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Abstract

This paper introduces a framework for analysis of cross-sectional dependence in the id-

iosyncratic volatilities of assets using high frequency data. We first consider the estimation

of standard measures of dependence in the idiosyncratic volatilities such as covariances and

correlations. Next, we study an idiosyncratic volatility factor model, in which we decompose

the co-movements in idiosyncratic volatilities into two parts: those related to factors such as

the market volatility, and the residual co-movements. When using high frequency data, naive

estimators of all of the above measures are biased due to the estimation errors in idiosyncratic

volatilities. We provide bias-corrected estimators and establish their asymptotic properties. We

apply our estimators to high-frequency data on the 30 Dow Jones Industrial Average compo-

nents, and document strong cross-sectional dependence in their idiosyncratic volatilities. We

consider two different sets of idiosyncratic volatility factors, and we find that they cannot fully

account for the cross-sectional dependence in idiosyncratic volatilities. We map the network of

dependencies in residual idiosyncratic volatilities across the stocks.
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Department, the Gregory C. Chow Econometrics Research Program, and the Bendheim Center for Finance at
Princeton University for their hospitality and support in the Spring of 2015.
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1 Introduction

Idiosyncratic Volatility (IV) of returns of an asset or a portfolio is the subject of many recent

papers in empirical finance. The IV is usually defined with respect to some popular empirical

asset pricing model such as the Fama and French (1993) model, so that IV is the volatility of the

risk-adjusted returns. Even if the idiosyncratic returns are not correlated in the cross-section, their

volatilities may well be. In fact, cross-sectional correlation of IVs has emerged as a stylized fact,

see, e.g., Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) and Duarte, Kamara, Siegel, and Sun

(2014). The current paper develops the tools to formally study this empirical phenomenon.

We provide a flexible framework for studying the cross-sectional dependencies in IVs using high-

frequency data. Our framework offers a solution to the measurement error problem in estimated

IVs, and is applicable to a potentially large set of assets.

First, we study the behavior of standard measures of cross-sectional dependence in IVs using

high-frequency data. We show that the naive estimators of these measures are biased, and provide

bias-corrected estimators. We then obtain the relevant asymptotic distributions, which allow us

to perform statistical tests.

Second, we study an idiosyncratic volatility factor model (IV-FM).1 The IV-FM decomposes

the cross-sectional dependence in IVs into two components. The first component is the cross-

sectional dependence due to popular factors. The IV factors can include the volatility of the

price factors, or more generally non-linear transformations of the spot covariance matrices, such

as the average variance and average correlation factors of Chen and Petkova (2012). The second

component in the IV-FM is residual dependence in IVs not explained by the IV factors. Again, the

standard estimators of this decomposition are biased due to the latency in volatility. We provide

bias-corrected estimators, and derive their asymptotic distributions. We build a test for whether

the IV-FM can fully account for the dependence between the IVs.

We apply our estimators to high-frequency data on 30 individual stocks comprising the Dow

Jones Industrial Average index. We study the idiosyncratic volatilities with respect to two models

for asset prices, CAPM and the three-factor Fama-French model. In both cases, the average

pairwise correlation between the idiosyncratic volatilities is high (above 0.55). Moreover, we find

that this dependence cannot be explained by missing factors in asset prices. This confirms recent

findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) who use daily and monthly price

data. We then augment the return factor model with an IV-FM. We consider two sets of IV

factors, the market volatility alone and the market volatility together with volatilities of nine

industry ETFs. The market volatility decreases the average pairwise correlation between IVs from

0.55 to 0.25. Volatilities of nine industry ETFs decrease the average correlation between residual

idiosyncratic volatilities further to 0.18. However, in both cases we find that these IV factors cannot

1Throughout the paper, we use the term “factor model” to denote a regression model, e.g., we call the Fama and
French (1993) model a factor model.
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fully explain the cross-sectional dependence in IVs, and we study the network of dependencies in

residual idiosyncratic volatilities across the stocks.

To the best of our knowledge, this paper is the first to study the theoretical properties of the

estimators of cross-sectional dependence in IVs using high frequency data. In contrast, a growing

number of papers study the cross-sectional dependence in total and/or idiosyncratic returns using

high frequency data. The latter literature dates back to the study of realized covariances and

their transformations, see, e.g., Barndorff-Nielsen and Shephard (2004) and Andersen, Bollerslev,

Diebold, and Wu (2004). A continuous-time factor model for asset prices with observable price

factors was first studied in Mykland and Zhang (2006). It was extended to multiple factors and

jumps in Aı̈t-Sahalia, Kalnina, and Xiu (2014). Ait-Sahalia and Xiu (2015), Ait-Sahalia and Xiu

(2016), and Pelger (2015) study the cross-sectional dependence in total and idiosyncratic returns

using unobservable factors. The above papers are silent about the cross-sectional dependence

structure in IVs. The Beta GARCH model of Hansen, Lunde, and Voev (2014) implies that

the IVs exhibit nonlinear cross-sectional dependencies driven by the market volatility and certain

realized measures. Their model allows for some return factors to be omitted and hence tested for,

but the IV factors are fixed. Our framework allows a general specification of both return and IV

factors.

Our inference theory is related to several results in the existing literature. First, it extends

the results on estimation of the integrated one-dimensional (total) volatility of volatility of Vetter

(2012) (see also Aı̈t-Sahalia and Jacod (2014)). The estimator of Vetter (2012) requires bias-

correction due to pre-estimation of (total) volatility. The need for a first-order bias-correction also

arises when estimating the one-dimensional (total) leverage effect, see Wang and Mykland (2014),

Kalnina and Xiu (2015), and Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013). Aı̈t-Sahalia, Fan,

and Li (2013) demonstrate the empirical importance of this bias-correction: they show that the

leverage effect puzzle arises when this bias-correction is omitted. Due to the decomposition of

total returns into a systematic and idiosyncratic part, our estimators involve aggregation of non-

linear functionals of the return volatility matrix, hence our bias-correction terms are related to the

general theory developed in Jacod and Rosenbaum (2012) and Jacod and Rosenbaum (2013).

The choice of the IV factors has consequences for option pricing. For example, Gourier (2014)

studies risk premia embedded in options using a parametric stochastic volatility model. In her

model, the co-movements between IVs are induced by their loading on the market volatility. By

relying on high frequency data, our methods offer a nonparametric and computationally straight-

forward way of testing whether a given set of IV factors is sufficient to explain all the cross-sectional

dependence in the IVs for a given data set. Empirically, we reject the hypothesis that the market

volatility as the sole IV factor is sufficient for the data set of 30 DJIA stocks. Another related

paper is Christoffersen, Fournier, and Jacobs (2015) who apply principal component analysis to

equity option data. While their model is agnostic about the cross-sectional dependence in IVs,
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they report empirically high cross-sectional correlations in IVs, which motivates our study.

The remainder of the paper is organized as follows. Section 2 introduces the model and the

quantities of interest. Section 3 describes the identification and estimation. Section 4 presents

the asymptotic properties of our estimators. Section 5 contains a Monte Carlo study. Section

6 uses high-frequency stock price data to study the cross-sectional dependence in IVs using our

framework. Section 7 concludes. The Appendix contains the proofs.

2 Model and Quantities of Interest

We first describe a general factor model for the prices, in which the idiosyncratic volatility is

defined. We then introduce the idiosyncratic volatility factor model (IV-FM).

Suppose we have (log) prices on dS assets such as stocks and on dF observable factors. We

stack them into the d-dimensional process Yt = (S1,t, . . . , SdS ,t, F1,t, . . . , FdF ,t)
> where d = dS+dF .

The observable factors F1, . . . FdF are used in the P-FM model below. We assume Yt follows an

Itô semimartingale,

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt,

where W is a d′-dimensional Brownian motion (d′ ≥ d), σs is a d× d′ stochastic volatility process,

and Jt denotes a finite variation jump process. We assume also that the spot variance matrix

process Ct = σtσ
>
t of Yt is a continuous Itô semimartingale,2

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs, (1)

see Section 4 for the full list of assumptions. We denote Ct = (Cab,t)1≤a,b≤d. For convenience, we

also employ the alternative notation CUV,t to refer to the spot covariance between two elements U

and V of Y .

We assume a standard continuous-time factor model for the (log) prices of the assets:

Definition (Factor Model for Prices, P-FM). For for all 0 ≤ t ≤ T and j = 1, . . . , dS,3

dScj,t = β>j,tdF
c
t + dZcj,t with

[Zcj , F
c]t = 0.

(2)

2Note that assuming that Y and C are driven by the same d′-dimensional Brownian motion W is without loss of
generality provided that d′ is large enough, see, e.g., equation (8.12) of Aı̈t-Sahalia and Jacod (2014).

3If X and Y are two vector-valued Itô semimartingales, their quadratic covariation over the time span [0, T ] is
defined as

[X,Y ]T = p− lim
M→∞

M−1∑
j=0

(Xtj+1 −Xtj )(Ytj+1 − Ytj )
>,

for any sequence t0 < t1 < . . . < tM = T with sup
j
{tj+1−tj} → 0 as M →∞, where p-lim stands for the probability

limit. Barndorff-Nielsen and Shephard (2004) discuss its estimation when both X and Y are observed.
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We do not need the price factors Ft to be the same across assets to identify the model, but

without loss of generality, we keep this structure because it is standard in empirical finance. These

price factors are assumed to be observable. For example, in the empirical application, we use two

sets of price factors: the market portfolio and the three Fama-French factors, which are constructed

in Aı̈t-Sahalia, Kalnina, and Xiu (2014).

The process Zj,t in the P-FM is the idiosyncratic component of the price of the jth stock with

respect to the price factors. We use the superscript c to emphasize that the P-FM only involves

the continuous martingale parts of the observable processes Yj,t and Ft. The jump parts of these

processes are left unrestricted. For j = 1, . . . , dS , the factor loading βj,t is a RdF -valued process

which represents the continuous beta.4 The k-th component of βj,t corresponds to the time-varying

loading of the continuous part of the return on stock j to the continuous part of the return on

the k-th factor. We set βt = (β1,t, . . . , βdS ,t)
> and Zt = (Z1,t, . . . , ZdS ,t)

>. This framework was

originally studied in Mykland and Zhang (2006) in the case of one factor and in the absence of

jumps. It was extended to multiple factors and jumps in Aı̈t-Sahalia, Kalnina, and Xiu (2014).

See also Li, Todorov, and Tauchen (2013), Fan, Furger, and Xiu (2015), and Reiß, Todorov, and

Tauchen (2015). Our framework can be potentially extended to use principal components instead

of observable price factors as in Ait-Sahalia and Xiu (2015).

Idiosyncratic Volatility of stock j is the spot volatility of the residual process Zj , and is denoted

by CZjZj . Notice that the factor loadings as well as IV in (2) are functions of the total spot

covariance matrix Ct. In particular, the vector of factor loadings satisfies

βjt = (CFF,t)
−1CFSj ,t, (3)

for j = 1, . . . , dS , where CFF,t denotes the spot covariance matrix of the factors F , which is the

lower dF ×dF sub-matrix of Ct; and CFSj,t denotes the covariance of the factors and the jth stock,

which is a vector consisting of the last dF elements of the jth column of Ct. The IV of stock j is

also a function of the total spot covariance matrix Ct,

CZjZj,t = CY jY j,t − (CFSj,t)
>(CFF,t)

−1CFSj,t. (4)

By the Itô lemma, (3) and (4) imply that factor loadings and IVs are also Itô semimartingales with

their characteristics related to those of Ct.

The following quantity plays the role of the correlation; it is a natural measure of dependence

between the IV shocks of stocks i and j and is based on the quadratic covariation between the two,

ρZi,Zj =
[CZiZi, CZjZj ]T√

[CZiZi, CZiZi]T
√

[CZjZj , CZjZj ]T
. (5)

Alternatively, one can consider the quadratic covariation [CZiZi, CZjZj ]T without any normal-

4Interestingly, it is possible to define a discontinuous beta, see, e.g., Bollerslev and Todorov (2010) and Li,
Todorov, and Tauchen (2014).
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ization. In Section 4.4, we use the estimator of the latter quantity to test for the presence of

cross-sectional dependence in IVs.

We now introduce the Idiosyncratic Volatility Factor model (IV-FM). In the IV-FM, the cross-

sectional dependence in the IV shocks can be potentially explained by certain IV factors. We

assume the IV factors are known functions of the matrix Ct. In the empirical application, we use

the market volatility as the IV factor; we discuss other possibilities below. We allow the IV factors

to be any known functions of Ct as long as they satisfy a certain polynomial growth condition in

the sense of being in the class G(p) below,

G(p) = {H : H is three-times continuously differentiable and for some K > 0,

‖∂jH(x)‖ ≤ K(1 + ‖x‖)p−j , j = 0, 1, 2, 3}, for some p ≥ 3.
(6)

Definition (Idiosyncratic Volatility Factor Model, IV-FM). For all 0 ≤ t ≤ T and j =

1, . . . , dS, the idiosyncratic volatility CZjZj follows,

dCZjZj,t = b>ZjdΠt + dCNSZjZj,t with (7)

[CNSZjZj ,Π]t = 0,

where Πt = (Π1t, . . . ,ΠdΠt) is a RdΠ-valued vector of IV factors, which satisfy Πkt = Πk(Ct) with

the function Πk(·) belonging to G(p) for k = 1, . . . , dΠ.

We call the residual term CNSZjZj,t the non-systematic IV of asset j, and we abbreviate it as NS-

IV. The IV factor loadings are denoted by bZj ; they are time-invariant. Our assumptions imply

that the components of the IV-FM, CZjZj,t,Πt and CNSZjZj,t, are continuous Itô semimartingales.

We remark that both the regressand and the regressors in our IV-FM are not directly observable

and have to be estimated. As will see in Section 3, this preliminary estimation implies that the

naive estimators of all the quantities of interest in the IV-FM are biased. One of the contributions

of this paper is to quantify this bias and propose bias-corrected estimators for all the quantities of

interest.

The class of IV factors permitted by our theory is rather wide as it includes general non-linear

transforms of the spot variance process Ct. For example, IV factors can be linear combinations

of the total variances of stocks, see, e.g., the average variance factor of Chen and Petkova (2012).

Other examples of IV factors are linear combinations of the IVs, such as the equally-weighted

average of the IVs, which Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) denote by the “CIV”.

The IV factors can also be the volatilities of any other observable processes.

To measure the residual cross-sectional dependence between two IVs after accounting for the

effect of the IV factors, we use a natural counterpart of the correlation between the NS-IVs, which
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is based on the quadratic covariation,

ρNSZi,Zj =
[CNSZiZi, C

NS
ZjZj ]T√

[CNSZiZi, C
NS
ZiZi]T

√
[CNSZjZj , C

NS
ZjZj ]T

. (8)

When testing for the presence of residual correlation between NS-IVs, we use the quadratic covari-

ation [CNSZiZi, C
NS
ZjZj ]T without normalization.

We want to capture how well the IV factors explain the time variation of jth IV. For this

purpose, we use the quadratic-covariation based analog of the coefficient of determination. For

j = 1, . . . , dS ,

R2,IV -FM
Zj =

b>Zj [Π,Π]T bZj

[CZjZj , CZjZj ]T
. (9)

It is interesting to compare the correlation measure between IVs in equation (5) with the

correlation between the non-systematic parts of IVs in (8). We consider their difference,

ρZi,Zj − ρNSZi,Zj , (10)

to see how much of the dependence between IVs can be attributed to the IV factors. In practice,

if we compare assets that are known to have positive covolatilities (typically, stocks have that

property), another useful measure of the systematic part in the overall covariation between IVs is

the following quantity,

QIV -FM
Zi,Zj =

b>Zi[Π,Π]T bZj
[CZiZi, CZjZj ]T

. (11)

This measure is bounded by 1 if the covariations between NS-IVs are nonnegative and smaller than

the covariations between IVs, which is what we find for every pair in our empirical application with

high-frequency observations on stock prices.

It is interesting to compare our framework with the following null hypothesis studied in Li,

Todorov, and Tauchen (2013), H0 : CZjZj,t = aZj + b>ZjΠt, 0 ≤ t ≤ T. This H0 implies that the

IV is a deterministic function of the factors, which does not allow for a non-systematic error term.

In particular, this null hypothesis implies R2,IV -FM
Zj = 1.

3 Estimation

The current section discusses the identification and estimation of the quantities of interest intro-

duced in Section 2. These quantities of interest are

[CZiZi, CZjZj ]T , ρZi,Zj , [CNSZjZj , C
NS
ZjZj ]T , ρ

NS
Zi,Zj , Q

IV -FM
Zi,Zj , and R2,IV -FM

Zi , (12)

for i, j = 1, . . . , dS . The first two quantities in the above are defined even if only the P-FM holds;

the last four need both the P-FM and IV-FM to hold to be well defined.
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We first show that each of the quantities in (12) can be written as

ϕ ([H1(C), G1(C)]T , . . . , [Hκ(C), Gκ(C)]T ) ,

where ϕ as well as Hr and Gr, for r = 1, . . . , κ, are known real-valued functions. Each element in

this expression is of the form [H(C), G(C)]T , i.e., it is a quadratic covariation between functions

of Ct. Afterwards, we present two methods to estimate [H(C), G(C)]T .

First, consider the quadratic covariation between ith and jth IV, [CZiZi, CZjZj ]T . It can be

written as [H(C), G(C)]T if we choose H(Ct) = CZiZi,t and G(Ct) = CZjZj,t. By (4), both CZiZi,t

and CZjZj,t are functions of Ct. Next, consider the correlation ρZi,Zj defined in (5). By the same

argument, its numerator and each of the two components in the denominator can be written as

[H(C), G(C)]T for different functions H and G. Therefore, ρZi,Zj is itself a known function of

three objects of the form [H(C), G(C)]T .

To show that the remaining quantities in (12) can also be expressed in terms of objects of the

form [H(C), G(C)]T , note that the IV-FM implies

bZj = ([Π,Π]T )−1 [Π, CZjZj ]T and [CNSZiZi, C
NS
ZjZj ]T = [CZiZi, CZjZj ]T − b>Zi[Π,Π]T bZj ,

for i, j = 1, . . . , dS . Since CZiZi,t, CZjZj,t and every element in Πt are real-valued functions of

Ct, the above equalities imply that all quantities of interest in (12) can be written as real-valued,

known functions of a finite number of quantities of the form [H(C), G(C)]T .

We now discuss the estimation of [H(C), G(C)]T . Suppose we have discrete observations on Yt

over an interval [0, T ]. Denote by ∆n the distance between observations. It is well known that that

we can estimate the spot covariance matrix Ct at time (i − 1)∆n with a local truncated realized

volatility estimator (Mancini (2001)),

Ĉi∆n =
1

kn∆n

kn−1∑
j=0

(∆n
i+jY )(∆n

i+jY )>1{‖∆n
i+jY ‖≤χ∆$

n }, (13)

where ∆n
i Y = Yi∆n − Y(i−1)∆n

and where kn is the number of observations in a local window.5

Throughout the paper we set Ĉi∆n = (Ĉab,i∆n)1≤a,b≤d.

We propose two estimators for the general quantity [H(C), G(C)]T .6 The first is based on the

analog of the definition of quadratic covariation between two Itô processes,

̂[H(C), G(C)]
AN

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

((
H(Ĉ(i+kn)∆n

)−H(Ĉi∆n)
)(
G(Ĉ(i+kn)∆n

)−G(Ĉi∆n)
)

5It is also possible to define more flexible kernel-based estimators as in Kristensen (2010).
6As evident from their formulas, the computation time required for the calculation of the two estimators is

increasing with the number of stocks and factors d. To ease the implementation of the procedure, we compute all
the quantities of interest for pairs of stocks which means practically one needs only to set dS = 2 so that d = dF + 2.
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− 2

kn

d∑
g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
, (14)

where the factor 3/2 and last term correct for the biases arising due to the estimation of volatility

Ct. The increments used in the above expression are computed over overlapping blocks, which

results in a smaller asymptotic variance compared to the version using non-overlapping blocks.

Our second estimator is based on the following equality, which follows by the Itô lemma,

[H(C), G(C)]T =
d∑

g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)C

gh,ab
t dt, (15)

where C
gh,ab
t denotes the covariation between the volatility processes Cgh,t and Cab,t. The quantity

is thus a non-linear functional of the spot covariance and spot volatility of volatility matrices. Our

second estimator is based on this “linearized” expression,

̂[H(C), G(C)]
LIN

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂ghH∂abG)(Ĉi∆n)×

(
(Ĉgh,(i+kn)∆n

− Ĉgh,i∆n)(Ĉab,(i+kn)∆n
− Ĉab,i∆n)− 2

kn
(Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n)

)
.

(16)

Consistency for a similar estimator has been established by Jacod and Rosenbaum (2012).7 We go

beyond their result by deriving the asymptotic distribution and proposing a consistent estimator

of its asymptotic variance.

Note that the same additive bias-correcting term,

− 3

k2
n

[T/∆n]−2kn+1∑
i=1

(
d∑

g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
, (17)

is used for the two estimators. This term is (up to a scale factor) an estimator of the asymptotic

covariance between the sampling errors embedded in estimators of
∫ T

0 H(Ct)dt and
∫ T

0 G(Ct)dt

defined in Jacod and Rosenbaum (2013).

The two estimators are identical when H and G are linear, for example, when estimating the

covariation between two volatility processes. In the univariate case d = 1, whenH(C) = G(C) = C,

our estimator coincides with the volatility of volatility estimator of Vetter (2012), which was

extended to allow for jumps in Jacod and Rosenbaum (2012). Our contribution is the extension of

this theory to the multivariate d > 1 case with nonlinear functionals.

7Jacod and Rosenbaum (2012) derive the probability limit of the following estimator:

3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂2
gh,abH)(Ĉi∆n)

(
(Ĉ(i+kn)∆n−Ĉi∆n)(Ĉ(i+kn)∆n−Ĉi∆n)− 2

kn
(Ĉga,i∆n Ĉgb,i∆n+Ĉgb,i∆n Ĉha,i∆n)

)
.
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4 Asymptotic Properties

In this section, we first outline the full list of assumptions for our asymptotic results. We then

state the asymptotic distribution for the general functionals introduced in the previous section,

and develop estimators for the asymptotic variance. Finally, we outline three statistical tests of

interest that follow from our theoretical results.

4.1 Assumptions

Recall that the d-dimensional process Yt represents the (log) prices of stocks, St, and factors Ft.

Assumption 1. Suppose Y is an Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P),

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs+

∫ t

0

∫
E
δ(s, z)µ(ds, dz),

where W is a d′-dimensional Brownian motion (d′ ≥ d) and µ is a Poisson random measure on

R+×E, with E an auxiliary Polish space with intensity measure ν(dt, dz) = dt⊗λ(dz) for some σ-

finite measure λ on E. The process bt is Rd-valued optional, σt is Rd×Rd′-valued, and δ = δ(w, t, z)

is a predictable Rd -valued function on Ω× R+ × E. Moreover, ‖δ(w, t ∧ τm(w), z)‖ ∧ 1 ≤ Γm(z),

for all (w,t,z), where (τm) is a localizing sequence of stopping times and, for some r ∈ [0, 1], the

function Γm on E satisfies
∫
E Γm(z)rλ(dz) < ∞. The spot volatility matrix of Y is then defined

as Ct = σtσ
>
t . We assume that Ct is a continuous Itô semimartingale,8

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (18)

where b̃ is Rd × Rd-valued optional.

With the above notation, the elements of the spot volatility of volatility matrix and spot

covariation of the continuous martingale parts of X and c are defined as follows,

C
gh,ab
t =

d′∑
m=1

σ̃gh,mt σ̃ab,mt , C
′g,ab
t =

d′∑
m=1

σgmt σ̃ab,mt . (19)

We assume the following for the process σ̃t:

Assumption 2. σ̃t is a continuous Itô semimartingale with its characteristics satisfying the same

requirements as that of Ct.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in

economics and finance. It allows for potential stochastic volatility and jumps in prices. Assumption

2 is required to obtain the asymptotic distribution of estimators of the quadratic covariation

between functionals of the spot covariance matrix Ct. It is not needed to prove consistency.

8Note that σ̃s = (σ̃gh,m
s ) is (d × d × d′)-dimensional and σ̃sdWs is (d × d)-dimensional with (σ̃sdWs)gh =∑d′

m=1 σ̃
gh,m
s dWm

s .
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This assumption also appears in Vetter (2012), Kalnina and Xiu (2015) and Wang and Mykland

(2014).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (12) are functions of multiple objects of

the form [H(C), G(C)]T . Therefore, if we can obtain a multivariate asymptotic distribution for a

vector with elements of the form [H(C), G(C)]T , the asymptotic distributions for all our estimators

follow by the delta method. Presenting this asymptotic distribution is the purpose of the current

section.

Let H1, G1, . . . ,Hκ, Gκ be some arbitrary elements of G(p) defined in equation (6). We are

interested in the asymptotic behavior of vectors(
̂[H1(C), G1(C)]

AN

T , . . . , ̂[Hκ(C), Gκ(C)]
AN

T

)>
and

(
̂[H1(C), G1(C)]

LIN

T , . . . , ̂[Hκ(C), Gκ(C)]
LIN

T

)>
.

The smoothness requirement on the different functions Hj and Gj is useful for obtaining the asymp-

totic distribution of the bias correcting terms (see for example Jacod and Rosenbaum (2012) and

Jacod and Rosenbaum (2013)). The following theorem summarizes the joint asymptotic behavior

of the estimators.

Theorem 1. Let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T defined in

(14) and (16), respectively. Suppose Assumption 1 and Assumption 2 hold. Fix kn = θ∆
−1/2
n for

some θ ∈ (0,∞) and set (8p− 1)/4(4p− r) ≤ $ < 1
2 . Then, as ∆n −→ 0,

∆−1/4
n


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L−s−→MN(0,ΣT ), (20)

where ΣT =
(

Σr,s
T

)
1≤r,s≤κ

denotes the asymptotic covariance between the estimators ̂[Hr(C), Gr(C)]T

and ̂[Hs(C), Gs(C)]T . The elements of the matrix ΣT are

Σr,s
T = Σ

r,s,(1)
T + Σ

r,s,(2)
T + Σ

r,s,(3)
T ,

Σ
r,s,(1)
T =

6

θ3

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Cs)

)[
Ct(gh, jk)Ct(ab, lm)

+ Ct(ab, jk)Ct(gh, lm)
]
dt,

Σ
r,s,(2)
T =

151θ

140

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk
t C

ab,lm
t + C

ab,jk
t C

gh,lm
t

]
dt,

Σ
r,s,(3)
T =

3

2θ

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
Ct(gh, jk)C

ab,lm
t + Ct(ab, lm)C

gh,jk
t

11



+ Ct(gh, lm)C
ab,jk
t + Ct(ab, jk)C

gh,lm
t

]
dt,

with

Ct(gh, jk) = Cgj,tChk,t + Cgk,tChj,t.

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and

Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of the

estimators depends on the paths of the spot covariance and the volatility of volatility process. The

rate of convergence ∆
−1/4
n has been shown to be the optimal for volatility of volatility estimation

(under the assumption of no volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter θ whose choice

may be crucial for the reliability of the inference. We document the sensitivity of the inference

theory to the choice of the parameter θ in a Monte Carlo experiment (see Section 5).

4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element Σr,s
T of the asymptotic covariance matrix in

Theorem 1, we introduce the following quantities:

Ω̂
r,s,(1)
T = ∆n

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉ

n
i )
)[
Ĉi∆n(gh, jk)Ĉi∆n(ab, lm)

+ Ĉi∆n(ab, jk)Ĉi∆n(gh, lm)
]
,

Ω̂
r,s,(2)
T =

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉ

n
i )
)[1

2
γ̂n,ghi γ̂n,jki γ̂n,abi+2kn

γ̂n,lmi+2kn
+

1

2
γ̂n,abi γ̂n,lmi γ̂n,ghi+2kn

γ̂n,jki+2kn
+

1

2
γ̂n,abi γ̂n,jki γ̂n,ghi+2kn

γ̂n,lmi+2kn
+

1

2
γ̂n,ghi γ̂n,lmi γ̂n,abi+2kn

γ̂n,jki+2kn

]
,

Ω̂
r,s,(3)
T =

3

2kn

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉ

n
i )
)
×

[
Ĉi∆n(gh, jk)γ̂n,abi γ̂n,lmi + Ĉi∆n(ab, lm)γ̂n,ghi γ̂n,jki + Ĉi∆n(gh, lm)γ̂n,abi γ̂n,jki + (Ĉi∆n(ab, jk)γ̂n,ghi γ̂n,lmi

]
,

with γ̂n,jki = Ĉn,jki+kn
− Ĉn,jki and Ĉi∆n(gh, jk) = (Ĉgj,i∆nĈhk,i∆n + Ĉgk,i∆nĈhj,i∆n).

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold, then, as ∆n −→ 0

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T (21)

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T (22)

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T . (23)
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The estimated matrix Σ̂T is symmetric but is not guaranteed to be positive semi-definite. By

Theorem 1, Σ̂T is positive semi-definite in large samples. An interesting question is the estimation

of the asymptotic variance using subsampling or bootstrap methods, and we leave it for future

research.

Remark 1: Results of Jacod and Rosenbaum (2012) and a straightforward extension of The-

orem 1 can be used to show that the rate of convergence in equation (21) is ∆
−1/2
n , and the rate

of convergence in (23) is ∆
−1/4
n . The rate of convergence in (22) can be shown to be ∆

−1/4
n .

Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Σ
r,s,(2)
T can be

constructed using the quantities γ̂n,jki γ̂n,lmi γ̂n,ghi+kn
γ̂n,xyi+kn

or γ̂n,jki γ̂n,lmi γ̂n,ghi γ̂n,xyi as in Vetter (2012).

However, in the multidimensional case, the latter quantities do not identify separately the quantity

Ct
jk,lm

Ct
gh,xy

since the combination Ct
jk,lm

Ct
gh,xy

+Ct
jk,gh

Ct
lm,xy

+Ct
jk,xy

Ct
gh,lm

shows up in a

non-trivial way in the limit of the estimator.

Corollary 3. For 1 ≤ r ≤ κ, let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T

defined in (16) and (14), respectively. Suppose the assumptions of theorem 1 hold. Then,

∆−1/4
n Σ̂

−1/2
T


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L−→ N(0, Iκ). (24)

In the above, we use the notation L to denote the convergence in distribution and Iκ the

identity matrix of order κ. Corollary 3 states the standardized asymptotic distribution, which

follows directly from the properties of stable-in-law convergence. Similarly, by the delta method,

standardized asymptotic distribution can also be derived for the estimators of the quantities in

(12). These standardized distributions allow the construction of confidence intervals for all the

latent quantities of the form [Hr(C), Gr(C)]T and, more generally, functions of these quantities.

4.4 Tests

Empirical section below considers three statistical tests that can be constructed based on Theorems

1 and 2. First, we test for absence of dependence between the IVs of the returns on assets i and j,

H1
0 : [CZiZi, CZjZj ]T = 0 vs H1

1 : [CZiZi, CZjZj ]T 6= 0.

The null hypothesis H1
0 is rejected when

∆−1/4
n

∣∣∣ ̂[CZiZi, CZjZj ]T

∣∣∣√
ÂV AR

(
CZiZi, CZjZj

) > Zα.

Second, we test for absence of dependence between the IV of stock j and all IV factors Π,

H2
0 : [CZjZj ,Π]T = 0 vs H2

1 : [CZjZj ,Π]T 6= 0.

13



The null hypothesis H2
0 is rejected when

∆−1/4
n

(
̂[CZjZj ,Π]T

)> (
ÂV AR

(
CZjZj ,Π

))−1 ̂[CZjZj ,Π]T > X
2
dΠ,1−α, (25)

where dΠ denotes the number of IV factors. Finally, we test for absence of dependence between

the NS-IVs,

H3
0 : [CNSZiZi, C

NS
ZjZj ]T = 0 vs H3

1 : [CNSZiZi, C
NS
ZjZj ]T 6= 0,

and reject the null if

∆−1/4
n

∣∣∣ ̂[CNSZiZi, C
NS
ZjZj ]T

∣∣∣√
ÂV AR

(
CNSZiZi, C

NS
ZjZj

) > Zα. (26)

Our inference theory also allows to test more general hypotheses, which are joint across any

subset of the panel. In the above statements, ̂[H(C), G(C)]T can be either ̂[H(C), G(C)]
AN

T or

̂[H(C), G(C)]
LIN

T , ÂV AR
(
H(C), G(C)

)
is an estimate of the asymptotic variance of ̂[H(C), G(C)]T ,

Zα stands for the (1−α) quantile of the N(0, 1), and X 2
dq ,1−α stands for (1−α) quantile of the X 2

dq

distribution. For the first two tests, the expression for the true asymptotic variance is obtained

using Theorem 1 and its estimation follows from Theorem 2. The asymptotic variance of the third

test is obtained by an application of the delta method to the convergence result in Theorem 1. The

expression of the AVAR for the third test involves some of the latent quantities defined in (12),

which can be estimated using either AN- or LIN-type estimators. Therefore in general, we have

two tests for each null hypothesis, corresponding to the two type of estimators for [H(C), G(C)]T .

Under P-FM and the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size of

the two types of tests for the null hypotheses H1
0 and H2

0 is α, and their power approaches 1.

The same properties apply for the tests of the null hypotheses H3
0 with our P-FM and IV-FM

representations.

Theoretically, it is possible to test for absence of dependence in the IVs at each point in time.

In this case the null hypothesis is H ′10 : [CZiZi, CZjZj ]t = 0 for all 0 ≤ t ≤ T , which is, in theory,

stronger than our H ′10 . In particular, Theorem 1 can be used to set up Kolmogorov-Smirnov type

of tests for H ′10 in the same spirit as Vetter (2012). However, we do not pursue this direction in

the current paper for two reasons. First, the testing procedure would be more involved. Second,

empirical evidence suggests nonnegative dependence between IVs, which means that in practice,

it is not too restrictive to assume [CZiZi, CZjZj ]t ≥ 0 ∀t, under which H1
0 and H ′10 are equivalent.

5 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data gen-

erating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is constructed

14



as follows. Denote by Y1 and Y2 log-prices of two individual stocks, and by X the log-price of

the market portfolio. Recall that the superscript c indicates the continuous part of a process. We

assume

dXt = dXc
t + dJ3,t, dXc

t =
√
cX,tdWt,

and, for j = 1, 2,

dYj,t = βtdX
c
t + dỸ c

j,t + dJj,t, dỸ c
j,t =

√
cZj,tdW̃j,t.

In the above, cX is the spot volatility of the market portfolio, W̃1, and W̃2 are Brownian motions

with Corr(dW̃1,t, dW̃2,t) = 0.4, and W is an independent Brownian motion; J1, J2, and J3 are

independent compound Poisson processes with intensity equal to 2 jumps per year and jump size

distribution N(0,0.022). The beta process is time-varying and is specified as βt = 0.5+0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes

f1, . . . , f4 as mutually independent Cox-Ingersoll-Ross processes,

df1,t = 5(0.09− f1,t)dt+ 0.35
√
f1,t

(
− 0.8dWt +

√
1− 0.82dB1,t

)
,

dfj,t = 5(0.09− fj,t)dt+ 0.35
√
f1,tdBj,t , for j = 2, 3, 4,

where B1, . . . , B4 and independent standard Brownian Motions, which are also independent from

the Brownian Motions of the return Factor Model.9 We use the first process f1 as the market

volatility, i.e., cX,t = f1,t. We use the other three processes f2, f3, and f4 to construct three

different specifications for the IV processes cZ1,t and cZ2,t, see Table 1 for details. The common

Brownian Motion Wt in the market portfolio price process Xt and its volatility process cX,t = f1,t

generates a leverage effect for the market portfolio. The value of the leverage effect is -0.8, which

is standard in the literature, see Kalnina and Xiu (2015), Aı̈t-Sahalia, Fan, and Li (2013) and

Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013).

cZ1,t cZ2,t

Model 1 0.1 + 1.5f2,t 0.1 + 1.5f3,t

Model 2 0.1 + 0.6cX,t + 0.4f2,t 0.1 + 0.5cX,t + 0.5f3,t

Model 3 0.1 + 0.45cX,t + f2,t + 0.4f4,t 0.1 + 0.35cX,t + 0.3f3,t + 0.6f4,t

Table 1: Different specifications for the Idiosyncratic Volatility processes cZ1,tand cZ2,t.

We set the time span T equal 1260 or 2520 days, which correspond approximately to 5 and 10

business years. These values are close to those typically used in the nonparametric leverage effect

estimation literature (see Aı̈t-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2015)), which

is related to the problem of volatility of volatility estimation. Each day consists of 6.5 trading

9The Feller property is satisfied implying the positiveness of the processes (fj,t)1≤j≤4.
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hours. We consider two different values for the sampling frequency, ∆n = 1 minute and ∆n = 5

minutes. We follow Li, Todorov, and Tauchen (2013) and set the truncation threshold un in day t

at 3σ̂t∆
0.49
n , where σ̂t is the squared root of the annualized bipower variation of Barndorff-Nielsen

and Shephard (2004). We use 10 000 Monte Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators under Model 3. The considered

estimators include:

• the IV factor loading of the first stock
(
bZ1

)
,

• the contribution of the market volatility to the variation of the IV of the first stock
(
R2,IV -FM
Z1

)
,

• the correlation between the idiosyncratic volatilities of stocks 1 and 2
(
ρZ1,Z2

)
,

• the correlation between non-systematic idiosyncratic volatilities
(
ρNSZ1,Z2

)
,

The interpretation of simulation results is much simpler when the quantities of interest do not

change across simulations. To achieve that, we generate once and keep fixed the paths of the

processes CXX,t and (fj,t)0≤j≤27 and replicate several times the other parts of the DGP. In Table

2, we report the bias and the interquartile range (IQR) of the two type of estimators for each

quantity using 5 minutes data sampled over 10 years. We choose four different values for the width

of the subsamples, which corresponds to θ = 1.5, 2, 2.5 and 3 (recall that the number of observations

in a window is kn = θ/
√

∆n). It seems that larger values of the parameters produce better results.

Next, we investigate how these results change when we increase the sampling frequency. In Table

3, we report the results with ∆n = 1 minute in the same setting. We note a reduction of the bias

and IQR at all levels of significance. However, the magnitude of the decrease of the IQR is very

small. Finally, we conduct the same experiment using data sampled at one minute over 5 years.

Despite using more than twice as many observations than in the first experiment, the precision

is not as good. In other words, increasing the time span is more effective for precision gain than

increasing the sampling frequency. This result is typical for ∆
1/4
n -convergent estimators, see, e.g.,

Kalnina and Xiu (2015).

Next, we study the size and power of the three statistical tests as outlined in Section 4.4. We

use Model 1 to study the size properties of the first two tests: the test of the absence of dependence

between the IVs (H1
0 : [CZ1Z1, CZ2Z2]T = 0), and the absence of dependence between the IV of the

first stock and the market volatility (H2
0 : [CZ1Z1, CXX ]T = 0). We use Model 2 to study the size

properties of the third test (H3
0 : [CNSZ1Z1, C

NS
Z2Z2]T = 0). Finally, we use Model 3 to study power

properties of all three tests.

The upper panel Tables 5, 6, and 7 reports the size results while the lower panels shows the

results for the power. We present the results for the two sampling frequencies (∆n = 1 minute and

∆n = 5 minutes) and the two type of tests (AN and LIN). We observe that the size of three tests

are reasonably close to their nominal levels. The rejection probabilities under the alternatives are

16



AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.047 -0.025 -0.011 -0.003 -0.006 0.001 0.009 0.015

R̂2,IV -FM
Z1 0.176 0.130 0.103 0.085 0.181 0.140 0.112 0.092

ρ̂Z1,Z2 -0.288 -0.212 -0.163 -0.133 -0.249 -0.190 -0.146 -0.120
ρ̂NSZ1,Z2 -0.189 -0.113 -0.064 -0.034 -0.150 -0.091 -0.047 -0.021

IQR

b̂Z1 0.222 0.166 0.138 0.121 0.226 0.168 0.139 0.122

R̂2,IV -FM
Z1 0.210 0.188 0.172 0.152 0.181 0.166 0.152 0.140

ρ̂Z1,Z2 0.404 0.325 0.263 0.223 0.338 0.283 0.237 0.205
ρ̂NSZ1,Z2 0.456 0.384 0.315 0.272 0.388 0.337 0.285 0.250

Table 2: Finite sample properties of our estimators using 10 years of data sampled at 5 minutes. The true
values are bZ1 = 0.450, RIV -FM

Z1 = 0.342, ρZ1,Z2 = 0.523, ρNSZ1,Z2 = 0.424.

AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.022 -0.012 -0.003 0.004 -0.003 -0.000 0.006 0.012

R̂IV -FM
Z1 0.107 0.091 0.073 0.056 0.113 0.095 0.075 0.058

ρ̂Z1,Z2 -0.147 -0.104 -0.073 -0.048 -0.133 -0.097 -0.067 -0.042
ρ̂NSZ1,Z2 -0.135 -0.086 -0.058 -0.039 -0.119 -0.078 -0.052 -0.032

IQR

b̂Z1 0.156 0.112 0.088 0.075 0.157 0.112 0.088 0.075

R̂IV -FM
Z1 0.201 0.146 0.118 0.100 0.184 0.138 0.113 0.096

ρ̂Z1,Z2 0.340 0.238 0.184 0.150 0.309 0.226 0.177 0.145
ρ̂NSZ1,Z2 0.417 0.291 0.228 0.184 0.378 0.274 0.217 0.177

Table 3: Finite sample properties of our estimators using 10 years of data sampled at 1 minute. The true
values are bZ1 = 0.450, R2,IV -FM

Z1 = 0.336, ρZ1,Z2 = 0.514, ρNSZ1,Z2 = 0.408.
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AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias

b̂Z1 -0.019 -0.011 -0.007 0.000 -0.001 -0.001 0.002 0.008

R̂2,IV -FM
Z1 0.115 0.096 0.081 0.069 0.119 0.100 0.084 0.071

ρ̂Z1,Z2 -0.168 -0.101 -0.064 -0.038 -0.149 -0.092 -0.057 -0.033
ρ̂NSZ1,Z2 -0.141 -0.079 -0.035 -0.007 -0.127 -0.067 -0.029 -0.001

IQR

b̂Z1 0.215 0.159 0.128 0.110 0.216 0.158 0.129 0.110

R̂2,IV -FM
Z1 0.282 0.204 0.168 0.144 0.260 0.194 0.161 0.139

ρ̂Z1,Z2 0.472 0.337 0.263 0.213 0.436 0.319 0.252 0.206
ρ̂NSZ1,Z2 0.541 0.412 0.324 0.266 0.510 0.391 0.311 0.256

Table 4: Finite sample properties of our estimators using 5 years of data sampled at 1 minute. The true
values are bZ1 = 0.450, R2,IV -FM

Z1 = 0.35, ρZ1,Z2 = 0.517, ρNSZ1,Z2 = 0.417.

rather high, except when the data is sampled at 5 minutes frequency and the nominal level at 1%.

We note that the tests based on LIN estimators have better testing power compared to those that

build on AN estimators. Increasing the window length induces some size distortions but is very

effective for power gain. Consistent with the asymptotic theory, the size of the three tests are closer

to the nominal levels and the power is higher at the one minute sampling frequency. Clearly, the

test of absence of dependence between IV and the market volatility has the best power, followed by

the test of absence of dependence between the two IVs. This ranking is compatible with the notion

that the finite sample properties of the tests deteriorate with the degree of latency embedded in

each null hypothesis.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of the test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 10% 9.7 10.6 10.6 12.6 9.7 10.3 10.2 9.7 10.0 10.2 9.8 10.2
α = 5% 4.7 5.1 4.5 5.3 4.8 5.6 5.3 5.3 5.2 5.3 4.9 5.1
α = 1% 0.9 1.1 0.9 1.2 0.9 1.1 1.1 1.1 1.2 1.1 1.0 1.0

Panel B : Power Analysis-Model 3
α = 10% 20.5 31.5 35.7 48.3 53.3 65.8 33.9 41.0 65.6 71.6 88.0 91.2
α = 5% 11.9 21.0 23.9 35.76 40.6 53.4 22.3 29.5 52.8 59.8 79.6 84.4
α = 1% 3.3 6.9 8.7 15.6 18.4 28.6 8.9 12.4 28.6 34.5 57.4 64.1

Table 5: Size and Power of the test of absence of dependence between idiosyncratic volatilities for T =
10 years.
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∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 10.4 10.3 10.4 10.4 10.4
α = 5% 6.2 5.0 4.5 5.2 4.6 5.4 5.5 5.4 5.2 5.1 5.2 5.3
α = 1% 1.5 1.0 0.8 1.0 0.9 1.2 1.1 1.1 1.0 0.9 0.8 1.0

Panel B : Power Analysis-Model 3
α = 10% 60.0 69.0 84.0 88.3 94.6 96.1 91.1 93.3 99.2 99.4 100 100
α = 5% 47.7 57.2 75.0 81.0 89.6 92.6 84.9 88.2 98.2 98.6 100 100
α = 1% 24.1 32.3 52.2 60.1 73.7 78.9 67.7 72.0 93.0 94.5 99.2 99.4

Table 6: Size and Power of the test of absence of dependence between the idiosyncratic volatility and the
market volatility for T = 10 years.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 2
α = 10% 10.0 10.1 12.1 10.8 9.9 12.6 10.1 10.3 10.6 11.3 10.1 11.4
α = 5% 5.0 6.3 5.1 6.3 5.1 6.7 5.5 5.5 5.3 5.9 5.2 6.0
α = 1% 1.1 1.5 0.8 1.6 1.1 1.4 1.1 1.2 1.3 1.3 1.3 1.5

Panel B : Power Analysis-Model 3
α = 10% 13.7 19.2 16.8 23.0 28.1 36.9 19.0 22.2 35.0 39.4 53.4 58.3
α = 5% 7.4 11.3 9.3 14.2 18.3 25.2 11.0 13.7 23.9 28.0 40.0 44.9
α = 1% 1.6 3.1 2.3 3.9 6.0 9.5 2.9 4.0 9.3 11.6 18.8 22.2

Table 7: Size and Power of the test of absence of dependence between NS-IVs for T = 10 years.
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6 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IV using high frequency data.

One of our main findings is that stocks’ idiosyncratic volatilities co-move strongly with the market

volatility. This is a quite surprising finding. It is of course well known that the total volatility of

stocks moves with the market volatility. However, we stress that we find that the strong effect is

still present when considering the idiosyncratic volatilities.

We use full record transaction prices from NYSE TAQ database for 30 constituents of the

DJIA index over the time period 2003-2012, see Table 8. After removing the non-trading days,

our sample contains 2517 days. The selected stocks were the constituents of the DJIA index

in 2007. We also use the high-frequency data on nine industry Exchange-Traded Funds, ETFs

(Consumer Discretionary, Consumer Staples, Energy, Financial, Health Care, Industrial, Materials,

Technology, and Utilities), and the high-frequency size and value Fama-French factors, see Aı̈t-

Sahalia, Kalnina, and Xiu (2014). For each day, we consider data from the regular exchange

opening hours from time stamped between 9:30 a.m. until 4 p.m. We clean the data following

the procedure suggested by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), remove the

overnight returns and then sample at 5 minutes. This sparse sampling has been widely used in the

literature because the effect of the microstructure noise and potential asynchronicity of the data

is less important at this frequency, see also Liu, Patton, and Sheppard (2014).

The parameter choices for the estimators are as follows. Guided by our Monte Carlo results,

we set the length of window to be approximately one week for the estimators in Section 3 (this

corresponds to θ = 2.5 where kn = θ∆
−1/2
n is the number of observations in a window). The

truncation threshold for all estimators is set as in the Monte Carlo study (3σ̂t∆
0.49
n where σ̂2

t is the

bipower variation).

Figures 4 and 5 contain plots of the time series of the estimated R2
Y j of the price factor model

(P-FM) for each stock.10 Each plot contains monthly R2
Y j from two price factor models, CAPM

and the Fama-French regression with market, size, and value factors. Figures 4 and 5 show that

these time series of all stocks follow approximately the same trend with a considerable increase

in the contribution around the crisis year 2008. Higher R2
Y j indicates that the systematic risk is

relatively more important, which is typical during crises. R2
Y j is consistently higher in the Fama-

French regression model compared to the CAPM regression model, albeit not by much. We proceed

to investigate the dynamic properties of the panel of idiosyncratic volatilities.

We first investigate the dependence in the (total) idiosyncratic volatilities. Our panel has 435

pairs of stocks. For each pair of stocks, we compute the correlation between the IVs, ρZi,Zj . All

10 For the jth stock, our analog of the coefficient of determination in the P-FM is R2
Y j = 1 −

∫ T
0 CZjZj,tdt∫ T
0 CY jY j,tdt

. We

estimate R2
Y j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R2

Y j requires a
choice of a block size for the spot volatility estimation; we choose two hours in practice (the number of observations
in a block, say ln, has to satisfy l2n∆n → 0 and l3n∆n →∞, so it is of smaller order than the number of observations
kn in our estimators of Section 3).
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pairwise correlations are positive in our sample, and their average is 0.55. Figure 1 maps the

network of correlations. We simultaneously test 435 hypotheses of non-correlation, and Figure 1

only plots the correlations where the null is rejected. There are many pairs, for which the null

is rejected. Overall, Figure 1 shows that the cross-sectional dependence between the IVs is very

strong.

Could missing factors in the P-FM provide an explanation? Omitted price factors in the P-

FM are captured by the idiosyncratic returns, and can therefore induce correlation between the

estimated IVs, provided these missing price factors have non-negligible volatility of volatility. To in-

vestigate this possibility, we consider the correlations between idiosyncratic returns, Corr(Zi, Zj).
11

Table 9 presents a summary of how estimates Corr(Zi, Zj) are related to the estimates of correlation

in IVs, ρZi,Zj . In particular, different rows in Table 9 display average values of ρ̂Zi,Zj among those

pairs, for which Ĉorr(Zi, Zj) is below some threshold. For example, the last-but-one row in Table

9 indicates that there are 56 pairs of stocks with Ĉorr(Zi, Zj) < 0.01, and among those stocks,

the average correlation between IVs, ρZi,Zj , is estimated to be 0.579. We observe that ρ̂Zi,Zj is

virtually the same compared to pairs of stocks with high Corr(Zi, Zj). These results suggest that

missing return factors cannot explain dependence in IVs for all considered stocks. This finding is

in line with the empirical analysis of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) with daily

and monthly returns.

To understand the source of the strong cross-sectional dependence in the IVs, we consider the

Idiosyncratic Volatility Factor Model (IV-FM) of Section 2. We first use the market volatility as

the only IV factor.12 Table 10 reports the estimates of the IV loading (̂bZi) and the R2 of the

IV-FM (R2,IV -FM
Zi , see equation (9)). Table 10 uses two different definitions of IV, one defined with

respect to CAPM, and a second IV defined with respect to Fama-French three factor model. For

every stock, the estimated IV factor loading is positive, suggesting that the idiosyncratic volatility

co-moves with the market volatility. Next, Figure 2 shows the implications for the cross-section

of the one-factor IV-FM when the IV is defined with respect to CAPM. The average pairwise

correlations between the residual IVs, ρ̂Zi,Zj , decrease to 0.25. However, the market volatility

cannot explain all cross-sectional dependence in residual IVs, as evidenced by the remaining links

in Figure 2.

Finally, we consider an IV-FM with ten IV factors, market volatility and the volatilities of

nine industry ETFs. Figure 3 shows the implications for the cross-section of this ten-factor IV-

11Our measure of correlation between the idiosyncratic returns dZi and dZj is

Corr(Zi, Zj) =

∫ T

0
CZiZj,tdt√∫ T

0
CZiZi,tdt

√∫ T

0
CZjZj,tdt

, i, j = 1, . . . , dS , (27)

where CZiZj,t is the spot covariation between Zi and Zj . Similarly to R2
Y j , we estimate Corr(Zi, Zj) using the

method of Jacod and Rosenbaum (2013).
12We also considered the volatility of size and value Fama-French factors. However, both these factors turned out

to have very low volatility of volatility and therefore did not significantly change the results.
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FM when the IV is defined with respect to CAPM. The average pairwise correlations between

the residual IVs, ρ̂Zi,Zj , decrease further to 0.18. However, significant dependence between the

residual IVs remains, which can be seen as the remaining links in Figure 2. Our results suggest

that there is room for considering the construction of additional IV factors based on economic

theory, for example, along the lines of the heterogeneous agents model of Herskovic, Kelly, Lustig,

and Nieuwerburgh (2014).

Figure 1: The network of dependencies in total IVs. The color and thickness of each line is proportional
to the estimated value of ρZi,Zj, the quadratic-covariation based correlation between the IVs, defined in
equation (5) (red and thick lines indicate high correlation). We simultaneously test 435 null hypotheses of
non-correlation, and the lines are only plotted when the null is rejected.
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Figure 2: The network of dependencies in residual IVs (NS-IVs) when the market volatility is the only IV
factor. The color and thickness of each line is proportional to the estimated value of ρNSZi,Zj the quadratic-
covariation based correlation between the IVs, defined in equation (8), of each pair of stocks (red and thick
lines indicate high correlation). We simultaneously test 435 null hypotheses of non-correlation, and the lines
are only plotted when the null is rejected.

Figure 3: The network of dependencies in residual IVs (NS-IVs) with ten IV factors: the market volatility
and the volatilities of nine industry ETFs. The color and thickness of each line is proportional to the
estimated value of ρNSZi,Zj the quadratic-covariation based correlation between the IVs, defined in equation
(8), of each pair of stocks (red and thick lines indicate high correlation). We simultaneously test 435 null
hypotheses of non-correlation, and the lines are only plotted when the null is rejected.
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Sector Stock Ticker

Financial American International Group, Inc. AIG
American Express Company AXP
Citigroup Inc. C
JPMorgan Chase & Co. JPM

Energy Chevron Corp. CVX
Exxon Mobil Corp. XOM

Consumer Staples Coca Cola Company KO
Altria MO
The Procter & Gamble Company PG
Wal-Mart Stores WMT

Industrials Boeing Company BA
Caterpillar Inc. CAT
General Electric Company GE
Honeywell International Inc HON
3M Company MMM
United Technologies UTX

Technology Hewlett-Packard Company HPQ
International Bus. Machines IBM
Intel Corp. INTC
Microsoft Corporation MSFT

Health Care Johnson & Johnson JNJ
Merck & Co. MRK
Pfizer Inc. PFE

Consumer Discretionary The Walt Disney Company DIS
Home Depot Inc HD
McDonald’s Corporation MCD

Materials Alcoa Inc. AA
E.I. du Pont de Nemours & Company DD

Telecommunications Services AT&T Inc. T
Verizon Communications Inc. VZ

Table 8: This table lists the stocks used in the empirical application. They are the 30 constituents of DJIA
in 2007. The first column provides the Global Industry Classification Standard (GICS) sectors, the second
the names of the companies and the third their tickers.
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CAPM FF3 Model

|Ĉorr(Zi, Zj)| Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj
< 0.6 435 0.038 0.510 435 0.038 0.512
< 0.5 434 0.036 0.509 434 0.037 0.512
< 0.4 434 0.036 0.509 434 0.037 0.512
< 0.3 434 0.036 0.509 434 0.037 0.512
< 0.2 431 0.035 0.508 430 0.035 0.511
< 0.1 403 0.028 0.503 404 0.029 0.506
< 0.075 383 0.025 0.500 382 0.026 0.502
< 0.050 315 0.018 0.487 316 0.019 0.489
< 0.025 177 0.006 0.447 178 0.007 0.452
< 0.010 80 0.001 0.415 81 0.002 0.414
< 0.005 43 0.000 0.385 41 0.001 0.409

Table 9: Each row in this table describes the subset of pairs of stocks with | ̂Corr(Zi, Zj)| below a threshold
in column one. The table considers two P-FMs: the left panel defines the IV with respect to CAPM, and
the right panel defines the IV with respect to the three-factor Fama-French model. In both cases, the
market volatility is the only IV factor. Each panel reports three quantities for the given subset of pairs:
the number of pairs, average absolute pairwise correlation in idiosyncratic returns, and average pairwise
correlation between IVs.
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CAPM FF3 Model

Stock b̂z R̂2,IV -FM
Z p-val b̂z R̂2,IV -FM

Z p-val

AIG 1.49 0.02 0.093 1.53 0.02 0.085
AXP 3.02 0.27 0.146 2.98 0.27 0.149

C 3.46 0.108 0.007 3.48 0.11 0.007
JPM 2.44 0.20 0.007 2.46 0.21 0.006
CVX 1.08 0.51 0.030 1.07 0.51 0.030
XOM 0.60 0.48 0.044 0.61 0.49 0.043
KO 0.33 0.58 0.012 0.33 0.58 0.011
MO 0.44 0.35 0.001 0.44 0.35 0.001
PG 0.43 0.63 0.001 0.43 0.63 0.002

WMT 0.45 0.58 0.006 0.45 0.56 0.008
BA 0.47 0.42 0.003 0.48 0.44 0.003

CAT 0.69 0.49 0.009 0.69 0.48 0.009
GE 1.14 0.26 0.003 1.15 0.26 0.002

HON 0.53 0.44 0.014 0.53 0.43 0.014
MMM 0.39 0.55 0.000 0.38 0.54 0.000
UTX 0.50 0.52 0.003 0.50 0.53 0.004
HPQ 0.65 0.33 0.004 0.66 0.34 0.004
IBM 0.35 0.48 0.011 0.35 0.47 0.012

INTC 0.46 0.46 0.003 0.46 0.46 0.003
MSFT 0.68 0.52 0.008 0.67 0.51 0.010
JNJ 0.41 0.68 0.007 0.40 0.67 0.007

MRK 0.54 0.32 0.001 0.54 0.32 0.001
PFE 0.43 0.34 0.002 0.43 0.34 0.001
DIS 0.57 0.48 0.001 0.58 0.49 0.001
HD 0.66 0.45 0.010 0.66 0.45 0.010

MCD 0.29 0.29 0.003 0.29 0.29 0.003
AA 3.03 0.41 0.019 3.04 0.42 0.018
DD 0.61 0.59 0.001 0.61 0.59 0.001
T 0.76 0.45 0.003 0.76 0.44 0.003

VZ 0.54 0.55 0.000 0.54 0.54 0.001

Table 10: Estimates of the IV factor loading (̂bZ , see equation (7)), and the contribution of the market

volatility to the variation in the IVs (R̂2,IV -FM
Z , see equation (9)). The table considers two P-FMs: the left

panel defines the IV with respect to CAPM, and the right panel defines the IV with respect to the three-
factor Fama-French model. In both cases, the market volatility is the only IV factor. P-val is the p-value of
the test of the absence of dependence between the IV and the market volatility for a given individual stock,
see equation (25).
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7 Conclusion

This paper provides tools for the analysis of cross-sectional dependencies in idiosyncratic volatilities

using high frequency data. First, using a factor model in prices, we develop inference theory for

covariances and correlations between the idiosyncratic volatilities. Next, we study an idiosyncratic

volatility factor model that holds in addition to the factor model for prices. The IV-FM decomposes

the co-movements in idiosyncratic volatilities into two parts: those related to factors such as the

market volatility, and the residual co-movements. The naive estimators of this decomposition

are inconsistent due to latency in idiosyncratic volatilities and their factors, and we provice bias-

corrected estimators as well as the relevant asymptotic theory.

Empirically, we find that our IV-FM with market volatility as the only factor can account for

a large part of the cross-sectional dependence in IVs. We find that nine additional IV factors also

have explanatory power. However, none of the considered sets of IV factors can fully explain the

cross-sectional dependencies in IVs. It therefore opens the room for the construction of additional

IV factors based on economic theory, for example, along the lines of the heterogeneous agents

model of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014).
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A Figures and Tables
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Figure 4: Monthly R2 of two price factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-

French three factor model (the red solid line). Stocks are represented by tickers (see Table 8 for full stock
names).
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Figure 5: Monthly R2 of two price factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-

French three factor model (the red solid line). Stocks are represented by tickers (see Table 8 for full stock
names).
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B Proofs

Throughout, we denote by K a generic constant, which may change from line to line. When it depends on

a parameter p we use the notation Kp instead. We assume by convention
∑a′

i=a = 0 when a > a′.

B.1 Proof of Theorem 1

We prove this theorem in three steps. For simplicity, in the first two steps we focus on the estimation of

[H(C), G(C)]T with H,G ∈ G(p). The joint estimation is discussed in Step 3.

By a localization argument (See Lemma 4.4.9 of Jacod and Protter (2012)), there exists a λ-integrable

function J on E and a constant such that the stochastic processes in (18) and (19) satisfy

‖b‖, ‖b̃‖, ‖c‖, ‖c̃‖, J ≤ A, ‖δ(w, t, z)‖r ≤ J(z). (28)

Setting b′t = bt −
∫
δ(t, z)1{‖δ(t,z)‖≤1}λ(dz) and Y ′t =

∫ t
0
b
′

sds+
∫ t

0
σsdWs, we have

Yt = Y0 + Y ′t +
∑
s≤t

∆Ys.

The local estimator of the spot variance of the unobservable process Y ′ is given by,

Ĉ ′ni =
1

kn∆n

kn−1∑
u=0

(∆n
i+uY

′)(∆n
i+uY )′> = (Ĉ ′n,ghi )1≤g,h≤d. (29)

Note that no jump truncation in needed in the definition of Ĉ ′ni since the process Y ′ is continuous. There-

fore, it is more convenient to work with Ĉ ′ni rather than Ĉni (defined in (13)). Let ̂[H(C), G(C)]
LIN ′

T

and ̂[H(C), G(C)]
AN ′

T be the infeasible estimators obtained by replacing Ĉni by Ĉ
′n
i in the definition of

̂[H(C), G(C)]
LIN

T and ̂[H(C), G(C)]
AN

T .

Step1: Dealing with price jumps

We prove that, as long as (8p− 1)/4(4p− r) ≤ $ < 1
2 , we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN

T − ̂[H(C), G(C)]
LIN ′

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(C), G(C)]

AN

T − ̂[H(C), G(C)]
AN ′

T

)
P−→ 0.

(30)

To show this result, let us define the functions

R(x, y) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
ygh − xgh

)(
yab − xab

)
, S(x, y) =

(
H(y)−H(x)

)(
G(y)−G(x)

)
U(x) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
xgaxhb + xgbxha

)
,

for any Rd × Rd matrices x and y. The following decompositions hold,

̂[H(C), G(C)]
AN

T − ̂[H(C), G(C)]
AN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
S(Ĉni , Ĉ

n
i+kn)− S(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
,

32



̂[H(C), G(C)]
LIN

T − ̂[H(C), G(C)]
LIN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
R(Ĉni , Ĉ

n
i+kn)−R(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
.

By (3.11) in Jacod and Rosenbaum (2012), there exists a sequence of real numbers an converging to zero

such that

E(‖Ĉni − Ĉ
′n
i ‖q) ≤ Kqan∆(2q−r)$+1−q

n , for any q > 0. (31)

Since H and G ∈ G(p), it is easy to see that the functions R and S are continuously differentiable and satisfy

‖∂J(x, y)‖ ≤ K(1 + ‖x‖+ ‖y‖)2p−1 for 1 ≤ g, h, a, b ≤ d and J ∈ {S,R}, (32)

‖∂U(x)‖ ≤ K(1 + ‖x‖)2p−1, (33)

where ∂J (respectively, ∂U ) is a vector that collects the first order partial derivatives of the function J

(respectively, U) with respect to all the elements of (x, y) (resp x). By Taylor expansion, Jensen inequality,

(32) and (33), it can be shown that, for J ∈ {S,R},

|J(Ĉni , Ĉ
n
i+kn)− J(Ĉ

′n
i , Ĉ

′n
i+kn)| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1 + ‖Ĉ

′n
i+kn‖

2p−1)(‖Ĉni − Ĉ
′n
i ‖+ ‖Ĉni+kn − Ĉ

′n
i+kn‖)

+K‖Ĉni − Ĉ
′n
i ‖2p +K‖Ĉni+kn − Ĉ

′n
i+kn‖

2p and

|U(Ĉni )− U(Ĉ
′n
i )| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1)(‖Ĉni − Ĉ

′n
i ‖) +K‖Ĉni − Ĉ

′n
i ‖2p.

By (3.20) in Jacod and Rosenbaum (2012), we have E(‖Ĉ ′ni ‖v) ≤ Kv, for any v ≥ 0. Hence by Hölder

inequality, for ε > 0 fixed,

E(‖Ĉ ′ni ‖2p−2‖Ĉni − Ĉ
′n
i ‖) ≤

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε(
E(‖Ĉ

′n
i ‖(2p−2)(1+ε)/ε)

)ε/1+ε

≤ Kp

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε

≤ Kpan∆
(2− 1

1+ε )$+ 1
1+ε−1

n

Using the above result and (31), it easy to see that for (30) to hold, the following conditions are sufficient:

(2− r

1 + ε
)$ +

1

1 + ε
− 1− 3

4
≥ 0, (4p− r)$ + 1− 2p− 3

4
≥ 0, and (2− r)$ +−3

4
≥ 0.

Using the fact that 0 < $ < 1
2 , and taking ε sufficiently close to zero, we can see that (30) holds if

(8p− 1)/4(4p− r) ≤ $ < 1
2 , which completes the proof.

Step 2 : First approximation for the estimators

Taking advantage of Step 1, it is enough to derive the asymptotic distributions of ̂[H(C), G(C)]
LIN ′
T and

̂[H(C), G(C)]
AN ′
T . We show that the two estimators ̂[H(C), G(C)]

LIN ′

T and ̂[H(C), G(C)]
AN ′

T can be approx-

imated by a certain quantity with an error of approximation of order smaller than ∆
−1/4
n . To see this, we

set

̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

((
∂ghH∂abG

)
(Cni )

[
(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i )

− 2

kn
(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i )

])
,
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with Cni = C(i−1)∆n
and the superscript A being a short for the word ”approximate”. For notational

simplicity, we do not index the above quantity by a prime although it depends on Ĉ
′n
i instead Ĉni . We aim

to prove that

∆−1/4
n

(
̂[H(C), G(C)]

LIN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(C), G(C)]

AN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0.

(34)

To prove (34), we introduce some new notation. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, βni = Ĉ

′n
i − Cni , and γni = Ĉ

′n
i+kn − Ĉ

′n
i , (35)

which satisfy

βni =
1

kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and γni = βi+kn − βni + ∆n(Cni+kn − C
n
i ). (36)

We have

̂[H(C), G(C)]
LIN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

ψni (g, h, a, b),

̂[H(C), G(C)]
AN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

(
χni −

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(Cni )γn,ghi γn,abi

)
,

with

ψni (g, h, a, b) =
((
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni )

)
γn,ghi γn,abi ,

χni =
(
H(Ĉ

′n
i+kn)−H(Ĉ

′n
i )
)(
G(Ĉ

′n
i+kn)−G(Ĉ

′n
i )
)
.

By Taylor expansion, we have

(
∂ghS∂abG

)
(Ĉ

′n
i )−

(
∂ghS∂abG

)
(Cni ) =

d∑
x,y=1

(
∂2
xy,ghS∂abG+ ∂2

xy,abG∂ghS
)

(Cni )βn,xyi

+
1

2

d∑
j,k,x,y=1

(
∂3
jk,xy,ghS∂abG+ ∂2

xy,ghS∂
2
jk,abG+ ∂3

jk,xy,abG∂ghS + ∂2
xy,abG∂

2
jk,ghS

)
(c̃ni )βn,xyi βn,jki

and

S(Ĉ
′n
i+kn)− S(Ĉ

′n
i ) =

∑
gh

∂ghS(Cni )γn,ghi +
∑
j,k,g,h

∂2
jk,ghS(Cni )γn,ghi βn,jki +

1

2

∑
x,y,g,h

∂2
xy,ghS(Cni )γn,ghi γn,xyi

+
1

2

∑
x,y,j,k,g,h

∂3
xy,jk,ghS(CCn,Si )γn,ghi βn,xyi βn,jki +

1

6

∑
j,k,x,y,g,h

∂3
jk,xy,ghS(Cn,Si )γn,jki γn,ghi γn,xyi ,

for S ∈ {H,G}, c̃ni = λCni + (1 − λ)Ĉ
′n
i , Cn,Si = λSĈ

′n
i + (1 − λS)Ĉ

′n
i+kn

, CCn,Si = µSC
n
i + (1 − µS)Ĉ

′n
i

for λ, λH , µH , λG, µG ∈ [0, 1]. Although c̃ni and λ depend on g, h, a, and b, we do not emphasize this in our

notation to simplify the exposition.
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We remind the reader some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (37)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013) we have,

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∥∥∥q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (38)

Combining (46), (44), (45) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥βni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥γni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (39)

The bound in the first equation of (47) is tighter than that in (4.11) of Jacod and Rosenbaum (2012)

due to the absence of volatility jumps. This tighter bound will be useful later for deriving the asymptotic

distribution for the approximate estimator (Step 3). By the boundedness of Ct and the polynomial growth

assumption, we have∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )βn,xyi βn,jki γn,ghi γn,abi

∣∣∣ ≤ K(1 + ‖c̃ni ‖)2(p−2)‖βni ‖2‖γni ‖2.

Recalling c̃ni = λCni + (1 − λ)Ĉ
′n
i and using the convexity of the function x2(p−2), we can refine the last

inequality as follows:∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )βn,xyi βn,jki γn,ghi γn,abi

∣∣∣ ≤ K(1 + ‖βni ‖2(p−2)
)
‖βni ‖2‖γni ‖2. (40)

By Taylor expansion, the polynomial growth assumption and using similar idea as for (40), we have

χni −
∑
g,h,a,b

(∂ghH∂abG)(Cni )γn,ghi γn,abi =
∑

g,h,a,b,j,k

(∂ghH∂
2
jk,xyG+ ∂ghG∂

2
jk,xyH)(Cni )(γn,ghi +

1

2
βn,ghi )γn,abi γn,jki + ϕni

∑
g,h,a,b

(
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni ) =

∑
g,h,a,b,x,y

(∂ghH∂
2
ab,xyG+ ∂abG∂

2
gh,xyG)(Cni )(βn,xyi )γn,ghi γn,abi + δni

with E(|ϕni |
∣∣Fni ) ≤ K∆n and E(|δni |

∣∣Fni ) ≤ K∆n which follow by the Cauchy-Schwartz inequality together

with (47). Given that kn = θ(∆n)−1/2, a direct implication of the previous inequalities is

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

ϕni
P−→ 0 and

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

δni
P−→ 0.

Therefore, in order to prove the two claims in (34), it suffices to show

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )γn,ghi γn,abi γn,jki

P−→ 0, (41)

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )βn,ghi γn,abi γn,jki

P−→ 0. (42)
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For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

In order to prove (41) and (42), we introduce the following lemmas.

Lemma 1. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z). Then,

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved

similarly to the first two.

Lemma 2. Let Z be a continuous Itô process with drift bZt and spot variance process CZt , and set ηt,s =

ηt,s(b
Z , cZ). Then, the following bounds hold:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tC

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tC

Z,jk
0 )(CZ,lmt − CZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 3. Let ζni be a r-dimensional Fni measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq. Also, let ϕni be a real-valued Fni -measurable process with E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1. Then, we have

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

Proof of Lemma 5

Set

ξni = ϕni−1ζ
n
i , ξ

′n
i = E(ξi|Fni−1) = E(ϕni−1ζ

n
i |Fni−1) = ϕni−1E(ζni |Fni−1), and ξ

′′n
i = ξni − ξ

′n
i .
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Given that ‖E(ζni |Fni−1)‖ ≤ L′, we have ‖ξ′n
i ‖ ≤ L′|ϕni−1|. By the convexity of the function xq, which holds

for q ≥ 2, we have

‖
2kn−1∑
j=1

ξni+j‖q ≤ K
(
‖

2kn−1∑
j=1

ξ
′n
i+j‖q + ‖

2kn−1∑
j=1

ξ
′′n
i+j‖q

)
.

Therefore, on the one hand we have

‖
2kn−1∑
j=1

ξ
′n
i+j‖q ≤ Kkq−1

n

2kn−1∑
j=1

‖ξ
′n
i+j‖q ≤ Kkq−1

n L′q
2kn−1∑
j=1

|ϕni+j−1|q,

which by E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq, satisfies

E(‖
2kn−1∑
j=1

ξ
′n
i+j‖q|Fni−1) ≤ KL′qkq−1

n

2kn−1∑
j=1

E(|ϕni+j−1|q|Fni−1) ≤ KL′qkqnLq.

On the other hand, we have E(‖ξ′′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q and E(ξ
′′n
i+j |Fni−1) = 0, where the

first inequality is a consequence of E(‖ξ′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqLq, which follows by the Jensen

inequality and the law of iterated expectation. Hence, by Lemma B.2 of Aı̈t-Sahalia and Jacod (2014) we

have

E(‖
2kn−1∑
j=1

ξ
′′n
i+j‖q|Fni−1) ≤ KqL

qLqk
q/2
n .

To see the latter, we first prove that the required condition E(‖ξni ‖q|Fni−1) ≤ LqL
q) in the Lemma B.2 of

Aı̈t-Sahalia and Jacod (2014) can be replaced by E(‖ξni+j‖q|Fni−1) ≤ LqL
q) for 1 ≤ j ≤ 2kn − 1 without

altering the result.

Lemma 4. We have:∣∣∣E(γn,jki γn,lmi γn,ghi+2kn
γn,abi+2kn

|Fni )− 4

k2
n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

− 4∆n

3
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )C

n,gh,ab

i − 4∆n

3
(Cn,gai Cn,hbi − Cn,gbi Cn,hai )C

n,jk,lm

i

− 4(kn∆n)2

9
C
n,gh,ab

i C
n,jk,lm

i

∣∣∣ ≤ K∆n(∆1/8
n + ηni,4kn).

Throughout, we use the expression “successive conditioning” to refer to the following equalities,

x1y1 − x0y0 = x0(y1 − y0) + y0(x1 − x0) + (x1 − x0)(y1 − y0),

x1y1z1 − x0y0z0 = x0y0(z1 − z0) + x0z0(y1 − y0) + y0z0(x1 − x0) + x0(y0 − y1)(z0 − z1)

+ y0(x0 − x1)(z0 − z1) + z0(x0 − x1)(y0 − y1) + (x1 − x0)(y1 − y0)(z1 − z0),

which hold for any real numbers x0, y0, z0, x1, y1, and z1.
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Proof of Lemma 4

To prove Lemma 4, we first note that γn,jki γn,lmi is Fni+2kn
-measurable. Then, by the law of iterated

expectations, we have

E
(
γn,jki γn,lmi γn,ghi+2kn

γn,abi+2kn
|Fni

)
= E

(
γn,jki γn,lmi E

(
γn,ghi+2kn

γn,abi+2kn
|Fni+2kn

)
|Fni

)
.

By equation (3.27) in Jacod and Rosenbaum (2012), we have

|E(γn,ghi+2kn
γn,abi+2kn

|Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn | ≤ K
√

∆n(∆1/8
n + ηni+2kn,2kn),

|E(γn,jki γn,lmi |Fni )− 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )− 2kn∆n

3
C
n,jk,lm

i | ≤ K
√

∆n(∆1/8
n + ηni,2kn).

Also,

|E
(
γn,jki γn,lmi

[
E(γn,ghi+2kn

γn,abi+2kn

∣∣∣Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn

]∣∣∣∣∣Fni )|
≤
√

∆nE(|γn,jki ||γn,lmi |(∆1/8
n + ηni+2kn,2kn)|

∣∣∣Fni ) ≤ K
√

∆n∆1/8
n E(|γn,jki ||γn,lmi |

∣∣∣Fni )

+K
√

∆nE(|γn,jki ||γn,lmi |ηni+2kn,2kn |
∣∣∣Fni ) ≤ K∆n(∆1/8

n + ηni,4kn),

where the last inequality follows from Lemma 6. Using (45) successively with Z = c and Z = C (recall that

the latter holds under Assumption 2), together with the successive conditioning, we have

|E
(
γn,jki γn,lmi

[ 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
) +

2kn∆n

3
C
n,gh,ab

i+2kn −
2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

− 2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n∆1/4
n ,

|E
(
γn,jki γn,lmi

[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) +

2kn∆n

3
C
n,gh,ab

i

]
−
[ 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli ) +

2kn∆n

3
C
n,jk,lm

i

]
×
[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) +

2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n(∆1/8
n + ηni,2kn).

The last inequality yields the result.

Lemma 5. Let ζni be a r-dimensional Fni -measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq. Also, let ϕni be a real-valued Fni -measurable process with E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1. Then,

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

We introduce some new notation. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, βni = Ĉ

′n
i − Cni , and γni = Ĉ

′n
i+kn − Ĉ

′n
i , (43)

which satisfy

βni =
1

kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and γni = βi+kn − βni + ∆n(Cni+kn − C
n
i ). (44)
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We remind some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (45)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013), we have

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∥∥∥q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (46)

Combining (46), (44), (45) with Z = c and the Hölder inequality yields, for q ≥ 2,

E
(∥∥∥βni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥γni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (47)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

Lemma 6. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, and set ηt,s = ηt,s(Z). Then,

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved

similarly to the first two.

Lemma 7. Let Z be a continuous Itô process with drift term bZt and spot variance process CZt , and set

ηt,s = ηt,s(b
Z , cZ). Then, the following bounds hold:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tC

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tC

Z,jk
0 )(CZ,lmt − CZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 8. The following results hold:

|E(βn,jki βn,lmi βn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (48)
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|E(βn,jki βn,lmi (cn,ghi+kn
− cn,ghi )|Fni )| ≤ K∆3/4

n (∆1/4
n + ηni,kn), (49)

|E(βn,jki (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi )|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (50)

|E(βn,jki γn,lmi γn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn), (51)

|E(γn,jki γn,lmi γn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (52)

Proof of (48) in Lemma 8

We start by obtaining some useful bounds for some quantities of interest. First, using the second statement

in Lemma 7 applied to Z = Y ′, we have

|E(αn,jki |Fni )| ≤ K∆3/2
n (

√
∆n + ηni,1). (53)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last

statements in Lemma 7 as well as (45) with Z = c, it can be shown that∣∣∣E(αn,jki αn,lmi |Fni )−∆2
n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (54)

Next, by successive conditioning and using the bound in (45) for Z = c as well as (53) and (54) , we have

for 0 ≤ u ≤ kn − 1, ∣∣∣E(αn,jki+u

∣∣Fni )
∣∣∣ ≤ K∆3/2

n (
√

∆n + ηni,u), (55)

∣∣∣E(αn,jki+u α
n,lm
i+u |F

n
i )−∆2

n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n , (56)

To show (48), we first observe that βn,jki βn,lmi βn,ghi can be decomposed as

βn,jki βn,lmi βn,ghi =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u +
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,v + ζn,ghi,u ζn,jki,v ζn,lmi,v

+ ζn,lmi,u ζn,ghi,v ζn,jki,v

]
+

1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[ζn,jki,u ζn,lmi,u ζn,ghi,v + ζn,ghi,u ζn,jki,u ζn,lmi,v + ζn,lmi,u ζn,ghi,u ζn,jki,v

]

+
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,w + ζn,jki,u ζn,ghi,v ζn,lmi,w + ζn,lmi,u ζn,jki,v ζn,ghi,w + ζn,lmi,u ζn,ghi,v ζn,jki,w

+ ζn,ghi,u ζn,lmi,v ζn,jki,w + ζn,ghi,u ζn,jki,v ζn,lmi,w

]
,

with ζni,u = αni+u + (Cni+u − Cni )∆n, which satisfies E(‖ζni,u‖q|Fni ) ≤ K∆q
n for q ≥ 2.

Set

ξni (1) =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u , ξni (2) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,v ζn,ghi,v

ξni (3) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,u ζn,ghi,v and ξni (4) =
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

ζn,jki,u ζn,lmi,v ζn,ghi,w .

The following bounds can be established,

|E(ξni (1)|Fni )| ≤ K∆n, |E(ξni (2)|Fni )| ≤ K∆n, |E(ξni (3)|Fni )| ≤ K∆n and
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|E(ξni (4)|Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn).

Proof of |E(ξni (1)|Fni )| ≤ K∆n

The result readily follows from an application of the Cauchy Schwartz inequality together with the bound

E(‖ζni+u‖q|Fni ) ≤ Kq∆
q
n for q ≥ 2.

Proof of |E(ξni (2)|Fni )| ≤ K∆n

Using the law of iterated expectation, we have, for u < v,

E(ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u E(ζn,lmi+v ζ

n,gh
i+v |F

n
i+u+1)

∣∣Fni ). (57)

By successive conditioning, (54), and the Cauchy-Schwartz inequality, we also have

|E(ζn,lmi,v ζn,ghi,v |F
n
i+u+1)−∆2

n(Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)−∆2

n(Cn,ghi+u+1 − C
n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )| ≤ K∆5/2

n .

Given that E(|ζn,jki+u |q
∣∣Fni ) ≤ ∆q

n, the approximation error involved in replacing E(ζn,lmi+v ζ
n,gh
i+v |Fni+u+1) by

∆2
n(Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1) + ∆2

n(Cn,ghi+u+1 − C
n,gh
i )(Cn,lmi+u+1 − C

n,lm
i ) in (57) is smaller than ∆

7/2
n .

From (3.9) in Jacod and Rosenbaum (2012) we have

|E(αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )|Fni )| ≤ K∆3/2

n (
√

∆n + ηni,kn). (58)

Since (Cni+u −Cni ) is Fni+u-measurable, we use the successive conditioning, the Cauchy-Schwartz inequality,

(53), (54), and the fifth statement in Lemma 7 applied to Z = c to obtain

|E(αn,ghi+u (Cn,lmi+u − C
n,lm
i )(Cn,jki+u − C

n,jk
i )|Fni )| ≤ K∆5/2

n

|E(αn,jki+u α
n,lm
i+u (Cn,ghi+u − C

n,gh
i )|Fni )| ≤ K∆5/2

n (59)

|E
(
(Cn,lmi+u − C

n,lm
i )(Cn,jki+u − C

n,jk
i )(Cn,ghi+u − C

n,gh
i )

)
|Fni )| ≤ K∆n,

which can be proved using . The following inequalities can be established easily using (53), the successive

conditioning together with (45) for Z = c,∣∣∣E(αn,jki+u (Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)|Fni )

∣∣∣ ≤ K∆3/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )

(
Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1

)
|Fni

)∣∣∣ ≤ K∆1/2
n∣∣∣E(αn,jki+u (Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )|Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,kn).

The last three inequalities together yield |E(ξni (2)|Fni )| ≤ K∆n.

Proof of |E(ξni (3)|Fni )| ≤ K∆n

First, note that, for u < v, we have

E(ζn,jki+u ζ
n,lm
i+u ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u ζ

n,lm
i+u E(ζn,ghi+v |F

n
i+u+1)

∣∣Fni ). (60)

By successive conditioning and (53) , we have

|E(αn,ghi+w |F
n
i+v+1)| ≤ K∆3/2

n (
√

∆n + ηi+v+1,w−v). (61)
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Using the first statement of Lemma applied to Z = c, it can be shown that

|E
(
(Cn,ghi+w − C

n,gh
i+v+1))|Fni

)
−∆n(w − v − 1)̃bn,ghi+v+1| ≤ K(w − v − 1)∆nηi+v+1,w−v ≤ K∆1/2

n ηi+v+1,w−v.

The last two inequalities together imply∣∣∣E(ζn,ghi+w |F
n
i+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n −∆2

n(w − v − 1)̃bn,ghi+v+1

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηi+v+1,w−v). (62)

Since E(|ζn,jki,u |q|Fni ) ≤ ∆q
n, the error induced by replacing E(ζn,ghi+v |Fni+u+1) by (Cn,ghi+v+1−C

n,gh
i )∆n+∆2

n(w−
v − 1)̃bn,ghi+v+1 in (60) is smaller that ∆

7/2
n .

Using Cauchy Schwartz inequality, successive conditioning, (59), (45) for Z = c and the boundedness of b̃t

and Ct we obtain∣∣∣E(αn,jki+u α
n,lm
i+u (Cn,jki+u+1 − C

n,gh
i )|Fni+u

)∣∣∣ ≤ K∆5/2
n∣∣∣E(αn,jki+u α

n,lm
i+u b̃

n,gh
i+u+1|F

n
i+u

)∣∣∣ ≤ K∆2
n∣∣∣E(αn,jki+u (Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆1/4
n ∆3/2

n (
√

∆n + ηni,kn)∣∣∣E(αn,jki+u (Cn,lmi+u − C
n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ ∆5/4
n∣∣∣E((Cn,jki+u − C

n,gh
i )(Cn,lmi+u − C

n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ K∆1/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆n.

The above inequalities together yield |E(ξni (3)|Fni )| ≤ K∆n.

Proof of |E(ξni (4)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn)

We first observe that ξni (4) can be rewritten as

ξni (4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w ,

where

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w =

[
αn,jki+u α

n,lm
i+v α

n,gh
i+w + αn,jki+u ∆nα

n,lm
i+v (Cn,ghi+w − C

n,gh
i ) + αn,jki+u ∆n(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆2
nα

n,jk
i+u (Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ) + ∆n(Cn,jki+u − C

n,jk
i )αn,lmi+v α

n,gh
i+w + ∆2

n(Cn,jki+u − C
n,jk
i )αn,lmi+v (Cn,ghi+w − C

n,gh
i )

+ ∆2
n(Cn,jki+u − C

n,jk
i )(Cn,lmi+v − C

n,lm
i )αn,ghi+w + ∆3

n(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i )

]
.

Based on the above decomposition, we set

ξni (4) =

8∑
j=1

χ(j),
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with χ(j) defined below. We aim to show that |E(χ(j)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn), j = 1, . . . , 8.

First, set

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u α
n,lm
i+v α

n,gh
i+w .

Upon changing the order of the summation, we have

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v α

n,gh
i+w .

Define also

χ′(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1).

Note that E(χ(1)|Fni ) = E(χ′(1)|Fni ).

It is easy to see that by Lemma 5, we have for q ≥ 2,

E
(∥∥∥ v−1∑

u=0

αn,jki+u

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n .

The Cauchy-Schwartz inequality yields,

E

(∣∣∣ kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1)

∣∣∣∣∣∣∣∣Fni
)
≤ Kk2

n

[
E
(∣∣∣ v−1∑

u=0

αn,jki+u

∣∣∣4∣∣∣Fni )]1/4[E(∣∣∣αn,lmi+v

∣∣∣4∣∣∣Fni )]1/4
×
[
E
(∣∣∣E(αn,ghi+w |F

n
i+v+1)

∣∣∣2∣∣∣Fni )]1/2 ≤ K∆nk
2
n∆3/4

n ∆3/2
n (

√
∆n + ηni,kn),

where the last iteration is obtained using (61) as well as the inequality (a+ b)1/2 ≤ a1/2 + b1/2, which holds

for positive real numbers a and b, and the third statement in Lemma 6.

It follows from this result that

|E
(
χ(1)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we introduce

χ(2) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v α

n,gh
i+w ,

χ(3) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+v

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w ,

χ(4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w .

Given that for q ≥ 2, we have

E
(∥∥∥ v−1∑

u=0

∆n(Cn,jki+u − C
n,jk
i )

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n and E(‖Cn,jki+u − C

n,jk
i ‖q

∣∣Fni ) ≤ Kq∆
q/4
n ,
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one can follow essentially the same steps as for χ(1) to show that

|E(χ(2)
∣∣Fni )| ≤ K∆3/4

n (
√

∆n + ηni,kn) and |E(χ(j)
∣∣Fni )| ≤ K∆n(

√
∆n + ηni,kn) for j = 3, 4.

Define

χ(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ′(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆nE

(
(Cn,ghi+w − C

n,gh
i )

∣∣Fni+v+1)

χ(6) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i ),

where we have E(χ(5)|Fni ) = E(χ′(5)|Fni ). Recalling (62), we further decompose χ′(5) as,

χ′(5) =
5∑
j=1

χ(5)[j],

with

χ′(5)[1]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

(
E
(
Cn,ghi+w −C

n,gh
i |Fni+v+1

)
−(Cn,ghi+v+1−C

n,gh
i )∆n− b̃n,ghi+v+1∆2

n(w−v−1)
)

χ′(5)[2]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆n(Cn,ghi+v −C
n,gh
i )

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

χ′(5)[3]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,ghi+v+1−C

n,gh
i+v )αn,lmi+v

χ′(5)[4]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆2
n(w−v−1)(̃bn,ghi+v+1− b̃

n,gh
i+v )αn,lmi+v

χ′(5)[5]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆2
n(w−v−1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v .

Using (62), (61), (58) and following the same strategy proof as for χ(1), it can be shown that

|E
(
χ′(5)[j]

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5,

which in turn implies

|E
(
χ(5)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

The term χ(6) can be handled similarly to χ(5), hence we conclude that

|E
(
χ(6)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).
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Next, we set

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i )

)
.

Define

χ(7)[1] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v+1 − C

n,gh
i+v )

)

χ(7)[2] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v − C

n,gh
i )

)

χ(7)[3] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆2

n(w − v − 1)(̃bn,ghi+v+1 − b̃
n,gh
i+v )

)

χ(7)[4] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )

)
,

so that

χ(7) =

4∑
j=1

χ(7)[j].

Similar to calculations used for χ(1), it can be shown that

|E(χ(7)[j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 3.

To handle the remaining term χ(7)[4], we set

χ(7)[4][1] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )

χ′(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )E(αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )|Fni+u)

χ(7)[4][3] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][4] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )(Cn,ghi+u − C

n,gh
i )αn,jki+u

χ(7)[4][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+v − C

n,gh
i+u+1)

χ′(7)[2][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u E((Cn,ghi+v − C

n,gh
i+u+1|F

n
i+u)

χ(7)[4][6] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u+1)
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χ(7)[4][7] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][8] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,ghi+u+1 − C
n,gh
i+u )(Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][9] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+v − C
n,lm
i+u+1)(Cn,ghi+v − C

n,gh
i+u+1),

which satisfy,

χ(7)[4] =

9∑
j=1

χ(7)[4][j].

By using arguments similar to those used for χ(1), it can be shown that

|E(χ(7)[4][j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 8,

which yields

|E(χ(7)
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn).

Next, define

χ(8) =
1

k3
n

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ).

This term can be further decomposed into 6 components. Successive conditioning and existing bounds give

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn)

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

These bounds can be used to deduce

|E(χ(8)
∣∣Fni )| ≤ K∆n.

This completes the proof.
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Proof of (49) and (50) in Lemma 8

Observe that

βn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) =
1

kn∆n

kn−1∑
u=0

ζn,jki,u (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ),

βn,jki βn,lmi (Cn,ghi+kn
− Cn,ghi ) =

1

k2
n∆2

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u (Cn,ghi+kn
− Cn,ghi ) +

1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,jki,u ζn,lmi,v (Cn,ghi+kn
− Cn,ghi )

+
1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,lmi,u ζn,jki,v (Cn,ghi+kn
− Cn,ghi ).

Hence, (49) and (50) can be proved using the same strategy as for (48).

Proof of (51) and (52) in Lemma 8

Note that we have

γn,jki γn,lmi βn,ghi = βn,ghi βn,jki+kn
βn,lmi+kn

+ βn,ghi βn,jki βn,lmi − βn,ghi βn,lmi βn,jki+kn
− βn,ghi βn,lmi βn,jki+kn

+ βn,ghi βn,jki+kn
(Cn,lmi+kn

− Cn,lmi )− βn,ghi βn,jki (Cn,lmi+kn
− Cn,lmi ) + βn,ghi βn,lmi+kn

(Cn,jki+kn
− Cn,jki )− βn,ghi βn,lmi (Cn,jki+kn

− Cn,jki )

+ βn,ghi (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi ),

and

γn,ghi γn,jki γn,lmi = βn,ghi+kn
βn,jki+kn

βn,lmi+kn
+ βn,ghi+kn

βn,jki βn,lmi − βn,ghi+kn
βn,lmi βn,jki+kn

− βn,ghi+kn
βn,lmi βn,jki+kn

+ βn,ghi+kn
βn,jki+kn

(Cn,lmi+kn
− Cn,lmi )− βn,ghi+kn

βn,jki (Cn,lmi+kn
− Cn,lmi ) + βn,ghi+kn

βn,lmi+kn
(Cn,jki+kn

− Cn,jki )− βn,ghi+kn
βn,lmi (Cn,jki+kn

− Cn,jki )

+ βn,ghi+kn
(Cn,jki+kn

− Cn,jki )(Cn,lmi+kn
− Cn,lmi )− βn,ghi βn,jki+kn

βn,lmi+kn
− βn,ghi βn,jki βn,lmi + βn,ghi βn,lmi βn,jki+kn

+ βn,ghi βn,lmi βn,jki+kn

− βn,ghi βn,jki+kn
(Cn,lmi+kn

− Cn,lmi ) + βn,ghi βn,jki (Cn,lmi+kn
− Cn,lmi )− βn,ghi βn,lmi+kn

(Cn,jki+kn
− Cn,jki ) + βn,ghi βn,lmi (Cn,jki+kn

− Cn,jki )

− βn,ghi (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi ) + βn,jki+kn
βn,lmi+kn

(Cn,ghi+kn
− Cn,ghi ) + βn,jki βn,lmi (Cn,ghi+kn

− Cn,ghi )

− βn,lmi βn,jki+kn
(Cn,ghi+kn

− Cn,ghi )− βn,lmi βn,jki+kn
(Cn,ghi+kn

− Cn,ghi ) + βn,jki+kn
(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )

− βn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) + βn,lmi+kn
(Cn,jki+kn

− Cn,jki )(Cn,ghi+kn
− Cn,ghi )

− βn,lmi (Cn,jki+kn
− Cn,jki )(Cn,ghi+kn

− Cn,ghi ) + (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi ).

From (44), notice that βni is Fni+kn-measurable and satisfies ‖E(βni |Fni )‖ ≤ K∆
1/2
n .

Using the law of iterated expectations and existing bounds, it can be shown that

|E(βn,lmi βn,jki+kn
|Fni )| ≤ K∆3/4

n .

|E(βn,lmi βn,ghi βn,jki+kn
|Fni )| ≤ K∆n

|E(βn,lmi (Cn,ghi+kn
− Cn,ghi )βn,jki+kn

|Fni )| ≤ K∆n

|E(βn,lmi+kn
(Cn,jki+kn

− Cn,jki )|Fni )| ≤ K∆3/4
n

|E((Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )|Fni )| ≤ K∆n. (63)

By Lemma 3.3 in Jacod and Rosenbaum (2012), we have

|E(βn,ghi+kn
βn,abi+kn

|Fni+kn)− 1

kn
(Cn,gai+kn

Cn,hbi+kn
+ Cn,gbi+kn

Cn,hai+kn
)− kn∆n

3
C
n,gh,ab

i+kn | ≤ K
√

∆n(∆1/8
n + ηni+kn,kn).
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Hence, for ϕn,ghi ∈ {βn,ghi , Cn,ghi+kn
− Cn,ghi }, which satisfies E(|ϕn,ghi |q

∣∣∣Fni ) ≤ K∆
q/4
n and E(ϕn,ghi |Fni ) ≤

K∆
1/2
n , it can be proved that

|E(ϕn,ghi βn,jki+kn
βn,lmi+kn

|Fni )− E
(
ϕn,ghi

[ 1

kn
(Cn,jli+kn

Cn,kmi+kn
+ Cn,jmi+kn

Cn,kli+kn
)− kn∆n

3
C
n,jk,lm

i+kn

]
|Fni

)
| ≤ K∆3/4

n (∆1/4
n + ηni,2kn).

Next, successive conditioning and existing bounds give

|E(ϕn,ghi C
n,jk,lm

i+kn )| ≤ K∆1/4
n (∆1/4

n + ηni,kn)

|E(ϕn,ghi Cn,jli+kn
Cn,kmi+kn

)| ≤ K∆1/2
n ,

which implies

|E(ϕn,ghi βn,jki+kn
βn,lmi+kn

|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (64)

It is easy to see that (48), (63) and (64) and the inequality ηni,kn ≤ η
n
i,2kn

together yield (51) and (52).

Step 3: Asymptotic Distribution of the approximate estimator

First, we decompose the approximate estimator as

̂[H(C), G(C)]
(A)

T = ̂[H(C), G(C)]
(A1)

T − ̂[H(C), G(C)]
(A2)

T ,

with

̂[H(C), G(C)]
(A1)

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i ),

and

̂[H(C), G(C)]
(A2)

T =
3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

In this section, we use the notation Cni−1 = C(i−1)∆n
and Fi = F(i−1)∆n

to simplify the exposition. Given

the polynomial growth assumption satisfied by H and G and the fact that kn = θ(∆n)−1/2, by Theorem 2.2

in Jacod and Rosenbaum (2012) we have

1√
∆n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
= Op(1),

which yields

1

∆
1/4
n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
P−→ 0.

To study the asymptotic behavior of ̂[H(C), G(C)]
(A1)

T , we follow Aı̈t-Sahalia and Jacod (2014) and define

the following multidimensional quantities

ζ(1)ni =
1

∆n
∆n
i Y
′(∆n

i Y
′)> − Cni−1, ζ(2)ni = ∆n

i c,
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ζ ′(u)ni = E(ζ(u)ni |Fni−1), ζ ′′(u)ni = ζ(u)ni − ζ ′(u)ni ,

with

ζr(u)ni =
(
ζr(u)n,ghi

)
1≤g,h≤d

.

We also define, for m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z,

ε(1)nm =

−1 if 0 ≤ m < kn

+1 if kn ≤ m < 2kn,

ε(2)nm =

2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1),

znu,v =

1/∆n if u = v = 1

1 otherwise,

γ(u, v;m)nj,l =
3

2k3
n

(l−m−1)∨(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(u)nq+m, Γ(u, v)nm = γ(u, v;m)n0,2kn ,

M(u, v;u′, v′)n = znu,vz
n
u′,v′

2kn−1∑
m=1

Γ(u, v)nmΓ(u′, v′)nm.

The following decompositions hold,

Ĉ
′n
i = Cni−1 +

1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j , Ĉ
′n
i+kn − Ĉ

′n
i =

1

kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j ,

γn,ghi γn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−1∑
j=1

j−1∑
q=0

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

)
.

A change of the order of the summation in the last term gives

γn,ghi γn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q

)
.

Therefore, we can further rewrite ̂[H(C), G(C)]
(A1)

T as

̂[H(C), G(C)]
(A1)

T = ̂[H(C), G(C)]
(A11)

T + ̂[H(C), G(C)]
(A12)

T + ̂[H(C), G(C)]
(A13)

T ,with
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̂[H(C), G(C)]
(A1w)

T =

d∑
g,h,a,b=1

2∑
u,v=1

Â1w(H, gh, u;G, ab, v)nT , w = 1, 2, 3,

and,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−1∑
j=0

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q ,

Â13(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q ,

where we clearly have Â13(H, gh, u;G, ab, v)nT = Â12(G, ab, v;H, gh, u)nT . By a change of the order of the

summation,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=1

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)×

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni .

Set

Ã11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

2kn−1∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Ã12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−j−1−m)ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni ,

and

A11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj

)
(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= Γ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi ,

A12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni

=

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζab(v)ni ,
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with

ρgh(u, v)ni =

2kn−1∑
m=1

Γ(u, v)nmζgh(u)ni−m.

The following results hold:

1

∆
1/4
n

(
Â1w(H, gh, u;G, ab, v)nT − Ã1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(65)
1

∆
1/4
n

(
Ã1w(H, gh, u;G, ab, v)nT −A1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(66)

Proof of (65) for w = 1

The proof is similar to Step 5 on page 548 of Aı̈t-Sahalia and Jacod (2014). Our proof deviates from the

latter reference by the fact that, in all the sums, the terms ζ(u)n,ghi ζ(v)n,abi are scaled by random variables

rather that constant real numbers. First, observe that we can write

Â11− Ã11 =
˜̂
A11(1) +

˜̂
A11(2) +

˜̂
A11(3) with

˜̂
A11(1) =

(2kn−1)∧[T/∆n]∑
i=1

(
3

2k3
n

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(3) =

[T/∆n]−2kn+1∑
i=2kn

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .

It is easy to see that
˜̂
A12(3) = 0. Using (45) with Z = c and (46), it can be shown that

E(‖ζ(1)ni ‖q|Fni−1) ≤ Kq, E(‖ζ(2)ni ‖q|Fni−1) ≤ Kq∆
q/2
n . (67)

The polynomial growth assumption onH andG and the boundedness of Ct imply that |(∂ghH∂abG)(Cni−j−1)| ≤
K. Hence, the random quantities

(
3

2k3n

∑(2kn−1)∧(i−1)
j=0∨(i+2kn−1−[T/∆n])(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
and

3
2k3n

∑(2kn−1)
j=0 (∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj are Fni−1− measurable and are bounded by γ̃nu,v defined as

γ̃nu,v =


K if (u, v) = (2, 2)

K/kn if (u, v) = (1, 2), (2, 1)

K/k2
n if (u, v) = (1, 1).
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Similarly, the quantity,

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj −
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
,

is Fni−1− measurable and bounded by 2γ̃nu,v. Note also that, by (67) and the Cauchy Schwartz inequality,

we have,

E(|ζ(u)n,ghi ζ(v)n,abi |
∣∣Fni−1) ≤ E(‖ζ(u)ni ‖2|Fni−1)1/2E(‖ζ(v)ni ‖2|Fni−1)1/2 ≤


K∆n if (u, v) = (2, 2)

K∆
1/2
n if (u, v) = (1, 2), (2, 1)

K if (u, v) = (1, 1).

The above bounds, together with the fact that kn = θ∆
−1/2
n , give E(|˜̂A11(1)|) ≤ K∆

1/2
n and E(|˜̂A11(2)|) ≤

K∆
1/2
n for all (u, v). These two results together imply

˜̂
A11(1) = o(∆

−1/4
n ) and

˜̂
A11(2) = o(∆

−1/4
n ), which

yields the result.

Proof of (65) for w = 2

We proceed similarly to Step 6 on page 548 of Aı̈t-Sahalia and Jacod (2014). First, observe that we have

Â12− Ã12 =
˜̂
A12(1) +

˜̂
A12(2) with

˜̂
A12(1) =

(2kn−1)∧[T/∆n]∑
i=2

(
(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

ζgh(u)ni−m

)
ζab(v)ni ,

˜̂
A12(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

(
(i−1)∧(2kn−1)∑

m=1

( 3

2k3
n

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

−
(2kn−m−1)∑

j=0

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m

)
ζab(v)ni .

It is easy to see that the quantity

κm,ni =
3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
is Fni−m−1 measurable and bounded by γ̃nu,v. Let

κni =

(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m.

It follows that κni is Fni−1-measurable. We have

E(|κm,ni |z
∣∣F0) ≤ (γ̃nu,v)

z
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|E(ζ(u)ni−m|Fi−m−1)| ≤

K
√

∆n if u = 1

K∆n if u = 2
, E(‖ζ(u)ni−m‖z|Fi−m−1) ≤

Kz if u = 1

Kz∆
z/2
n if u = 2

Using Lemma 5, we deduce that for z ≥ 2,

E(|κni |z) ≤

Kz(γ̃
n
u,v)

zk
z/2
n if u = 1

Kz(γ̃
n
u,v)

z/k
z/2
n if u = 2

≤

Kz/k
−3z/2
n if v = 1

Kzk
−z/2
n if v = 2

Using the above result, and similarly to step 6 on page 548 of Aı̈t-Sahalia and Jacod (2014), we obtain that

1

∆
1/4
n

˜̂
A12(1)

P⇒ 0. A similar argument yields 1

∆
1/4
n

˜̂
A12(2)

P⇒ 0, which completes the proof of (65) for w = 2.

Proof of (66) for w = 1

Define

Θ(u, v)
(C),i,n
0 =

3

2k3
n

2kn−1∑
j=0

(
(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)

)
ε(u)nj ε(v)nj .

By Taylor expansion, the polynomial growth assumption on H and G and using (45) with Z = c, we have∣∣∣E((∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)
∣∣Fni−2kn

)∣∣∣ ≤ K(kn∆n) ≤ K
√

∆n for j = 0, . . . , 2kn − 1

E(|(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)|q|Fni−2kn)| ≤ K(kn∆n)q/2 ≤ K∆q/4
n for q ≥ 2

Next, observe that Θ(u, v)
(C),i,n
0 is Fni−1 -measurable and satisfies |Θ(u, v)

(C),i,n
0 | ≤ γ̃nu,v, |E

(
Θ(u, v)

(C),i,n
0 |Fni−2kn

)
| ≤

K∆
1/2
n γ̃nu,v and E

(
|Θ(u, v)

(C),i,n
0 |q

∣∣Fni−2kn

)
≤ Kq∆

q/4
n (γ̃nu,v)

q where the latter follows from the Hölder in-

equality. We aim to prove that

Ê =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 ζ(u)n,ghi ζ(v)n,abi

]

converges to zero in probability for any H, G, g, h, a, and b with u, v = 1, 2.

To show this result, we first introduce the following quantities:

Ê(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

]

Ê(2) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
,

with Ê = Ê(1) + Ê(2). By Cauchy-Schwartz inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |q) ≤ (γ̂nu,v)
q/2,where γ̂nu,v =


K if (u, v) = (1, 1)

K∆n if (u, v) = (1, 2), (2, 1)

K∆2
n if (u, v) = (2, 2)
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Since ζ(u)n,ghi ζ(v)n,abi is Fni -measurable, the martingale property of ζ(u)n,ghi ζ(v)n,abi −E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

implies, for all (u, v),

E(|Ê(2)|2) ≤ K∆−3/2
n (∆1/4

n γ̃nu,v)
2γ̂nu,v ≤ K∆n.

The latter inequality implies Ê(2)
P⇒ 0 for all (u, v). It remains to show that Ê(1)

P⇒ 0.

We remind some bounds under Assumption 2, see (B.83) in Aı̈t-Sahalia and Jacod (2014),

|E(ζ(1)n,ghi ζ(2)n,abi |Fni−1)| ≤ K∆n, (68)

|E(ζ(1)n,ghi ζ(1)n,abi |Fni−1)−
(
Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1

)
| ≤ K∆1/2

n , (69)

|E(ζ(2)n,ghi ζ(2)n,abi |Fni−1 − C
n,gh,ab

i−1 ∆n)| ≤ K∆3/2
n (

√
∆n + ηni ). (70)

Case (u, v) ∈ {(1, 2), (2, 1)}. By (68) we have

E(|Ê(1)|) ≤ K T

∆n

1

∆
1/4
n

(∆1/4
n γ̃nu,v∆n) ≤ K∆1/2

n so Ê(1)
P⇒ 0.

Case (u, v) ∈ {(1, 1), (2, 2)}. Set

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 V ni−2kn

]

Ê′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
V ni−1 − V ni−2kn

)]

Ê′′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)]

where

V ni−1 =


Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1 if (u, v) = (2, 2)

C
n,gh,ab

i−1 ∆n if (u, v) = (1, 1)

0 otherwise

Note that we have Ê(1) = Ê′(1) + Ê′′(1) + Ê′′′(1). Using (69) and (70), it can be shown that

E(|Ê′′′(1)|) ≤

K
1

∆
5/4
n

(∆
1/4
n γ̃nu,v)∆

1/2
n if (u, v) = (1, 1)

K 1

∆
5/4
n

(∆
1/4
n γ̃nu,v)∆

3/2
n if (u, v) = (2, 2)

≤ K∆1/2
n in all cases.

Next, we prove Ê′(1)
P⇒ 0. To this end, write

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

]
.

The fact that the summand in the last sum is Fni+2kn−2-measurable and lemma B.8 in Aı̈t-Sahalia and Jacod

(2014) imply that it is sufficient to show

1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)|

]
P⇒ 0 and
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2kn − 2

∆
1/2
n

[
[T/∆n]−2kn+1∑

i=1

E
(
|Θ(u, v)

(C),i−1+2kn,n
0 V(i−1)∆n

)|2
)]
⇒ 0.

The first result readily follows from the inequality

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)| ≤

K∆
1/2
n γ̃nu,v if (u, v) = (1, 1)

K∆
1/2
n γ̃nu,v∆n if (u, v) = (2, 2)

≤ K∆3/2
n in all cases

while the second is a direct consequence of

E(|Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|2) ≤

K∆
1/2
n (γ̃nu,v)

2 if (u, v) = (1, 1)

K∆
1/2
n (γ̃nu,v)

2∆2
n if (u, v) = (2, 2)

≤ K∆5/2
n in all cases.

Finally, to prove that Ê′′(1)
P

=⇒ 0, we use the fact that

E(|Θ(u, v)
(C),i,n
0

(
V(i−1)∆n

− V(i−2kn)∆n

)
|) ≤ E(|Θ(u, v)

(C),i,n
0 |2)1/2E(|V(i−1)∆n

− V(i−2kn)∆n
|2)1/2

≤

K∆
1/2
n γ̃nu,v if (u, v) = (1, 1)

K∆
1/4
n γ̃nu,v∆n∆

1/4
n if (u, v) = (2, 2)

,

which follows by the Cauchy-Schwartz inequality and earlier bounds. In particular, successive conditioning

together with Assumption 2 imply that for (u, v) = (1, 1) and (2, 2), E(|V(i−1)∆n
− V(i−2kn)∆n

|2) ≤ ∆
1/2
n .

Proof of (66) for w = 2

Our aim here is to show that

Ê(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

(
2kn−1∑
m=1

( 3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

)
×

ζ(u)n,ghi−m

)
ζ(v)n,abi

P
=⇒ 0.

For this purpose, we introduce some new notation. For any 0 ≤ m ≤ 2kn − 1, set

Θ(u, v)(C),i,n
m =

3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

ρ(u, v)(C),i,n,gh =

2kn−1∑
m=1

Θ(u, v)(C),i,n
m ζ(u)n,ghi−m.

It is easy to see that Θ(u, v)
(C),i,n
m is Fni−m−1 measurable and satisfies, by Hölder inequality,

|Θ(u, v)(C),i,n
m | ≤ γ̃nu,v and E

(
|Θ(u, v)(C),i,n

m |q
∣∣Fni−2kn

)
≤ Kq∆

q/4
n (γ̃nu,v)

q.
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Lemma 5 implies that for q ≥ 2,

E(|ρ(u, v)(C),i,n,gh|q) ≤

Kq(∆
1/4
n γ̃nu,v)

qk
q/2
n if u = 1

Kq(∆
1/4
n γ̃nu,v)

q/k
q/2
n if u = 2

≤

Kq/k
2q
n if v = 1

Kqk
q
n if v = 2

. (71)

Set

Ê′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,ghE(ζ(v)n,abi |Fni−1),

Ê′′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,gh(ζ(v)n,abi − E(ζ(v)n,abi |Fni−1)).

The martingale increments property implies E(|Ê′′(2)|2) ≤ K∆
1/2
n in all the cases, which in turn implies

Ê′′(2)
P

=⇒ 0. Next, using the bounds on ρ(u, v)(C),i,n,gh and similarly to step 7 on page 549 of Aı̈t-Sahalia

and Jacod (2014), we obtain that Ê′(2)
P

=⇒ 0.

Return to the proof of Theorem 1

So far, we have proved that

1

∆
1/4
n

(
̂[H(C), G(C)]

(A1)

T −
d∑

g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P−→ 0.

We next show that,

1

∆
1/4
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′

ab(v)ni
P

=⇒ 0, ∀ (u, v) (72)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−

∫ T

0

(∂ghH∂abG)(Ct)C
gh,ab

t dt
)

P
=⇒ 0 when (u, v) = (2, 2) (73)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
P

=⇒ 0 when (u, v) = (1, 1)

(74)

1

∆
1/4
n

A11(H, gh, u;G, ab, v)
P

=⇒ 0 when (u, v) = (1, 2), (2, 1) (75)

which will in turn imply

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T − [H(C), G(C)]T −
3

2k3
n

d∑
g,h,a,b

2∑
u,v=1

[T/∆n]∑
i=2kn

[
(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ

′′

ab(v)ni

(76)

+ (∂abH∂ghG)(Cni−2kn)ρab(v, u)ni ζ
′′

gh(v)ni

])
P

=⇒ 0. (77)
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(72) can be proved easily following steps similar to step 7 on page 549 of Aı̈t-Sahalia and Jacod (2014) and

using the bounds of ρ(u, v)n,ghi in (71) . To show (73),(74) and (75), we set

A11(H, gh, u;G, ab, v) = Γ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)ζ(u)n,ghi ζ(v)n,abi .

Then it holds that,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−A11(H, gh, u;G, ab, v)

)
P⇒ 0.

This result can be proved following similar steps as for (65) in case w = 1 by replacing Θ(u, v)
(C),i,n
0

by Γ(u, v)n0 ((∂ghH∂abG)(Ci−1) − (∂ghH∂abG)(Ci−2kn)), which has the same bounds as the former. Next,

decompose A11 as follows,

A11(H, gh, u;G, ab, v) = Γ(u, v)n0

[
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
.

We follow the proof of (66) for w = 1, and we replace Θ(u, v)
(C),i,n
0 by Γ(u, v)n0 (∂ghH∂abG)(Ci−1), which

satisfies only the condition |Γ(u, v)n0 (∂ghH∂abG)(Ci−1)| ≤ γ̃nu,v. This calculation shows that that the last

two terms in the above decomposition of vanish at a rate slower that ∆
1/4
n . Therefore,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− Γ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

))
⇒ 0.

As a consequence, for (u, v) = (1, 2) and (2, 1),

1

∆
1/4
n

A11(H, gh, u;G, ab, v)⇒ 0.

The results follow from the following observation,

1

∆
1/4
n

(
Γ(u, v)n0

( d∑
g,h,a,b=1

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
⇒ 0,

for (u, v) = (2, 2)

1

∆
1/4
n

(
d∑

g,h,a,b=1

Γ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− [H(C), G(C)]T

)
⇒ 0, for (u, v) = (1, 1).

Set

ξ(H, gh, u;G, ab, v)ni =
1

∆
1/4
n

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′′
ab(v)ni ,
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Z(H, gh, u;G, ab, v)nt = ∆1/4
n

[t/∆n]∑
i=2kn

ξ(H, gh, u;G, ab, v)ni .

Notice that (76) implies

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T −[H(C), G(C)]T

)
L
=

d∑
g,h,a,b=1

2∑
u,v=1

1

∆
1/4
n

(
Z(H, gh, u;G, ab, v)nT+Z(H, ab, v;G, gh, u)nT

)
.

(78)

Next, observe that to derive the asymptotic distribution of
(

̂[H1(C), G1(C)]
(A)

T , . . . , ̂[Hκ(C), Gκ(C)]
(A)

T

)
, it

suffices to study the joint asymptotic behavior of the family of processes 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT .

It is easy to see that ξ(H, gh, u;G, ab, v)ni are martingale increments, relative to the discrete filtration

(Fni ). Therefore, by Theorem 2.2.15 of Jacod and Protter (2012), to obtain the joint asymptotic distri-

bution of 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT , it is enough to prove the following three properties, for all t > 0, all

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′) and all martingales N which are either bounded and orthogonal

to W , or equal to one component W j ,

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)n
t

:=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ξ(H
′, g′h′, u′;G′, a′b′, v′)ni |Fni−1)

P
=⇒ A

(
(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)

)
t

[t/∆n]∑
i=2kn

E(|ξ(H, gh, u;G, ab, v)ni |4|Fni−1)
P

=⇒ 0

B(N ;H, gh, u;G, ab, v)nt :=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ∆n
i N |Fni−1)

P
=⇒ 0.

Using the polynomial growth assumption on Hr and Gr, the second and the third results can be proved by

a natural extension to the multivariate case of (B.105) and (B.106) in Aı̈t-Sahalia and Jacod (2014).

Define

V a
′b′

ab (v, v′)t =


(Caa

′

t Cbb
′

t + Cab
′

t Cba
′

t ) if (v, v′) = (1, 1)

C
ab,a′b′

t if (v, v′) = (2, 2)

0 otherwise,

and

V
g′h′

gh (u, u′)t =


(Cgg

′

t Chh
′

t + Cgh
′

t Chg
′

t ) if (u, u′) = (1, 1)

C
gh,g′h′

t if (u, u′) = (2, 2)

0 otherwise.

Once again using the polynomial growth assumption on Hr and Gr and following steps similar to the proof

of (B.104) in Aı̈t-Sahalia and Jacod (2014), one can show that

A
(

(H, gh, u;G, ab, v),(H ′, g′h′, u′;G′, a′b′, v′)
)
t

=

M(u, v;u′, v′)

∫ t

0

(∂ghH∂abG∂g′h′H∂a′b′G)(Cs)V
a′b′

ab (v, v′)sV
g′h′

gh (u, u′)sds,
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with

M(u, v;u′, v′) =


3/θ3 if (u, v;u′, v′) = (1, 1; 1, 1)

3/4θ if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151θ/280 if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Therefore, we have

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
T

=



3
β3

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )(Caa
′

t Cbb
′

t + Cab
′

t Cba
′

t )dt if (u, v;u′, v′) = (1, 1; 1, 1)

3
4β

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )C
ab,a′b′

t dt if (u, v;u′, v′) = (1, 2; 1, 2)

3
4β

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

aa′

t Cbb
′

t + Cab
′

t Cba
′

s )t
gh,g′h′

s dt if (u, v;u′, v′) = (2, 1; 2, 1)

151β
280

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)C

ab,a′b′

s C
gh,g′h′

t dt if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Using (78), we deduce that the asymptotic covariance between ̂[Hr(C), Gr(C)]
(A)

T and ̂[Hs(C), Gs(C)]
(A)

T is

given by

d∑
g,h,a,b=1

d∑
g′,h′,a′,b′=1

2∑
u,v,u′,v′=1

(
A
(

(Hr, gh, u;Gr, ab, v), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, gh, u;Gr, ab, v), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

+A
(

(Hr, ab, v;Gr, gh, u), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, ab, v;Hr, gh, u), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

)
.

After some simple calculations, the above expression can be rewritten as

d∑
g,h,a,b=1

d∑
j,k,l,m=1

(
6

θ3

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )(Calt C

bm
t + Camt Cblt )

+ (Cajt C
bk
t + Cakt Cbjt )(Cglt C

hm
t + Cgmt Chlt )

]
dt

+
151θ

140

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk

C
ab,lm

+ C
ab,jk

C
gh,lm

]
dt

+
3

2θ

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )C

ab,lm

t + (Calt C
bm
t + Camt Cblt )C

gh,jk

t

+ (Cglt C
hm
s + Cgmt Chls )C

ab,jk

t + (Cajt C
bk
t + Cakt Cbjt )C

gh,lm

t

]
dt

)
,

which completes the proof.

B.2 Proof of Theorem 2

Using the polynomial growth assumption on Hr, Gr, Hs and Gs and Theorem 2.2 in Jacod and Rosenbaum

(2012), one can show that

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T .
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Next, by equation (3.27) in Jacod and Rosenbaum (2012), we have

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T .

Finally, to show that

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T ,

we first observe that as in Step 1, the approximation error induced by replacing Ĉni by Ĉ
′n
i is negligible.

For 1 ≤ g, h, a, b, j, k, l,m ≤ d and 1 ≤ r, s ≤ d, we define

Ŵn
T =

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂ghHs∂lmGs)(Ĉ
n
i )γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn

ŵ(1)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )E(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
|Fni )

ŵ(2)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
− E(γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn
|Fni ))

ŵ(3)ni =
(

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )− (∂ghHr∂abGr∂jkHs∂lmGs)(C

n
i )
)
γn,ghi γn,jki γn,abi+2kn

γn,lmi+2kn

Ŵ (u)nt =

[T/∆n]−4kn+1∑
i=1

ŵi(u), u = 1, 2, 3.

Note that we have Ŵn
t = Ŵ (1)nt + Ŵ (2)nt + Ŵ (3)nt . By Taylor expansion and using repeatedly the bound-

edness of Ct, we have

|ŵ(3)ni | ≤ (1 + ‖βni ‖4(p−1))‖βni ‖‖γni ‖2‖γni+2kn‖
2,

which implies E(|ŵ(3)ni |) ≤ K∆
5/4
n and Ŵ (3)nt

P−→ 0. Using Cauchy-Schwartz inequality and the bound

E(‖γni ‖q|Fni ) ≤ K∆
q/4
n , we have E(|ŵ(2)ni |2) ≤ K∆2

n. Observing furthermore that ŵ(2)ni is Fi+4kn−measurable,

we use Lemma B.8 in Aı̈t-Sahalia and Jacod (2014) to show that Ŵ (2)nt
P−→ 0. Also, define

wni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )
[ 4

k2
n∆n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

+
4

3
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )C

n,gh,ab

i +
4

3
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )C

n,jk,lm

i +
4(k2

n∆n)

9
C
n,gh,ab

i C
n,jk,lm

i

]
,

Wn
T = ∆n

[T/∆n]−4kn+1∑
i=1

wni .

The cadlag property of c and C, kn
√

∆n −→ θ, and the Riemann integral argument imply Wn
T

P−→ WT

where

WT =

∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)
[ 4

θ2
(Cgat Chbt + Cgbt C

ha
t )(Cjlt C

km
t + Cjmt Cklt ) +

4

3
(Cjlt C

km
t + Cjmt Cklt )C

gh,ab

t

+
4

3
(Cgat Chbi + Cgbt C

ha
t )C

jk,lm

t +
4θ2

9
C
gh,ab

t C
jk,lm

t

]
dt.

In addition, by Lemma 4, we have

E(|Ŵ (1)nT −Wn
T |) ≤ ∆nE

(
[T/∆n]−4kn+1∑

i=1

(∆1/8
n + ηi,4kn)

)
.
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Hence, by the third result of Lemma 6 we have Ŵn
T

P−→Wt, from which it can be deduced that

9

4θ2

[
Ŵ (1)nT +

4

k2
n

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )[Cni (jk, lm)Cni (gh, ab)]

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (gh, ab)γn,jki γn,lmi

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (jk, lm)γn,ghi γn,abi

]
P−→
∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)C
gh,ab

t C
jk,lm

t dt.

The result follows from the above convergence, a symmetry argument, and straightforward calculations.
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