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Abstract 
 

This paper studies the costs and benefits of adding factors to empirical asset-pricing models.  I argue that, 

for many purposes, the literature’s preference for models with fewer factors is misplaced.  Including extra 

factors in a model, even redundant ones, can improve estimates of individual alphas and increase the power 

of asset-pricing tests.  I provide empirical examples to illustrate these results. 

 
 



In recent decades, asset-pricing studies have explored the link between expected stock returns and hundreds of 

firm characteristics (Harvey, Liu, and Zhu 2016).  The proliferation of findings has, in turn, inspired a renewed 

effort to identify a small number of factors that can explain the cross-section of expected returns and new 

methods of comparing different factor models (e.g., Hou, Xue, and Zhang 2015; Fama and French 2015, 2018; 

Barillas and Shanken 2017, 2018; Hou, Mo, Xue, and Zhang 2019; Barillas, Kan, Robotti, and Shanken 2020; 

Kozak, Nagel, and Santosh 2020; Harvey and Liu 2021).  The spirit of this literature is summarized well by 

Barillas and Shanken (2017):  “Given the variety of portfolio-based factors that have been examined by 

researchers, it is important to understand how best to combine them in a parsimonious asset pricing model for 

expected returns, one that excludes redundant factors” (p. 715).  Similarly, Fama and French (2018) note that 

“if factor modeling is not to degenerate into meaningless dredging for the ex post MVE [mean-variance-

efficient] portfolio, the number of factors in models must also be limited.  Establishing ground rules, however, 

awaits more experience” (p. 248). 

 

In this paper, I offer a contrarian perspective on the literature.  I consider two related questions:  (i) What are 

the costs and benefits of dropping factors from a model?  (ii) How many factors can a model have, i.e., how 

many factors are too many?  My results lead me to conclude that, for many purposes and within fairly 

generous bounds, the benefits of including additional factors exceed the costs.  It follows that searching for a 

parsimonious model with just a handful of factors can actually be counterproductive.  By extension, questions 

like “Which investment factor is best?” or “Do size, profitability, and investment subsume the value 

premium?” are often just a sideshow. 

 

To frame the analysis, we need to have an objective function in mind:  Why do we want a factor model?  What 

will it be used for?  These questions could be answered in a variety of ways.  My working assumption in this 

paper is that the underlying goal is either (i) to measure abnormal returns (alphas) on stocks, portfolios, or 

mutual funds, or (ii) to estimate properties of the minimum-variance stochastic discount factor (SDF) and, in 

particular, the volatility of the SDF.  The main point of my paper is that, with these goals in mind, there may 

be little benefit from reducing the number of factors in a model; in fact, dropping even redundant factors, that 

do not contribute to the SDF, can be suboptimal. 
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My analysis has three parts.  The first part focuses on estimates of individual alphas.  Consider a typical time-

series regression of asset i’s excess returns in month t, Rit, on a set of factors Ft, the elements of which are 

either excess returns or long-short returns on traded portfolios: 

Rit = i + iFt + it. (1) 

The sampling variance of the estimated alpha is, from standard results, 

var(ai) = (1 + sh2(F))/T  var(i), (2) 

where sh2(F) is the sample maximum squared Sharpe ratio of the factors and T is the number of months.  The 

costs and benefits of including an extra factor in the regression are immediate.  First, if the factor is not 

redundantit has a nonzero alpha, in population, when regressed on the other factorsincluding the factor in 

(1) will generally affect the asset’s true alpha (unless the asset’s loading on the factor is zero).  On the other 

hand, if the factor is redundant, including it has no impact on i but will affect the standard error of the 

estimate through sh2(F) or var(i).  The first effect is necessarily bad (including the factor cannot lower sh2(F) 

and, hence, will generally increase the standard error) while the second effect is necessarily good (including 

the factor cannot increase var(i) and, hence, will generally reduce the standard error).  However, the first 

effect is likely to be small because squared Sharpe ratios are typically small numbers (e.g., the market’s 

squared Sharpe ratio is around 0.01 monthly), and a redundant factor, by definition, is not expected to 

contribute significantly to sh2(F).  The second effect, on var(i), can be either large or small depending on how 

highly correlated the asset is with the factor.  It follows that including even a redundant factor in the regression 

can be useful because it might well improve the precision of the alpha.  On balance, I argue that we should err 

on the side of including more, not fewer, factors. 

 

It might be useful to expand on this point.  The essence of the argument is that, while including a redundant 

factor in the regression does not affect the true alpha, it can help to estimate the alpha more accurately.  For 

example, suppose the redundant factor is uncorrelated with the other factors and, therefore, has a true mean of 

zero.  In sample, however, the factor’s average return is 0.5% monthly.  That information will help us estimate 

the alpha of any asset correlated with the factor.  If an asset’s loading on the factor is, say, 2.0, one percentage 

point of the asset’s return can be attributed to the factor’s unexpected return during the sample, and including 



3 
 

the factor in the regression appropriately reduces the estimated alpha by that amount.  Including the factor in 

the regression is only detrimental if estimation error in the factor loading is so high that it increases the noise in 

alpha, an effect captured by the term sh2(F).  An interesting corollary is that, as the sampling frequency of 

returns increases (time intervals get shorter), sampling error in factor loadings and the impact on sh2(F) both go 

to zero, so including redundant factors is always a net positive in continuous time if they are correlated with 

the test asset. 

 

The argument here has implications beyond the analysis of factor models.  For example, suppose we estimate 

the alpha of a mutual fund that tilts toward a particular industry or industries.  The convention in asset pricing 

would be to regress the mutual fund return on a small set of asset-pricing factors, effectively ignoring the 

industry tilt because industries are not thought of as priced factors.  My analysis implies this logic is faulty:  

Even if industry returns are not priced factors, adding industry returns to the regression can help absorb 

residual variation and will improve the estimate of alpha.  More generally, there is no inherent reason to 

include only priced factors in the regression. 

 

The second part of my analysis focuses on the properties of asset-pricing tests:  How well do factors explain 

the cross-section of expected returns?  Barillas and Shanken (2017) observe that, to compare models with 

different factors, the key question is which set of factors has a higher squared Sharpe ratio.  Suppose we have 

factor models F1 and F2, and our goal is to understand which produces smaller alphas, specifically, a smaller 

value of +, where  is the vector of alphas for all assets (test assets R and all factors in F1 or F2) and + is 

the pseudoinverse of the residual covariance matrix for a given model.  (The pseudoinverse is needed here 

because some factors are included as both ‘right-hand-side’ (RHS) and ‘left-hand-side’ (LHS) assets, implying 

the residual covariance matrix has rows and columns of zero; the quadratic is the same if the RHS factors are 

dropped from the LHS assets.)  Gibbons, Ross, and Shanken (1989) show that + measures the difference 

between the population maximum squared Sharpe ratio of all assets, SH2(Rall), and the maximum squared 

Sharpe ratio of the factors included in the model, SH2(Fi) (uppercase ‘SH’ denotes a population Sharpe ratio).  

Thus, comparing models: 
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+ for model 1 = SH2(Rall) – SH2(F1). (3) 

+ for model 2 = SH2(Rall) – SH2(F2). (4) 

Since the first terms in the equations are the same, it is immediate that the better model is the one with factors 

that produce the higher squared Sharpe, SH2(Fi).  The test assets themselves are irrelevant.  This idea is 

consistent with the recent trend of comparing models by testing whether the factors in one model explain 

(‘span’) the factors in the other model. 

 

In the case of two nested models, suppose that F2 includes the factors in F1 plus additional factors that turn out 

to be redundant:  the extra factors have insignificant alphas when regressed on F1 and, therefore, sh2(F2) is 

insignificantly different from sh2(F1).  The implication is that the smaller set of factors F1 capture all of the 

pricing information and the extra factors in F2 can be dropped. 

 

But what can we do with the information that F1 works as well as F2?  If we want to test whether F1 explains 

the cross-section of expected returns, it will be tempting to run the usual test of whether 

SH2(R,F1) – SH2(F1) = 0. (5) 

The problem is that F1 can appear to be a good model based on (5) even if it does not appear to be a good 

model based on (3).  Put differently, the test assets in R and the extra factors in F2 might, individually, have 

alphas that are insignificantly different from zero even if putting R and F2 together into a test leads to a strong 

rejection of the model.  Thus, if the question is “Does F1 explain the expected returns on all assets?”, the extra 

factors in F2 cannot be dropped from the tests.  In a sense, the factors need to be included as either RHS or 

LHS assets.  One of my key results is that including them on the RHS, in the model, always leads to more 

powerful tests. 

 

Let me offer a concrete example.  Suppose we have two factors, R1 and R2, and a third test asset R3.  R2 and R3 

have the same volatility, are uncorrelated with R1, and are negatively correlated with each other.  (R1 could be 

the market portfolio, R2 a value factor, and R3 a momentum factor.)  R2 and R3 also have the same insignificant 

alpha when regressed on R1.  Thus, in the first step, when we compare model F1 = R1 with model F2 = (R1, R2), 
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R2 appears to be redundant and can be dropped.  In the second step, F1 also appears to explain the returns on 

R3.  At the same time, it is clear that the portfolio ½ R2 + ½ R3 could have a highly significant alpha when 

regressed on R1 since its alpha is the same as the (common) alpha of R2 and R3 but has a lower standard error.  

This ‘anomaly’ will only be discovered if R2 is included either as a test asset in the second step or as a factor in 

the model, i.e., R2 cannot be dropped from the tests even though it appears to be redundant.  And I show that 

power is always higher when R2 is included in the model.  The implication, again, is that we should err on the 

side of including more, not fewer, factors. 

 

The third part of my analysis focuses on estimating the variance of the SDF or, equivalently, the maximum 

squared Sharpe ratio attainable from a given set of factors.  This metric is often used as a summary measure of 

a model’s performance.  I study how well it can be estimated as a function of the number of factors in the 

model.  Given a set of K normally distributed factors, the sample statistic 

p = sh2(F)  (T–K)/K (6) 

has a noncentral F distribution with degrees of freedom K and T–K and noncentrality parameter TSH2(F) 

(e.g., Morrison 1990).  I describe how to use these facts to obtain a confidence interval for the population 

SH2(F) and then study how the confidence interval varies as we add additional factors, depending on whether 

the additional factors are redundant or not. 

 

In this case, including redundant factors tends to be detrimental:  sampling error in sh2(F) increases, and the 

expected width of the confidence interval for SH2(F) goes up, if redundant factors are added to the model. 

However, the impact on the confidence interval is surprisingly small for typical sample sizes encountered in 

the literature.  For example, with 40 years of data and a true monthly SH2(F) of 0.05, a 90% confidence 

interval is expected to be [0.021, 0.091] if we have four factors, [0.019, 0.094] if we have 12 factors, and 

[0.012, 0.101] if we have 32 factors. 

 

Adding non-redundant factors is more complicated because the factors affect not only the sampling error in 

sh2(F) but also the true SH2(F).  Intuitively, adding priced factors makes the confidence interval wider but 
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shifts it upward toward the true value of SH2(F).  For example, suppose we start with four factors that have a 

SH2(F) of 0.04 and add eight factors that increase SH2(F) to 0.06.  With 40 years of data, a 90% confidence 

interval is expected to be [0.015, 0.077] using the first four factors and [0.026, 0.107] using all 12 factors.  The 

latter is wider but centered closer to the true SH2(F) of the full model. 

 

Overall, my results suggest that, from an empirical standpoint, the benefits of including extra factors in a 

model may well outweigh the costs, even if the factors are redundant.  Models with many factors can work 

better for many applications than parsimonious models with only a few factors.  There is, of course, a limit to 

this argumentthe marginal benefits of adding factors are likely to go down and the costs are likely to go up 

as the number increases.  However, my results suggest the optimal number may be much largerperhaps an 

order of magnitude greaterthan the current fashion in the literature. 

 

1. Estimating alphas 

One important use of factor models is to estimate alphas on stocks, portfolios, or mutual funds.  We might 

want to test whether a stock performs well on a ‘risk-adjusted’ basis, whether a proposed trading strategy 

generates abnormal profits relative to existing strategies, or whether a mutual fund manager has stock-picking 

skill after adjusting for factor tilts.  In this section, I study how the estimation of alpha changes as we increase 

the number of factors in the model. 

 

An asset’s alpha is estimated in the time-series regression of the asset’s excess returns on a set of K factors, 

assumed to be either excess returns or long-short returns on traded portfolios: 

R =  + F + . (7) 

I omit subscripts here, but R and F should be interpreted as excess returns in month t.  The sampling variance 

of the estimated alpha is, from standard results (e.g., Gibbons, Ross, and Shanken 1989), 

var(a) = (1 + sh2(F))/T  var(), (8) 

where T is the number of months and sh2(F) is the sample maximum squared Sharpe ratio of the factors (in this 

calculation, the sample variance does not include a degree-of-freedom adjustment; I assume T > K+5).  The 
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main question here is how the alpha in (7) and the sampling variance in (8) change if we include or exclude a 

factor from the model. 

 

For concreteness, suppose we add one factor FK+1 to the model.  The impact is easiest to evaluate if we first 

orthogonalize FK+1 with respect to the other factors.  The orthogonalized factor, OFK+1, equals the intercept, 

FK+1, plus the residual, FK+1, when FK+1 is regressed on F.  (FK+1 is ‘priced’ if FK+1  0 and ‘redundant’ if 

FK+1 = 0.)  Adding OFK+1 to the model, the regression becomes: 

R = * + F + K+1OFK+1 + *, (9) 

where * =  – K+1FK+1 and * =  – K+1FK+1.  (* and * are the same if FK+1 is added to the regression 

instead.)  The impact on alpha depends on how much of the asset’s expected return is explained by the new 

factor (the loading K+1 times the mean of OFK+1), while the new residual excludes variation in the asset’s 

return that is explained by OFK+1.  The variance of the estimate of * is 

var(a*) = (1 + sh2(F,FK+1))/T  var(*) (10) 

or 

var(a*) = [1 + sh2(F) + sh2(OFK+1)]/T  [var() – K+1
2var(OFK+1)]. (11) 

In this equation, sh2(OFK+1) should be interpreted as the squared Sharpe ratio of the in-sample orthogonalized 

version of FK+1.  The first substitution in (11), compared to (10), follows from basic properties of maximum 

squared Sharpe ratios for orthogonal assets (e.g., MacKinlay 1995) and the second substitution follows from 

the fact that * is uncorrelated with OFK+1. 

 

Equations (7)–(11) allow us to evaluate the trade-offs associated with adding a factor to the model.  First, if the 

factor is not redundant (FK+1  0) and the asset loads on the factor (K+1  0), the true alpha changes because 

the benchmark for evaluating the asset’s abnormal return changes, i.e., part of the asset’s return is attributed to 

its loading on the new factor.  That, of course, is the whole point of including a priced factor in the regression. 

 

On the other hand, if the new factor is redundant (FK+1 = 0), adding it to the regression has no effect on the 

true alpha (* = ), so the main consideration comes from the impact on the standard error of the estimate.  
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The latter depends on two effects, the change in the sample maximum squared Sharpe ratio of the factors and 

the impact on the residual variance.  Consider each in turn: 

 

Squared Sharpe ratio.  From (11), the change in the maximum squared Sharpe ratio equals sh2(OFK+1).  This 

term arises because estimation error in the factor loading on FK+1 increases estimation error in alpha (it would 

drop out if K+1 were known).  The term is expected to be small because monthly Sharpe ratios are typically 

small numbers.  For example, the market portfolio’s Sharpe ratio is around 0.11 (excess return around 0.5% 

and standard deviation around 4.5%), so adding an uncorrelated factor that has twice the market’s sample 

Sharpe ratio would add only sh2(OFK+1) = 0.05 to the first term in (11).  And, since 1+sh2(F) cannot be less 

than one, the percentage increase in the sampling variance is even smaller. 

 

More formally, if the factor is redundant, sh2(OFK+1) is expected to be close to zero because the population 

SH2(OFK+1) is exactly zero.  Gibbons, Ross, and Shanken’s (1989) results imply that, if returns are normally 

distributed, the statistic 

g = sh2(OFK+1)  (T–K–1)/(1+sh2(F)) (12) 

has a central F distribution with degrees of freedom 1 and T–K–1.  This implies that the percentage increase in 

the first term in (11), sh2(OFK+1)/(1+sh(F)), has a mean of 1/(T–K–3) and standard deviation of [2(T–K–2)/(T–

K–5)]1/2/(T–K–3) (e.g., Mood, Graybill, and Boes 1974).  As long as the number of factors K is substantially 

less than the length of the time-series T, the percentage increase should be close to zero.  For example, with 40 

years of data, the expected increase is 0.2% if K = 25 and 0.3% if K = 100. 

 

These results generalize easily if we consider adding multiple factors simultaneously to the model.  Define 

sh2(OFK+q) as the sample maximum squared Sharpe ratio of orthogonalized factors FK+1 through FK+q 

(orthogonalized relative to F; I assume T > K+q+4).  If returns are normally distributed and the extra factors 

are all redundant, the statistic 

g = sh2(OFK+q)/q  (T–K–q)/(1+sh2(F)) (13) 

has a central F distribution with degrees of freedom q and T–K–q.  This implies that the percentage increase in 
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the first term in (11), sh2(OFK+q)/(1+sh(F)), has a mean of q/(T–K–q–2) and standard deviation of [2q(T–K–

2)/(T–K–q–4)]1/2/(T–K–q–2).  If we have 40 years of data and start with 10 factors, the expected increase in 

the variance of alpha coming from this effect is 2% if add 10 redundant factors to the model and 4.5% if we 

add 20 redundant factors.  (The impact on the standard error of alpha is roughly half as large.)  These results 

suggest that, in the worst case scenariothe extra factors are all redundant and do not absorb any residual 

variation in the test asset’s returnadding even dozens of factors to the model has only a modest effect on our 

ability to estimate alpha precisely (unless K approaches T). 

 

Of course, we cannot know whether the extra factors are truly redundant.  If the determination is made in 

sample, the results above may actually overstate the impact of adding redundant factors since the factors will 

have already been found to contribute insignificantly to the model’s squared Sharpe ratio, i.e., sh2(OFK+q) 

would be insignificantly different from zero.  Thus, in practice, the impact of adding redundant factors may be 

less than the ex ante expected value of sh2(OFK+q). 

 

Residual variance.  The second effect on the sampling variance of alpha arises if the extra factors absorb 

residual variation in the asset’s return, an effect that is necessarily beneficial regardless of whether the factors 

are redundant or not.  This effect, via the second bracketed term in (11), is hard to quantify in general terms 

because it depends on how highly correlated the asset is with the factors; that is, it depends on how much the 

factors raise the regression R2.  The important point is that even a non-priced factor can help us to estimate 

alpha more precisely. 

 

Examples.  Table 1 illustrates these results.  I estimate alphas for momentum, profitability, and asset-growth 

deciles using several factor models:  (i) the CAPM; (ii) the Fama-French (1993) three-factor model; (iii) an 

expanded version of the Fama-French model that directly uses the six underlying size-B/M portfolios (thus, a 

six-factor model); (iv) a second extension that uses all 25 Fama-French size-B/M portfolios as factors (a 25-

factor model); and (v) a model that includes the three Fama-French factors plus returns on Fama and French’s 

30 industry portfolios (a 33-factor model).  The motivation here is to illustrate how alpha estimates and 
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standard errors change as we add factors to the model.  Intuitively, going from model (i) to model (ii) 

illustrates the impact of adding two seemingly-priced factors (SMB and HML) to the model.  Going from 

model (ii) to models (iii) and (iv) illustrates the impact of adding either a few or many seemingly-redundant 

factors to the model, i.e., three combinations of the six or 25 size-B/M portfolios do a good job capturing the 

pricing information in all of the portfolios, so three of the six portfolios are redundant in model (iii) and 22 of 

the 25 portfolios are redundant in model (iv).  The fifth model, with 30 industry factors added to the three-

factor model, illustrates the impact of adding returns on portfolios that would generally not be thought of as 

priced factors.  All of these factors come from Ken French’s website (http://mba.tuck.dartmouth.edu/pages/ 

faculty/ken.french/). 

 

Momentum is measured by a stocks’ return over the past year (skipping the final month); profitability is 

measured as operating profits divided by total assets in the prior year; and asset growth is the percentage 

increase in total assets in the prior year.  The sample includes all common stocks on CRSP and Compustat with 

necessary data.  All portfolios are value-weighted and the sample period is July 1963–June 2021.  

 

The alphas in Table 1 change somewhat as factors are added to the model, but the main point of the table is 

that models with many factors work just as well as models with a few factors, even though the extra factors 

would often be interpreted as redundant (and are often highly correlated with each other).  For example, 

standard errors from the six- and 25-factor extensions of the three-factor model are nearly identical to those 

from the three-factor model itself.  The biggest change in standard errors comes from adding 30 industry 

factors to the three-factor model in Panel B:  adding industry factors reduces the standard errors by an average 

of 16% for the profitability deciles and 30% for the high-minus-low profitability portfolio.  This reflects that 

fact that industry returns explain some of the variation in returns on profitability portfolios, presumably 

because profitability tends to vary across industries. 

 

Table 1 also shows results for a 40-factor model using the anomaly portfolios of Kozak, Nagel, and Santosh 

(2020).  I start with the 57 factors provided on Serhiy Kozak’s website (https://www.serhiykozak.com/) and, 

for simplicity, drop factors that begin after July 1963 and three factors (‘mom12’, ‘prof’, and ‘growth’) that, 
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based on the descriptions provided, seem most similar to my momentum, profitability, and asset-growth 

portfolios.  The 40-factor model includes both equal- and value-weighted market returns and a range of value, 

momentum, reversal, growth, issuance, and leverage strategies (along with few others such as trading volume 

and firm age).  The results, in the final column of the table, again show that including a large number of 

overlapping factors presents no special problem for estimating alpha; the standard errors are comparable to or 

slightly lower than those for the other models. 

 

The bottom line is that adding a potentially large number of factors to a model isn’t inherently problematic for 

estimating alphas, even if the factors are redundant.  In fact, adding redundant factors that are correlated with 

the test asset can be just as beneficial as adding priced factors:  they help absorb some of the random variation 

in returns and, consequently, improve the precision of alpha. 

 

2. Asset-pricing tests 

The analysis above focuses on estimating a single asset’s alpha in isolation.  A closely related question is how 

well a model explains the cross-section of expected returns on all assets.  In this section, I study how adding 

factors to a model affects such asset-pricing tests, especially as they relate to the ‘model comparison’ or 

‘spanning’ tests that have become popular in the literature. 

 

Asset-pricing tests consider whether alphas are zero for all assets when their excess returns Rall (a vector) are 

regressed on the factors: 

Rall =  +  F + . (14) 

Barillas and Shanken (2017) emphasize that the factors included in a model should price any factors excluded 

from the model (as well as other assets), so I assume Rall includes all of the assets available, encompassing a 

set of N test assets with excess returns R and all of the included and excluded factors.  Alphas and residuals 

when F is regressed on F are zero, so including F on the LHS of (14) does not affect the tests except that the 

residual covariance for the full set of residuals, var() = , is singular and the statistics below use pseudo-

inverses (+) rather than simple inverses. 
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Gibbons, Ross, and Shanken (1989) show that alphas in (14) are all zero if and only if some combination of the 

factors equals the tangency portfolio attainable from Rall.  In particular, 

+ = SH2(Rall) – SH2(F), (15) 

where ‘SH’ indicates a population Sharpe ratio.  As noted by Barillas and Shanken (2017), an immediate 

consequence of (15) is that the relative pricing performance of two models, F1 and F2, can be evaluated simply 

by comparing their squared Sharpe ratios, SH2(F1) and SH2(F2).  The test assets in R turn out to be irrelevant if 

the question is “Which model is better?” as measured by +. 

 

In the case of nested models, where F2 includes the factors in F1 plus some additional factors, the smaller 

model performs as well as the larger model, SH2(F1) = SH2(F2), if the extra factors in F2 are all redundant.  

This suggests that redundant factors can be dropped from the model with no loss in pricing power, consistent 

with the spanning tests in the literature and the search for parsimonious models.  But that conclusion is less 

useful than it might appear: 

 

First, it is important to emphasize that ‘dropped from a model’ is not the same as ‘dropped from the tests.’  If 

the goal is to understand how well F1 explains the cross-section of expected returns, the extra factors in F2 need 

to be included in the tests as LHS variables even if they seem to be redundant.  (Formally, the result that 

SH2(F1) = SH2(F2) does not imply that SH2(R,F1) = SH2(R,F2).)  Thus, regardless of whether the extra factors 

are redundant or not, asset-pricing tests need to include the full set of returns.  This, in turn, suggests there is 

little benefit from an asset-pricing perspective of identifying ‘redundant’ factors:  redundant factors can not 

only improve estimates of individual alphas, as discussed earlier, but identifying redundant factors doesn’t 

actually reduce the ‘multidimensionality’ problem (e.g., Cochrane 2011). 

 

Second, for asset-pricing tests, it is better to include redundant factors in the model on the RHS of the 

regression than on the LHS.  The standard test, from Gibbons, Ross, and Shanken (1989), is based on the 

sample counterpart to (15).  For a given model, the statistic is 

g = aΣ෠ାa/d  (T–K–d)/(1+sh2(F)), (16) 
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or  

g = [sh2(Rall) – sh2(F)]/d  (T–K–d)/(1+sh2(F)), (17) 

where d equals the total number of assets minus the number of factors in F and Σ෠ is the residual covariance 

matrix estimated without a degree-of-freedom adjustment.  Conditional on the realized factor returns, and 

assuming normality, this statistic has a noncentral F-distribution with degrees of freedom d and T–K–d and 

noncentrality parameter [SH2(Rall) – SH2(F)]  T/(1+sh2(F)).  (The unconditional distribution, integrating over 

factor realizations, is more complicated because the noncentrality parameter will vary from sample-to-sample 

unless SH2(Rall) – SH2(F) = 0.) 

 

Suppose we consider nested models F1 and F2, where F2 includes the K factors in F1 and q additional factors 

that are redundant in population, so that SH2(F1) = SH2(F2).  (Since the two Sharpe ratios are identical, I drop 

subscripts in what follows.)  Conditional on the realized returns of F1, g(F1) has an F-distribution with degrees 

of freedom N+q and T–K–N–q and noncentrality parameter [SH2(Rall) – SH2(F)]  T/(1+sh2(F1)).  Conditional 

on the realized returns of F2, g(F2) has an F-distribution with degrees of freedom N and T–K–N–q and noncen-

trality parameter [SH2(Rall) – SH2(F)]  T/(1+sh2(F2)).  Notice that these distributions are the same except for 

(i) the first degree-of-freedom parameter and (ii) what is expected to be a small difference in the denominator 

of the noncentrality parameter (see my discussion in Section 1). 

 

The key issue is how the power of tests based on g(F1) and g(F2) differ.  In the absence of any effect on the 

noncentrality parameter, the answer is both simple and surprising:  tests based on g(F2), the model that 

includes redundant factors, are always more powerful than tests based on g(F1).  Intuitively, tests based on 

g(F2) need to test whether N alphas are zero, while tests based on g(F1) need to test whether N+q alphas are 

zero and the extra q alphas only add noise to the tests (the alphas are zero in population because the extra 

factors are redundant).  I establish this result formally in the appendix. 

 

The generality of this conclusion is quite remarkable:  It does not depend on the number of redundant factors, 

the length of the time series, or even the correlation between the redundant factors and the other assets (which, 
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as explained earlier, does affect the precision of individual alphas).  In all cases, if the goal is to test whether 

the model explains the cross-section of expected returns, it is always better to include redundant factors in the 

model, on the RHS of the regression, than on the LHS.  Dropping redundant factors from the model is 

unambiguously suboptimal. 

 

The impact on the noncentrality parameter is expected to be small and doesn’t seem to alter the conclusion.  

Since the unconditional distributions of the statistics are nonstandard (they are a mixture of F distributions with 

different noncentrality parameters), I rely on numerical results to illustrate the effects.  Table 2 reports the 

probability of rejecting the models at a 5% significance level given a variety of different parameters.  I assume 

we start with five factors in F1 that have a maximum squared Sharpe ratio of SH2(F1) = 0.05 and consider 

adding up to 32 redundant factors to the model.  Twenty-five test assets are also included in the tests.  The 

unexplained squared Sharpe ratio, SH2(Rall) – SH2(F), ranges from zero (the null that the model works 

perfectly) to 0.10.  The latter represents substantial mispricing, implying that some portfolio can be found that 

is uncorrelated with the factors and has a Sharpe ratio of 0.32 monthly (1.10 annualized).  I report results for T 

= 240 or T = 480 months. 

 

Table 2 confirms the inferences above:  Tests based on g(F2), the model that includes redundant factors, are 

always more powerful than tests based on g(F1).  The tests reject 5% of the time when the models work 

perfectly, in the first column, but with greater probability when SH2(Rall) > SH2(F).  The main result for our 

purposes is that, for a given T (time series), q (number of redundant factors), and SH2(all) (mispricing), the 

rejection probabilities are always greater for g(F2) than for g(F1).  The differences are typically modest, but the 

important point is that dropping redundant factors from a model never helps asset-pricing tests in fact, it is 

actually detrimental. 

 

To be clear, comparing the top row of each panel with the subsequent rows, including redundant factors at all 

in the tests is worse than dropping them completely if the redundant factors do not contribute anything to 

SH2(Rall).  However, there is no reason to believe the italicized condition is true:  redundant factors do not 
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contribute to the model’s squared Sharpe ratio, SH2(F1) = SH2(F2), but that says nothing about how much they 

contribute to SH2(Rall).  The example in the introduction, with two factors and one test asset, illustrates this 

point (it is described in terms of sample moments but could easily be adapted for population moments).  The 

potential impact on SH2(Rall) explains why the relevant comparison is g(F1) versus g(F2), not a comparison of 

the numbers in each panel as q changes. 

 

In sum, if the goal is to test a given factor model, identifying redundant factors in the model isn’t helpful:  

redundant factors cannot be dropped from the tests and, as a rule, it is better to include them on the RHS not 

the LHS of the regression. 

 

3. Estimating Sharpe ratios 

The analysis above focuses on testing whether a factor model fully explains the cross-section of expected 

returns.  An alternative metric of performance, relevant even if a model is not perfect, is simply to focus on the 

model’s maximum squared Sharpe ratio, SH2(F), or, equivalently, the variance of the model-implied SDF 

(Hansen and Jagannathan 1991).  Barillas and Shanken (2017, 2018) advocate using this metric to compare 

models, and the literature often reports it as a summary measure of a model’s performance. 

 

The issue I consider here is how including or excluding factors affects estimates of SH2(F).  As noted earlier, 

for a model with K normally distributed factors, the sample statistic 

p = sh2(F)  (T–K)/K (18) 

has a noncentral F distribution with degrees of freedom K and T–K and noncentrality parameter TSH2(F).  

The moments of a noncentral F imply that sh2(F) has a mean of 

E[sh2(F)] = (SH2(F)+K/T)  T/(T–K–2). (19) 

The sample sh2(F) is, of course, an upward biased estimate of the true SH2(F), and the bias increases with the 

number of factors.  Suppose, for example, that SH2(F) = 0.05 and T = 480.  The mean of sh2(F) is 0.061 with 5 

factors, 0.073 with 10 factors, 0.096 with 20 factors, and 0.146 with 40 factors.  This link between the number 

of factors and the bias in sh2(F) seems to provide, at least in part, the preference for models with fewer factors 
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in the literature (e.g., Fama and French 2018, p. 235). 

 

In principle, we could also use (18) to obtain the variance of sh2(F) and combine it with (19) to derive an 

approximate two-standard-deviation confidence interval for SH2(F).  However, the distribution of sh2(F) is not 

symmetric, and the mean and variance are both functions of the true SH2(F), so a better approach is to get an 

exact confidence interval by directly determining the set of SH2(F) that cannot be rejected by the data (using 

whatever confidence level is desired). 

 

The idea is illustrated in Fig. 1.  The graph shows the sampling distribution of sh2(F) on the y-axis 

(specifically, the 5th, 50th, and 95th percentiles) plotted against the true SH2(F) given 480 months of data for 

four factors on the left and 16 factors on the right.  The lines are upward sloping because a higher value of 

SH2(F) leads to higher sample Sharpe ratios and, conversely, a higher sample Sharpe ratio makes it more likely 

that the true value of SH2(F) is greater.  Given an observed sample sh2(F), a 90% confidence interval for 

SH2(F) can be obtained by finding values of SH2(F) for which the sample sh2(F) is between the 5th and 95th 

percentiles of the sampling distribution.  The upper and lower bounds are identified in the graph where a 

horizon line drawn at y = “observed sh2(F)” intersects the 5th and 95th percentiles.  Put differently, the 

sampling distribution for sh2(F) is found by fixing SH2(F) and scanning up, while a confidence interval for 

SH2(F) is found by fixing sh2(F) and scanning across.  (Lewellen, Nagel, and Shanken (2010) suggest a similar 

approach to get confidence intervals for unexplained squared Sharpe ratios.) 

 

For example, if the sample sh2(F) = 0.10, a 90% confidence interval for SH2(F) is determined in Fig. 1 by 

where a horizontal line at 0.10 intersects the 5th and 95th percentiles.  The confidence interval is [0.052, 0.146] 

with 4 factors and [0.028, 0.115] with 16 factors.  The latter is shifted downward to reflect, implicitly, the 

greater bias in sh2(F) when there are more factors in the model. 

 

My main interest here is how adding factors to a model affects our ability to estimate SH2(F) depending on 

whether the extra factors are redundant or not.  Suppose, again, we have two nested models F1 and F2, where 

F2 includes the factors in F1 plus additional factors.  If the extra factors are all redundant, the models have the 
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same maximum squared Sharpe ratio SH2(F), so adding factors affects the sampling distribution of p in (18) 

only through the degree-of-freedom parameters.  As noted above, the extra factors lead to a stronger upward 

bias in the sample Sharpe ratio, E[sh2(F2)] > E[sh2(F1)], but the confidence intervals inherently adjust for that.  

The more important issue, for my purposes, is how the extra factors affect the width of the confidence interval. 

 

A complication is that the width of the confidence interval depends on the realized value of sh2(F), an effect 

clearly visible in Fig. 1.  Therefore, we either need to consider the width for different values of sh2(F), 

recognizing that adding factors affects the likely values of sh2(F), or the expected width integrating over 

sh2(F).  For brevity, I follow the spirit of the latter approach and, in particular, report the confidence interval if 

sh2(F) falls at its 50th percentile for a given K and SH2(F).  (The results are similar for the expected width of 

the confidence interval, averaging over different values of sh2(F).) 

 

Table 3 illustrates how confidence intervals change as the number of factors increases, given T = 480 monthly 

observations and true SH2(F) ranging from 0.00 to 0.10.  (Note that SH2(F) is not actually used to get the 

confidence interval; its only role in Table 3 is to change the median sh2(F) for which I report the confidence 

interval.)  The top panel shows the median value of sh2(F) for a given K and SH2(F).  The second and third 

panels show the lower and upper bounds of the 90% confidence interval for SH2(F) if the sample sh2(F) equals 

its median value, and the bottom panel reports the width of the confidence interval. 

 

For example, if a model has four factors and the true SH2(F) equals 0.05, the median value of the sample 

sh2(F) equals 0.057 and, if that value is observed in the data, the resulting confidence interval for SH2(F) is 

[0.021, 0.091] with a width of 0.070.  If the model has 32 factors and the true SH2(F) equals 0.05, the median 

value of sh2(F) equals 0.123 and, if that value is observed in the data, the resulting confidence interval is 

[0.012, 0.101] with a width of 0.089.  Notice, again, that the confidence interval implicitly adjusts for the bias 

in the sample sh2(F).  The bias with 32 factors is so large, in fact, that the confidence interval falls entirely 

below the sample estimate. 

 

A key result in Table 3 is that including redundant factors in a model has a relatively modest effect on the 



18 
 

width of the confidence intervals (a proxy for the precision of the estimate).  For example, if the true SH2(F) is 

0.02, the median width of the confidence interval is 0.045 for a model with four factors, 0.055 for a model with 

16 factors, and 0.062 for a model with 32 factors.  Similarly, if the true SH2(F) is 0.08, the median width of the 

confidence interval is 0.088 for a model with four factors, 0.095 for a model with 16 factors, and 0.105 for a 

model with 32 factors.  The results suggest that, for the purposes of estimating SH2(F), including redundant 

factors in a model is detrimental but not prohibitively so. 

 

This finding is actually rather surprising:  It is well known that estimating the tangency portfolio itselfthat is, 

the combination of the factors that attains SH2(F)is challenging when the number of factors is large because 

average returns are so noisy (e.g., Kozak, Nagel, and Santosh 2020).  Table 3 suggests, however, that the 

higher estimation error in portfolio weights with more factors only translates into modestly more error in 

estimates of the portfolio’s Sharpe ratio. 

 

The discussion above assumes that the true SH2(F) does not change as more factors are added to a model (the 

extra factors are all redundant).  Table 3 also illustrates how confidence intervals change if the extra factors are 

instead priced, which implies that SH2(F) increases as K increases.  For example, if we start with four factors 

in the model that have SH2(F1) = 0.03 and add eight factors that increase the true SH2(F2) to 0.06, the median 

confidence interval shifts from [0.009, 0.063] to [0.027, 0.107].  The latter is wider but centered at closer to the 

true value of SH2(F2). 

 

It is also interesting to consider how the confidence intervals change if we include or exclude factors that 

appear to be redundant in sample.  This thought experiment is relevant in practice since factors are often 

judged as redundant or not based on their sample returns.  The example considered above in discussing Fig. 1 

illustrates this scenario:   If a four-factor model and 16-factor model produce the same sample sh2(F) of 0.10, 

the confidence interval for SH2(F) is [0.052, 0.146] for the four-factor model and [0.028, 0.115] for the 16-

factor model.  The confidence interval with 16 factors is actually narrower in this case, 0.087, compared with 

0.094 for the four-factor model. 
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This thought experiment can be interpreted as an illustration of how data mining affects estimates of Sharpe 

ratios:  If we start with 16 factors that produce a sample sh2(F) of 0.10 but drop 12 factors that are redundant in 

sample, the confidence interval for SH2(F) shifts upward from [0.028, 0.115], the interval based appropriately 

on the full set of 16 factors, to [0.052, 0.146], the interval implied by the data-mined four-factor model.  The 

midpoint of the confidence interval, which can be taken as a point estimate of SH2(F), shifts upward from 

0.072 to 0.099. 

 

Not surprisingly, the problem is more severe if we search over more factors.  Continuing with the same 

example, if we started with 40 factors and observe the same sample sh2(F) of 0.10, the 90% confidence interval 

for SH2(F) should be [0.000, 0.052] with a midpoint of 0.026.  This ‘unbiased’ confidence interval lies entirely 

below the one for the data-mined four-factor model, and the the midpoint is nearly 75% lower.  This example 

is extreme because the extra 36 factors are assumed to be completely redundant in sample (they contribute 

nothing to sh2(F)) but illustrates how data mining can affect the inferences.  It is important to note that the 

problem here does not come from looking at many factors per se but, rather, from ignoring that fact when 

evaluating the reduced model. 

 

Table 4 provides an application of the use of confidence intervals.  The table reports the sample sh2(F) and a 

90% confidence interval for SH2(F) for the six factor models considered earlier:  the CAPM; the Fama-French 

(1993) three-factor model; two expanded versions of the model with either the six size-B/M portfolios used to 

construct the Fama-French factors or Fama and French’s full set of 25 size-B/M portfolios; the three-factor 

model augmented with 30 industry factors; and a 40-factor model with factors from Kozak, Nagel, and Santosh 

(2020).  I also report statistics for the square root of SH2(F) for each model. 

 

As expected, the sample sh2(F) increases as factors are added to a model, rising from 0.017 for the CAPM to 

0.035 for the FF three-factor model, 0.175 for the 25-factor model, 0.135 for the ‘FF3+30 industry’ model, and 

0.627 for the KNS40 model.  But just as important, the confidence intervals for the true SH2(F) also shift to the 

right and are reasonably tight even for the models with many factors.  In fact, for the maximum Sharpe ratios 

(not squared), the confidence intervals are only slightly wider for models with more factors.  For example, the 
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confidence interval for SH(F) is [0.071, 0.192] for the CAPM, [0.114, 0.241] for the three-factor model, 

[0.298, 0.435] for the 25-factor model, and [0.655, 0.804] for the 40-factor model.  The last result is 

remarkable, both because it is incredibly high (implying a Sharpe ratio about 5 times that of the market 

portfolio) and surprisingly narrow given that the model has 40 factors. 

 

4. Conclusions 

The empirical asset-pricing literature often advocates models with only a handful of factors, even as the count 

of potential factors has grown to dozens or even hundreds.  It is common today to use models with only 

market, size, B/M, profitability, and investment factors, sometimes supplemented with a momentum factor or 

the ‘mispricing’ factors of Stambaugh and Yuan (2016). 

 

The preference for models with only a few factors may be rooted in theoretical models with a small number of 

factors (e.g., the CAPM).  My results suggest that, from an empirical perspective, the preference for fewer 

factors may be misplaced:  If the goal is to estimate alphas or to test whether a model explains the cross-

section of expected returns, adding factors to a modeleven completely redundant onescan be beneficial, 

not costly.  Extra factors can improve estimates of individual alphas and increase the power of asset-pricing 

tests.  The impact on the sampling error in individual alphas depends on how highly correlated the extra factors 

are with the asset being considered, while the benefits for asset-pricing tests hold generally regardless of the 

number of factors, the length of the time series, or the correlation between the extra factors and the other assets 

included in the tests. 

 

My results have several implications.  The most immediate is that the empirical literature should be willing to 

entertain models with potentially many more factors.  A corollary is that, for applications, there is little 

advantage from answering questions like “Does earnings momentum subsume return momentum?” or “Do 

size, profitability, and investment factors subsume the B/M effect?”.  In the absence of other considerations 

(such as data availability), my results suggest that all of the factors can be included in a model, regardless of 

the answer to those questions.  To be clear, it is interesting to know whether, say, a cash-profitability factor 
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subsumes an operating-profitability factor.  My results simply say that the answer is not important if the goal is 

to use the factor model to estimate alphas or to test whether the model explains the cross-section of expected 

returns, because all of the factors might as well be included in those tests. 

 

As a side benefit, including more factors in a model might also improve the search for new anomalies.  The 

standard approach to testing whether a proposed characteristic is associated with expected returns is to regress 

returns for a proposed long-short portfolio on a few well-accepted factors.  If the model expands to include 

more factors, not only can that lower the standard error of the estimated alpha but it can also reduce the chance 

of rediscovering old anomalies in new disguises. 

 

My results also imply that, to estimate alphas, the choice of factors to include in a model could be determined 

at least in part by the (expected) correlation between the factors and the assets, not just a belief about whether 

the factors are priced.  For example, suppose a researcher wants to estimate a mutual fund’s alpha.  If the fund 

is known to favor, say, energy stocks, it can make sense to include an energy-industry factor in the regression 

even if that factor is not thought to be priced.  In general, the factors to include will depend on the question 

being asked:  Does the fund outperform the market?, or Does the fund outperform the market controlling for its 

industry tilt?  Both questions are potentially interesting, regardless of whether industry returns are priced 

factors. 
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Appendix 

Section 2 studies asset-pricing tests for nested models F1 and F2, where F2 includes the K factors in F1 plus q 

redundant factors.  The models have the same true SH2(Fi), denoted SH2(F).  The Gibbons, Ross, and Shanken 

(1989) F-statistic, testing whether the models explain the cross-section of expected returns on all test assets 

and factors, Rall = (R, F2), are denoted g(F1) and g(F2).  This appendix shows that tests based on g(F2) are more 

powerful than tests based on g(F1). 

 

Conditional on the realized returns of F1, g(F1) has a noncentral F-distribution with degrees of freedom N+q 

and T–K–N–q and noncentrality parameter [SH2(Rall) – SH2(F)]  T/(1+sh2(F1)).  Conditional on the realized 

returns of F2, g(F2) has a noncentral F-distribution with degrees of freedom N and T–K–N–q and noncentrality 

parameter [SH2(Rall) – SH2(F)]  T/(1+sh2(F2)).  The key observation is that these distributions are the same 

except for (i) the first degree-of-freedom parameter and (ii) what is expected to be a small difference in the 

denominator of the noncentrality parameter. 

 

Ignoring the second effect (it is discussed in the text), the only difference comes from the first degree-of-

freedom parameter.  Thus, the key issue is how that parameter affects the power of the tests.  Unfortunately, 

the cumulative distribution function of the noncentral F distribution is unwieldy, so it is challenging to prove 

any results mathematically. 

 

As a simple but admittedly inelegant solution, I confirm the result holds numerically for essentially the entire 

empirically relevant parameter space.  Generically, g(Fi)  G(v1, v2, ), where G is the noncentral F distribution 

and, in the applications here, parameters v1 and v2 are positive integers.  To establish the result, we need to 

show that power is decreasing in v1 holding the other parameters constant.  I calculate power (for a test of size 

5%) for v1 ranging from 1 to 200 (representing the total number of assets minus the number of RHS factors), 

v2 ranging from 12 to 960 in increments of 12 (representing the number of months minus the total number of 

assets), and noncentrality parameters that correspond, roughly, to SH2(Rall) – SH2(F) ranging from 0.01 to 0.30 

in increments of 0.01 ( equals these values times v2).  I then check numerically that power is decreasing over 
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the full range of v1 given every combination of v2 and .  A few representative cases are illustrated in Fig. A1.  

(The procedure is implemented in SAS’s matrix language using the built-in functions for the noncentral F 

distribution.) 

 

As noted in the text, the intuition is that g(F2) tests whether N alphas are zero, while g(F1) tests whether N+q 

alphas are zero and the extra alphas simply add noise to the test.  More formally, from standard results on 

noncentral F distributions, g(F1) can be expressed as a noncentral chi-squared variable, C, with N+q degrees of 

freedom and noncentrality parameter  = [SH2(Rall)–SH2(F)]  T/(1+sh2(F1)), divided by an independent central 

chi-squared variable, W, with T–K–N–q degrees of freedom: 

g(F1) = 
஼/ሺேା௤ሻ

ௐ/ሺ்ି௄ିேି௤ሻ
. (A1) 

In turn, C can be expressed as the sum of two independent random variables:  C1, a noncentral chi-squared 

variable with N degrees of freedom and noncentrality parameter  (the same as C), and C2, a central chi-

squared with q degrees of freedom (and, thus, whose distribution does not depend on ): 

g(F1) = 
ሺ஼భା஼మሻ/ሺேା௤ሻ

ௐ/ሺ்ି௄ିேି௤ሻ
  

 = 
஼భ/ே

ௐ/ሺ்ି௄ିேି௤ሻ

ே

ேା௤
 + 

஼మ/௤

ௐ/ሺ்ି௄ିேି௤ሻ

௤

ேା௤
  

 = g11 
ே

ேା௤
 + g12 

௤

ேା௤
. (A2) 

Eq. (A2) formalizes the idea that the extra alphas in g(F1) simply add noise to the test:  g(F1) is a weighted 

average of a variable whose distribution depends on  (g11, which is noncentral F with degrees of freedom N 

and T–K–N–q and noncentrality parameter ) and a second variable whose distribution does not (g12, whch is 

central F with degrees of freedom q and T–K–N–q).  All of the information in g(F1) about the parameter we 

care about ( or SH2(Rall) – SH2(F)) comes from g11, which, crucially, has the same distribution as g(F2) (again, 

ignoring the small difference in noncentrality parameters).  Thus, g(F1) is basically a noisy version of g(F2), so 

we learn more from g(F2) than from g(F1). 



24 
 

Figure A1 
This figures plots the probability of rejecting at a 5% significance level the null hypothesis that  = 0 (i.e., a factor model 
explains the cross-section of expected returns) as a function of v1, v2, and .  The sample statistic is distributed noncentral 
F with degrees of freedom v1 and v2 and noncentrality parameter , where v1 corresponds to the total number of assets 
minus the number of factors, v2 corresponds to the number of months minus the total number of assets, and  roughly 
corresponds to the magnitude of mispricing (in the graph,  equals v2 times the unexplained squared Sharpe ratio of the 
model, which is labeled ‘SH2’). 
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Table 1: Alphas 
This table reports alpha estimates and standard errors for value-weighted momentum, profitability, and asset growth 
deciles using several factor models: (i) the CAPM; (ii) the Fama-French (1993) three-factor model (‘FF3’); (iii) an 
expanded version of the FF model that uses all six of the underlying size-B/M portfolios (‘FF6’); (iv) an expanded version 
of the FF model that uses all 25 of Fama and French’s size-B/M portfolios (‘FF25’); (v) an augmented version of the FF 
model that adds returns on Fama and French’s 30 industry portfolios (‘FF3+30 ind’); and (vi) a 40-factor model based on 
the anomaly portfolios of Kozak, Nagel, and Santosh (2020) (‘KNS40’).  Models (i)–(v) use data for July 1963 through 
June 2021 from Ken French’s website, while model (vi) uses data for July 1963 through December 2019 from Serhiy 
Kozak’s website. 
 
 CAPM  FF3  FF6  FF25  FF3+30 ind  KNS40 

Portfolio a se  a se  a se  a se  a se  a se 

Panel A: Momentum portfolios 
Low -0.94 0.20  -1.10 0.19  -0.91 0.19  -0.75 0.19  -0.98 0.17  -0.31 0.14 
2 -0.36 0.13  -0.50 0.13  -0.42 0.13  -0.32 0.13  -0.41 0.11  -0.08 0.09 
3 -0.13 0.10  -0.24 0.10  -0.23 0.10  -0.13 0.10  -0.19 0.09  0.05 0.09 
4 -0.03 0.08  -0.11 0.08  -0.10 0.08  -0.03 0.08  -0.08 0.07  0.02 0.07 
5 -0.03 0.07  -0.10 0.06  -0.11 0.06  -0.08 0.06  -0.05 0.06  0.06 0.07 
6 0.03 0.06  -0.02 0.06  -0.03 0.06  -0.01 0.06  -0.01 0.05  0.03 0.07 
7 0.04 0.06  0.01 0.06  -0.05 0.06  -0.01 0.06  -0.02 0.06  -0.05 0.07 
8 0.15 0.06  0.14 0.06  0.09 0.06  0.09 0.07  0.13 0.06  0.11 0.07 
9 0.24 0.08  0.23 0.08  0.19 0.08  0.17 0.08  0.21 0.07  0.08 0.07 
High 0.48 0.13  0.56 0.11  0.56 0.12  0.46 0.12  0.55 0.11  0.40 0.09 
High–Low 1.42 0.27  1.66 0.26  1.47 0.27  1.21 0.27  1.53 0.25  0.71 0.17 

Panel B: Profitability portfolios 
Low -0.26 0.10  -0.42 0.09  -0.33 0.09  -0.32 0.09  -0.27 0.06  -0.16 0.07 
2 -0.05 0.09  -0.23 0.07  -0.19 0.07  -0.18 0.07  -0.09 0.05  -0.03 0.06 
3 -0.10 0.07  -0.18 0.07  -0.15 0.07  -0.14 0.07  -0.11 0.06  0.03 0.07 
4 0.04 0.07  -0.05 0.06  0.01 0.06  -0.02 0.06  0.00 0.05  -0.05 0.06 
5 0.01 0.07  -0.07 0.06  -0.04 0.06  -0.01 0.06  0.00 0.05  0.00 0.06 
6 0.06 0.06  0.00 0.06  0.03 0.06  0.04 0.06  0.03 0.05  0.06 0.06 
7 0.06 0.06  0.01 0.06  0.02 0.06  0.03 0.06  0.04 0.05  -0.07 0.06 
8 0.03 0.05  0.02 0.05  -0.02 0.05  -0.02 0.05  0.00 0.05  -0.07 0.05 
9 0.01 0.05  0.04 0.05  -0.01 0.05  -0.02 0.05  0.02 0.05  -0.02 0.05 
High 0.11 0.07  0.26 0.05  0.15 0.04  0.12 0.05  0.12 0.04  0.22 0.05 
High–Low 0.37 0.14  0.68 0.11  0.49 0.11  0.44 0.11  0.39 0.08  0.38 0.09 

Panel C: Asset growth portfolios 
Low 0.22 0.09  0.09 0.08  0.12 0.08  0.15 0.08  0.08 0.08  -0.01 0.08 
2 0.21 0.07  0.10 0.07  0.09 0.07  0.14 0.07  0.14 0.07  0.04 0.07 
3 0.18 0.06  0.09 0.06  0.11 0.05  0.14 0.06  0.06 0.05  -0.01 0.06 
4 0.11 0.06  0.03 0.05  0.03 0.05  0.00 0.05  0.01 0.05  -0.04 0.06 
5 0.09 0.05  0.02 0.05  0.00 0.05  0.02 0.05  0.02 0.05  0.07 0.06 
6 0.06 0.05  0.02 0.05  -0.02 0.05  -0.06 0.05  -0.02 0.05  0.01 0.06 
7 0.06 0.05  0.05 0.05  -0.02 0.05  -0.05 0.05  0.02 0.05  0.05 0.05 
8 -0.03 0.05  -0.02 0.05  -0.09 0.05  -0.11 0.05  0.00 0.05  -0.04 0.06 
9 0.05 0.07  0.14 0.06  0.09 0.06  0.11 0.06  0.10 0.06  0.18 0.07 
High -0.39 0.08  -0.27 0.07  -0.20 0.07  -0.19 0.07  -0.22 0.06  -0.16 0.07 
High–Low -0.61 0.13  -0.36 0.11  -0.32 0.11  -0.34 0.11  -0.30 0.11  -0.16 0.11 
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Table 2: Power of asset-pricing tests 
This table reports the probability of rejecting the null hypothesis at a 5% significance level that a five-factor model F1 or 
an extended model F2, that adds up to 32 redundant factors (in addition to the factors in F1), explains the cross-section of 
expected returns.  Results are shown for various combinations of T (months of data), q (number of redundant factors), and 
SH2(Rall) – SH2(F) (true pricing errors).  The null hypothesis, SH2(Rall) – SH2(F) = 0, is tested using the Gibbons, Ross, and 
Shanken (1989) F-statistic.  Panels labeled ‘g(F1)’ show rejection probabilities for model F1 and panels labeled ‘g(F2)’ 
show rejection probabilities for model F2.  The ‘left-hand side’ assets include all of the factors in F1 and F2 along with 25 
additional test assets.  Returns are assumed to be normally distributed. 
 
   SH2(Rall) – SH2(F) 

  q 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

T=240 g(F1) 0 0.050 0.092 0.147 0.214 0.290 0.371 0.454 0.535 0.611 0.680 0.741 
  4 0.050 0.087 0.137 0.197 0.265 0.340 0.417 0.493 0.567 0.636 0.699 
  8 0.050 0.084 0.129 0.183 0.245 0.313 0.385 0.458 0.529 0.597 0.660 
  12 0.050 0.081 0.122 0.171 0.228 0.291 0.358 0.426 0.494 0.561 0.623 
  16 0.050 0.079 0.116 0.161 0.214 0.272 0.334 0.399 0.464 0.528 0.589 
  20 0.050 0.077 0.111 0.153 0.201 0.255 0.313 0.374 0.436 0.497 0.557 
  24 0.050 0.075 0.107 0.146 0.190 0.240 0.295 0.352 0.411 0.470 0.528 
  28 0.050 0.074 0.104 0.139 0.181 0.228 0.278 0.332 0.388 0.445 0.501 
  32 0.050 0.072 0.100 0.134 0.173 0.216 0.264 0.314 0.367 0.421 0.475 
              
 g(F2) 0 0.050 0.092 0.147 0.214 0.290 0.371 0.454 0.535 0.611 0.680 0.741 
  4 0.050 0.091 0.144 0.210 0.284 0.364 0.445 0.524 0.600 0.669 0.730 
  8 0.050 0.090 0.142 0.206 0.278 0.356 0.436 0.514 0.589 0.657 0.719 
  12 0.050 0.089 0.140 0.202 0.272 0.348 0.426 0.504 0.577 0.646 0.708 
  16 0.050 0.088 0.138 0.198 0.267 0.341 0.417 0.493 0.566 0.634 0.696 
  20 0.050 0.087 0.136 0.194 0.261 0.333 0.408 0.483 0.555 0.622 0.684 
  24 0.050 0.086 0.133 0.190 0.255 0.326 0.399 0.472 0.543 0.610 0.672 
  28 0.050 0.085 0.131 0.187 0.250 0.318 0.389 0.461 0.531 0.598 0.659 
  32 0.050 0.084 0.129 0.183 0.244 0.311 0.380 0.451 0.520 0.585 0.647 
              
T=480 g(F1) 0 0.050 0.154 0.308 0.482 0.643 0.772 0.864 0.924 0.960 0.980 0.990 
  4 0.050 0.144 0.284 0.446 0.603 0.735 0.835 0.903 0.946 0.971 0.985 
  8 0.050 0.136 0.264 0.416 0.568 0.701 0.806 0.881 0.930 0.961 0.979 
  12 0.050 0.129 0.247 0.390 0.536 0.669 0.777 0.858 0.914 0.950 0.972 
  16 0.050 0.123 0.233 0.367 0.508 0.639 0.749 0.835 0.896 0.938 0.964 
  20 0.050 0.119 0.221 0.347 0.482 0.611 0.723 0.812 0.878 0.925 0.955 
  24 0.050 0.114 0.210 0.329 0.459 0.585 0.697 0.789 0.860 0.910 0.945 
  28 0.050 0.111 0.201 0.313 0.438 0.561 0.673 0.767 0.841 0.896 0.934 
  32 0.050 0.108 0.192 0.299 0.418 0.538 0.650 0.745 0.822 0.881 0.923 
              
 g(F2) 0 0.050 0.154 0.308 0.482 0.643 0.772 0.864 0.924 0.960 0.980 0.990 
  4 0.050 0.153 0.305 0.477 0.638 0.767 0.860 0.921 0.958 0.979 0.990 
  8 0.050 0.151 0.302 0.473 0.633 0.762 0.856 0.918 0.956 0.977 0.989 
  12 0.050 0.150 0.299 0.468 0.627 0.757 0.852 0.915 0.954 0.976 0.988 
  16 0.050 0.149 0.296 0.464 0.622 0.752 0.848 0.912 0.952 0.975 0.987 
  20 0.050 0.148 0.293 0.459 0.617 0.747 0.844 0.909 0.949 0.973 0.987 
  24 0.050 0.147 0.290 0.454 0.611 0.742 0.839 0.905 0.947 0.972 0.986 
  28 0.050 0.146 0.287 0.450 0.606 0.736 0.834 0.902 0.945 0.970 0.985 
  32 0.050 0.145 0.284 0.445 0.600 0.731 0.830 0.898 0.942 0.969 0.984 
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Figure 1: Sample vs. true Sharpe ratios 
This figure shows the 5th, 50th, and 95th percentiles of the sampling distribution of sh2(F), the sample maximum squared 
Sharpe ratio attainable from a given set of factors, plotted against SH2(F), the population maximum squared Sharpe ratio 
attainable from the factors.  The graph on the left uses four factors and graph on the right uses 16 factors, all normally 
distributed.  The points indicated in the graphs represent the upper and lower bounds of a 90% confidence interval for the 
true SH2(F) if the sample sh2(F) equals 0.10.  T = 480. 
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Table 3: Confidence intervals for SH2(F) 
The top panel reports the 50th percentile of the sampling distribution for sh2(F), the sample maximum squared Sharpe ratio 
attainable from a given set of factors, for different combinations of the number of factors (K) and true squared Sharpe ratio 
SH2(F).  The second and third panels report the lower and upper bounds of a 90% confidence interval for SH2(F) if the 
sample sh2(F) equals the number in the top panel.  The bottom panel reports the width of the confidence interval (upper 
bound minus lower bound).  Returns are assumed to be normally distributed.  T = 480. 
 
  SH2(F) 

 K 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Median 4 0.007 0.017 0.027 0.037 0.047 0.057 0.067 0.077 0.087 0.097 0.107 
sh2(F) 8 0.016 0.025 0.035 0.046 0.056 0.066 0.076 0.086 0.096 0.107 0.117 
 12 0.024 0.034 0.044 0.055 0.065 0.075 0.085 0.096 0.106 0.116 0.126 
 16 0.033 0.043 0.053 0.064 0.074 0.084 0.095 0.105 0.115 0.126 0.136 
 20 0.042 0.052 0.063 0.073 0.083 0.094 0.104 0.115 0.125 0.136 0.146 
 24 0.051 0.062 0.072 0.082 0.093 0.103 0.114 0.124 0.135 0.146 0.156 
 28 0.061 0.071 0.082 0.092 0.103 0.113 0.124 0.134 0.145 0.156 0.166 
 32 0.070 0.081 0.091 0.102 0.113 0.123 0.134 0.145 0.155 0.166 0.177 

Lower 4 0.000 0.000 0.003 0.009 0.015 0.021 0.028 0.035 0.042 0.050 0.057 
bound 8 0.000 0.000 0.002 0.007 0.013 0.020 0.027 0.034 0.041 0.048 0.056 
 12 0.000 0.000 0.000 0.006 0.012 0.019 0.026 0.033 0.040 0.047 0.055 
 16 0.000 0.000 0.000 0.004 0.011 0.017 0.024 0.032 0.039 0.046 0.054 
 20 0.000 0.000 0.000 0.003 0.009 0.016 0.023 0.030 0.038 0.045 0.053 
 24 0.000 0.000 0.000 0.001 0.008 0.015 0.022 0.029 0.037 0.044 0.052 
 28 0.000 0.000 0.000 0.000 0.007 0.014 0.021 0.028 0.036 0.043 0.051 
 32 0.000 0.000 0.000 0.000 0.005 0.012 0.020 0.027 0.034 0.042 0.050 
             
Upper 4 0.016 0.033 0.048 0.063 0.077 0.091 0.104 0.117 0.130 0.142 0.155 
Bound 8 0.020 0.036 0.051 0.065 0.079 0.092 0.105 0.118 0.131 0.144 0.156 
 12 0.023 0.039 0.053 0.067 0.081 0.094 0.107 0.120 0.132 0.145 0.158 
 16 0.026 0.041 0.055 0.069 0.082 0.095 0.108 0.121 0.134 0.146 0.159 
 20 0.029 0.043 0.057 0.071 0.084 0.097 0.110 0.122 0.135 0.148 0.160 
 24 0.031 0.045 0.059 0.072 0.085 0.098 0.111 0.124 0.136 0.149 0.161 
 28 0.033 0.047 0.061 0.074 0.087 0.100 0.113 0.125 0.138 0.150 0.163 
 32 0.035 0.049 0.062 0.075 0.088 0.101 0.114 0.126 0.139 0.151 0.164 

Width 4 0.016 0.033 0.045 0.054 0.062 0.070 0.076 0.082 0.088 0.092 0.098 
 8 0.020 0.036 0.049 0.058 0.066 0.072 0.078 0.084 0.090 0.096 0.100 
 12 0.023 0.039 0.053 0.061 0.069 0.075 0.081 0.087 0.092 0.098 0.103 
 16 0.026 0.041 0.055 0.065 0.071 0.078 0.084 0.089 0.095 0.100 0.105 
 20 0.029 0.043 0.057 0.068 0.075 0.081 0.087 0.092 0.097 0.103 0.107 
 24 0.031 0.045 0.059 0.071 0.077 0.083 0.089 0.095 0.099 0.105 0.109 
 28 0.033 0.047 0.061 0.074 0.080 0.086 0.092 0.097 0.102 0.107 0.112 
 32 0.035 0.049 0.062 0.075 0.083 0.089 0.094 0.099 0.105 0.109 0.114 
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Table 4: Confidence intervals for SH2(F) for empirical factor models 
This table reports the sample maximum squared Sharpe ratio sh2(F) and a 90% confidence interval for the true SH2(F) for 
several factor models: (i) the CAPM; (ii) the Fama-French (1993) three-factor model (‘FF3’); (iii) an expanded version of 
the FF model that uses all six of the underlying size-B/M portfolios (‘FF6’); (iv) an expanded version of the FF model that 
uses all 25 of Fama and French’s size-B/M portfolios (‘FF25’); (v) an augmented version of the FF model that adds 
returns on Fama and French’s 30 industry portfolios (‘FF3+30 ind’); and (vi) a 40-factor model based on the anomaly 
portfolios of Kozak, Nagel, and Santosh (2020) (‘KNS40’).  Models (i)–(v) use data for July 1963 through June 2021 from 
Ken French’s website, while model (vi) uses data for July 1963 through December 2019 from Serhiy Kozak’s website.  
Returns are monthly.  The bottom panel shows results for maximum Sharpe ratios (not squared), equal to the square root 
of the corresponding number in the top panel. 
 
 CAPM FF3 FF6 FF25 FF3+30 ind KNS40 

sh2(F) 0.017 0.035 0.088 0.175 0.135 0.627 
Lower bound for SH2(F) 0.005 0.013 0.047 0.089 0.046 0.429 
Upper bound for SH2(F) 0.037 0.058 0.120 0.189 0.129 0.646 
       
sh(F) 0.131 0.186 0.296 0.419 0.368 0.792 
Lower bound for SH(F) 0.071 0.114 0.217 0.298 0.214 0.655 
Upper bound for SH(F) 0.192 0.241 0.346 0.435 0.359 0.804 

 
 


