonstationarity. A random–walk, say xt, in its purest form is

generated by the stochastic first–order difference recursion

xt = axt−1 + ut, (4)

with a = 1, and ut being a white–noise series, i.e., an independent and identically

distributed (iid) time series with E(ut) = 0, E(u2
t ) = σ2 < ∞ and E(usut) = 0, for

11For analytical analyses, we will resort to continuous approximation, rt. All simulations, how-

ever, are conducted with exact, discrete returns, Rt, because continuous returns are typically poor

approximations in case of—typically larger—annual returns. See Appendix A for a discussion on

this issue.
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s 6= t. Process (4) with a = 1 is also referred to as a unit-root process.12 Expressing

rolling–window returns, rwt , t = 1, 2, . . . , T , in terms of the first–order recursion

rwt = arwt−1 + vt, (5)

the ordinary least–squares (OLS) estimator of the autoregressive (AR) coefficient,

âT , approaches (w − 1)/w as the sample size, T , grows, i.e.,13

âT
T→∞−→ w − 1

w
. (6)

It is well known that temporal and cross–sectional correlation analysis with unit–

root processes will produce spurious and highly erratic results, due to the pseudo–

dependence patterns that may arise.14 To investigate the extent to which rolling–

window annualization induces autocorrelation in finite samples, we conduct a Monte

Carlo simulation and generate 10,000 daily return series, rt, t = 1, 2, . . . , T , of

length T = 2,590 and T = 5,180, with returns being iid and normally distributed,

i.e., rt
iid∼ N(0, 1). The chosen sample sizes, T , corresponds to about 10 and 20

years of daily observations, respectively. From each of the series we compute (dis-

crete) rolling–window returns, Rw
t , with the window length, w, assuming values

w ∈ {5, 22, 65, 130, 259}.15 These values correspond more or less to aggregating

daily returns to weekly, monthly, quarterly, semi–annual, and annual returns. By

letting the window length grow, we can assess how the severity of the problem in-

creases as the aggregation level increases. For each aggregation window, we estimate

the first–order AR coefficient and, using the ADF–test (Dickey and Fuller, 1979),

formally test for the presence of a unit–root.

The test results are summarized in Table 1, where the first column states the

length of the aggregation window; Column 2 indicates the asymptotic value of the

AR coefficient, â in (6), associated with that window length; Columns 3 and 4 show

the mean values of the 10,000 AR–coefficient estimates for the two sample sizes,

respectively. The last two columns report the means of the ADF–statistics. The

critical values of the ADF–statistic for the 99%, 95% and 90% levels are -3.4583,

-2.8710, and -2.5937, respectively. If the value of the ADF–statistic lies above the

critical value, we do not reject the null hypothesis of a unit root.

The results in Table 1 indicate that—in line with the asymptotic counterpart—

the estimated first–order AR–coefficient quickly increases as the window lengths, w,

grows. Weekly aggregation produces a value of about 0.80 and monthly aggregation

of about to 0.95. With a mean AR–coefficient of 0.996, annual aggregation produces

a nearly perfect random walk. According to the ADF–test, for the one–year rolling–

window aggregation (i.e., w = 259) and the 10–year sample, we do not reject the

12The term “unit root” is used, because the autoregressive polynomial has a root of size one.
13See Appendix B for details.
14See Granger and Newbold (1974). We will return to this issue in Section 4 below.
15See Appendix A for a description of the simulation of discrete multi–period returns.
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Table 1: Asymptotic and simulated near–unit–root behavior of rolling–window re-

turns

AR Coefficient ADF Statistic

Window Length Asymptotic 10 years 20 years 10 years 20 years

1 0 0.0002 0.0002 -20.7662 -29.3696

5 0.8 0.7997 0.7997 -13.6088 -19.2407

22 0.9545 0.9539 0.9542 -8.2773 -11.6922

65 0.9846 0.9841 0.9843 -4.6196 -6.5061

130 0.9923 0.9917 0.9920 -3.2865 -4.5858

259 0.9961 0.9955 0.9958 -2.3976 -3.2892

null hypothesis of a unit root at any conventional significance level. For the 20–year

sample, we can reject at the 90% and 95% levels, but not at the 99% level.

These findings suggest that for large annualized samples, i.e., 20 years or more, a

formal test is likely to reject the presence of a unit root. The outcome of the test is,

however, merely a question of sample size. The nature of the rolling–window return

series will be determined by the implied AR coefficient or, for that matter, the value

of w.

An aggregation window of w = 259 turns out to induce strong temporal de-

pendence and to distort calibration exercises. To illustrate this, we simulate 40

years of daily return data with a normally distributed white–noise structure and

perform rolling–window annualization. The top graph in Figure 1 shows a typical

sample autocorrelation function (SACF) for the two series, i.e., Corr(Rt, Rt−k) and

Corr(R259
t , R259

t−k), k = 1, 2, . . . , 259. The SACF for daily returns (blue) looks like

what we expect from white noise: It is close to zero for all lags and remains pretty

much within the approximate 95% confidence band. The SACF for the annualized

returns (red) resembles that of a unit–root series. It starts near one, decays in a

very slow and almost linear fashion, and is significantly different from zero. The

behavior of the SACFs is compatible with the scatter plots of the two series (Figure

1, bottom), when plotting the daily (blue) and annualized (red) returns of day t

against those at t− 1.

These simulations demonstrate that rolling–window annualization alters the tem-

poral dependence structure of the returns in a substantial way. We will see in Section

3.3 that this is not just a theoretical issue, but that it has practical consequences

for Solvency II.

3.2 Volatility Dynamics

Rolling–window annualization not only affects the dynamics of the return series in

terms of autocorrelations, the volatility or risk dynamics will be affected as well.
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Volatility reflects the extent to which the return process can deviate from its ex-

pected value; and variations in the return volatility reflect variations in the riskiness

of an asset. If volatility dynamics exhibit particular patterns over time, prudent

risk assessment needs to take these into account. If such patters are, however,

spurious and only the consequence of certain data transformations rather than a

genuine property of the underlying return process, all risk–management efforts will

be seriously undermined.

The class of Generalized Autoregressive Conditional Heteroskedasticty (GARCH)

models, introduced by Engle (1982) and Bollerslev (1986), is the most common

approach to approximating volatility dynamics of financial assets. To investigate

the impact of rolling–window annualization on volatility dynamics, we simulate a

standard GARCH(1,1) model of the form

rt = µ+ σtut, (7)

σ2
t = α0 + α1(rt−1 − µ)2 + β1σ

2
t−1, (8)

where ut is a normal iid process with E(ut) = 0 and Var(ut) = 1, for all t. For the

simulation, we use the GARCH parameters obtained by fitting (7)–(8) to the daily

returns on the MSCI World index,16 the index employed in QIS5 to calibrate the

asset class “global equities” within the equity–risk module.

Figure 2 plots the SACFs of the absolute daily and annualized returns, i.e.,

Corr(|Rt|, |Rt−k|) and Corr(|R259
t |, |R259

t−k|), derived from 40 years of simulated data.17

The resulting SACF of the absolute daily returns (blue) is typical of what we ob-

serve for daily stock–index returns. There is a significant positive autocorrelation,

starting at about 0.2, which gradually declines to become more or less insignificant

after a lag of about 80 days. Thus, a (negative or positive) return–shock carries

over to next period’s volatility with a correlation of 0.2. The impact gradually

vanishes for higher lags. For absolute annualized returns (red), autocorrelations

are much stronger. They start at one and—though gradually decaying—stay much

higher than those from absolute daily returns, to become insignificant after about

170 days.

A comparison of the two SACFs shows that rolling–window annualization not

only affects the temporal correlation of an individual return series, but it also alters

the risk structures by inducing much stronger and more persistent temporal risk

dynamics. As a result, and shown next, the calibration of stress factors of individual

equity classes can produce extremely misleading results.

16Specifically, we use the daily MSCI World Price Index in U.S. dollar with the sample ranging

from January 4, 1972 to January 31, 2011.
17We use absolute rather than squared returns to proxy unobserved conditional volatility, because

absolute returns tend to exhibit superior forecastability; see Granger and Sin (2000).
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3.3 Consequences for Stress Factors

The presence of unit roots or near–unit roots has implications for risk assessment. If

a time series is nonstationary, past behavior will be a poor indicator for future behav-

ior. As a consequence, even if the nature of the return process remains unchanged,

past VaR–statistics, for example, do not provide an indication for potential future

losses. To illustrate this, we conduct a Monte Carlo experiment, generating iid data

from a standard normal distribution, i.e., rt
iid∼ N(0, 1). Specifically, we simulate

two independent risk–factor series, each of length 100× 259 = 25,900 observations,

which corresponds to about 100 years of daily return data. We annualize these

by computing discrete, one–year rolling–window returns, leaving us with 99 × 259

overlapping annual return observations at a daily frequency.

Figure 3 plots the daily and annualized returns of the two simulated risk factors.18

As is to be expected, being generated by the same process, the two daily series look

very similar. They move closely around zero, roughly within the±3 interval, without

displaying any temporal patterns. In contrast, the annualized versions appear to

fluctuate in a cyclical pattern with extended up– and down–swings, varying between

–50% and +60%. Though being generated by identical processes, the locations of

their peaks and troughs differ considerably.

Next, we estimate SCR stress factors for the simulated return series. We do

this for the daily and annualized discrete returns by computing, day by day, the

historical VaR99.5–values (in other words, the 0.5%–quantiles of the series) using

10–year rolling samples. Figure 4 shows that the VaRs for the two daily return

series are rather stable; they hover around the expected value (solid horizontal

line) and, ranging from 2.3% to 2.8%, stay about 95% of the time within the 95%

confidence bounds.19 Compared to this, the VaR estimates from annualized returns

vary dramatically. They assume values between 16% and 46% during the 89 years20

sampled and deviate considerably from the expected value. They deviate by more

the than ten standard deviations in either direction and stay for long periods far

away from the expected value. It is the exception rather than the rule that the

estimates fall inside the confidence band.

Given that the data were generated by iid white noise processes, i.e., processes

without any temporal dependence structure, the VaR sequences from annualized

returns appear to exhibit distinct temporal patterns, which, in practice, may easily

be mistaken for structurally inherent properties. Such SCR patterns may trigger

18By generating two independent series with identical properties we obtain an impression of the

variability of the dynamic properties of return series after rolling–window annualization. Moreover,

below we will use the two series to demonstrate the consequences on the dependence structure

across assets.
19Note that, against common convention but in line with CEIOPS’ usage, Figure 4 plots negative

VaR–values.
20We obtain estimates for 89 years because we lose the initial 11 years of the sample: one year

due to the annualization and ten years to calculate VaRs from ten–year histories.
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specific regulatory actions, as they suggest structural changes in the riskiness of asset

classes. Relying on historical VaR estimates from annualized returns, a regulator

could be tempted to set the stress factor for Asset 1 much too low during years 29

through 81, just to ratchet it up to an excessively high level after year 88, while, at

the same time, inappropriately lowering the stress factor for Asset 2.

A disturbing fact is that, although annual–return VaRs exhibit strong persistence,

they can change very abruptly. An insurance company’s reliance on annualized–

return VaRs is bound to make sudden, erratic and costly portfolio adjustments,

even though there are no changes in the underlying market processes.

From all this, it follows that the use of VaR estimates derived from one–year

rolling–window returns in either regulatory or insurers’ risk management processes

will produce highly arbitrary outcomes.

4 Annualization and Asset Dependence

We now turn to the second ingredient of the Standard Formula (1), the correlation

parameters that need to be specified in order to aggregate the modules’ SCRs to

the next higher level. The most common approach to measure and model depen-

dencies between random variables is to use the conventional Pearson correlation

coefficient. Not only is it easily computed, Pearson correlation is also the corner-

stone of modern portfolio theory, which underlies widely adopted risk–diversification

concepts—including the Standard Formula. However, Pearson correlation is a mea-

sure of linear dependence and, thus, not appropriate for nonlinear or non-Gaussian

risk structures. This limitation has been recognized when developing the Solvency

II framework. To particularly capture the joint behavior of risk factors in situations

of extreme stress, Solvency II calibrations are based on “tail correlations” rather

than conventional Pearson–correlation estimates.

Since Granger and Newbold (1974) it is well known that regression analysis in-

volving unit–root processes will produce spurious and highly erratic results.21 They

showed that estimated correlations between two independent random walks can as-

sume values far away from zero, despite the two series being completely independent.

Clearly, if this is the case, any correlation estimate between two nonstationary time

series will be unreliable.

Figure 5 indicates the potential problem when assessing the dependence structure

between risk factors after rolling–window annualization. The graph in the top half

overlays the two independently simulated annualized return series plotted in Figure

3. We observe periods where both series seem to run pretty much in a synchronous

21Note that the findings for regression analysis between random–walk–type processes immedi-

ately carry over to correlation analysis. For a theoretical analysis of regressions with random–

walk–like processes see Phillips (1987).
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fashion as well as periods where they are very dissimilar.

The scatter plots of the two risk factors in the bottom half of Figure 5 illustrate

the difference in the dependence patterns of the original and the annualized data.

The former (bottom left) is very homogeneous and looks like what we expect from

uncorrelated data. In comparison, the scatter plot of the annualized returns (bottom

right) looks rather inhomogeneous and splattered. This spottiness arises from the

fact that the joint behavior appears to change in long swings.

An illustrative selection of three subsamples of the bivariate annualized return

series is presented in Figure 6. The top panel shows the time series of the subsamples,

the bottom panel the corresponding scatter plots. We observe that the two series

exhibit over fairly long periods strong positive (left and right panels) but also strong

negative dependency (center panel). The (sub–)sample correlations for the three

cases are 0.42 (left subsample), -0.65 (center) and 0.75 (right). Such variations are

typical for correlation estimates of independent (near–)unit root process.

In the following, we investigate the implications of rolling–window annualization

when calibrating asset dependence. We begin with an introduction of the alter-

native correlation concepts that seem to be considered in Solvency II calibrations.

Then, we investigate three specific issues in more depth. First, we take a closer

look at the consequences annualization has on the bias and the efficiency of corre-

lation estimates. These analyses are again simulation–based and initially limited

to normally distributed risk factors. In a further step, we examine to what extent

heavy–tailedness may affect the calibration of correlations. We do so by drawing

from bivariate t–distributions. I.e., we still remain in an elliptical world which jus-

tifies the use of the Standard Formula. Finally, we investigate how annualization

affects the joint tail–dependence between equity classes.

4.1 Correlation Concepts

QIS calibrations for equity risk are based on “tail correlation.” One approach to

obtain such estimates is to compute the conventional Pearson correlation from joint

tail observations. The joint tail observations associated with a given VaRα–level

consist of those return pairs for which both assets fall simultaneously below their

respective (1 − α)–quantile. This approach, illustrated in Figure 7, is referred to

as the “data–cutting method” in CEIOPS (2010) and amounts to computing the

conditional correlation

ρDCQ
α = Corr(ri, rj | ri < −VaRα(ri), rj < −VaRα(rj)). (9)

The problem with the data-cutting approach is that, even for large data sets, the

number of data points entering the estimation may be extremely small. For example,

given 40 years of daily return data (i.e., about 10,000 observations) and adopting the

Solvency II convention of using the 99.5%–VaR, only observations falling below the
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0.5%–quantile matter. This leaves us with 50 tail–observations for each individual

asset. The intersection of these two subsets, i.e., data pairs where both components

simultaneously fall below the 0.5%–quantile, defines the set of joint tail observations.

Depending on the degree of dependence, this will generally leave us with much fewer

than 50 observations.

Figure 8 illustrates for a bivariate normal distribution how the portion of common

tail observations quickly drops as we move away from perfect positive correlation.

For example, given a correlation of, say, ρ = 0.75 and having observations on 10,000

return pairs, we can expect to have only 14 joint tail observations. So that even

for large data sets, tail–correlation estimates via data–cutting will be based on an

extremely small number of data points and, thus, lead to highly unstable estimates.

Apart from the lack–of–data problem, focusing solely on tail and especially on far–

tail correlations may give a misleading picture about possible dependencies between

assets. If, for example, two assets follow a nondegenerate joint normal distribution,

no matter how strong the correlation is, tail correlations will approach zero as we

go further into the tails,22 suggesting the absence of dependence.23

To avoid all these problem, a different data–cutting strategy could be adopted.

Rather than computing correlations from joint tail observations, we can condition

22See Rosenbaum (1961).
23Note that the data–cutting approach is somewhat equivalent to the concept of “excess corre-

lation” used in Longin and Solnik (2001), who condition on return variations rather than quantile

levels.
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on only one risk factor and compute

ρDCH
α = Corr(ri, rj | ri < −VaRα(ri)). (10)

This segments the two–dimensional return plane into half–planes rather than quad-

rants and ensures that we do not end up with an insufficient number of tail observa-

tions, as the resulting effective sample size corresponds to the chosen VaR–quantile.

The use of (10) is particularly appropriate when the asset conditioned on is regarded

as the underlying risk driver.

Because of the small number of data points for computing tail correlations—even

in the presence of large data sets—, QIS calibrators do not, or not exclusively rely

on the data–cutting method (9). They also seem to adopt what we refer to as

VaR–implied correlations,24 which simply result from an inversion of the Standard

Formula. For two risk components, the Standard Formula reduces to25

VaRα(ri + rj) =
√

VaRα(ri)2 +VaRα(rj)2 + 2× ρ×VaRα(ri)×VaRα(rj). (11)

CEIOPS (2010)26 suggests to use that value for ρ which minimizes the “aggregation

24Ultimately, it is not clear which particular method has been used to derive the equity–risk

correlations reported in CEIOPS (2010).
25Equation (11) assumes that both return series have mean zero. In practice, this assumption

is violated. Ignoring this fact, use of (11) will lead to biased VaR–implied correlations. CEIOPS

(2010) justifies the simplifying zero–mean assumption by arguing that their “...calibration intends

to quantify unexpected losses” (Footnote 113, p. 338). However, it is left open where the means,

i.e., expectations should come from.
26See Paragraph 3.1251 in CEIOPS (2010).
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error”

∣∣VaRα(ri + rj)
2 − VaRα(ri)

2 −VaRα(rj)
2 − 2× ρ× VaRα(ri)×VaRα(rj)

∣∣ .

Having empirical VaR–estimates, denoted by V̂aRα(·), for the returns on the individ-

ual assets i and j as well as on their the sum, the solution to CEIOPS’ minimization

problem becomes

ρ̂V aR
α =





+1, if V̂aRα(ri+rj) > V̂aRα(ri)+V̂aRα(rj)

−1, if V̂aRα(ri+rj) 6
∣∣∣V̂aRα(ri)−V̂aRα(rj)

∣∣∣
V̂aR

2

α(ri+rj)−V̂aR
2

α(ri)−V̂aR
2

α(rj)

2×V̂aRα(ri)×V̂aRα(rj)
, otherwise.

(12)

The first condition in (12) arises in the presence of superadditivity, i.e., when

subadditivity27 fails. The second condition could be referred to as “superdiversi-

fication,” i.e., the (unusual) situation where the risks of two individual positions

are more than offset by the risk (or, better, “chance”) of the combined positions.

Only if neither of the two cases applies, the VaR–implied–correlation estimate will

be strictly between ±1. Although superadditivity and superdiversification may be

rarely encountered with equity returns, the coarseness of extreme–quantile estimates

may, in empirical analysis, lead to such pathological situations.28

27See Artzner et al. (1999) on the VaR–measure’s lack of subadditivity.
28See Mittnik et al. (2011) on the potential of superadditivity in the context of aggregating

operational risk components.
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Figure 9: Pearson–correlation estimates for daily and annual returns

4.2 Annualization and Correlations

4.2.1 Correlations from Simulated Daily and Annualized Returns

In the following, we assess the consequences of rolling–window annualization on

correlation estimates. First, we compute the Pearson correlation for the two uncor-

related return series shown in Figure 3. We do this for both daily and annualized

return series using, analogous to the VaR calculations in Figure 4, a 10–year rolling

window and derive correlation estimates for each day in the 100–year period, starting

at the beginning of year 11.

The results are shown in Figures 9. The Pearson–correlation estimates based

on daily data behave as expected. They hover tightly around zero, within a range

of ±0.05. The estimates derived from the one–year rolling–window returns behave

very differently. They vary erratically, assuming values between about –0.4 and

+0.5. Given that the two annualized return series are independent, the correlation

estimates are remarkably large.

Because Solvency II calibrations of equity–risk components are based on tail

correlations rather than usual Pearson correlations, we also compute data–cutting

and VaR–implied tail correlations, ρDCQ
α and ρV aR

α , from the simulated returns.

When applying the data–cutting approach and adopting the 99.5% confidence level

specified in Solvency II, we run into the problem that—for both daily and annualized

returns—there are practically no joint tail observations. In other words, ten years

or 2,590 observations are far from sufficient for the southwest quadrant, depicted in

20



Figure 7, to contain any data, so that tail correlations cannot be computed.

If the data–cutting approach is to be adopted, it is unlikely that one can stick to

the 99.5% confidence level, as demanded by the EU Directive (European Parliament,

2009). Therefore, in the simulations discussed below, we report results for lower

levels. CEIOPS analysts also experimented with alternative confidence levels.29

Analyzing the dependence between equity and fixed income, CEIOPS considers

confidence levels from 99% down to 80%. As the 99% confidence level is, in general,

still too ambitious to obtain sufficient joint tail observations, we compute data–

cutting tail correlations for the 95% and 80% confidence levels.30

The number of available joint tail observations (top) and the corresponding 95%–

level tail–correlation estimates (bottom) for both daily and annualized returns are

shown in Figure 10. For daily returns, the number of joint tail observations lies

between 3 and 13—sample sizes much too low to obtain reliable estimates. As a

consequence, the tail correlation estimates (bottom of Figure 10) range from –1 to

+1. The picture looks even bleaker for annualized returns. Although the number

joint tail observations can move up to almost 60, it is zero for most of the available

89–year period. As a result, the tail–correlation plot (bottom of Figure 10) has large

gaps. In the few occasions where we can compute tail correlations, the estimates

also range from –1 to +1.

Given these findings, it is not clear what performance is to be expected from the

data–cutting approach, when applied to risk aggregation in the Standard Formula.

When using annualized returns, the problem will not vanish, even when working

with much longer than 10–year samples. One option could be to substantially lower

the confidence level. But even for the 80%–level, the number of observations can be

insufficient. As Figure 11 indicates, though most of the time there is a reasonable

number of joint tail observations, there is no guarantee for this to hold throughout a

sample. More of a concern is the fact that, even at the 80%–level, the tail–correlation

estimates jump erratically and assume values between –1 and +0.7.

Clearly, in view of these problems, the DCQ–correlation approach does not qualify

for regulatory purposes, unless more observations from the center of the distribution

29See Paragraphs 3.1376–3.1385 in CEIOPS (2010).
30The difficulty of deriving tail–correlation estimates using the data–cutting approach is ac-

knowledged in Paragraph 3.1384 in CEIOPS (2010) which states: “...the choice of percentile is

important in determining the correct correlation coefficient.” In an attempt to define the meaning

of “correct,” Paragraph 3.1385 continues:

It is key to strike a balance between being adequately in the tail, and having enough

data points for a reliable analysis. ... [T]he overall correlation matrix should produce

a level of stress equivalent to a 99.5% VaR event, so each individual pair can be

equivalent to significantly less than a 99.5th percentile stress, but still should be firmly

in the tail. The analysis must be subject to sensitivities for different percentiles, and

should be taken as providing an indication of the correct correlation.
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Figure 12: VaR–implied tail correlations for daily and annual returns

are included. Then, however, we can no longer speak of tail–correlations estimates.31

We also compute VaR99.5–implied tail correlations from the simulated data (Fig-

ure 12). For daily returns, the estimates lie consistently between –0.1 and +0.2.

For annualized–returns, however, we obtain extremely erratic results. Although the

tail–correlation estimates should all be zero, they assume values from about –0.75

to +0.85; they exhibit sudden jumps and sign switches; and they are hardly ever

close to zero.

To summarize, the simulation results for data–cutting and VaR–implied correla-

tions strongly indicate that overlapping annual rolling–window returns will prevent

a meaningful calibration of the correlational input parameters for the Standard For-

mula.

4.2.2 Bias and Efficiency

In empirical analysis, it is commonly desired to work with unbiased and efficient

estimators. That is, the estimator should, on average, produce accurate estimates;

and it should do so with little uncertainty—meaning that the intervals of uncertainty

around these estimates should be small. In the following, we examine how the

use of overlapping rolling–window returns affects the unbiasedness and efficiency of

correlation estimates. We conduct simulation analyses to investigate both the bias

31It should be noted that the problem of insufficient joint tail observations for computing data–

cutting correlations may be less dramatic when returns are very heavy–tailed. We will address this

issue in Section 4.3.
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and the efficiency of correlation estimates as the window lengths increase.

To do so, we draw the daily returns from a bivariate normal distribution, i.e.,

rt =

(
r1t
r2t

)
iid∼ N(µ,Σ), with µ =

(
0

0

)
and Σ =

(
1 ρ

ρ 1

)
. (13)

From (13) we generate 20,000 bivariate time series of length 259×n, with n = 10, 40,

derive rolling–window returns with windows of lengths w ∈ {1, 5, 22, 65, 130, 259},
and compute three types of correlations between Rw

1t and Rw
2t: the standard Pearson

correlation based on all data; the half–plane data–cutting correlation, ρDCH
99.5 , based

on the 0,5%–portion of the largest losses; and the VaR–implied correlation at the

99.5% level, ρV aR
99.5 .

First, we generate independent series by setting, in (13), ρ = 0. Figure 13

plots the bias for the three correlation estimators as the window length, w, varies.

Whereas both the conventional Pearson and the data–cutting correlation remain

unbiased, the VaR–implied correlation estimates exhibit a systematic upward bias

that grows as the window length increases. For annual aggregation (w = 259) the

bias reaches 0.09 for the 40–year sample. This means that, even if the returns of two

assets are uncorrelated and independent, the VaR–implied correlation estimates will,

on average, produce a value of about 0.1, wrongly suggesting a positive dependence.

Turning to the efficiency of the correlation estimators, Figure 14 reveals that the

confidence intervals behave quite differently. The conventional Pearson correlation

has the tightest intervals, but they grow considerably with the length of the aggre-

gation window. Data–cutting correlations exhibit already for small window lengths

extremely large interval spreads, ranging from –0.9 to +0.9. The confidence intervals

for the VaR–implied correlations are not much better. They range from –0.5 to +1

for monthly aggregation and cover the maximum possible range of ±1 for annual

aggregation. The maximum range could be due to a couple of extreme outliers. But

even the 90%–confidence interval runs from –0.5 to about +0.8, indicating that,

apart from being biased, VaR–implied correlation estimates from rolling–window

returns can be virtually all over the place. They provide practically no information

about the dependencies governing the underlying data process.

The seriousness of the problem is especially evident from the plots in Figure

15. They show how the width of the confidence intervals grows as the window

length increases. Clearly, debating whether two particular asset classes have a tail

correlation of, say, -0.5 or 0.9 is rather meaningless, given the blatant instability of

data–cutting and VaR–implied correlation estimates based on overlapping rolling–

window returns.

The histograms of the 20,000 VaR–implied correlation estimates are presented in

Figure 16. They, too, demonstrate the rapid increase of the estimates’ dispersion as

the aggregation level grows. The modes of the histograms remain more or less at

zero. However, as the aggregation length rises, so does right–skewness, which goes
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Figure 13: Bias in VaR–implied tail–correlation estimates due to rolling–window

aggregation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 14: Confidence intervals of correlation estimates and rolling–window aggre-

gation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 15: Confidence–interval lenghts of correlation estimates and rolling–window

aggregation, ρ = 0, 10–year (top) and 40–year (bottom) samples
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Figure 16: Histograms of VaR-implied tail correlations, ρ = 0 and 10–year samples

along with an upward bias in the tail–correlation estimates.

Next, we investigate the performance of the correlation estimators when there is

nonzero correlation between assets. We repeat the above Monte Carlo experiment,

but now specify different levels of correlation for the daily returns, namely, ρ =

0.2, 0.4, 0.6, 0.8.

Figure 17 shows the histograms of the VaR–implied correlations obtained from

20,000 Monte Carlo replications for each of the four correlation levels specified,

assuming ten years of daily data. In each case, the VaR–implied correlation estimates

from annualized returns exhibit an upward bias. Even more of a concern is the

extensive pile–up of estimates near or at +1 when daily correlations assume a value

of ρ = 0.4 or higher. If daily correlations exceed 0.4, the mode of the distribution

lies near +1, so that there is an excessively high probability that VaR–implied

correlation estimates, based on annualized returns, assume values that are near or

exactly +1.

The median tail–correlation estimates for the cases ρ = 0.2, 0.4, 0.6, 0.8 are 0.2619,

0.4794, 0.6860, and 0.8751, respectively. Thus, if the true correlation is, for ex-

ample, 0.4, we have a 50% probability that the annualized data will produce an

estimate above 0.48. Table 2 summarizes selected probabilities for VaR–implied

tail–correlation estimates to exceed certain thresholds. For example, if the corre-

lation of the underlying daily data is 0.2, Solvency II calibration produces, with a

probability of 25%, a tail–correlation estimate above 0.56 and, with a probability

of 10%, above 0.77. If the underlying correlation is 0.6, there is a 25% probability

that the estimate will lie above 0.87. Thus, tail–correlation estimates tend to be
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Figure 17: Histograms of VaR-implied tail correlations from annualized returns for

differently correlated daily returns

overstated with rather large probabilities.

For ρ = 0.4, the simulated confidence intervals, shown in Figure 18, reveal that the

upper boundaries of the intervals for the VaR–implied correlation move extremely

close to +1—even those for the 90% confidence level. Hence, it is very likely to

encounter tail–correlation estimates close to unity, even though the true correlation

is only 0.4.

Note that for ρ > 0, the widths of the confidence bands of the VaR–implied

estimates become somewhat shorter relative to the uncorrelated case. Again, this is

due to the fact that correlation estimates have the upper bound +1. However, for

the annual—and for Solvency II relevant—aggregation level, the range still covers

the maximum possible interval [–1, +1].

The simulation experiments reconfirm that, regardless of the level of the under-

lying correlation, VaR–implied tail–correlation estimates derived from overlapping

rolling–window returns behave extremely erratic and are practically uninformative.

4.3 Heavy Tails

To assess the consequences of moving from a normal distribution to a fat–tailed—but

still elliptical—t–distribution, we repeat the Monte Carlo experiment and generate

vectors rt = (r1t, r2t)
′ from a bivariate t–distribution with ν = 1, 2, 3, 4 degrees of
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Table 2: Bias of VaR–implied correlation estimates due to rolling–window annual-

ization; sample size 10 years

The entries represent exceedance probabilities. For example, the entry 0.63 in the last

row of Column 2 states there is a 10% probability that the estimated VaR99.5–implied

correlation is higher than 0.63, although the correlation of the underlying data is 0.0.

Daily ρ

Exceedance Probability 0.0 0.2 0.4 0.6 0.8

50% 0.09 0.26 0.48 0.69 0.88

25% 0.37 0.56 0.74 0.87 0.96

10% 0.63 0.77 0.89 0.96 0.99

freedom and correlation ρ = 0, i.e.,32

rt =

(
r1t
r2t

)
iid∼ t(µ,Σ, ν), with µ = 0, ν = 1, 2, 3, 4 and Σ =

(
1 0

0 1

)
. (14)

Altogether, we performed 20,000 simulation–runs. In each of which we generated 40

years of daily data and aggregated again over 5, 22, 65, 130, and 259 trading days.

Figure 19 illustrates that, for heavy–tailed, t–distributed data, the bias of the

VaR–implied correlation estimate becomes more severe than in the normal case.33

The bias in ρ̂V aR
99.5 increases as the degrees of freedom decrease, that is, as tails

become heavier. For a one–year rolling window and ρ = 0, temporal aggregation

with normally distributed daily returns produced a bias of +0.09 (see bottom right

plot in Figure 13). When daily returns come from a t–distribution with ν = 4

degrees of freedom, the bias in VaR–implied correlation estimates from annualized

returns rises to 0.12, it increases to 0.15 for ν = 3 and jumps to 0.26 for ν = 2.

Completely different from the observed pattern is the case of ν = 1, with a bias

of –0.06. A t–distribution with ν = 1 corresponds to a Cauchy distribution and is

extremely fat–tailed, so that even the mean of the distribution is infinite.34 The

histograms of the VaR–implied correlation estimates for all four degree–of–freedom

values (see Figure 20) show that the pile–up of the estimates at +1 starts with

ν = 3 and becomes serious for ν = 2. As reported above, for normally distributed

returns, the pile–ups occurred for correlations exceeding 0.4. With t–distributed

returns, pile–ups happen even for ρ = 0, when the degree–of–freedom parameter

gets sufficiently small. For ν = 1, extreme pile–ups occur at both +1 and –1, with

the remaining estimates being more or less evenly distributed in–between.

32Note that it is not unusual to obtain ν–estimates from daily stock returns that are between 2

and 4.
33In view of the dismal performance of the data–cutting correlation estimates, we focus only on

VaR–implied correlations here.
34Due to the size of the draws from a bivariate t–distribution with ν = 1, we set both dispersion

parameters to 0.1 rather than 1, as was the case in all other simulations. In general, the scaling of

the variables should not affect the results. However, we did not investigate this issue here.
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Figure 18: Confidence intervals and temporal aggregation, ρ = 0.4 and 10–year

sample size

The pile–up problem of the VaR–implied correlation estimates indicates that this

dependence measure is not suitable in hte presence of temporally aggregated and

overlapping return data. The seriousness of the problem for ν = 2 and ν = 1 could

be due to the nonexistence of variances (ν = 2) or the lack of finite means ( ν = 1).

However, if that was the case, the VaR–implied correlation estimator should already

break down when applied to daily returns that are not subjected to any temporal

aggregation.

The histograms in Figure 21 illustrate the behavior of the estimates as the aggre-

gation window increases. For non–aggregated, daily data, the estimator produces

a somewhat dispersed but “reasonable” histogram without any pile–ups. The pile–

up problem arises, however, already at weekly and worsens dramatically for higher

aggregation levels, with pile–ups occurring at both –1 and +1.

The simulations demonstrate that the poor performance of the VaR–implied cor-

relation estimator, when applied to annualized returns, becomes even worse when

the underlying returns are fat–tailed, though still elliptically distributed, as is re-

quired for the VaR–implied correlation measure.

4.4 Tail Dependence

The nature of the comovements of risk factors is essential when assessing diversifi-

cation benefits. If the focus is on extreme risks, we have to be interested in the joint

occurrence of losses. This can be measured by the so–called coefficient of tail depen-
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Figure 19: Bias due to rolling–window aggregation for t–distributed daily returns

with ρ = 0.0 and different degrees of freedom

dence. Let ri and rj be the returns of two risk factors with marginal distributions

Fi and Fj , respectively. Then, the coefficient of lower tail dependence, denoted by

λ, is defined as35

λ = lim
q→0

P
(
ri ≤ F−1

i (q) | rj ≤ F−1
j (q)

)
∈ [0, 1]. (15)

If large losses in asset i tend to coincide with large losses in asset j, the coefficient of

(lower) tail dependence will be close to 1; if there is no such joint tendency, it will be

close to 0. Thus, the coefficient of tail dependence conveys important information

when, as Solvency II regulation intends, assessing the consequences of extreme losses

in a given portfolio.

To investigate the implications of rolling–window annualization on the joint tail

behavior, we simulate 5,000 bivariate time series of lengths 40 and 4,000 years,

respectively, with daily returns drawn from the bivariate t–distribution (14) and

ρ = 0.5 and ν = 4. The coefficients of tail dependence are estimated for quantiles

ranging from 0.001% to 2.5%.36

The results are shown in Figure 22. The horizontal line in the plots indicates the

35In the case of asymmetric distributions, we distinguish between upper and lower tail depen-

dence. The coefficient of upper tail dependence is defined by simply reverting the inequalities in

(15). Here, we will only focus on lower tail dependence and let λ denote the coefficient of lower

tail dependence.
36We use the regression–type estimator discussed in van Oordt and Zhou (2011).
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Figure 20: Histograms of VaR–implied tail–correlations estimates for t–distributed

daily returns with different degrees of freedom and ρ = 0.0

theoretical value37 of the tail dependence coefficient for the bivariate t–distribution

with ν = 4 and ρ = 0.5, given by λ∗ = 0.2532; and the dashed lines indicate the

(bootstrapped) 95%–confidence bands. The estimates from the daily data slightly

overestimate the theoretical value of λ∗, but—as it should be—they approach it very

closely the further we move into the tail.

The λ–estimates from the annualized data behave very differently. Throughout

the range, they underestimate the theoretical value and approach zero the further we

get into the tails, suggesting absence of tail dependence. For the 40–year samples, the

confidence band becomes extremely wide; and throughout the tail area considered

the band includes zero so that the hypothesis of “no of tail dependence” cannot

be rejected. The upper limit of the band hovers mostly around 0.6—except for the

extreme tail area, i.e., 1 − α ≤ 0.1%, where the upper limit of the confidence band

quickly drops to zero, suggesting the certain absence of tail dependence.

The reason for both the point estimates and the confidence intervals collapsing

to zero is that rolling–window annualization not only scrambles linear dependence

structures between the assets, but it also annihilates their joint tail behavior, so that

37The analytic expression for the coefficient of tail dependence is given by

λ∗ = 2Ftν+1

(√
(ν + 1)(1− ρ)

1 + ρ

)
,

where Ftν+1(·) denotes the cumulative distribution function of the standard t–distribution with

ν + 1 degrees of freedom; see Embrechts et al. (2002).
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Figure 21: Histograms of VaR–implied tail–correlation estimates with growing ag-

gregation windows, w, for t–distributed daily returns for ν = 1 degrees

of freedom and ρ = 0.0

there are virtually no common tail observations left given a sample size of “only”

40 years.

The scatter plots for a typical simulation–run for daily and annualized returns and

the 40–year sample, shown in Figure 23, illustrate this phenomenon. For the daily

returns (left graph) we observe, for a given tail–quantile, a relatively large number of

common tail observations and that there is ellipticity. For the annualized data (right

graph), although visual inspection suggests some form of negative dependence, both

the ellipticity and the common tail behavior disappear. For each risk factor, the

annualized returns exhibit maximum losses of about –45%. However, there are no

observations in the joint tail region {R1, R2 : R1 ≤ −30%, R2 ≤ −30%}.
For the annualized returns, the bias remains even when having 4,000 years of data

(see bottom Figure 22). The λ–curve shifts slightly upward, but stays well below

the theoretical value of 0.2532—especially, in the far–tail with an estimate of about

0.05. The confidence band narrows substantially and includes zero only in the far

tail.

In view of the results of this simulation experiment, it is evident that rolling–

window annualization can eliminate virtually all tail dependence that is present

in the original data. The hope of capturing the dependence between non–normally

distributed asset classes more adequately by estimating tail–dependence coefficients,

as expressed in Paragraphs 3.1255 and 3.1256 in CEIOPS (2010), is likely to be

disappointed when the analysis is based on data subjected to a rolling–window
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Figure 22: Mean of estimated tail–dependence coefficients (solid curves) from daily

(left panel) and annualized (right panel) returns generated from bivari-

ate t–distribution (ρ = 0.5 and ν = 4) from a 40–year sample (top)

and a 4,000–year sample (bottom) together with 95% confidence bands

(dashed)
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Figure 23: Scatter plots of daily returns (left) generated from bivariate t–

distribution (ρ = 0.5 and ν = 4) and annualized returns (right) from

a 40–year sample

annualization.

5 Conclusions

Given the significant role the insurance industry has in its own right and its rel-

evance for both the financial and the real sector of developed economies, prudent

risk–assessment processes that ensure insurers’ solvency are of paramount impor-

tance. With its Standard Formula, CEIOPS has set up a systematically structured

procedure for measuring and aggregating the risks faced by insurance companies.

Clearly, designing a regulatory framework of this complexity is a lengthy, if not

never–ending process, and the implementation cannot wait until the “perfect” de-

sign has been achieved. But does the Standard Formula, as currently proposed, rep-

resent an overall improvement towards a prudent regulation of the insurance indus-

try? Does it come close to meeting the objective of CEIOPS’ successor organization

EIOPA, namely38 “...to ensure that Solvency II is designed in the most appropriate

manner...”? The results of this study strongly suggest that an implementation of the

Standard Formula with its currently proposed equity–risk calibrations is imprudent,

if not irresponsible.

Criticism against Solvency II calibrations has been raised before, arguing, for ex-

38See Page 5, EIOPA (2011).
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ample, that the Standard Formula is unstable with respect to distributional settings

(Pfeifer and Strassburger, 2006) or that indices chosen to represent particular eqity

classes are inappropriate (Aria et al., 2010). The problems detailed here are, how-

ever, more fundamental. By subjecting historical market data to a rolling–window

annualization procedure prior to performing the calibration exercises, virtually all

equity–risk calibrations are rendered meaningless.

5.1 Implications for Calibration

The use of overlapping rolling–window return data, when calibrating the equity–risk

parameters of the Standard Formula, has serious consequences. The main implica-

tions for equity–risk calibrations can be summarized as follows:

1. The annualization induces strong temporal return and risk dependencies in the

data, as it induces near–unit–root or random–walk–like characteristics, which

are responsible for VaR estimates being highly unstable and erratic over time.

2. The annualization also produces spurious contemporaneous dependence struc-

tures between asset classes, substantially deteriorating the accuracy of conven-

tional Pearson–correlation and, even more so, tail–correlation estimates, with

the latter playing a prominent role in Solvency II equity–risk calibrations.

3. Altogether, rolling–window annualization leads to highly unreliable input pa-

rameters for the Standard Formula, so that capital–requirement estimates for

equity risk will be mainly a product of chance rather than a realistic and de-

pendable indication of true risk exposures. This will lead to inefficient and

volatile investment decisions.

4. Monitoring market behavior and adapting the input parameters over time,

regulators may drastically alter the parameter values and, thereby, cause costly

portfolio adjustments, even though the underlying market processes remain

unchanged.

5. A disturbing finding is that, if the original data have a weak, positive corre-

lation, tail–correlation estimates from annualized data are likely to be at or

near +1 and, thus, tend to greatly exaggerate the presence of dependencies.

This pile–up problem at +1 may very well be the reason why QIS calibrations

specify a perfect positive correlation between the asset classes within “other

equities.”

6. Seemingly contradicting the previous finding, the annualization can also elim-

inate tail dependence that is present in the data. This results from the fact

that rolling–window annualization destroys (near-)ellipticity in the data—a

property which defines the joint tail behavior and that both the VaR–implied

tail–correlation and the Standard Formula require to justify their use.

38



This last issue draws attention to a fundamental inconsistency in the Solvency II

approach to equity–risk calibration. The argument that tail correlation is a more ap-

propriate dependence measure than conventional Pearson correlation is appealing,

given that asset returns often exhibit asymmetries. The assumption of asymme-

try contradicts, however, the use of the Standard Formula, which is only valid for

elliptical and, thus, symmetric return distributions. If, on the other hand, we as-

sume symmetry, there is no point in using downside–risk and downside–dependence

measures, such as VaR and lower–tail correlation, for risk assessment.

5.2 Implications for Economic Growth and Systemic Risk

The central objective of the Solvency II regulation is that (Paragraph 65, European

Parliament (2009))

...economic capital should be calculated on the basis of the true risk pro-

file...taking account of the impact of possible...diversification effects.

As they stand, Solvency II equity–risk calibrations fall critically short of this goal.

Their application is likely to have a number of potentially far–reaching implications,

affecting not only the insurance industry, but also the real economy—both on the

European and the global level. Some of the expected consequences will be:

1. Setting the correlations among all “other equities” equal to +1 completely

rules out the possibility of taking diversification effects into account. This will

not only overstate risk but also eliminate the incentive to diversify among such

heterogeneous asset classes like emerging–market stocks, private equity, hedge

fonds, and commodities.

2. By neglecting diversification benefits, the group of “other equities” as a whole

becomes less attractive. As a result, long–term growth in Europe will be neg-

atively affected as, for example, lower private–equity investments will reduce

the funding of innovative, high–growth firms in the EU. Similarly, a drop in

emerging–market investments will hamper economic growth in these countries

and, ultimately, feed back negatively to Europe.

3. These negative effects will be further amplified by imposing a rather high cor-

relation of +0.75 between “other” and “global equity.” This, together with

other, non–equity–risk calibration choices in Solvency II, will divert invest-

ments from the private sector to funding EU public debt. This is likely to

further reduce long–term growth—unless, of course, the additional funds will

be used for public investments that are more productive than those of the

private sector.

4. A shift from equity and corporate bonds to EU government bonds will lower

an insurer’s capital requirements, as the latter are “calibrated” to have zero

capital requirements. But it will not necessarily entail an equivalent reduction
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in risk exposure. This will only be the case if the default rates of government

bonds are in line with the Solvency II framework. In other words, governments

also need to apply the EU’s Solvency II standards and adopt the VaR99.5 risk

concept in their own budget planning “in order to ensure that ... [they] will

still be in a position, with a probability 99.5%, to meet their obligations ...

over the following 12 months” (Paragraph 65, European Parliament (2009)).

As long as this is not the case, prudent regulation has to make sure that the

risk of government bonds enters capital–requirement calculations.

5. There will be a substantial increase in systemic risk, if the Standard Formula

systematically steers investments to an asset class whose risk parameters are—

whether by design or by accident—kept artificially low and where there is only

a small number of counterparties.

In view of the calibration deficits presented here and their far–reaching conse-

quences, the implementation of the Solvency II framework in its current form needs

to be postponed until the equity–risk calibrations have been fundamentally repaired.

In the same vain, there should be no considerations at the moment to extend Sol-

vency II–type regulation to European pension fonds.

Calibration results involving data subjected to rolling–window annualization have

to be reexamined with non–overlapping return data at a daily or weekly frequency,

in order obtain more reliable parameter estimates. To derive annualized SCRs, the

calibration approach needs to also capture temporal dependence structures, so that

risk can be aggregated over time. Clearly, the latter is not a trivial task and requires

additional efforts. But, given the stakes involved, the necessary resources appear

negligible in comparison.

Implementing Solvency II without proper equity–risk calibrations and attempting

to recalibrate “on the fly,” with the regulation already being online, is likely to

produce volatile and unreliable SCR estimates and will sooner rather than later

trigger calls for Solvency III. If it gets that far, however, other fundamental flaws39

could be tackled.

39One major flaw is the use of VaR99.5 for measuring an insurer’s risk exposure and determining

the appropriate capital charge. This makes the empirical validation of risk parameters virtually

impossible and ignores potential losses that may be less extreme but more frequent than those

associated with once–in–two–hundred–years events. Focusing on such extreme risks is like asking a

medical doctor to determine the right dosage of treatment and providing her with a thermometer

that only indicates temperatures of 42 degrees Celsius and higher.
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Appendices

Appendix A: Continuous versus Discrete Returns

There are two approaches to calculating returns on financial assets. Practitioners

commonly use discrete returns, whereas empirical analysts and researchers typically

resort to continuous returns. The former reflect the true, relative price change, and

is used when calculating the return on an investment or measuring the performance

of an asset. The latter represent an approximation, which is convenient for empirical

or analytical investigations as they can be additively rather than multiplicatively

aggregated over time.

Let Pt and Pt−1 denote the price of an asset at the end of period t and t − 1,

respectively. The discrete return over the period (t − 1, t], denoted by Rt is given

by40

Rt =
Pt − Pt−1

Pt−1

=
Pt

Pt−1

− 1; (16)

40We abstract from possible adjustments that arise from dividend payments, splits or other

measures.
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and the continuous return, denoted by rt, by

rt = logPt − logPt−1 = log

(
Pt

Pt−1

)
= log(1 +Rt). (17)

If price changes, Pt−Pt−1, are small, then, discrete returns can be approximated by

their continuous counterpart, i.e.,

rt = log(1 +Rt) ≈ Rt, (18)

with the approximation following from the fact that, for small x, log(1 + x) ≈ x.

Note that, if continuous returns are normally distributed, gross discrete returns, i.e.,

1 +Rt, are lognormally distributed.

Assuming small price changes is not unreasonable when dealing with returns over

short holding periods, such as a day or a week. For longer horizons, such as the

one–year holding period assumed for Solvency II regulation, approximation (18) can

be poor, so that discrete returns should be used for empirical analysis.

All simulation results reported here are based on discrete returns. However, due

to better tractability, analytical results, involving daily return, rely on continuous

returns. The proximity of simulated and analytically derived results, when available,

indicates the appropriateness of the approximation.

Continuous and discrete multi–period returns over w ≥ 1 periods, given by rwt =∑w−1
i=0 rt−i and Rw

t =
∏w−1

i=0 (1 +Rt−i)− 1, respectively, are related via

Pt

Pt−w
= 1+Rw

t =

w−1∏

i=0

(1+Rt−i) =

w−1∏

i=0

exp{rt−i} = exp

{
w−1∑

i=0

rt−i

}
= exp{rwt }. (19)

All Monte Carlo simulations reported here are based on discrete returns, which

are obtained by drawing continuous daily returns, rt, from a normal or Student–t

distribution (at one occasion “enriched” with GARCH dynamics) and computing

multi–period, rolling–window returns via (19).

Appendix B: Multi–period Rolling–window Returns and Near–

unit Roots

Continuous rolling–window returns over horizon w are given by

rwt =

w−1∑

i=0

rt−i, w ≥ 1, t = 1, 2, . . . . (20)

If daily returns, rt, are white noise, i.e., rt
iid∼ (0, σ2), (20) corresponds to a moving–

average process of order w− 1. This process is, in fact, stationary.41 However, as w

41We have E(rwt ) = 0 and Cov(rwt , r
w
t−k) = (w−k)σ2, for k = 0, 1, . . . , w−1, and Cov(rwt , r

w
t−k) =

0, for k ≥ w.
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increases, the process approaches a nonstationary unit–root process. Process (20)

can also be rewritten as

rwt = rwt−1 + rt − rt−w. (21)

This amounts to a special autoregressive moving–average process of orders 1 and

w. But it is only the term rt−w on the right–hand side that distinguishes it from a

random walk. As w increases, the influence of rt−w on the variation of rwt diminishes,

because
Cov(rwt , rt−w)

Var(rwt )
=

1

w
. (22)

To demonstrate, as stated in (6), that the ordinary least–squares (OLS) estimator,

âT , for a in autoregression rwt = arwt−1 + vt, given by

âT =

∑T
t=1 r

w
t r

w
t−1∑T

t=1

(
rwt−1

)2 ,

approaches (w − 1)/w as the sample size, T , grows, we show that plimT→∞ âT =

(w− 1)/w. Assuming that the one–period returns are white noise, i.e., rt
iid∼ (0, σ2),

we obtain for the numerator and denominator

plimT→∞
1

T

T∑

t=1

rwt r
w
t−1 = plimT→∞

1

T

T∑

t=1

[(
w−1∑

i=0

rt−i

)(
w−1∑

i=0

rt−1−i

)]

= (w − 1)σ2

and

plimT→∞
1

T

T∑

t=1

(
rwt−1

)2
= plimT→∞

1

T

T∑

t=1

(
w−1∑

i=0

rt−1−i

)2

= wσ2,

respectively, so that (6) follows. Given that the root of a first–order autoregressive

process is the reciprocal value of the autoregressive coefficient, i.e., w/(w − 1), a

rolling–window return series approaches a unit–root process as the window length

increases.
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