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Abstract

The inflation of multifactor models has questioned the existence of a mean-variance e�cient portfo-

lio. We examine the risk-return properties of low-risk portfolios obtained by the risk optimization of

characteristic-sorted equity portfolios. We group stocks based on size, value and momentum character-

istics through several sorting procedures. We claim that low-risk portfolios constructed using long-only

positions on basis portfolios formed using a dependent sorting scale with whole-sample breakpoints deliver

superior Sharpe ratio to an optimal portfolio spanning the single or the 3-factor models. Besides, while the

three-factor empirical model spans an opportunity set augmented with low-risk portfolios formed on other

sorting procedures, the pricing performance of low-risk investment strategies based on these dependent

basis portfolios is shown to be superior to that of the single-index factor model, the three-factor model

and its competing low-risk benchmarks. Our testing framework is based on bootstrapped mean-variance

spanning tests and shows valid conclusions out-of-sample and net of transaction costs. The results still

hold when controlling for data snooping biases through multiple testing and luck. Economically, our

results are supported by diversification-based properties.
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I. Introduction

For more than fifty years, passive investors have considered capitalization-weighted (CW) indices

to be a suitable proxy for the tangency portfolio, namely the maximum Sharpe ratio (MSR) portfolio.

The inflation of multifactor models in the recent literature has raised the question of the existence of

a mean-variance e�cient (MVE) portfolio. If it exists, the MVE portfolio should span the available

factor portfolios and display the MSR achievable with the factor portfolios alone (Daniel et al. (2017)

and Grinblatt and Saxena (2018)). Upon a stratification of the equity universe into style buckets,

we implement long-only, low-risk optimization techniques. We claim that the portfolios constructed

this way exhibit interesting mean-variance properties and outperform the current CW indices used

as a proxy for the market portfolio and even outperform a multifactor model based on the related

long-short style factors.

Our research is grounded in the recent work of Grinblatt and Saxena (2018) and Ao, Li, and

Zheng (2018). Similar to their work, we consider the underperformance of the current proxies for the

market portfolio. First, although CW indices provide a simple, cost-e↵ective and intuitive manner

to allocate stocks, they are also exposed to certain inherent weaknesses, notably their embedded

momentum bias and their concentration in large capitalization stocks. Second, performing mean-

variance optimization on individual assets induces large estimation errors of the variance-covariance

matrix. Our approach will simplify the allocation and reduce these estimation errors by considering

low-risk portfolios built on a limited number of basis portfolios. More specifically, Ao, Li, and

Zheng (2018) compare the properties of the minimum variance (MV) and mean-variance e�cient

portfolios for a large set of individual assets augmented with risk factors using both sample and

robust estimates of the variance-covariance matrix. The authors design a new statistical approach

to reduce estimation error and show that considering risk factors together with individual assets

manages to deliver optimal risk-return properties. Similar to their work, we compare various portfolio

optimization techniques including the MV portfolio. We do not, however, consider MSR portfolios

due to the empirical challenge of estimating expected returns and focus on low-risk optimizations,

namely, minimum variance (MV), maximum diversification (MD) and risk parity (RP). In addition,

Grinblatt and Saxena (2018) propose a MVE candidate that relies on a statistical technique to infer

the weights of basis portfolios formed by sorting stocks according to their style characteristics. This

portfolio is shown to span the opportunity set formed from a 3-factor (Fama and French (1993))
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model. Their work induces long and short positions into extreme size and value portfolios, which

might constitute an unfeasible outcome for common investors. On the contrary, our work provides

a long-only investment solution.

We demonstrate that superior performance is attached to portfolios obtained by the optimization

of “smart” characteristic-sorted equity portfolios. In our empirical exercise, we consider size, value

and momentum basis portfolios based on the US equity market. We first compare the standard way

to allocate stocks into these basis portfolios (using an independent scale with NYSE breakpoints)

to the more recent dependent technique, which works in successive subportfolios. Whole-sample

breakpoints are jointly used with a dependent sorting. Hereafter, we refer to these two sets of

basis portfolios as the dependent and independent basis portfolios. We show that strategic beta

portfolios formed on the latter dependent basis portfolios outperform (in terms of Sharpe ratio and

alpha) low-risk portfolios formed on traditional independent basis portfolios. We also show that the

risk-based portfolios formed on dependent basis portfolios span the traditional (Fama and French

(1993)) three-factor model. Our empirical approach relies on the mean-variance spanning test of

Kan and Zhou (2012) augmented with a bootstrap approach similar to Fama and French (2010) and

Harvey and Liu (2016) to ensure the robustness of our results. We also perform the factor selection

technique of Harvey and Liu (2016) to conduct a horse race between the di↵erent configurations of

the low-risk portfolios. We finally build on the “diversification return” from Booth and Fama (1992)

and the extensions of Willenbrock (2011) and Erb and Harvey (2006) to infer the diversification

properties of our strategic beta portfolios.

The rest of the paper is organized as follows: Section II presents a literature review. Section III

describes and compares the opportunity sets used; i.e., the data and methodology used to construct

the characteristic-based portfolios. Section IV presents the smart investment strategies and their

diversification properties. In Section V, mean-variance spanning tests are used to compare smart

investment strategies against single-index and multifactor models. In Section VI, we test the signif-

icance of our smart investment strategies to complement a multifactor model and explain the cross

section of characteristic-sorted portfolios. Section VII concludes the paper.
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II. Literature Review

The work of Markowitz (1952) establishes the foundations of modern portfolio theory (MPT).

Under this framework, investors are assumed to be individual agents with homogeneous preferences

for the first two moments of the distribution of financial assets. In such circumstances, investors

optimally invest in mean-variance e�cient portfolios lying on a so-called mean-variance e�cient

frontier. Under several additional assumptions (unlimited risk-free borrowing and short selling, no

frictions (taxes, transaction costs) and nontradable assets (social security claims, housing, human

capital)), investors are concerned about only the tangency portfolio to this frontier; i.e., the MSR

portfolio, commonly referred to as the “market” portfolio (Sharpe (1964), Lintner (1965), and Mossin

(1966)). CW indices have long been a popular proxy for this portfolio.

Under real-world conditions, however, the market portfolio may not be e�cient (Sharpe (1991)

and Markowitz (2005)). The recent literature has proposed non-CW strategies to circumvent the

drawbacks of CW allocation schemes.

An issue potentially preventing the mean-variance e�ciency of the CW portfolio could be the

use of market capitalization as a measure of fair value. If stock prices do not fully reflect firm funda-

mentals, then the CW portfolio might be suboptimal because it over- (under) weights over- (under)

priced stocks (Hsu (2006)). This drawback has led to fundamental indexing and the creation of

characteristic-based indices that weight stocks according to their economic footprints (such as rev-

enues, book values, and earnings). According to Arnott (2005), compared to traditional CW indices,

this new heuristic scheme provides consistently superior mean-variance performance. Academics and

practitioners have recently explored scientific diversification. Looking for the MSR portfolio faces

the challenge of estimating robust inputs. Sophisticated statistical techniques have been proposed

(see, for instance, Demiguel and Nogales (2009), Ledoit et al. (2016), and Ao, Li, and Zheng (2018)).

Risk-based optimization techniques have also been examined as they simplify the mean-variance es-

timation process by “giving up” on the estimates of expected returns (Clarke, Silva, and Thorley

(2013), Choueifaty and Coignard (2008), Maillard, Roncalli, and Tëıletche (2010), and Ardia, Boudt,

and Nguyen (2018)). All these risk optimizations assume that the expected return of an asset in-

creases in proportion to its risks. Amenc, Goltz, and Martellini (2013) and Frazzini and Pedersen

(2014) ground these risk-based optimization techniques into the theory of the recently discovered

low-beta anomaly. The low-beta anomaly contradicts the MPT theory in the sense that stocks
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with low volatility (low beta) are empirically shown to deliver higher returns than high-volatility

(high beta) stocks (Baker, Bradley, and Wurgler (2011), Baker, Bradley, and Taliaferro (2014), and

Cederburg and O’Doherty (2016)). The techniques of MV, MD and RP fall under this category of

risk-based optimizations.

In recent years, an equally weighted (EW) investment strategy has gained popularity. As CW

allocations su↵er from their concentration in large capitalization stocks and from exposure to un-

controlled sources of risk, such as momentum due to a price-based weighting scheme, one simple

or naive way to ensure good diversification and low idiosyncratic risk would be to equally weight

all N constituents of the portfolio. An EW scheme, referred to as “1/N”, is a heuristic method

that approximates mean-variance e�ciency only when the assets have the same expected return and

covariance (Chaves et al. (2012)). DeMiguel, Garlappi, and Uppal (2009) demonstrated that none

of the “optimal” allocation schemes they reviewed (Bayesian methods as well as the CW portfolio)

significantly outperform out-of-sample the “1/N” portfolio in terms of the Sharpe ratio and certainty

equivalent return. Plyakha, Uppal, and Vilkov (2015) attribute the sources of the outperformance of

1/N portfolios on CW and 1/N portfolios to rebalancing and the embedded reversal strategy of the

strategy. Regarding the simplicity of the strategy, DeMiguel, Garlappi, and Uppal (2009) claim that

the “1/N” portfolio should be defined as a benchmark to evaluate alternative weighting schemes.

Thus, smart beta ranges from scientific diversification (such as the MV portfolio or risk e�-

cient indexing) and risk-based heuristic methods (MD indexing, diversity-weighted indexing or RP

indexing) to fundamental indexing (e.g., using dividend yield as a proxy for asset market value).

Hsu and Kalesnik (2014) show that compare to other allocation strategies (i.e., strategies based on

fundamental weight, MV, and 1/N), traditional CW indexing exhibits (by construction) a drag in

their expected returns because the strategy involves buying stocks when prices are high and selling

stocks when prices are low. Nevertheless, Perold (2007) and Graham (2012) conclude that there is

no evidence thatthis return drag of cap-weighted indices is valid regardless of the period. In reality,

fundamental indexing is another method used to implement style investing: it produces a significant

bias toward distressed stocks (Jun and Malkiel (2007) and Perold (2007)). This method, therefore,

has a risk of concentration equivalent to that of traditional CW portfolios.

These strategies have mostly been implemented at the individual stock level as the equity building

block to construct portfolios that satisfy specific investor objectives or gain exposure to specific

systematic risk factors (e.g., Arnott et al. (2013), Clarke, Silva, and Thorley (2013)).
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Investors can also find benefits in performing strategic beta allocations at the portfolio level

(Boudt and Peeters (2013)) or even at the asset class level (Ardia, Boudt, and Nguyen (2018)). In

fact, recent studies have recognized the use of asset or factor portfolios as the new opportunity set

(Idzorek and Kowara (2013), Roncalli and Weisang (2016), Ao, Li, and Zheng (2018), and Grinblatt

and Saxena (2018)). The value added by working on equity style buckets rather than asset classes

or individual assets when implementing risk-based optimizations and the performance of the so-

constructed e�cient portfolios have only recently been studied (see Grinblatt and Saxena (2018)).

Our paper contributes to this recent literature.

III. Investment Opportunity Set

This section describes our opportunity set; i.e., the set of portfolios that constitute our basis

assets. Our approach consists of stratifying the US stocks’ universe in investment style portfolios;

namely, size, book-to-market and momentum portfolios.

Grouping stocks into portfolios o↵ers several advantages. First, forming groups of stocks into

style portfolios circumvents the burden of estimating a large covariance matrix of returns (Berk

(2000) and Ao, Li, and Zheng (2018)). In addition, our framework is consistent with the stylized

facts of Barberis and Shleifer (2003), who demonstrate the natural tendency of investors to allocate

funds according to asset categories, and Froot and Teo (2008), who also observe that institutional

investors tend to reallocate their funds across style groupings. Our objective to perform risk opti-

mization techniques on investment style portfolios is therefore in line with the reallocation practice

of institutional investors and avoids the implementation costs of working with a wide variety of

individual securities.

Our stratification relies on two sorting methodologies. The first construction methodology is

based on an independent double or triple sort of stocks into portfolios and has become a standard

in the asset-pricing literature for constructing characteristic-sorted portfolios (Fama and French

(1993), Fama and French (1995), and Fama and French (2015)). The second sorting methodology

follows Lambert, Fays, and Hübner (2016) and applies a double or triple dependent sort using whole-

sample breakpoints; this strategy implies the sorting of stocks in successive subportfolios according

to characteristics. We stratify the US stock universe into six (2⇥3), nine (3⇥3) or twenty-seven

(3⇥3⇥3) groups. The double sort is performed on size and book-to-market characteristics, while
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the 3⇥3⇥3 split is constructed on the momentum, firm size, book-to-market characteristics. More

details of the two methodologies can be found below.

A. Data

The data are obtained by merging data from the Center for Research in Security Prices (CRSP)

and Compustat. The CRSP database contains historical price information, whereas Compustat

provides accounting information for all stocks listed on the major US stock exchanges. The sample

period ranges from July 1963 to December 2015 and covers all stocks listed on the NYSE, AMEX,

and NASDAQ.1 For stocks listed on the NASDAQ, the data collection starts in 1973. The analysis

covers a total of 618 monthly observations. Following Fama and French (1993) to filter the database

and construct cross-sectional portfolios, we keep stocks with a CRSP share2 code (SHRCD) of 10

or 11 at the beginning of month t, an exchange code (EXCHCD) of 1, 2 or 3 available shares

(SHROUT) and price (PRC) data at the beginning of month t, available return (RET) data for

month t, at least 2 years of listing on Compustat to avoid survival bias and a positive book-equity

value at the end of December of year y � 1. We define the book value of equity as the Compustat

book value of stockholders’ equity (SEQ) plus the balance-sheet deferred taxes and investment tax

credit (TXDITC). If available, we decrease this amount by the book value of the preferred stock

(PSTK). If the book value of stockholders’ equity (SEQ) plus the balance-sheet deferred taxes and

investment tax credit (TXDITC) is not available, we use the firm’s total assets (AT) minus its total

liabilities (LT).

Book-to-market equity (B/M) is the ratio of the book value of equity for the fiscal year ending in

calendar year y� 1 to market equity. Market equity is defined as the price (PRC) of the stock times

the number of shares outstanding (SHROUT) at the end of June y to construct the size characteristic

and at the end of December of year y � 1 to construct the B/M ratio. Momentum is defined as in

Carhart (1997); i.e., based on a t� 2 until t� 12 cumulative prior return.

1Data regarding Compustat and CRSP are available from January 1950 and January 1926, respectively. After

correcting the databases for survival and backfill biases the sample starts in July 1953. For comparison purpose, we

start our empirical analyses from July 1963 onwards as in Fama and French (1993).

2see Hasbrouck (2009, p. 1455):“restricted to ordinary common shares (CRSP share code 10 or 11) that had a valid

price for the last trading day of the year and had no changes of listing venue or large splits within the last 3 months of

the year”.
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B. Sorting Out Stocks

In the original Fama–French approach, portfolios are constructed using a 2⇥3 independent sorting

procedure: two-way sorting (small and large) on market capitalization and three-way sorting (low,

medium, high) on the book-to-market equity ratio. Six portfolios are constructed at the intersection

of the 2⇥3 classifications and are rebalanced on a yearly basis at the end of June. These style

classifications are defined according to the NYSE stock exchange only and are then applied to the

whole sample (AMEX, NASDAQ and NYSE).3 and motivate the use of NYSE breakpoints by the

need to have approximately the same market capitalization across portfolios and the same number

of NYSE firms in each portfolio.

The second sorting methodology is an extension of the Fama–French sorting methodology. Lam-

bert, Fays, and Hübner (2018) sort stocks in successive subportfolios according to various character-

istics; moreover, they define sorting breakpoints based on the whole sample rather than considering

only the NYSE. The authors indeed uncover that these NYSE breakpoints create an imbalance in

the (total) number of stocks between small- and large-cap portfolios such that independent sorting

leads to a higher number of stocks in small-value portfolios. Using independent sorting on negatively

(or positively) correlated variables can induce, by design, a strong tilt toward the extreme categories

of inverse ranks (low-high and high-low). From January 1963 to December 2014, the market equity

and book-to-market equity of a firm were, on average, negatively correlated (�5%). In Figure 1, we

illustrate the implications of the choice of sorting methodology on stratifying the US equity universe

into (2⇥3) characteristic-sorted portfolios. The independent sorting methodology results in a large

part of the universe falling into the small-value (28.1%) category, whereas dependent sorting delivers

a well-balanced distribution of stocks in all portfolios (approximately 16%).

[Figure 1 near here]

The practical consequence when sorting stocks into portfolios, as already stated by Chan, Dim-

mock, and Lakonishok (2009), is that the original independent sorting procedure could induce large

value stocks to be categorized as growth stocks. Supportive evidence can be found in the recent work

of Lettau, Ludvigson, and Mandel (2018) who characterize the holdings of value mutual funds using

3The NYSE is represented by stocks that account for the largest capitalization in the CRSP database. The

exchange codes 1, 2 and 3 represent the NYSE, NASDAQ and AMEX, respectively

8



Daniel et al. (1997) methodology.4 Lettau, Ludvigson, and Mandel (2018) show that value mutual

funds tend to hold a large proportion of their investments in growth stocks. However, the ranking

into quantiles relies on NYSE breakpoints . Lambert, Fays, and Hübner (2018) document that the

choices underlying the sorting methodology are important to draw robust inference on firm style

characteristics. In particular, the standard procedure of NYSE breakpoints and the sequence of the

dependent sort matter. If the sorting methodology is responsible for these empirical results, we claim

that forming basis portfolios using this procedure will lead to a biased allocation of stocks into style

portfolios and stratification of the US equity universe, and therefore to a misleading optimization

exercise.

To better understand the problem, we compare the Morningstar style classification of 8,739

mutual funds (focused on the US equity market) to the ones implied by the dependent on all

breakpoints and independent on NYSE breakpoints sorting procedures. For the dependent sort, the

classification of stocks under growth and value characteristics is obtained by applying a first sort

on the size characteristic of a firm and then performing a the second sort on the book-to-equity

market of firm. We construct a matrix of 5⇥5 portfolios along the size and value characteristics of

a firm. For an independent sort, the output is similar to the 5⇥5 size and value portfolios available

on Kenneth French’s website.

The sample of mutual funds is obtained from Morningstar and CRSP databases over the period

April 2002 to December 2005. Databases are merged according to the funds’ CUSIP and a phrase

matching techniques applied on funds’ name. Monthly performance and quarterly holdings are ob-

tained from CRSP Mutual Fund Database. Style classification is obtained from Morningstar. Next,

we match the information of funds’ holdings with the value-growth classification from the indepen-

dent (with NYSE breakpoints) and dependent (with whole sample breakpoints) sorting method-

ologies. The stock universe is then split according to a 1–5 scale: 1 represents a growth tilt, 3

represents a blend/neutral style, and 5 represents a value tilt. The classification is applied according

to accounting information obtained from Compustat at the end of June for each stock.

Figure 2 illustrates the distribution of funds along the dependent-name breakpoints (hereafter

referred simply to dependent sort) and independent-NYSE (hereafter referred simply to independent

4Daniel et al. (1997) sort stocks at the end of June of each year to form 125 portfolios along a triple dependent

sort with a first sort on firms size, a second sort on firms’ industry adjusted book-to-market and a final sort on firms’

momentum (cumulative return from t-2 to t-12).
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sort) frameworks for the following Morningstar categories: growth (left), blend (middle), value

(right). The distributions across the growth and value styles demonstrate that the BM-score of

mutual funds computed using a dependent scale instead of an independent scale is better aligned

with the style classification of the fund. Indeed, the distribution for growth funds is more skewed to

the left for the dependent sort as shown by the 21.32% (dependent sort) vs 9.17% (independent sort)

of the observations falling under the first quintile of the distribution. Similarly for value funds, the

distribution is more skewed to the right for the dependent sort given that 7.30% (dependent sort)

vs 4.81% (independent sort) of the observations falling under the last quintile of the distribution.

Lastly, the mode of the distribution of blend mutual funds under a dependent scale falls around the

third quintile as 49.42% of the observations are found in the quintile 2 and 4. Using an independent

scale, the mode is shifted to values below 3, which are representative of growth stocks. This would

wrongly indicate that these funds hold more growth than value stocks.

In summary, value (growth) mutual funds have a higher probability of being categorized as value

(growth) funds under a dependent sorting procedure than an independent sorting procedure. Blend

mutual funds also show a better neutrality to the value-growth categorization using a dependent

sort.

[Figure 2 near here]

Next, we break down the Morningstar value-growth categories across three levels of size attributed

to the holdings style of mutual funds: large (top), mid (middle), small (bottom) capitalization.

Figure 3 display the breakdown across the size categories. Results confirm that under an independent

sort, the mutual funds holdings style would be biased due to the intrinsic asymmetric relationship

between the size and book-to-market stock classification. More precisely, an independent sort will

systematically attribute a greater value (growth) score to funds holding small (large) cap stocks.

Conversely, the dependent sort does not exhibit this systematic size-related bias as the distributions

of the funds’ BM-score appear unconditional to funds’ size subsample.

[Figure 3 near here]

Finally, we focus in Table 1 on the 15 mutual funds with the highest discrepancy in book-to-

market related score between the independent and dependent framework. All of them are marketed

as value funds and achieve a score higher than 3 under the dependent framework. We can see that,
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although they declare a value focus, some funds are wrongly categorized as blended funds under the

independent framework with a score below but near to 3.

[Table 1 near here]

C. Pair-Wise Correlation of Style Portfolios

Figure 4 illustrates the stock distribution when the number of portfolios is increased either by a

larger split of the sample (from a 2⇥3 to a 3⇥3 split) or by adding a new characteristic (3⇥3⇥3).

The 3⇥3⇥3 splits are constructed based on the size, value and momentum characteristics of a firm.

We observe that using an independent sort results in an imbalance of stocks across the portfolios,

and this e↵ect becomes larger when more groups are constructed.

[Figure 4 near here]

We expect the better diversification induced by the dependent sorting and by the higher dimen-

sional space representation of the US equity market to deliver additional diversification benefits for

risk-based optimizations with regard to independent basis portfolios.

To verify this hypothesis, in Table 2, we compute the average correlation between the investment

style portfolios. It can be shown that the correlation is lower when stocks are sorted dependently

and are split into a larger number of groups (i.e., 3⇥3⇥3).

[Table 2 near here]

We form 6, 9, and 27 investment style portfolios and use 60 daily returns to estimate the covari-

ance matrix.5

In the most extreme case (27 portfolios), we are left with 0.17 data points per parameter, which

might create large sampling errors if we only consider the sample covariance matrix in our opti-

mizations. In our applications, we use a traditional shrinkage methodology developed by Ledoit and

Wolf (2004) to estimate the covariance with lower sampling errors. Further details on the shrinkage

method used can be found in the Appendix A.1.

5We use a range of 60-day to estimate variance-covariance matrices for two reasons; first, Fama and French (2018)

use 60 days of lagged returns to estimate the monthly variance of stocks, and second, real-life applications on tradable

assets would also impose practical constraints over the length available for time-series (Idzorek and Kowara (2013)).
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IV. Smart Investment Strategies: Diversification Properties

We consider three low-risk investment strategies (MV, MD, RP) for the various opportunity sets

(dependent versus independent portfolios; 2⇥3, 3⇥3 and 3⇥3⇥3 sort). Our basis portfolios are all

cap-weighted portfolios to mitigate the impact of small cap stocks.

Table 3 recalls the analytic forms of the risk-based allocations that serve as a practical base in our

empirical analysis; namely, minimum variance, maximum diversification, and risk parity. Following

Ardia, Boudt, and Nguyen (2018), Roncalli and Weisang (2016), Grinblatt and Saxena (2018), and

Ao, Li, and Zheng (2018) among others, these risk-based allocations are rebalanced on a monthly

basis.

[Table 3 near here]

This section compares the diversification returns achieved through implementing risk-based op-

timization based on dependent and independent basis portfolios and further decomposes the diver-

sification return into its two components and performs a paired di↵erence test.

The diversification return according to Booth and Fama (1992) is defined as the di↵erence be-

tween the compound return of a portfolio and the weighted average of the compound return of its

constituent assets. This relationship assumes that the portfolios are rebalanced so that the weights

are held constant. In this situation, the diversification return increased with the spread between the

individual asset variance and its covariance with the portfolio.

Denoting the geometric average return as g, the volatility as �, and the arithmetic average return

as µ, the geometric return of a portfolio p can expressed mathematically as follows:

gp = µp �
�
2
p

2
(1)

The diversification return can be written as follows (Booth and Fama (1992) and Willenbrock

(2011)):

DR = gp �
NX

i

wigi (2)

where i stands for the ith security in the portfolio p, and g refers to the geometric return. Weights

(wi) are assumed to be constant over the estimation period. We refer to fixed-weight diversification

return using the superscript (FW).
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Substituting (1) in (2), we obtain

DRFW = µp �
�
2
p

2
�

NX

i

wi

✓
µi �

�
2
i

2

◆
(3)

Rearranging the terms,

DRFW = µp �
NX

i

wiµi

| {z }
DRFW

1 = 0 if weights are constant

+
1

2

 
NX

i

wi�
2
i � �

2
p

!

| {z }
DRFW

2 = variance reduction benefit

(4)

In the last part of the equation, we retrieve the variance reduction benefit (DR2) of Booth and

Fama (1992) and Willenbrock (2011). Note that in theory, wi should be determined at inception and

remain constant over the life of the strategy. To implement equation (4) for rebalancing strategies

(non fixed weight), Erb and Harvey (2006) use the average of the weights over the sample period

(wi =
1
T

PT
1 w

t
i). Thus, we follow this approach to evaluate the diversification return of our strategies

for which weights are not held constant over time.

To test the statistical di↵erence in diversification return brought by a pair of strategies performed

on two opportunity sets, we follow the indirect bootstrap framework of Ledoit and Wolf (2008). Their

model is initially constructed to compare whether a pair of strategies have statistically equivalent

Sharpe ratio. In their conclusion, the authors suggests to extend their model to other mean-variance

performance measures. We thus revisit their framework to a spread in diversification return between

a pair of strategies. We provide more details on our extension in the Appendix A.2. In short, we

aim to compare the spread in diversification return (� Dep-Ind) estimated in the original sample

to an empirical distribution of spreads constructed from bootstrapped samples and infer the level of

significance of this spread.

We report, in Table 4, the results of the diversification return for the low-risk investment strategies

based on 2⇥3, 3⇥3, and 3⇥3⇥3 basis portfolios. We observe that the spread in variance reduction

benefit (DRFW
2 ) is in 8 out of 9 times statistically greater for the set of dependent basis portfolios

at the usual significance level.

[Table 4 near here]

The total spreads (� Dep-Ind) are however close to zero due to the first negative DR component

induced by the artificial fixed weight benchmark. As the computation of the diversification return
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induces a comparison with a static portfolio endogenous to each strategic, it is di�cult to compare

the total diversification gains across a pair of strategies. We therefore extend equation (4) to consider

a rebalanced portfolio p and its diversification return with regard to an EW benchmark. We chose

the equal-weighted strategy because this is the only allocation for which we know ex-ante the value

of wi, that is (1/N), as long as the amount of securities (N) remains constant in the portfolio. In

this alternative framework, we make sure that two smart beta strategies constructed on a equivalent

number of basis portfolios (N) share the same benchmark (1/N). We denoted the principle that the

diversification return is compared to an EW strategy using the superscript (EW) as follow,

DREW = µp �
1

N

NX

i

µi

| {z }
DREW

1

+
1

2

 
1

N

NX

i

�
2
i � �

2
p

!

| {z }
DREW

2

(5)

Table 5 presents the results when the benchmark is equal-weighted and the strategies on the inde-

pendent and dependent portfolios share, at least, a benchmark with equivalent weighting scheme.For

7 out of 9 risk-based optimizations, the dependent opportunity set o↵ers significantly higher diversi-

fication returns than the independent sort. Consistent with Grinblatt and Saxena (2018), risk-return

improvement can be achieved by using optimization techniques for constructing an MVE benchmark

rather than constructing risk factors by using equal weights on the long and short legs. Again, the

dependent opportunity sets systematically outperform the independent opportunity set. Also, the

variance reduction benefit remains higher in 8 out of 9 times for the dependent-sorted opportunity

set compared to the independent-sorted opportunity set.

[Table 5 near here]

The next section is dedicated to providing a methodological analysis on the mean-variance per-

formance of the smart beta strategies.

V. Mean-Variance Spanning Test

Mean-variance spanning à la Huberman and Kandel (1987) means that a set of K risky assets

spans a larger set of K + N assets if the e�cient frontier made of the K assets is identical to the

e�cient frontier comprising the K + N assets. We initially set R1 to a K-vector of the returns on
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K benchmark assets, R2 to a N -vector of the returns on N test assets, and R to the raw returns on

K +N assets. Huberman and Kandel (1987) define the following regression test:

R
t
2 = ↵+ �R

t
1 + e

t (6)

The null hypothesis H0 sets ↵ = 0 and � = 1� � = 0.

The null hypothesis implies mean-variance spanning as the benchmark assets dominate the test

assets; both assets have the same mean, but the K benchmarks have a lower variance than the test

assets.

Considering an e�cient frontier comprising K+N assets, the following two formulas express the

optimal weights of the N assets into the tangent (Qw1) and GMV6 (Qw2) portfolios:

Qw1 =
QV

�1
µ

1
0
N+KV �1µ

=
⌃�1

↵

1
0
N+KV �1µ

Qw2 =
QV

�11N+K

1
0
N+KV �11N+K

=
⌃�1

�

1
0
N+KV �11N+K

(7)

where Q = [0N⇥K , IN ] with IN , an N ⇥ N identity matrix, ⌃ = V22 � V21V
�1
11 V12 which comes

from V the variance-covariance matrix of the K benchmark assets (R1) plus the N test assets (R2)

that is,

V = V ar[Rt
1, R

t
2] =

2

4V11 V12

V21 V22

3

5 (8)

The value of alpha will determine whether the tangency portfolio is improved by the introduction

of the N assets, while testing beta will determine whether a significant change is induced in the

GMV portfolio by the addition of the N assets. Huberman and Kandel (1987) jointly test these two

conditions. The rejection of mean-variance spanning could thus find two sources: an improvement

in the slope of the tangency portfolio or an improvement in the risk-return properties of the GMV

portfolio. However, beta can be estimated more accurately than alpha, as it does not depend on the

expected returns of the assets (see equation 7). Therefore, the statistical significance of the change

6To make a clear distinction between the risk-optimization that minimizes the portfolio variance and the ex-post

global minimum variance portfolio, we denote the former MV and the latter GMV in the rest of the paper.
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in the composition of the GMV portfolio can be reached without implying economic significance.

To circumvent this problem, Kan and Zhou (2012, hereafter KZ) propose to separately test the two

conditions and to adjust the significance threshold of the two tests to economic significance. If the

GMV condition is rejected more easily, the significance threshold should be reduced.

The KZ step-down test proceeds as follows: The first test defines the null hypothesis for the

tangent portfolio such that ↵ = 0N using the OLS regression. The tangency portfolio is improved

when the null hypothesis is rejected.

H
1
0 : ↵ = 0N (9)

Kan and Zhou (2012) perform a test for the statistical significance of the hypothesis similar to a

GRS F -test. The F -test for the first hypothesis (H1
0 ) is

F1 =
T �K �N

N

â� â1

1 + â1
(10)

where T is the number of observations; K is the number of benchmark assets; N is the number

of test assets; â1 = µ̂
0
1V̂

�1
11 µ̂1 represents the squared Sharpe ratio of the K benchmark assets (R1),

with V̂11 denoting the variance and µ̂1 the vector of mean return of the benchmark assets; and â

takes the same notation as â but refers to the benchmark assets plus the new test asset (R).

The second test of the step-down procedure defines the null hypothesis for the GMV portfolio.

This second test is conditional on the first test, ↵ = 0N , and verifies whether � = 1N � �1K = 0N .

Only when both conditions are rejected does the test suggest that the GMV portfolio is improved

by adding N assets to the K benchmark assets.

H
2
0 : � = 1N � �1K = 0N |↵ = 0N (11)

The F -test for the second hypothesis (H2
0 ) is

F2 =
T �K �N + 1

N

"
ĉ+ d̂

ĉ1 + d̂1

1 + â1

1 + â
� 1

#
(12)

where ĉ1 = 1
0
K V̂

�1
11 1K and d̂1 = â1ĉ1 � b̂

2
1 are the e�cient set (hyperbola) constants with â1 =

µ̂
0
1V̂

�1
11 µ̂1 and b̂1 = µ̂

0
1V̂

�1
11 1K for the benchmark assets (R1). µ̂1 and V̂11 denote the vector of mean
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return and the variance of the benchmark assets. â, b̂, ĉ and d̂ are the equivalent notations for the

benchmark assets plus the new test assets (R).

In Panel A of Figure 6, we graphically illustrate a significant improvement in the tangency

portfolio when a test asset (R2) is added to the benchmark assets (R1). Panel B indicates a significant

improvement in the GMV portfolio when a test asset (R2) is added to the benchmark assets (R1).

[Figure 6 near here]

Mean-variance spanning implies that both null hypotheses hold (H1
0 and H

2
0 ). The benchmark

assets R1 are said to span the test assets R2 if the weight attributed to the N test assets within the

e�cient frontier comprising K+N assets is trivial. Put di↵erently, discarding the N test assets does

not significantly change the e�cient frontier of the K benchmark assets from a statistical standpoint.

By testing the two hypotheses separately, we gain understanding of the reason for mean-spanning

rejection. If the mean-variance test is rejected, the test assets improve either the slope of the

tangency portfolio or the risk-return properties of the GMV portfolio. Assuming the existence of a

risk-free rate, investors are mostly concerned by the di↵erence in the tangency portfolios.

Our application of mean-variance spanning tests whether smart investment strategies span exist-

ing benchmarks, such as the single-factor model or the expanded universe comprising the multifactor

model of Fama and French (1993) (Section V.B). Spanning tests between the di↵erent configura-

tions of low-risk portfolios are also performed to investigate the consequences of the use of di↵erent

opportunity sets (Section V.C).7

A. Out-of-Sample Test: A Bootstrap Approach

To test the robustness of our results, we extend the mean-variance spanning tests to address

out-of-sample and data dredging concerns. We implement the bootstrap method used in Harvey

and Liu (2016). It does not only allows to validate our results out-of-sample but also to control for

multiple testing.

To analyze the mean-variance properties of a portfolio P over the sample ranging from July 1963

to December 2015 (630 months), the method proceeds in 3 steps:

Step 1: Orthogonalization Under the Null

7The MATLAB code is available on Prof. Zhou’s website.
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The goal of this step is to modify the original times series of R2 such that the null hypothesis

appears to be true in-sample (Harvey and Liu (2016) and White (2000)). To do this, we

perform the following regression,

R
t
2 = ↵+ �R

t
1 +R

t,e
2

(13)

Forcing the F-tests of H
1
0 and H

2
0 to be zero under the null (i.e. forcing the tangent and

GMV portfolio to attribute zero weight to the test asset R2) is achieved by adding the time

series of one benchmark assets present in R1 to the time-series of the residuals (Rt,e
2 ). In fact,

the residuals (Rt,e
2 ) have by construction a zero mean but preserve the original time-series

variation of R2. In our applications, we always use the asset present in the benchmark asset

(R1) which proxies for the MVE market portfolio (Rt
1,MV E). The transformation equals to

R
orth
2 = [Rt,e

2 + R
t
1,MV E ] and represents in-sample the orthogonal asset with zero weight in

both the MVE and GMV portfolios. We use this artificial time-series R
orth
2 in the bootstrap

samples to find the F-values of both hypothesis tests (H1
0 and H

2
0 ).

Step 2: Bootstrap

The bootstrap procedure is a random selection of monthly observations of the strategy returns

with replacement (i.e. R1 and R
orth
2 ). We jointly resample the monthly strategies returns to

ensure that we preserve the cross-sectional correlations between the strategies returns in our

sample (i.e. R1 and R
orth
2 ). Also, we make sure that the resample time-series have the same

size as the original time frame (630 months). As in Fama and French (2010) and Harvey and

Liu (2016), the bootstrap preserves cross-sectional and time-series dependence.

Step 3: MVE spanning test

We apply the mean-variance spanning from Kan and Zhou (2012) on the bootstrapped samples

according to the benchmark assets (R1) and the test asset (Rorth
2 ). We repeat the operation

1,000 times to construct an empirical distribution of the performance measures which are true

(in-sample) under the null for H
1
0 and H

2
0 . The empirical distribution serve as a threshold

for the critical value of the F-tests. Each bootstrap contains two F-tests: one for the tangent
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(F b
1,ind and F

b
1,dep) and one for the GMV (F b

2,ind and F
b
2,dep), with the subscript b denoting

the b-th bootstrapped sample while ind and dep denote independent and dependent-sorted

portfolios. In these bootstrap samples, the null is valid in-sample and a significant value for

the F-tests simply arise from the resampling (or luck). Besides, we force the bootstrap sampling

to have the same size as the original time series (630 observations) to ensure that the degree

of freedom in the measurements of the F-tests remain equal to the F-test from the original

sample.

Following the multiple testing framework developed by Harvey and Liu (2016), we compute

the maximal measure of each hypothesis (tangent and GMV) that serve as a reference point

for the collection of statistics from the bootstrapped samples and control for data snooping.

For instance for the tangent hypothesis, F b
1 = max(F b

1,ind, F
b
1,dep). We can then compare these

B statistic measures to the one find in the original sample F
o
1,ind and F

o
1,dep.

The frequency of observations in the bootstrap sample that are greater than the F-test under

the original sample define the bootstrap p-value. Thus, the p-value is the sum of I{F o
1 < F

b
1}

divided by the total number of bootstraps B.

B. Mean-Variance Spanning Test of the Traditional (Multi) Factor Models

We consider three initial conditions. We assume the market model of Sharpe (1964) and the

Fama and French (1993) 3-factor empirical model as our initial conditions; i.e., the initial benchmark

portfolio R1. In Scenario 1, R1 comprises 2 assets: an investment in a 30-year US treasury bond

(B30) and the market portfolio, which are both given in excess of the risk-free rate.8 The market

portfolio and the risk-free rate are obtained from Kenneth French’s website while the 30-year US

treasury bond (B30) is obtained from CRSP US Treasury and Inflation Indexes. R2 is the gross

return of one smart beta strategy. When implementing the bootstrap, R1,MV E is proxied by the

cap-weighted market portfolio (Mkt) and R
orth
2 is equal to the residuals of the spanning regression

(defined in the Step 1 of the Boostrap approach) plus R1,MV E . In Scenario 2, R1 comprises 4 assets:

a 30-year US treasury bond (B30), the cap-weighted market portfolio (Mkt), the size (SMB) and

value (HML) factors of Fama and French.9 R2 is the gross return of one smart beta strategy. When

8The risk-free rate refers to the one-month T-bill from Ibbotson.

9Data are obtained from Ken French’s data library.
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implementing the bootstrap, R1,MV E is also proxied by the cap-weighted market portfolio (Mkt) and

R
orth
2 is equal to the residuals of the spanning regression plus R1,MV E . In Scenario 3, R1 comprises

2 assets: an investment in a 30-year US treasury bond (B30) and the gross return of one smart beta

strategy. R2 is the return on the market portfolio. When implementing the bootstrap, R1,MV E is

now proxied by the gross return on the smart beta strategy and R
orth
2 is equal to the residuals of

the spanning regression plus R1,MV E . In all scenarios, Mkt, B30 and the smart beta strategies are

taken in excess of the risk-free rate. However, we do not consider the smart beta strategies net of

transaction costs because the risk factors (i.e., Mkt, B30, SMB, HML) used as explanatory variables

are also gross of transaction costs. We provide further evidence on the performance of the strategies

net of transactions latter in the next sub-section of the paper.

The step-down spanning test proceeds as follows: We first test the null hypothesis H1
0 that the

↵ is equal to 0, meaning that no improvement is obtained by adding the smart beta strategy to the

initial portfolio. We consider the usual significance thresholds; i.e., 1%, 5% and 10%. The results

will be further split into two sub-periods: the period for the full sample and the period after the

publication date of the seminal Fama and French (1993) paper.

We report in Table 6 the results for the dependent and independent opportunity sets and for

standard p-values (p-val) and bootstrapped p-values (p-valb) on the full sample. Panel A shows

that the traditional CAPM model does not span an expanded set augmented with risk-optimization

strategies. The tangent portfolio level is significantly improved when adding the smart beta strategies

using both the dependent and independent basis portfolios (all p-valb are significant with a 99%

confidence level). Results of Panel B indicate however that a three-factor model spans the larger

set comprising the original assets supplemented by a smart beta factor defined using independent

basis portfolios. However, several smart beta strategies performed on a dependent opportunity set

improve the tangency portfolio implied by the three-factor model: 4 strategies out of 9 improve

the initial 3-factor portfolio at the 90% confidence level. Finally, Panel C shows that smart beta

strategies performed on dependent basis portfolios span (7 cases out of 9) the tangent portfolio made

of the traditional cap-weighted market portfolio. These results do not hold for independent basis

portfolios. This evidence makes the latter sub-optimal with regard to low risk strategies implemented

on dependent basis portfolios (i.e., 3⇥3 and 3⇥3⇥3).

[Table 6 near here]
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Next, we present in Table 7 the results on the post-publication period of the Fama and French

3-factor model. Findings suggest that all low-risk strategies performed on a dependent opportunity

set reject the mean-variance spanning hypothesis of the CAPM and 3-factor model as both sub-

hypotheses (on alpha and delta) are statistically di↵erent from 0. This means that two portfolios of

the mean-variance frontier (the MSR and the GMV) are improved under a dependent framework.

However, the three-factor model continues to span 4 low-risk portfolios that are formed on the

independent opportunity, especially the strategies aiming at maximizing the portfolio diversification

(MD). This last evidence is particularly important as it confirms that the traditional independent

sorting can not compete with a dependent sort when forming basis portfolios which o↵er su�cient

cross-sectional variation.

[Table 7 near here]

In summary, our results on the post-publication period clearly highlights the improvement

brought by considering low-risk portfolios constructed on style basis portfolios with regard to the

related multi-factor model. These results might be explained by the increasing market diversity

o↵ering a higher potential for diversification and the increase in volumes traded on the US stock

exchanges; this necessitates performing the optimization exercise on basis portfolios or factors rather

than individual stocks. Findings also support the outperformance of low-risk strategies performed

on the dependent opportunity set. A horse race between the two competing sets of basis portfolios

will be performed in the next subsection.

C. Horse Race Between Dependent and Independent Basis Portfolios

The previous subsection suggests that dependent basis portfolios o↵er interesting properties to

perform risk-based optimization. We therefore carry out a horse race between the opportunity

sets made of basis portfolios formed after dependent and independent sorting. Our spanning test

considers whether a portfolio R1 comprising US government 30-year bonds and one smart beta

portfolio (defined with a dependent or independent opportunity set, respectively) span another set

of portfolios made of R1 and R2 which comprises a US government bond and the equivalent smart

beta portfolios but performed on other basis portfolios. The test is performed in both directions

to test the superiority of one opportunity set over the other. In Scenario 1, R1,MV E is proxied by

the smart beta on the dependent-sorted portfolios (SBdep) and R2 is the same smart beta strategy
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on the independent-sorted portfolios (SBind).10 In Scenario 2, R1,MV E is proxied by the smart

beta on the independent-sorted portfolios (SBind) and R2 is the same smart beta strategy on the

dependent-sorted portfolios (SBdep).11 Smart beta strategies are taken in excess of the risk-free rate

and account for transaction costs as denoted by the super-script net. Both H
0
1 (the test on the

tangency portfolio) and H
0
2 (the test on the GMV) are tested. Bootstrapped p-values are reported.

To consider transaction costs, Plyakha, Uppal, and Vilkov (2015) implement a decreasing function

of transaction costs from 1% in 1978 to 0.5% in 1993 for their S&P 500 sample. However, in our

paper, we trade stocks on NYSE-NASDAQ-AMEX exchanges and consequently have to di↵erentiate

between transaction costs for small and large-cap stocks. We thus follow an approach similar to that

of Novy-Marx and Velikov (2016) and use the individual stock estimates from the Gibbs sampling

developed in Hasbrouck (2009). Further details of this method can be found in the Appendix A.3.

In Figure 5, we show the annual box-and-whisker plot for the CRSP/Gibbs estimates of transaction

costs (variable c from equation (A.16)) from 1963 to 2015.

[Figure 5 near here]

Novy-Marx and Velikov (2016) uncover a minor drawback to Hasbrouck’s estimation technique,

which requires relatively long series of daily prices to perform the estimation (250 days), resulting

in a number of missing observations (mostly for non-NYSE stocks), for which the authors perform

a nonparametric matching method and attribute equivalent transaction costs to the stock with a

missing value according to its closest match to a stock with nonmissing value according to their size

and idiosyncratic volatility. However according to the authors, these missing observations represent

only 4% of the total market capitalization universe. Thus, instead, we replace the missing values

with a transaction cost of 0.50%. We employ this value because (1) we see from Figure 5 that none of

the estimates from Hasbrouck’s algorithm have breached a trading cost of 50 bps since 1963, (2) this

choice will more strongly impact illiquid stocks with a small amount of daily observations (small-

10In Scenario 1, R1 is composed of B30 and a smart beta on dependent-sorted portfolios, R2 refers to the same

smart beta constructed on independent-sorted portfolios and Rorth
2 is equal to the residuals of the spanning regression

- defined in Step 1 of the Boostrap procedure - plus R1,MV E .

11In Scenario 2, R1 is composed of B30 and a smart beta on independent-sorted portfolios while R2 refers to

the same smart beta constructed on dependent-sorted portfolios and Rorth
2 is equal to the residuals of the spanning

regression plus R1,MV E .
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capitalization stocks), and (3) Plyakha, Uppal, and Vilkov (2015) also choose to set this threshold

for transaction costs from 1993 onwards.

Table 8 presents the results for CW basis portfolios. Both panels demonstrate that the dependent

opportunity sets outperform the independent set. In Panel A, we test whether the low-risk strategies

formed on a dependent opportunity set span a larger universe augmented with independent sets.

For all low-risk strategies, we cannot reject mean-variance spanning at the 5% confidence level.

This means that the e�cient frontier comprising a low-risk optimization of dependent portfolios

and an investment in a long-term US government bond cannot be improved using an independent

opportunity set. However, Panel B indicates that the MD (2⇥3, 3⇥3, and 3⇥3⇥3) and MV (2⇥3,

3⇥3) strategies performed on a dependent opportunity set improve both the tangency and the GMV

portfolios formed on an independent opportunity set. This is evidenced by the levels of p-values

attached to F -tests on H
0
1 and H

0
2 when the dependent portfolio is used as R2.

[Table 8 near here]

VI. MVE Benchmark Selection

We follow the method of Harvey and Liu (2016) to select the most appropriate (without luck)

MVE benchmark among the low-risk portfolios and the original CW portfolio for explaining the

cross-section of expected returns. Our test assets are the 2⇥3 and 3⇥3 portfolios sorted on size and

book-to-market or the 3⇥3⇥3 when the sorting procedure first pre-condition on a firm’s momentum.

The MVE benchmark should best complement a basis multi-factor model comprising a long-term

US Government rate as a proxy for the risk-free rate (B30) and the size (SMB) and the value (HML)

factors of Fama and French (1993).

The method is an alternative to the test developed by Gibbons, Ross, and Shanken (1989). It

departs however from the GRS test as it allows the initial or basis model to be sub-optimal and tests

the incremental contribution of the additional factor.

To measure the incremental contribution of the selected candidate, Harvey and Liu (2016) define

a scaled intercept (SI) measure and look at the spread between the scaled (by the standard error of

the estimated intercept) intercept of the augmented and initial model. Using equivalent notations

as the authors, the measure is defined as follow,
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SI
med
ew =

median({|agi |/sbi}Ji=1)�median({|abi |/sbi}Ji=1)

median({|abi |/sbi}Ji=1)
(14)

where median(.) is the median value of the ratio |agi |/sbi or |abi |/sbi . Here the superscript b is

for the baseline model and g is for the augmented model, the subscript i refers to the i-th portfolio

among the J test assets, and s denotes the standard errors for the regression intercept a.

A negative value of the SI means that the augmented model outperforms the baseline model to

explain the variations of the J test assets returns. To define a statistical level of confidence to the

measure, Harvey and Liu (2016) use the bootstrapping method presented in Step 2 of Section V.A.

To orthogonalize the MVE candidates, the authors regress the returns of Ri
2, where i denotes the

i-th candidate among the list of K candidates, against the baseline benchmark R1 and then subtract

the intercept from the time-series Ri
2, as follows:

R
i
2 = ↵

i + �
i
R1 + e

i

R
↵,i
2 = R

i
2 � ↵

i = �
i
R1 + e

i
(15)

In our applications R1 is composed of the risk-free rate (B30), the size (SMB) and the value

(HML) factors. R
↵,i
2 is defined as a linear combination of the benchmark assets (R1), i.e. the

risk-free rate (B30), the size (SMB) and the value (HML) factors such that it does not bring any

additional information to the baseline model.

Then in each sample of the B bootstrap, a score for the scaled intercept SImed
ew can be obtained

for theK number of orthogonalized candidates (i.e, R↵,i
2 with the i = {1, 2, ...,K} candidate). Hence,

the single test p-value for the i-th candidate is given by,

p-val =
#{SIo > SI

b}
B

(16)

To control for multiple testing, the authors suggest to take the minimum value amongK estimates

of SI in the b-th bootstrap as follow,
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SI
b,⇤ = min|{z}

i2{1,2,...,K}

{SIb,i} (17)

Hence, the multiple test p-value for the i-th candidate is written as,12

p-val =
#{SIo > SI

b,⇤}
B

(18)

Next, our objective is to apply the method to a multiple set of MVE candidates and filter them

to find the best candidate. For example, the first natural candidate to consider is the traditional

cap-weighted market portfolio but smart beta strategies on the Fama-French’s independent 2⇥3 size

and value portfolios or on the dependent 2⇥3 size and value portfolios can also constitute MVE

candidates to augment the baseline model. We also extend the 2⇥3 size and value grid, to a 3⇥3 or

3⇥3⇥3 with an additional sort on firms’ momentum and end up with a set of 7 candidates as MVE

portfolio. We run the test sequentially, as in Harvey and Liu (2016), until the single test p-value of

each candidate is greater than a pre-specified threshold. In our application, we set the threshold to

10%. In each run, the selected candidate have a single test p-value but will also be attributed with

a multiple test p-value to control for data snooping. The candidate is only accepted if the multiple

test p-value is significant at a 90% confidence level.

Table 9 presents the results for the di↵erent types of basis assets and strategic beta portfolios.

The table shows the single-test p-value for each MVE candidate as well as the final joint p-value

for the selected candidates considering the multiple testing framework. Note that except for the

cap-weighted market portfolios, all strategic portfolios candidates are net of transaction costs as

computed in Appendix A.3. For 2⇥3 portfolios, the optimal MVE candidate comes from the same

family as the set of basis portfolios to be explained. However, as soon as we increase the dimension

of the sort and therefore the dispersion between portfolios, the dependent candidates win the horse

race. The results of Panels A and B are explained by two facts; first, the space of 2⇥3 and 3⇥3

test assets is too low-dimensional to provide a robust statistical framework (Lewellen, Nagel, and

12Note that the sign of the indicator function is important. Here, we want to count the number of bootstrapped

scaled intercepts (SIb) that have lower values (improvement of the model) than the scaled intercept from the original

sample(SIo). In other words, when the test is performed on the time-series of R2 from the original data.
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Shanken (2010)), also coined as ”rank deficiency” by Grinblatt and Saxena (2018), and second, the

imbalance of the distribution of stocks in portfolios under an independent sort is too sensitive to

a number of macro-economic factors (Daniel and Titman (2012)). Consequently, these lead to the

construction of sub-optimal basis portfolios whereas smart beta strategies benefit from a dependent

sort which overcome these issues.

[Table 9 near here]

VII. Conclusion

We currently observe a dual paradigm shift to so called ”smart beta strategies” including low-risk

portfolios and ”strategic beta factors” (also called ”style investing”). On the one hand, smart beta

strategies provide an alternative weighting scheme for stocks; i.e., an alternative way to diversify

risk. On the other hand, strategic beta investing looks to allocate “investment style” portfolios more

e�ciently to better capture systemic sources of market risk premiums. We build a bridge between

these two paradigms as we show that the opportunity sets and the way to stratify the universe into

style portfolios is important when performing smart beta techniques.

Our paper proposes new proxies for tangent/well-diversified (US equity) market portfolios by

applying simple, long-only risk-based strategies to characteristic-sorted equity portfolios (i.e., an op-

portunity set sorted by market capitalization, book-to-market ratio and momentum characteristics).

This method ensures that the risk properties of style portfolios are taken into account and simplifies

the allocation by reducing the errors in the covariance matrix of returns.

We claim that the question is economically important for two reasons. First, the recent inflation

of discovered risk factors challenges the candidate of the value-weighted market portfolio in terms

of being mean-variance e�cient. Second, there is a common practice among institutional investors

to reallocate funds across style groupings (e.g., Froot and Teo (2008)). We show that the method-

ology for grouping stocks in di↵erent style buckets has strong implications for the performance of

the final strategy. To categorize stocks in investment style portfolios, we stratify the universe along

the common dimensions of size, value and momentum characteristics. We implement two sorting

methodologies to construct characteristic-based portfolios: independent sorting and dependent sort-

ing. To demonstrate the implications of the sorting methodologies for the strategies’ performance,

we apply a bootstrap version of the mean-variance spanning tests from Kan and Zhou (2012) to
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the risk-oriented strategies that use characteristic-based portfolios as opportunity sets. The results

show that a dependent stratification with whole sample breakpoints of stocks in portfolios provides

significantly higher Sharpe ratios for risk-oriented strategic beta strategies. Because dependent sort-

ing controls for correlated variables and stratifies the stock universe in well-diversified portfolios

(Lambert, Fays, and Hübner (2016)), this sorting methodology delivers better diversification benefit

potential for smart beta strategies. To demonstrate this point, we follow the approach of Erb and

Harvey (2006) and Willenbrock (2011)) and provide an extended decomposition of the diversification

return from Booth and Fama (1992). We find that the diversification return is higher for risk-based

strategies implemented on these dependent portfolios than for those implemented on independent

portfolios and higher than a naive equally weighted strategy. Our results hold out-of-sample and are

robust to multiple testing.
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Figure 1: Stock Distribution with Independent vs Dependent Sorting

The figure displays the stock distribution into the 2⇥3 characteristic-sorted portfolios on size (low and high)
and book-to-market equity ratio (low, medium and high) for the independent (left) and dependent (right)
sorting methodologies. The independent sorting uses the NYSE as a reference for breakpoints, while the
dependent sorting uses all name breakpoints (NYSE, NASDAQ, and AMEX). The period is the interval from
July 1963 to December 2015.

(a) Independent (2⇥3) (b) Dependent (2⇥3)
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Figure 2: Distribution of BM-scores of Mutual Funds: Independent vs Dependent Sorts

The figure shows the kernel distribution in BM-score of mutual funds with a focused on the US equity market
for which Morningstar attributes a value-growth classification. The value-growth classification applied to the
mutual funds present in the CRSP mutual funds database. For each point in time where a fund reports its
holdings, we associate a BM-score from a 1–5 scale according the Fama–French’s 5x5 size and value independent
sorting methodology or a 5x5 size and value dependent sorting methodology. The fund’s BM-score is then
calculated as the percentage of Total Net Assets (TNA) weighted average of the 1–5 scale of the securities
the fund holds. Distributions are displayed for 3 Morningstar classifications of funds: growth (left), blend
(middle), value (right). The sample period ranges from April 2002 to December 2015.
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Figure 3: Distribution of BM-scores of Mutual Funds: Morningstar Category Breakdown

The figure presents the kernel distribution in BM-score of mutual funds with a focused on the US equity market
for which Morningstar attributes size and value classifications. The value-growth classification applied to the
mutual funds present in the CRSP mutual funds database. For each point in time where a fund reports its
holdings, we associate a BM-score from a 1–5 scale according the Fama–French’s 5x5 size and value independent
sorting methodology or a 5x5 size and value dependent sorting methodology. The fund’s BM-score is then
calculated as the percentage of Total Net Assets (TNA) weighted average of the 1–5 scale of the securities
the fund holds. Distributions are displayed for 3 Morningstar’s value classifications of funds: growth (left),
blend (middle), value (right) and 3 size classifications of funds: small (bottom), mid (middle), large (top).
The sample period ranges from April 2002 to December 2015.

34



Figure 4: Stock Distribution with Independent vs Dependent Sorting

These plots show the stock distribution among the 2⇥3 and 3⇥3 characteristic-sorted portfolios based on size
(low, medium and high) and the book-to-market equity ratio (low, medium and high) for the independent-
and dependent-sorting methodologies. We also report the average percentage of stock distribution among the
3⇥3⇥3 characteristic-sorted portfolios when momentum is added as a third variable. For clarity, we group
the 27 portfolios according to their size classifications (small, medium, and large). The period is the interval
from July 1963 to December 2015.
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Figure 5: Variation of Transaction Cost Estimates

The figure presents a boxplot of the distribution of individual stock transaction costs estimated as in Hasbrouck
(2009). The sample period is the interval from 1963 to 2015. The whiskers represent the distribution of the
5th to 95th percentile, and the upper and lower edges of the boxes correspond to the 25th and 75th percentiles.
The gray dots represent outliers.
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Figure 6: Improving the Tangency (a) and GMV (b) Portfolios

The figure displays the spanning illustration for opportunity sets comprising the benchmark assets (R1), i.e.,
the 30-Year US Treasury Bond and Portfolio A, in the color red. The benchmark assets plus a test asset (R2),
i.e., Portfolio B, are displayed in the color blue. The x-axis reports the annualized standard deviation (in %),
and the y-axis reports the annualized average return (in %). This example is fictitious but illustrates in Panel
A (Panel B) an improvement of the tangency (GMV) portfolio after Portfolio B is added to the benchmark
assets.

(a) Tangency Portfolio

(b) GMV Portfolio
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Table 1: Mutual Funds Score BM: 15 Largest Discrepancies

The table reports the 15 mutual funds with a focused on the US equity market for which the discrepancies
between the BM-scores from the dependent and independent sorts are larger. We report in the first column the
attributed Morningstar style classification of the funds; in the second column the ticker; in the third column
displays the funds’ name; columns four and five respectively report the BM-score under an independent sort
and dependent sort; column six is the di↵erence between BMdep and BMind; the last column report the
average number of stocks of funds across the period going from April 2002 to December 2015.

Morningstar

Ticker Fund Name

Score Score Score Average #
Equity Style

BMInd BMDep � BM of stocksBox
Large Value NPLVX NorthPointe Large Cap Value Investor 2.713 3.232 0.519 23
Large Growth IMETX ING Legg Mason ClearBridge Agrsv Gr S2 2.880 3.325 0.445 23
Large Value LLPFX Longleaf Partners 3.178 3.614 0.435 12
Mid Growth LSHAX Kinetics Spin-O↵ and Corp Rest Adv A 3.249 3.683 0.435 22
Large Value MVRAX Monteagle Value A 2.874 3.295 0.421 24
Mid Blend PVUCX Principal MidCap Value II C 2.528 2.944 0.416 61
Large Value LOPBX DWS Dreman Concentrated Value B 3.392 3.796 0.403 23
Large Value QALVX Federated MDT Large Cap Value A 3.360 3.758 0.398 90
Large Value LSVVX LSV Conservative Value Equity 3.152 3.547 0.395 76
Large Value FLVSX Fidelity Series Large Cap Value 3.130 3.522 0.393 122
Large Value ISVAX ING Amer Cent Large Comp Value Adv 2.866 3.240 0.374 82
Large Value DENVX MassMutual Premier Disciplined Value Svc 3.203 3.572 0.369 432
Large Value DFLVX DFA US Large Cap Value I 4.193 4.561 0.369 186
Large Value MSLVX BlackRock Advantage Large Cap Val Svc 3.312 3.670 0.358 91
Large Value MRLVX BlackRock Advantage Large Cap Val R 3.312 3.670 0.358 91
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Table 2: Correlation Between Characteristic-Sorted Portfolios

The table reports the average correlation (in %) for the characteristic-sorted portfolios constructed using
independent and dependent sorting methodologies. The third column specifies the di↵erence in the average
correlation between the independent and dependent sorting results. Correlations are estimated based on daily
returns, and the sample period extends from 01/07/1963 to 31/12/2015.

#Number of Independent Dependent Di↵erence
portfolios Sort (1) Sort (2) (1)-(2)

Panel A: Cap-weighted Portfolios
2⇥3 84.99 78.00 6.99
3⇥3 84.99 75.81 9.18
3⇥3⇥3 78.38 66.8 11.58
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Table 3: List of the Smart Beta Strategies’ Objective Functions

The table decomposes the smart beta strategies’ objective function and the constraints applied on the con-
stituents’ weights. The first column refers to the common name of the strategy. The second column specifies
the main authors who have analyzed the strategy. The third column reports the objective function for min-
imization or maximization, and the last column shows the unleveraged long-only constraint applied to the
constituents’ weight. In the objective function, w refers to the weights, N is the total amount of assets intro-
duced in the optimization, i and j denote the i-th asset and the j-th asset, �ij is the covariance between the
i-th asset and j-th asset, p refers to portfolio, and (⌃w)i is the risk contribution of the i-th asset.

Strategy Referenced Authors Objective Function Constraints

Minimum Variance (MV) Clarke, Silva, and Thorley (2013) min f(w) =
PN

i

PN
j wi�ijwj

wi 2 [0, 1] and
PN

i=1wi = 1
Maximum Diversification (MD) Choueifaty and Coignard (2008) max f(w) =

PN
i wi�iqPN

i

PN
j wi�ijwj

Risk parity (RP) Maillard, Roncalli, and Tëıletche (2010) min f(w) =
PN

i

PN
j (wi ⇥ (⌃w)i � wj ⇥ (⌃w)j)2
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Table 4: Diversification Returns: Fixed-Weight Benchmark

The table reports the spread of diversification return obtained from equation (4) for the three di↵erent strategic
beta strategies: MD, MV, and RP. These strategies are applied to portfolios that are sorted independently
(ind) or dependently (dep). These portfolios are rebalanced on a monthly basis and the number of portfolios
is either six (2⇥3), nine (3⇥3) or twenty-seven (3⇥3⇥3). The components of diversification return (i.e., DR1,
DR2, and DR) are reported in percentage and on a monthly basis. The sample period extends from July
1963 to December 2015. We then provide the p-value of the hypothesis that the spread in the component
of diversification are equivalent for a pair of strategies applied on independent or dependent portfolios. To
extract estimate a p-value for this static measures, we use the framework on hypothesis testing with the
Sharpe ratio from Ledoit and Wolf (2008) and substitute the Sharpe ratio by the measures of diversification
return.

Fixed-Weight (FW) Benchmark
DRFW

1 DRFW
2 DRFW

Ind Dep
�

p-val Ind Dep
�

p-val Ind Dep
�

p-valDep-Ind Dep-Ind Dep-Ind
MD2x3 -0.005 -0.003 0.002 0.936 0.025 0.038 0.012 0.000 0.020 0.034 0.014 0.524
MD3x3 0.004 -0.032 -0.035 0.257 0.031 0.050 0.019 0.000 0.034 0.018 -0.016 0.594
MD3x3x3 -0.041 -0.075 -0.034 0.428 0.046 0.080 0.034 0.000 0.005 0.005 0.000 0.993
MV2x3 0.013 -0.025 -0.038 0.554 0.024 0.031 0.007 0.165 0.037 0.006 -0.031 0.635
MV3x3 -0.001 -0.036 -0.035 0.581 0.024 0.045 0.020 0.003 0.023 0.009 -0.014 0.807
MV3x3x3 -0.018 -0.115 -0.097 0.093 0.047 0.070 0.023 0.001 0.029 -0.045 -0.074 0.191
RP2x3 0.005 0.005 0.000 0.992 0.024 0.036 0.012 0.000 0.030 0.041 0.012 0.308
RP3x3 0.005 0.000 -0.005 0.679 0.027 0.042 0.014 0.000 0.032 0.041 0.009 0.460
RP3x3x3 -0.001 -0.010 -0.009 0.522 0.043 0.065 0.023 0.000 0.041 0.056 0.014 0.307

Table 5: Diversification Returns: Equal-Weight Benchmark

The table reports the spread of diversification return obtained from equation (5) for the three di↵erent strategic
beta strategies: MD, MV, and RP. These strategies are applied to portfolios that are sorted independently
(ind) or dependently (dep). These portfolios are rebalanced on a monthly basis and the number of portfolios
is either six (2⇥3), nine (3⇥3) or twenty-seven (3⇥3⇥3). The components of diversification return (i.e., DR1,
DR2, and DR) are reported in percentage and on a monthly basis. The sample period extends from July
1963 to December 2015. We then provide the p-value of the hypothesis that the spread in the component
of diversification are equivalent for a pair of strategies applied on independent or dependent portfolios. To
extract estimate a p-value for this static measures, we use the framework on hypothesis testing with the
Sharpe ratio from Ledoit and Wolf (2008) and substitute the Sharpe ratio by the measures of diversification
return.

Equal-Weight (EW) Benchmark
DREW

1 DREW
2 DREW

Ind Dep
�

p-val Ind Dep
�

p-val Ind Dep
�

p-valDep-Ind Dep-Ind Dep-Ind
MD2x3 0.005 0.088 0.083 0.012 0.027 0.038 0.011 0.003 0.032 0.126 0.094 0.007
MD3x3 0.010 0.070 0.060 0.125 0.033 0.048 0.015 0.000 0.043 0.118 0.075 0.055
MD3x3x3 -0.034 0.063 0.097 0.107 0.046 0.061 0.014 0.010 0.012 0.124 0.112 0.067
MV2x3 0.082 0.218 0.136 0.071 0.033 0.028 -0.004 0.407 0.115 0.246 0.131 0.075
MV3x3 0.050 0.143 0.093 0.163 0.034 0.046 0.012 0.066 0.084 0.189 0.105 0.112
MV3x3x3 0.022 0.019 -0.003 0.955 0.061 0.080 0.018 0.002 0.084 0.099 0.015 0.785
RP2x3 0.020 0.056 0.036 0.013 0.026 0.036 0.010 0.001 0.046 0.092 0.047 0.005
RP3x3 0.019 0.048 0.029 0.063 0.029 0.042 0.013 0.000 0.048 0.090 0.041 0.015
RP3x3x3 0.011 0.035 0.024 0.102 0.046 0.068 0.022 0.000 0.057 0.102 0.046 0.007
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Table 8: Horse Race Boostrap Test

Smart beta strategies are constructed on CW portfolios. The table reports the results for the bootstrap mean-
variance spanning test from Kan and Zhou (2012). For one bootstrap, the mean-variance test goes as follow:
we test whether a benchmark portfolio R1 have a significant improvement at the tangent (F1), or at the GMV
(F2) portfolio level when a test asset, i.e. R2, is added to the benchmark assets (R1). The test is performed
twice, given that we have two proxies for R1, that is a smart beta strategy on independent-sorted portfolio and
the same smart beta strategy on dependent-sorted portfolios, respectively denoted with the subscript ind and
dep. Here, we only report the bootstrap p-values that control for multiple testing which are more conservative
that the p-values of the original sample. Results presented below are composed of 1,000 simulations for each
smart beta strategy, i.e. maximum diversification (MD), minimum variance (MV), risk parity (RP). All smart
strategies are taken in excess of the risk-free rate and net of transactions costs. B30 refers to the 30-Year US
Treasury Bonds in excess of the risk-free rate. In Panel A, R1 is composed of B30 and a proxy for the MVE
market portfolio (R1,MV E) defined as a smart beta strategy constructed on dependent-sorted portfolios while
R2 is the same smart beta strategy constructed on independent-sorted portfolios. In Panel A, R1 is composed
of B30 and a proxy for the MVE market portfolio (R1,MV E) defined as a smart beta strategy constructed
on independent-sorted portfolios while R2 is the same smart beta strategy constructed on dependent-sorted
portfolios. The sample period ranges from July 1963 to December 2015.

Panel A: Panel B:
R1 = B30 + SB

net
dep R1 = B30 + SB

net
ind

R2 = SB
net
ind R2 = SB

net
dep MVE GMV

Fo
1,ind p-valb Fo

2,ind p-valb Fo
1,dep p-valb Fo

2,dep p-valb Candidate Candidate
MD2x3 0.801 0.448 0.064 0.944 5.823 0.012 11.175 0.013 Dependent Dependent
MD3x3 0.016 0.973 0.121 0.914 4.160 0.049 17.576 0.000 Dependent Dependent
MD3x3x3 0.001 1.000 2.470 0.361 5.959 0.026 18.900 0.005 Dependent Dependent
MV2x3 0.118 0.871 6.515 0.054 5.254 0.015 10.170 0.015 Dependent Dependent
MV3x3 0.035 0.956 0.090 0.954 6.095 0.011 24.206 0.000 Dependent Dependent
MV3x3x3 1.490 0.285 3.210 0.178 0.788 0.471 9.723 0.010 Dep ⇡ Ind Dependent
RP2x3 0.006 0.984 0.299 0.773 1.743 0.173 5.814 0.061 Dep ⇡ Ind Dependent
RP3x3 0.035 0.931 0.116 0.885 1.497 0.204 9.125 0.019 Dep ⇡ Ind Dependent
RP3x3x3 0.009 0.984 0.087 0.922 2.315 0.109 9.240 0.021 Dep ⇡ Ind Dependent
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Table 9: Lucky MVE Candidates

The table reports sequential test developed by Harvey and Liu (2016) to select robust MVE candidates. As MVE candidates, we use the
traditional cap-weighted market portfolio obtained from Kenneth French’s website, and the smart beta strategies constructed on the two sets
of basis portfolios: one from an (ind)ependent sort and the other from a (dep)endent sort. All strategies are taken in excess of the risk-free
rate and net of transactions costs. The test assets used in the MVE test are the basis portfolios used to construct the smart beta strategies.
These ones are indicated next to the referenced Panel. The baseline model used in our test is the 30-Year US Treasury Bonds in excess of the
risk-free rate (B30), and the size (SMB) and value (HML) factors obtained from Kenneth French’s website. We report in the first row of each
panels the Gibbons, Ross, and Shanken (1989) test and in the second row its respective p-value; the third row presents the value of the scaled
intercept (SI); the fourth row displays the single test p-value for SI; the fifth row shows the numbering sequence for which SI and its p-values
are referring; the penultimate row reports the selected MVE candidates among the smart beta strategies; and the final row displays the p-value
of the selected candidate when controlling for multiple testing. The sample period ranges from July 1963 to December 2015.

MVE Candidates ! Mkt MVdep MDdep RPdep MVind MDind RPind Mkt MVdep MDdep RPdep MVind MDind RPind

Baseline = B30 + SMB + HML Baseline = B30 + SMB + HML
Panel A: 2x3 cap-weighted independent portfolios as test assets Panel B: 2x3 cap-weighted dependent portfolios as test assets

GRS 4.836 4.189 4.391 4.538 4.155 4.445 4.341 12.058 10.947 11.344 11.589 11.552 11.888 11.962
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) 0.042 0.070 0.041 0.036 0.066 -0.012 -0.842 0.049 0.061 -0.838 0.023 0.009 -0.001 -0.008
Single test p-value 0.701 0.984 0.929 0.894 0.893 0.325 0.000 0.880 0.865 0.000 0.782 0.569 0.547 0.468
SI sequence 2 2 2 2 2 2 1 2 2 1 2 2 2 2
Selected candidate(s) RPind MDdep

Multiple test p-value [0.000] [0.000]
Panel C: 3x3 cap-weighted independent portfolios as test assets Panel D: 3x3 cap-weighted dependent portfolios as test assets

GRS 3.403 2.792 2.892 2.975 2.909 2.918 2.929 8.228 7.757 7.959 7.950 8.116 8.108 8.108
p-value 0.000 0.003 0.002 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) -0.006 0.041 0.255 0.373 -0.876 0.100 0.169 0.210 0.249 0.221 -0.806 0.001 0.150 0.107
Single test p-value 0.542 0.755 0.883 0.895 0.000 0.697 0.755 0.937 0.979 0.916 0.000 0.528 0.861 0.849
SI sequence 2 2 2 2 1 2 2 2 2 2 1 2 2 2
Selected candidate(s) MVind RPdep

Multiple test p-value [0.000] [0.000]
Panel E: 3x3x3 cap-weighted independent portfolios as test assets Panel F: 3x3x3 cap-weighted dependent portfolios as test assets

GRS 2.262 2.135 2.164 2.213 2.085 2.332 2.110 4.591 4.366 4.335 4.283 4.335 4.608 4.379
p-value 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Scaled intercept (SI) 0.245 0.030 -0.790 0.301 0.283 0.111 0.225 -0.015 0.007 -0.668 -0.039 0.006 0.013 0.020
Single test p-value 0.943 0.661 0.000 0.970 0.962 0.816 0.952 0.566 0.571 0.000 0.431 0.610 0.686 0.739
SI sequence 2 2 1 2 2 2 2 2 2 1 2 2 2 2
Selected candidate(s) MDdep MDdep

Multiple test p-value [0.000] [0.000]
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A. Appendices

A.1. Estimation of the Covariance Matrix

In this section, we briefly describe a shrinkage methodology used in our applications to estimate

the covariance with lower sampling errors following Ledoit and Wolf (2004). In their model, the

authors build on Elton and Gruber (1973), who use a constant correlation coe�cient to shrink the

assets’ covariance toward a global average correlation estimator.

The constant correlation coe�cient is determined using

⇢̂ =
1

N(N � 1)

0

@
NX

i

NX

j

⇢̂ij �N

1

A (A.1)

where N is the number of portfolios – in our applications, either 6, 9 or 27. The term ⇢̂ij is the

historical correlation estimate between the i
th portfolio and the j

th portfolio. Ledoit and Wolf

(2004) then obtain an optimal structure for the covariance matrix and reduce the sampling error of

a traditional sample covariance matrix (S) as follows:

⌃ = �F + (1� �)S (A.2)

where ⌃ is the output covariance matrix obtained from the shrinkage estimation, and � is the

optimal shrinkage intensity.13 S is the sample covariance matrix from our 60 daily returns, and F

is the structured covariance matrix with the assets’ covariance estimated via the constant correla-

tion estimator in equation (A.1).14 In our empirical study, the estimations of the sample and the

structured covariance matrices are based on 60-day rolling windows to accommodate for gradual

changes in the return distribution and short-term variations. A real-life application with tradable

assets (Idzorek and Kowara (2013)) would impose constraints on the historical information available

to replicate our results. For this reason - to stay as close as possible to what real-world applications

may o↵er - we limit our optimizations on 60-day windows. This choice is also consistent with Fama

and French (2018) who estimate the monthly variance of stocks using 60 days of lagged returns.

13Matlab code is available at Prof. Wolf’s website.

14The covariance of the matrix F is given by �ij = ⇢̂�i�j .
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A.2. Testing the Incremental Diversification Return

Ledoit and Wolf (2008) propose an ’indirect’ bootstrap methodology to construct an empirical

distribution of the spread in a function of the underlying first and second moments of two time

series. They test the significance of the spread by considering whether a 1-↵ confidence interval (e.g.

90%) contains zero.

They first consider that the di↵erence between the true first and second moments of the two

series converge towards their sample estimate such that,

p
T (û� u)

d�! N(0,⌦) (A.3)

where û = (µ̂i, µ̂j , �̂i
2
, �̂j

2) are the sample estimates of u = (µi, µj ,�
2
i ,�

2
j ),

d�! refers to the

convergence in distribution of the parameters, T is the length of the time-series, and ⌦ refers to

variance of the estimator distribution.

Considering the sample uncentered second moments instead of the sample estimated variances,

i.e. �̂i = E(r2i ) and �̂i = E(r2j ), and taking into account non-normality and auto-correlation in

returns, the relationship (A.3) becomes

p
T (v̂ � v)

d�! N(0, ) (A.4)

where v̂ = (µ̂i, µ̂j , �̂i, �̂j) is the sample estimates of v = (µi, µj , �i, �j).

The estimator  is estimated through an heteroskedasticity and autocorrelation (HAC) robust

kernel method. We refer to the paper of Ledoit and Wolf (2008) for a more detailed discussion on

the computation of this estimator.

The standard error of the spread �̂ in a function f(v̂) can be defined as,

s(�̂) =

s
r0

f(v̂) ̂rf(v̂)

T
(A.5)

where r0
f(v̂) is the gradient function of f(v̂) and T is the length of the time-series.

To obtain a confidence interval attached to �̂, we resample the original time-series using the

block-bootstrap method of Politis and Romano (1992) and construct an empirical (bootstrap) dis-

tribution of a studentized test statistic (db) defined as
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d
b =

|�̂b � �̂|
s(�̂b)

(A.6)

where the superscript b denotes the b-th bootstrap sample and where s(�̂b), for the b-th boot-

strap is obtained by using both the gradient of f(v̂b) and the HAC kernel estimator  ̂b and defined

as follows,

s(�̂b) =

s
r0

f(v̂b) ̂brf(v̂b)

T
(A.7)

The boostrap 1-↵ confidence interval is defined as:

h
�̂� z

b
|.|,1�↵/2s(�̂), �̂+ z

b
|.|,1�↵/2s(�̂)

i
(A.8)

with z
b
|.|,1�↵ the quantile of the distribution function of the studentized statistic estimated from

the bootstrap and denoted L(db).

In our applications, we use a block-bootstrap of 10 observations and runs 4999 simulations.15

The bootstrap process works as follow: First, we set a length for the block of observations (e.g. 10)

that we want to resample in order to capture serial autocorrelation. Second, we match the length

of the original time-series in the bootstrap samples to preserve the uncertainty and the degree of

freedom from the original data. Third, we randomly resample (with replacement) the sequence

of time-series for the b-th bootstrap and keep the same sequence for resampling the time-series

of the strategies and their underlying opportunity sets. This way we make sure to preserve the

cross-sectional correlation across the assets (Fama and French (2010) and Harvey and Liu (2016)).

Lastly, we repeat the operation B times (e.g. 4999) to construct an empirical distribution of centered

studentized test statistics in which the standard error,

Defining a studentized test statistic (d) on the original time-series as follows,

d =
|�̂|
s(�̂)

(A.9)

15Our results are not sensitive to the choice of the block length. As a matter of fact, we run the test with blocks

of length {2, 4, 6, 8, 10} and found very similar results (available upon request). Also, we run 4999 simulations to stay

aligned with the recommendations of Ledoit and Wolf (2008, p. 858).
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The p-value attached to the test of the spread �̂ in a function f(v̂) is computed as,

p-val =
#{db � d}+ 1

B + 1
(A.10)

Ledoit and Wolf (2008) apply this framework to a test of Sharpe ratio for a pair of strategies.

They consider the following function

f(a, b, c, d) =
ap

c� a2
� bp

d� b2
(A.11)

Where a = µ̂i, b = µ̂j , c = �̂i, and d = �̂j .

The gradient of the function is defined as r0
f(v̂) = ( c

(c�a2)1.5 ,�
d

(d�b2)1.5 ,�
1
2

a
(c�a2)1.5 ,

1
2

b
(d�b2)1.5 )

is the gradient function of f(v̂).

Our estimates of �̂ are defined as follows,

�̂(DR) = DR
Dep �DR

Ind

�̂(DR1) = DR
Dep
1 �DR

Ind
1

�̂(DR2) = DR
Dep
2 �DR

Ind
2

(A.12)

However obtaining the gradient for these functions is cumbersome because additionally to the

pair of strategies, we are left with a number N of dependent-sorted and independent-sorted port-

folios. Given that in our applications this amount N can take the value of 6, 9 or 27, finding the

gradient for this large amount of parameters is di�cult. Consequently, we take the assumptions that

if there is large deviations in the spread of diversification return for a pair of strategies then there

should also be large deviations in their spread of Sharpe ratio. This assumption is helpful as we

can now only substitute the numerator in equations (A.6) and (A.9) by the spread in diversification

return while keeping the standard error from the spread in Sharpe ratio derived in the initial frame-

work of Ledoit and Wolf (2008). To test the sensitivity of this assumption, we also substitute the

standard error from the spread in Sharpe ratio by the standard error from the spread in geometric

return, and also by the standard error of the spread in geometric return scaled by the standard

deviation. Their gradient function (r0
f(v̂)) are respectively given by (a + 1,�b � 1,�0.5, 0.5) and

(0.5a
3�0.5ac�c

a2�c
p
c�a2

,�0.5b3+0.5bd+d
b2�d

p
d�b2

,
�0.25a2+0.5a+0.25c

a2�c
p
c�a2

,
0.25b2�0.5b�0.25d

b2�d
p
d�b2

). We obtained results qualitatively
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similar under all robustness tests. Results are available upon request.

A.3. Transaction Costs: Gibbs Estimates

A traditional model to estimate trading costs of a security is documented by Roll (1984) and

simply use the autocovariance of the change in trade price (�pt) to find an e↵ective estimate of

spread such that,

c
Roll =

8
><

>:

p
�Cov(�pt,�pt�1) if Cov(�pt,�pt�1) < 0

0 if Cov(�pt,�pt�1) � 0
(A.13)

In last equation, we see that when the autocovariance is positive the model fails to provide a

fair estimate of e↵ective costs. For this reason, Hasbrouck (2009) extend the measure under Roll

(1984)’s framework on the price dynamics in a market with transaction costs. In this framework,

the model only requires information about the daily trade price, the prior midpoint of the bid-ask

prices and the sign of trade to perform the estimation. Formally, the price dynamic is written as

follows:

mt = m(t�1) + ut

pt = mt + cqt

(A.14)

where mt is the log midpoint of the prior bid-ask price (the e�cient price), pt is the log trade

price (the real price), qt is the sign of the last trade of the day (+1 for a buy and �1 for a sale), c

is the e↵ective cost, and ut is assumed to be unrelated to the sign of the trade (qt).

Since we use the logarithm for the price variables in equation (A.14), the daily change in price

is given by

�pt = pt � pt�1

= mt + cqt �mt�1 � cqt�1

= c�qt + ut

(A.15)
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Hasbrouck (2009) extends Roll (1984)’s model with a market factor to capture a larger part of

the changes in prices not due to transaction costs. They estimate the e↵ective trading costs using

Bayesian Gibbs sampling applied to the daily prices of U.S. equities retrieved from CRSP data.16

The market-factor model is presented as follows:

�pt = c�qt + �rmrmt + ut (A.16)

where rmt is the market return on day t and �rm is the parameter estimate obtained from a

Bayesian regression on the market return.

The Bayesian methodology estimates the e↵ective costs (c) based on a sequence of iterations

where the initial prior for c is strictly positive and follows a normal distribution with mean of 0.01

and variance equal to 0.012, denoted N
+ (µ = 0.01, �2 = 0.012). This initial prior of �rm follows

a normal distribution with mean and variance of 1, i.e. N (µ = 1, �2 = 1) and the prior of �2
u

follows an inverted Gamma distribution initiated at IG (↵ = 10�12, � = 10�12).17 The objective of

the Gibbs sampling is to estimate the value of the parameters c and �rm conditional on the values

drawn for qt, which is based on the sign of trade (�pt), and the error term (ut). Initially, q1 is set

to +1 and �
2
u is set to 0.001. Next, the sampler runs as follow,

for 1 to 1,000 sweeps

1. Perform a Bayesian OLS regression on a 250-day of lagged observations to estimate the new

values of c and �rm, update the posterior distribution of the parameters and make a new draw

of the coe�cients.

2. Back out ut from the values of c, �rm, �pt, rmt, �qt as follow,

ut = �pt � �rmrmt � c�qt (A.17)

3. Update the posterior �2
u according to the series of ut,

16The SAS code is available on Prof. Hasbrouck’s website.

17These initial values of the priors are the ones found in the SAS code made available by Prof. Hasbrouck. According

to Hasbrouck (2009), the initial values of the prior should not impact the final estimate of the e↵ective cost of a stock

because the first 200 iterations (of 1,000) are disregarded to compute the average of the estimated values for the trading

cost (c).
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4. Draw new series of qt knowing the new value of �2
u. Given that ut = �pt��rmrmt�cqt+cqt�1,

estimate ut if qt = +1 or qt = �1. Find the probability of ut(qt = +1) and ut(qt = �1) given

that ut ⇠ N(0,�2
u) and compute the odds ratio for a buy order as follow,

Odds =
f(ut(qt = +1))

f(ut(qt = �1))

8
><

>:

qt = +1 if Odds > 1

qt = �1 if Odds < 1
(A.18)

end

The process is repeated 1,000 times and the final value for c is the average of the last 800 esti-

mations of the procedure (”burn in” the 200 first observations). For more information on simulating

the probability distributions of qt and ut as well as on the iterative process, interested readers should

refer to Hasbrouck (2009, p. 1449-1951).18

18Further details regarding the application of the estimation technique can also be found in Marshall, Nguyen, and

Visaltanachoti (2011) and Novy-Marx and Velikov (2016).
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