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Abstract

We study a principal-agent model with moral hazard and adverse selection. Agents

have private information about the distribution of outcomes conditional on each effort. We

characterize the solution of the resulting multidimensional screening problem, and establish

several general properties. A positive mass of types with low conditional probabilities of

success gets a constant payment and zero rents. Exclusion is desirable if and only if it

is first-best efficient. When agents are risk neutral, an intermediate mass of types is also

pooled, although they are offered contracts with variable payments and get positive rents.

In addition, the region of types who exert high effort is contained in the first-best high-effort

region and, unlike in pure adverse selection models, the model may feature “distortion at the

boundary.” Under additional conditions, the optimal mechanism offers only finitely many

contracts. We apply our framework to multidimensional generalizations of canonical models

in insurance, regulation, and optimal taxation and show that it generates novel results.

1 Introduction

Most contracting situations feature both adverse selection and moral hazard. Potential insurees,
for example, frequently have better knowledge of their risks. Meanwhile, they can often influence
their risks by engaging in preventive effort. Managers often have better knowledge of their abilities
and take actions that affect the firm’s profits. Borrowers may have more precise information about
their ability to repay a loan but may also be able to influence this probability. Doctors are better
informed about the adequacy of each medical treatment to patients but also have some ability to
substitute between treatments. Taxpayers are often better informed about their earning abilities
but can also choose between activities with different distribution of outputs. Regulated firms have
more precise information about their technologies but can also engage in cost-reducing actions.
Still, the agency literature has focused on models in which only one of these features is present.
Hence, the consequences of the interaction between adverse selection and moral hazard are poorly
understood.

In this paper, we introduce adverse selection in a standard moral hazard model. Agents choose
between two costly actions (“efforts”), and there are two potential outcomes. They have private
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information about the distribution of outcomes conditional on each action. Therefore, types
are two-dimensional vectors.1 The principal has a continuous prior over the set of conditional
probability distributions. We characterize the optimal mechanism and establish several properties
that arise under joint adverse selection and moral hazard.

If the agents’ efforts were observable (no moral hazard), the principal would be able to imple-
ment the efficient allocation by compensating them for the full cost of their effort. This would keep
agents indifferent between each effort and, therefore, ensure that they would have no incentives
to deviate. The unobservability of effort requires the principal to leave rents to agents in order to
induce a high effort choice, and to prevent each type from pretending to be another type with a
slightly less favorable distribution. This generates a standard adverse selection trade-off between
rent extraction and effort distortion through the local incentive-compatibility constraints. How-
ever, moral hazard also allows agents to pretend to be “distant” types by deviating in the effort
dimension. For example, any type with some distribution of output conditional on low effort
can always pretend to be someone who has the same distribution conditional on a high effort.
Consequently, moral hazard generates binding global incentive constraints, which introduces new
features in the model.

Because some types of agents can pretend to be less productive and shirk, they receive variable
payments but still exert low effort. When reservation utilities are type independent, a positive
mass of types with low conditional probabilities of success always gets a constant payment and
zero rents; all other types get variable payments and positive rents. Moreover, exclusion of some
types is desirable if and only if exclusion is first-best efficient.

We establish several additional properties in the special case of risk-neutral agents. A region
with intermediate types (those immediately above the ones with zero rents) are also all pooled,
although their contract offers variable payments. Moreover, the region of types who exert high
effort under asymmetric information is contained in the first-best high-effort region. Unlike models
of adverse selection with both one-dimensional and multi-dimensional types, the solution can
involve distortion at all points (including at the top).

In some cases, the informational rents required to prevent an agent from deviating are so
high that the optimal mechanism involves offering a very limited number of contracts to the
agent. For example, when the distribution of types satisfies an increasing rents condition and the
incremental output does not exceed twice the incremental cost of effort, the optimal mechanism
involves offering at most three contracts, despite the presence of a two-dimensional continuum of
types. When the probability of a high outcome is bounded away from zero and the incremental
output is “not much larger” than the incremental cost of effort, the optimal mechanism involves
offering at most two contracts. Thus, our model provides a rationale for the fact that large menus
of contracts are rarely offered in practice: In the presence of simultaneous adverse selection and
moral hazard, offering large menus of contracts gives too many incentives for gaming, thereby
requiring the principal to leave significant informational rents. Whenever the value from effort is
“not too large,” it may be optimal to offer a small number of contracts instead.

Our framework builds on the principal-agent model of Grossman and Hart (1983), which has
a natural interpretation in terms of the employment relationships. However, we illustrate its
applicability beyond the canonical principal-agent model by considering models of insurance,
procurement and regulation, and optimal taxation featuring both adverse selection and moral

1Grossman and Hart (1983) characterize the solution of the pure moral hazard model when there are two
outcomes. However, apart from existence, they show that very little can be said about the optimal incentive
scheme when there are more than two outcomes. Accordingly, this paper focuses on the two-outcome model but
allows the agent to have general private information about the distribution of outcomes.
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hazard.
Although the consequences of either adverse selection or moral hazard on insurance are well

understood, only a few papers have studied the theoretical implications of their joint presence.
This is a specially important issue since many empirical papers have found that simultaneous
moral hazard and adverse selection is a key feature of several insurance markets.2 The main dif-
ference between an insurance model and the standard principal-agent framework is the presence of
type-dependent reservation utilities, since riskier types have a higher cost of remaining uninsured.
We show that exclusion is always optimal in the insurance model. The optimality of exclusion is a
consequence of the multidimensionality of types, and contrasts with one-dimensional type models
where exclusion is not optimal if there are “enough low types” in the population (Stiglitz, 1977;
Chade and Schlee, 2012). We also show that, because of moral hazard, the second-best high-
effort region is strictly contained in the high-effort region in the absence of insurance. Therefore,
policyholders under-provide effort.

We then consider an extension of the canonical regulation model of Laffont and Tirole (1986,
1993), with the main distinctive feature that effort in our model affects the regulated firm’s costs
stochastically. As a result, the regulator’s incentive problem cannot be reduced to a pure adverse
selection problem. We characterize the optimal regulatory mechanism and show that it has the
following features. A non-degenerate region comprising firms with low conditional probabilities
of reducing costs are pooled into a cost-plus contract. Types in an intermediate region are also
pooled, although they receive a contract with positive power. The high-effort region is always
weakly contained in the first-best high-effort region. Moreover, either this inclusion is strict (in the
sense that it is contained in the interior of the first-best effort region), or the optimal mechanism
features only two contracts: a cost-plus and a fixed-price contract.

Our last application consists of an optimal taxation model in the tradition of Mirrlees (1971),
with the new feature that the mapping between effort and income is stochastic. Thus, the model
can no longer be reduced to a pure adverse selection model. Individuals in our model differ in
their conditional probabilities of generating high or low incomes given each effort level. We study
the optimal nonlinear income tax for a Rawlsian planner. Tax rates are decreasing and there is
always bunching at the bottom of the distribution, where all types face tax rates of 100%. Under
the additional assumption of quasi-linear utilities, we show that there is also bunching in an
intermediate region, although they face lower tax rates. Either the high-effort region is contained
in the interior of the first-best high-effort region, or the optimal tax system features only two tax
brackets: tax rates of 100% for lower types and 0% on higher types. We then establish conditions
under which the optimal tax system generically features a distortion at the top. We also obtain
conditions under which the optimal tax system can be implemented with a limited number of tax
brackets.

Related Literature

Adding private information to conditional probability distributions naturally leads to a multi-
dimensional screening environment. It is often challenging to characterize the solutions of such
problems since one cannot determine from the outset the direction in which incentive constraints
bind. While most of the multidimensional screening literature has focused on generalizations of
the non-linear pricing model, we study a different class of models. The class of models covered
by our framework includes, for example, generalizations of the principal-agent model common in

2See, for example, Karlan and Zinman (2009), Bajari, Hong, and Khwaja (2012), and
Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013).
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corporate finance and labor economics, the model of insurance provision by a monopolist, the
Mirrleesian model of taxation, as well as procurement and regulation models.

There are some key differences between our framework and the non-linear pricing framework
of multidimensional screening. First, conditional on effort, only one dimension of the type vector
matters. Therefore, payoffs conditional on effort are not strictly monotone in all dimensions.
However, since effort is not observable, the optimal mechanism has to provide incentives for the
agent to pick the appropriate effort level. As a result, local incentive compatibility is no longer
sufficient to ensure global incentive compatibility: types may also deviate in the effort dimension,
thereby pooling with “distant” types. In fact, all types who exert high effort in our optimal
mechanism have binding global incentive-compatibility constraints. The principal’s program,
therefore, has to take into account a continuum of binding global constraints. Intuitively, this
program corresponds to a non-standard optimal control problem with a continuum of intermediate
constraints (on top of the local first- and second-order conditions). Although there exists no
general method for this class of problems, we are able to obtain optimality conditions using a
calculus of variations approach.

Despite these differences, versions of classic results from the multi-dimensional screening litera-
ture also hold in our framework. For example, Armstrong (1996) established that it is generically
optimal to exclude a positive mass of buyers with low valuations. Rochet and Choné (1998)
showed that Armstrong’s result can be generalized but, instead of exclusion, the principal would
typically extract all the surplus from a positive mass of types. While it is not optimal to exclude
types in our framework (as long as exclusion is not first-best optimal and participation constraints
are type independent), it is also the case that the principal extracts the full surplus from a region
of types with low conditional probabilities of success. In contrast, exclusion is always optimal
in the insurance application of our model because of the type-dependent reservation utilities.
Rochet and Choné also established that bunching was a generic property of multidimensional
screening models. In our framework, the solution always entails “bunching at the bottom.” In
fact, bunching can be so extreme that, in some cases, the optimal mechanism features only a
finite number of contracts.

We obtain several new results that are not present in the non-linear pricing model. For
example, because all types who exert high effort have binding global constraints, the optimal
allocation typically features a distortion at all points. This result contrasts with the “no distortion
at the top” property from one-dimensional models, as well as Rochet and Choné’s (1998, pp. 811)
generalization of it (“no distortion at the boundary”).3

Our paper relates to and extends several lines of work. The first one is that on screening in
insurance markets with both adverse selection and moral hazard. Stewart (1994) argued that
adverse selection and moral hazard may partially offset the welfare loss associated with each
other. Since low risk types are offered incomplete coverage because of adverse selection, they may
exert more effort than if they were fully insured. Chassagnon and Chiappori (1997) introduced
precautionary effort in the seminal model of Rothschild and Stiglitz (1976) and characterized the
set of separating equilibria. De Meza and Webb (2001) and Jullien, Salanie, and Salanie (2007)
considered models where consumers have private information about their risk aversion and may

3Laffont, Maskin, and Rochet (1987) considered a natural departure from the nonlinear pricing models of
Mussa and Rosen (1978) or Maskin and Riley (1984), where agents have quadratic utility functions (linear de-
mands) and types are two-dimensional. Rochet and Stole (2002) introduced independently distributed reservation
utilities in the standard nonlinear pricing model. In the monopolistic case, they show that there is no distortion
at the top, and either no distortion or bunching at the bottom. For a survey of the multidimensional screening
literature, see Rochet and Stole (2003).
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engage in precautionary effort, and showed that the correlation between risk and coverage may
be negative.4 Similarly, Chiu and Karni (1998) presented an explanation for the lack of private
unemployment insurance based on the interaction between employees’ preferences for work and
the unobservable effort exerted on the job.

While these papers studied models with two types of consumers, we allow for general contin-
uous type distributions on the space of conditional probabilities. Therefore, our paper extends
the literature by characterizing optimal insurance contracts when consumer’s private information
about riskiness is unrestricted. The continuous-type model allows us to determine which are the
relevant binding constraints and provides a clearer representation of the richness of the incentive
problem.5

The second line of related work concerns optimal taxation models with multidimensional tax-
payer types. The seminal model of Mirrlees (1971), and most of the literature that followed,
assumed that taxpayers differ only through a one-dimensional productivity parameter. In reality,
however, taxpayer heterogeneity is multi-dimensional. Nonetheless, the theoretical difficulty of
characterizing the solution of multidimensional screening programs has been a substantial bar-
rier for the analysis of optimal taxes when taxpayer types are multidimensional. Accordingly,
most of the literature has either assumed a discrete number of types, or used simulations in
order to obtain properties of the optimal tax system.6 A few recent notable exceptions are
Kleven, Kreiner, and Saez (2009), Choné and Laroque (2010), Rothschild and Scheuer (2012),
and Rothschild and Scheuer (2013), who study continuous-type two-dimensional screening prob-
lems resulting from the design of taxes for couples, heterogeneity in the opportunity cost of work,
self-selection into different sectors, or rent seeking, respectively.

Our paper also contributes to the literature on optimal regulation and procurement. The
classic model of Laffont and Tirole (1986, 1993) considers an environment that features both
adverse selection (the regulated firm has private information about its technology) and moral
hazard (the regulator cannot observe the firm’s cost-reducing effort). However, because the link
between effort, types, and output is deterministic, the model can be reduced to a pure adverse
selection model.7

Caillaud, Guesnerie, and Rey (1992) and Picard (1987) allow for noise in the relationship
between output and effort and show that, under certain conditions, the principal can achieve
the same utility as in the absence of noise.8 In our model, pure adverse selection does not

4In De Meza and Webb (2001), one of the two types is risk-neutral, whereas the other type is risk averse, and
insurance firms have positive administrative costs. Jullien, Salanie, and Salanie (2007) studied consumers with
CARA utilities and showed that the power of incentives always decreases with risk aversion.

5As in our model, most of the insurance literature – including all the papers above – focus on two states (loss
and no loss). Furthermore, with the exception of Jullien, Salanie, and Salanie (2007), these papers also assume
two effort levels. However, they study competitive equilibria whereas we study the monopolist case.

6Tarkiainen and Tuomala (1999) and Judd and Su (2006) discuss the theoretical difficulties of characterizing
optimal taxes with multidimensional types and present simulations showing that optimal taxes in multidimensional-
and one-dimensional-type models can be substantially different. Several papers have analyzed models with two
types in each of two dimensions, which can be suitably mapped into a one-dimensional model consisting of four
types. For example, Boadway, Marchand, Pestieau, and del Mar Racionero (2002) study optimal income taxes
and Cremer, Pestieau, and Rochet (2001) show that the uniform commodity tax result fails to hold when types
are multidimensional. Diamond (2005) and Diamond and Spinnewijn (2011) study the optimal taxation of in-
dividuals with heterogeneous skills and discount factors using a model with two types in each dimension, while
Tenhunen and Tuomala (2010) consider three types in each dimension.

7This kind of environments, which also includes the Mirrleesian optimal taxation model, are often labeled ‘false
moral hazard’ models (c.f. Laffont and Martimort, 2002).

8Caillaud, Guesnerie, and Rey (1992) describe these as ‘noisy adverse selection models’ rather than models of
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entail any welfare losses compared to the first best, whereas pure moral hazard does. Moreover,
welfare under joint moral hazard and adverse selection is lower than in the cases of both pure
moral hazard and pure adverse selection. The reason for the contrasting welfare results is that
agents in our model have private information about the conditional distribution of outcomes given
efforts, whereas agents in their models have private information about the cost of effort. Another
difference between our models is that we are able to characterize the solution under both risk
neutrality and risk aversion, whereas they only consider risk-neutral agents.

We believe that the robustness of bunching indicates a non-trivial relationship between the
complexity of the environment and the number of contracts offered to the agents. When the
distribution of outcomes given efforts is observable (pure moral hazard), the principal is able to
perfectly design the contract for each type. Consequently, each type who exerts high effort is
offered a different contract. Moreover, all types who exert low effort obtain a constant payment.
When the conditional distributions of outcomes are unobservable, offering a large number of
contracts introduces too many possible deviations by the agents, which requires the principal to
leave very large informational rents. Offering a limited number of contracts can be an efficient
way to prevent gaming by the agents. In some cases, these informational rents are so large that
the optimal mechanism features a finite number of contracts only.

The optimality of offering simple contracts in some “complex” environments is related to
the robustness intuition of the seminal work of Holmstrom and Milgrom (1987). However, the
notion of robustness in our model is different from the one in their paper. Here, offering a
limited number of contracts is robust in that it reduces the agents’ incentives to misrepresent
their private information about the environment. In Holmstrom and Milgrom’s model, linear
contracts are robust in the sense that they prevent the agent from readjusting effort over time.9

The structure of the paper is as follows. Section 2 presents the basic framework and Section
3 derives some general properties of the solution. Section 4 then characterizes the solution and
establishes several additional properties under the assumption of risk neutral agents, whereas
Section 5 generalizes the characterization for situations where agents may be risk-averse. Section
6 applies our framework to multidimensional models of insurance (6.1), regulation (6.2), and
optimal taxation (6.3). Then, Section 7 concludes.10

2 Model

2.1 Statement of the Problem

There is a risk-neutral principal and an agent who may be either risk neutral or risk averse. The
agent exerts an effort e ∈ {0, 1} , which is unobservable by the principal. The principal does,
however, observe the outcome from the partnership x ∈ {xL, xH} , which is stochastically affected

joint adverse selection and moral hazard since they “restrict attention to risk-neutral agents, which eliminates the
insurance question that characterizes moral hazard problems.”

9Edmans and Gabaix (2011) extend the linearity results to a model in which the realization of noise occurs
before the action in each period and the principal desires to implement a fixed action in all states. Relatedly,
Chassang (2011) introduces a class of calibrated contracts that are detail-free and approximate the performance
of the best linear contract in dynamic environments when players are patient, while Carroll (2013) shows that the
best contract for a principal who faces an agent with uncertain technology and evaluates contracts in terms of
their worst-case performance is linear.

10Appendix A presents the benchmark cases of pure moral hazard and pure adverse selection. All proofs are in
Appendix B.
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Figure 1: Type Space (shaded area).

by the agent’s effort. We refer to ∆x ≡ xH − xL > 0 as the incremental output. Let pe denote
the probability of outcome xH given effort e. We refer to xH and xL as high and low outcomes
and to e = 1 and e = 0 as high and low efforts.

The agent has better knowledge about the distribution of outcomes than the principal. There-
fore, the conditional distribution of outcomes given efforts is private information. The agent’s
type is identified by the vector p ≡ (p0, p1) . The principal has a continuous prior distribution
over types, denoted by f .

Types satisfy the Monotone Likelihood Ratio Property (MLRP), which states that exerting
higher effort increases the probability of the high outcome: p1 ≥ p0. Under MLRP, the type space
is contained in the area above the 45o line in Figure 1. Let ∆̄ = {(p0, p1) : p1 ≥ p0} denote the
space of types satisfying MLRP. We assume that the distribution of types f has full support on
∆̄.11

The agent’s preferences over money W and effort e are represented by an additively separable
von-Neumann Morgenstern utility function, u (W ) − ce, where c0 < c1, and u is continuously
differentiable, increasing, and weakly concave, and the marginal utility function u̇ is bounded.

There is no loss of generality in focusing on direct mechanisms in which the agent follows
‘honest and obedient’ strategies (Myerson, 1982). Accordingly, we can restrict mechanisms to be
a fixed payment function W : ∆̄ → R, a bonus function B : ∆̄ → R, and an effort recommendation
function e : ∆̄ → {0, 1} . We refer to the pair of payments W (p) and B (p) as a contract. An
agent who reports type p agrees to exert (unobservable) effort e (p) and receives W (p) in case
of low output and W (p) +B (p) in case of high output.

As in Grossman and Hart (1983), it is convenient to express these mechanisms in terms of
the agent’s utility. Let w ≡ u (W ) denote the agent’s utility from the fixed payment W and let
b ≡ u (W +B)− u (W ) denote the ‘power’ of the contract. The power of a contract is the utility
gain from a high output relative to a low output. A mechanism is completely characterized by
a pair of functions w and b and an effort recommendation function e. With a slight abuse of
notation, we will therefore refer to a mechanism as a function (w, b, e) : ∆̄ → R2× {0, 1}, and we
will refer to the pair w (p) and b (p) as a contract.

Given a mechanism (w, b, e) , a type-p agent obtains expected utility

U (p) ≡ w (p) + pe(p)b (p)− ce(p). (1)

11It is immediate to generalize our results for distributions that do not satisfy MLRP as long as their support
contains ∆̄, by projecting types outside ∆̄ onto the 45o line.
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The agent follows honest and obedient strategies if the following incentive-compatibility constraint
is satisfied:

U (p) ≥ w (p̂) + peb (p̂)− ce, ∀p, p̂ ∈ ∆̄, ∀e ∈ {0, 1} . (IC)

The mechanism satisfies individual-rationality if the following participation constraint is satis-
fied:12

U (p) ≥ 0, ∀p ∈ ∆̄. (IR)

We assume that the agent can costlessly reduce any amount of output (free disposal).13 Therefore,
payments have to be nondecreasing in the output:

b (p) ≥ 0, ∀p ∈ ∆̄. (FD)

A mechanism is feasible if it satisfies incentive-compatibility, individual-rationality, and free dis-
posal.

The principal’s expected utility is:
ˆ

∆̄

{
pe(p) [xH − u−1 (w (p) + b (p))] +

(
1− pe(p)

)
[xL − u−1 (w (p))]

}
f(p)dp. (2)

Two mechanisms are equivalent if they induce the same expected payoff to the principal and all
agent types. A mechanism is optimal if it maximizes the principal’s expected utility (1) within
the class of feasible mechanisms.

2.2 Principal’s Problem

In this subsection, we obtain necessary and sufficient conditions for the optimality of a mechanism.
The first result establishes that there is no loss of generality in considering mechanisms for which
there exists a continuous and non-decreasing function separating the sets of types who exert high
and low efforts:14

Lemma 1. For any feasible mechanism, there exists an equivalent mechanism (w, b, e) such that
e (p0, p1) = 1 if and only if p1 > ϕ (p0) for a continuous and non-decreasing function ϕ : [0, 1] →
[0, 1].

The intuition behind Lemma 1 is the following. Suppose a feasible mechanism recommends
that type p = (p0, p1) exerts high effort, and consider a type p̂ = (p0, p1 + ε) for some ε > 0.
Type p̂ has the same distribution of outcomes conditional on low effort as p, but has a higher
probability of high outcome conditional on high effort. Therefore, p̂ has an even higher incentive
to exert high effort.

Next, suppose that the mechanism recommends that type p =(p0, p1) exerts low effort, and
consider some type p̂ = (p0 + ε, p1) for some ε > 0. Incentive compatibility implies that p̂ will
have a (weakly) higher incentive to exert low effort than type p has. If type p̂ is indifferent, the
principal can improve by asking it to exert low effort.

12This formulation of the participation constraint with type-independent reservation utilities is standard in
principal-agent models. In Section 6, we allow for type-dependent reservation utilities in order to study optimal
insurance contracts.

13Free disposal is assumed in many principal-agent models, including Innes (1990), Acemoglu (1998), and
Poblete and Spulber (2012).

14We will adopt the convention that indifferent types choose low effort. This will not affect our results since
these types have measure zero.
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Figure 2: Intuition behind Lemma 1 (continuity of ϕ).

The continuity of ϕ follows from the indirect utility function U being continuous, strictly
increasing in p1 in the region of high effort, and constant in p1 in the region of low effort. Figure
2 illustrates the argument. The arrows indicate the direction of growth of the informational rent
function U. Consider points a, b, c, and d. Since U is continuous, if the distances between
a and b and, c and d are small enough, we must have U (a) ≈ U (b) and U (c) ≈ U (d) .
Moreover, because the informational rent increases in p1 in the region above ϕ, we must have
U (c) > U (a) , and because the informational rent is constant in p1 in the region below ϕ, we
must have U (b) = U (d) . Therefore, we must have

U (c) > U (a) ≈ U (b) = U (d) ≈ U (c) ,

which is a contradiction.
For a given feasible mechanism (w, b, e), we refer to the function ϕ as the effort frontier

associated with it.15 The effort frontier partitions the type space into types who exert low and
high efforts:

e (p0, p1) = 1 ⇐⇒ p1 > ϕ (p0) . (3)

The local first- and second-order conditions for incentive-compatibility yield the following neces-
sary conditions:

Lemma 2. Let (w, b, e) be a feasible mechanism and let ϕ and U be the effort frontier and
informational rent functions associated with it. Then:

a. U (p0, p1) is convex, differentiable a. e., and has gradient

∇U (p0, p1) =

{
(b (p0, p1) , 0), if p1 < ϕ (p0)
(0, b (p0, p1)), if p1 > ϕ (p0)

;

b. b (p0, p1) is constant in p1 for p1 < ϕ (p0) and constant in p0 for p1 > ϕ (p0);

15Due to the equivalence result of Lemma 1, we focus on mechanisms for which an effort frontier function ϕ
exists. Any other feasible mechanism will give the same payoff to the principal and all types of agents and will
differ only in a set of zero measure (see the proof of the lemma). Moreover, such a mechanism exists whenever
afeasible mechanism exists.
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c. U (0, 0) ≥ 0 and b (0, 0) ≥ 0.

The two first properties follow from the adverse selection incentive-compatibility constraints,
which requires reporting each type truthfully while following the principal’s effort recommendation
to maximize the agent’s payoff. Properties (a) and (b) are the local first- and second-order
conditions of this maximization program. Property (c) is a direct consequence of the participation
and free disposal constraints.

The conditions from Lemma 2 are implied by adverse selection alone. Moral hazard introduces
additional incentive-compatibility constraints. In particular, under moral hazard, satisfying the
local constraints is not enough to prevent global deviations from being profitable since a type
may now want to pretend to be another “distant” type by choosing a different effort level. The
following lemma presents necessary conditions to avoid global deviations:

Lemma 3. Let (w, b, e) be a feasible mechanism and let ϕ and U be the effort frontier and
informational rent functions associated with it. Then:

d. U (p1, p1) = U (p0, p1) +∆c for p1 > ϕ (p0);

e. b (p1, p1) = b (p0, p1) for almost all (p0, p1) such that p1 > ϕ (p0).

Because the conditional distribution over outputs under high and low efforts is the same for types
on the 45o line and high effort is costly, these types will never exert high effort. Thus, type (p1, p1)
exerts low effort and has the same distribution of outputs as any type (p0, p1) who exerts high
effort (i.e., p1 > ϕ (p0)). Therefore, in any incentive-compatible mechanism, they must get the
same utility net of their different effort costs (d). Property (e) is a consequence of the envelope
theorem applied to deviations along the 45o line.

In models of pure adverse selection, the local necessary conditions (a)-(c) are also sufficient for
the feasibility of a mechanism. We have seen that moral hazard introduces additional necessary
conditions (d) and (e). We now establish that these necessary conditions are also sufficient. Thus,
any optimal mechanism maximizes the principal’s payoff subject to these conditions.16

Let (P ) denote the following program:

max
(w,b,e,ϕ)

ˆ

∆̄

{
xL − u−1 (w (p)) + pe(p) {∆x− [u−1 (w (p) + b (p))− u−1 (w (p))]}

}
f(p)dp (P)

subject to equations (1) and (3), and conditions (a)-(e).

Proposition 1. A mechanism (w, b, e) is optimal if and only if there exists an effort frontier ϕ
such that (w, b, e,ϕ) solves program (P ).

The direct usefulness of the characterization from Proposition 1 is limited by the fact that
Program (P ) is not very tractable as stated. In the next section, we will rewrite (P ) as a one
dimensional program, which will be key to our study of the properties of optimal mechanisms.

16Modulo the conventions from footnotes 14 and 15.
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2.3 One-Dimensional Conditions

Let (w, b, e) be a feasible mechanism and let ϕ and U denote the effort frontier and informational
rent functions associated with it. Let the rent projection associated with this mechanism be the
function U : [0, 1] → R2

+ defined as U (t) ≡ U (t, t). We say that a mechanism is trivial if it
recommends low effort to almost all types.17 The following lemma establishes that any nontrivial
feasible mechanism is characterized by the one-dimensional functions U and ϕ:18

Lemma 4. Let (w, b, e) be a nontrivial feasible mechanism and let ϕ and U denote the effort
frontier and rent projection functions associated with it. Then:

b (p0, p1) =

{
U̇ (p0) if p1 ≤ ϕ (p0)
U̇ (p1) if p1 > ϕ (p0)

(a.e.) , (4)

w (p0, p1) =

{
U (p0)− p0U̇ (p0) + c0 if p1 ≤ ϕ (p0)
U (p1)− p1U̇ (p1) + c0 if p1 > ϕ (p0)

(a.e.) , and (5)

U (ϕ (p0)) = min {U (p0) +∆c;U (1)} . (6)

Lemma 4 establishes that any nontrivial mechanism is (a.e.) characterized by the rent projec-
tion function U , representing the information rent along the 45o line. Given such a rent projection
function U , the effort recommendation (characterized by the effort frontier function) is obtained
by equation (6), which depicts types (p0,ϕ(p0)) who are indifferent between exerting high and
low efforts.

Using the necessary and sufficient properties established previously, we can recover w, b, and ϕ
from the rent projection function. First note that Properties (a) and (b) imply that the derivative
of the rent projection function, U̇ , equals the power of the contract along the 45o line, b (p0, p0).
Because the power of the contract is constant in the region of low effort for types with the same
probability of success given low effort, the derivative of the rent projection function determines b
in the low effort region. Moreover, since the power of the contract along the 45o line equals the
one in the high effort region for each fixed probability of success given low effort (Property e), it
also determines the power of the contract for types who are recommended high effort (see Figure
3). Finally, equation (6), which is the counterpart of Property (e), allows us to recover the effort
frontier ϕ.19

Finally, note that Property (a) establishes that iso-rent functions have an inverse L shape with
the kink at the effort frontier (Figure 4). Therefore, the informational rent U is determined by the
rent along the 45o line U and the effort frontier ϕ. Then, using the definition of the informational
rent (equation 1), we can recover the fixed component of the mechanism w.

It is more convenient to work with the one-dimensional functions U and ϕ rather than the
original two-dimensional mechanism (w, b, e). The principal’s cost of providing rent U and power
U̇ to type t is:

G(U , U̇ , t) ≡ tu−1(U + (1− t)U̇ + c0) + (1− t)u−1(U − tU̇ + c0). (7)

17The optimal trivial mechanism offers the same payments w = c0 and b = 0 and recommends low effort e = 0
to (almost) all types. Similarly to Grossman and Hart (1983), it is convenient to solve for the optimal nontrivial
mechanism and verify whether it generates an expected profit greater than the optimal trivial mechanism.

18Without loss of generality we can assume that U̇(t) is a càdlàg function (i.e., right continuous with left limits
at every point).

19This technique is not entirely new. For instance, Laffont, Maskin, and Rochet (1987) use a similar projec-
tion method to determine a boundary condition of the partial differential equation that characterizes incentive-
compatible mechanisms in their model.
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Figure 3: Iso-power functions: Types who are offered the same contract power b′.

Figure 4: Iso-rent functions: Types with the same informational rents U0 and U1 (with U1 > U0

because informational rents are increasing).

Rewriting the principal’s expected payoff in terms of U and ϕ yields

xL+

ˆ 1

0

ˆ ϕ(t)

t

(t∆x−G(U(t), U̇ (t), t))f(t, s)dsdt+

ˆ 1

0

ˆ 1

ϕ(t)

(s∆x−G(U(s), U̇(s), s))f(t, s)dsdt. (8)

Applying Fubini’s theorem, the principal’s payoff (8) becomes:

xL +

ˆ 1

0

ˆ ϕ

t

(
t∆x−G(U , U̇ , t)

)
f (t, s) dsdt+

ˆ 1

ϕ(0)

ˆ ϕ−1

0

(
t∆x−G(U , U̇ , t)

)
f (s, t) dsdt

= xL +

ˆ 1

0

(
t∆x−G(U , U̇ , t)

)
F0 (t,ϕ) dt+

ˆ 1

ϕ(0)

(
t∆x−G(U , U̇ , t)

)
F1

(
ϕ−1, t

)
dt,

where F0(t, s) ≡
´ s

t
f(t, z)dz and F1(s, t) ≡

´ s

0 f (z, t) dz, and we are omitting the dependence of
the functions U , ϕ and ϕ−1 on t for notational simplicity.
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Therefore, the principal’s program (P ) can be written in terms of of the one-dimensional
functions U and ϕ as:

max
U ,ϕ

xL +

ˆ 1

0

(
t∆x−G(U , U̇ , t)

)
F0 (t,ϕ) dt+

ˆ 1

ϕ(0)

(
t∆x−G(U , U̇ , t)

)
F1

(
ϕ−1, t

)
dt (P’)

subject to (6), U nondecreasing and convex, and U (0) ≥ 0.

Proposition 2. a. Let (w, b, e) be a feasible mechanism, let U and ϕ be the informational rent
and effort frontier functions associated with it, and let U (t) ≡ U (t, t). Then, U (t) and ϕ (t) are
feasible for program (P ′).
b. Suppose U (t) and ϕ (t) are feasible for program (P ′), and define (w, b, e) according to equations
(3), (4) and (5). Then, (w, b, e) is a feasible mechanism.

Proposition 2 simplifies the search for optimal mechanisms by restating the original maxi-
mization over the set of two-dimensional functions (P ) as a maximization over the set of one-
dimensional rent projection and effort frontier functions (P ′). Although this is a one-dimensional
program, it is different from the standard programs from one-dimensional screening models in two
important ways. First, there is no standard probability distribution or utility function that en-
sures the concavity of the objective function. Second, equation (6) corresponds to a non-standard
constraint connecting a each type t to its projection along the effort frontier ϕ (t). Mathemat-
ically, this corresponds to a continuum of intermediate value constraints. Economically, this
means that, in addition to the local incentive compatibility constraints, there is also a continuum
of binding global incentive-compatibility constraints. Using the equivalence between Programs
(P ) and (P ′), we will say that a function U : [0, 1] → R+ is feasible if it is nondecreasing and
convex.20

3 General Properties

This section presents general properties of optimal mechanisms. Our first proposition establishes
that in any optimal mechanism, there exists a positive mass of agents that do not receive any
informational rents (U (p) = 0):

Proposition 3 (Zero Rents at the Bottom). No mechanism that gives strictly positive infor-
mational rents for almost all types is optimal.

Because the rent projection function is nondecreasing and convex, there exists a cutoff type
t∗ > 0 such that U (t) = 0 if and only if t ≤ t∗. Since U̇ (t) = b (t, t), types in the (interior of the)
zero-rent region get the zero-power contract: w = c0, b = 0. Then, equation (6) implies that the
effort frontier ϕ(t) is flat in the interval [0, t∗]. Figure 5 depicts these results graphically.

20The idea of working with a dual approach, which treats the informational rent as the instrument, is justified by
Rochet (1987). In their classic analysis, Rochet and Choné (1998) follow this approach in a multidimensional-type
model. Our approach is different from theirs in three aspects: (i) local constraints are necessary and sufficient in
their model, whereas moral hazard introduces binding global constraints here; (ii) their instrument is the entire
(multidimensional) informational rent function, whereas the domain of the instrument here is a one-dimensional
subspace of the type space; and (iii) their number of instruments is equal to the dimension of the type space. In our
model, the global moral hazard constraint reduces the dimensionality of the instrument from two (the dimension
of the type space) to one through the one-dimensional projection method.
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Figure 5: Types who are offered the zero-power contract and get zero rents.

Recall the original description of the mechanism in monetary units (W,B, e), where W (p)
is the fixed payment and B (p) is the bonus. Our next result establishes that any mechanism
involving a bonus greater than the incremental output ∆x is not optimal:

Lemma 5 (Bounded Bonus). Let (W,B, e) be a feasible mechanism, and suppose that B (p) >
∆x in a set with positive measure. Then, (W,B, e) is not optimal.

The principal gets xL−W (p) if type p produces a low output and xL+∆x−W (p)−B (p) if
he produces a high output. Therefore, Lemma 5 states that it cannot be optimal for the principal
to offer a contract in which she loses money in case of a high output relative to a low output. The
intuition is the following. If the principal were offering such a large bonus, reducing the bonus
would have two effects. First, it would reduce the region of effort. In general, this would be
detrimental to the principal. However, because she is losing money from a high output, this effect
is actually positive in this case. Second, it would reduce the informational rents of all types above
this one (according to the projection on the 45o line), which would, again, raise the principal’s
payoff. Thus, she can unambiguously improve her expected payoff by reducing the bonus.

Using the non-optimality of mechanisms with unbounded bonus functions, we are able to
establish existence. This is an important issue since we are focusing on pure strategy mechanisms
and, therefore, cannot use available existence theorems.21

Theorem 1 (Existence). There exists an optimal mechanism.

Our next result concerns the slope of the effort frontier ϕ. As a benchmark, consider a
situation where the principal can observe both the agent’s type and his effort choice (first best).
The principal would then offer an expected payment u−1 (ce) and would require the effort level
that maximizes the total expected surplus.22 Her payoff from requiring high effort is xL+p1∆x−
u−1 (c1) , whereas her payoff from requiring low effort is xL + p1∆x − u−1 (c0) . Therefore, the

21See, for example, Kadan, Reny, and Swinkels (2011) and references therein.
22If the agent is risk neutral, the principal can offer any random payment with expected value equal to u−1 (ce).
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principal would require high effort from types (p0, p1) such that

p1 ≥ p0 +
u−1 (c1)− u−1 (c0)

∆x
. (9)

This inequality determines the first-best effort frontier, which has slope 1.
Recall that, by equation (6), the effort frontier in any feasible mechanism satisfies

U (ϕ (t)) = U (t) +∆c

for all points in which ϕ (t) < 1. Thus, ϕ̇ (t) = U̇(t)

U̇(ϕ(t))
almost everywhere. Since ϕ (t) > t and

U is convex, it then follows that ϕ̇ ≤ 1 (a.e.). Thus, the effort frontier function in any feasible
mechanism is flatter than the first-best effort frontier. Moreover, by Proposition 3, in any optimal
mechanism there exists t∗ > 0 such that ϕ = ϕ∗ for all t ∈ [0, t∗). We formally state this result
in the following lemma:

Lemma 6 (Slope of Effort Frontier). Let (w, b, e) be an optimal mechanism and let ϕ be the
effort frontier function associated with it. Then, ϕ is continuous, differentiable (a.e.), and ϕ̇ ≤ 1
at all points of differentiability. Moreover, there exists t∗ > 0 such that ϕ (t) = ϕ∗ for all t < t∗.

Next, we turn to the optimality of exclusion of types.

Exclusion

Our individual rationality constraint (IR) required all types to participate in the mechanism. In
many situations, however, the principal can exclude some types by not offering any contracts that
dominate their reservation utility (normalized to zero). This subsection considers mechanisms
when the principal is allowed to exclude types.

Let π (p) ∈ {0, 1} denote the agent’s participation. When π (p) = 0, type p does not par-
ticipate in the mechanism and gets utility zero. When π (p) = 1, he participates and gets the
utility specified in equation (1). As before, there is no loss of generality in focusing on direct
mechanisms in which the agent follows ‘honest and obedient’ strategies. A mechanism in the
model with exclusion of types consists of a pair of functions w (p) and b (p), and recommended
effort and participation functions e (p) and π (p). Given a mechanism (w, b, e, π) , a type-p agent
obtains expected utility:

U (p) ≡ π (p)
[
w (p) + pe(p)b (p)− ce(p)

]
, (10)

and the principal gets expected utility:
ˆ

∆̄

{
xL − u−1(w (p))+

pe(p) {∆x− [u−1(w (p) + b (p))− u−1(w (p))]}

}
π (p) f (p) dp.

The individual-rationality and incentive-compatibility constraints are analogous to the ones in
the no-exclusion model with the appropriate substitution of the utility function (1) by (10). All
previous results can be adjusted to model with exclusion of types by restricting attention to the
set of types who participate. In order to exclude a type of agent, the principal must ensure that
this type gets at most zero expected utility from participating.

Before studying conditions for exclusion in the optimal mechanism, let us consider the exclu-
sion rule when the principal can observe the both agent’s type and his effort choice (first-best
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exclusion rule). From condition (9), the principal’s expected utility when contracting with type
(p0, p1) is

max
{
xL + p0∆x− u−1 (c0) ; xL + p1∆x− u−1 (c1)

}
.

It is therefore optimal to exclude this type if the expected payoff is negative:

max
{
xL + p0∆x− u−1 (c0) ; xL + p1∆x− u−1 (c1)

}
< 0.

Because the expression on the left is increasing in the p0 and p1, it follows that exclusion is
optimal if and only if it is optimal to exclude type (0, 0). Substituting p0 = p1 = 0 in the previous
expression, yields the condition for exclusion to be first-best optimal:

xL < u−1 (c0) . (11)

The following proposition establishes that the same condition for exclusion to be optimal holds
when types and efforts are not observable. Therefore, exclusion is second-best optimal if and only
if it is first-best optimal.

Proposition 4 (Exclusion). It is optimal to exclude a strictly positive mass of types if and only
if exclusion of types is first-best optimal (i.e., condition (11) holds).

The result from Proposition 4 contrasts with the celebrated exclusion result from Armstrong
(1998) for multidimensional screening in the context of a multi-product monopolist. We return to
this issue on Subsection 6.1, when we consider an application to an insurance market, where the
participation constraint is type-dependent. Note that Proposition 4 only refers to the “extensive
margin,” by showing that there is (almost) no exclusion if and only if the first-best features no
exclusion. It does not imply that the exclusion regions in these two environments must coincide.
In fact, it can be shown that when exclusion is optimal, the region of excluded types may either
contain or be contained in the first-best exclusion region.

4 Risk Neutrality

This section characterizes optimal mechanisms when the agent is risk neutral: u (X) = X. In this
case, the first-best region of effort (9) is determined by (p1 − p0)∆x ≥ ∆c. Therefore, a mechanism
implements the first-best effort if its effort frontier solves (ϕ (t)− t)∆x = ∆c whenever ϕ (t) < 1.
Let U be a feasible rent projection and let ϕ be the effort frontier associated with it. The effort
distortion associated with projected type t under the effort frontier ϕ is

(ϕ (t)− t)∆x−∆c. (12)

The effort distortion is zero if the mechanism implements the first-best effort frontier at t; it is
positive if there is less effort than under first best and negative if there is more effort than under
first best.

Let ϕ∗ ≡ U−1 (∆c) denote the lowest projected type who exerts high effort, let t∗ ≡ inf {t : U (t) = 0}
denote the lowest projected type who gets positive rents, and let ξ∗ ≡ sup {t : ϕ(t) = 1} denote
the projected type where the effort frontier hits p1 = 1. In the spirit of Myerson (1981), we define
the expected virtual surplus as

ˆ 1

0

S0(t,U)U (t) f (t,ϕ) dt+

ˆ 1

0

S1(t,U)U (t) f(ϕ−1, t)dt+ S∗ (U)U(ϕ∗), (13)
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where

S0(t,U) :=

{
− (ϕ−t)∆x−∆c

U̇(ϕ)
− F0(t,ϕ)

f(t,ϕ) if t < ξ∗

−F0(t,1)
f(t,1) if t ≥ ξ∗

, (14)

S1(t,U) :=

{
0 if t ≤ ϕ∗

(t−ϕ−1)∆x−∆c

U̇(ϕ−1)
− F1(ϕ−1,t)

f(ϕ−1,t) if t > ϕ∗ , (15)

S∗ (U) :=
(ϕ∗ − E [t|t ≤ t∗,ϕ∗])∆x−∆c

U̇(ϕ∗)
F1(t

∗,ϕ∗),

and E [t|t ≤ t∗,ϕ∗] :=
´ t∗

0
tf(t,ϕ∗)dt

F1(t∗,ϕ∗) . S0 and S1 are the marginal virtual surpluses in the regions
of low and high effort, and S∗ is the inframarginal virtual surplus. These marginal and infra-
marginal virtual surpluses will be key in the interpretation of the trade-offs that determine the
optimal mechanism. Our expected virtual surplus (13) differs from Myerson’s classic formula (and
standard multidimensional generalizations of it) in one important way. Because global incentive
constraints are now binding, the virtual surplus also takes into account the informational rents
that are left to nonadjacent types with binding incentive constraints.

The marginal virtual surpluses S0 and S1 describe the costs and benefits from leaving infor-
mational rents. Recall that types above (t, t) in the low effort region and types to the left of (t, t)
in the high effort region get the same contract (see Figure 3). Consider a small increase in the
projected rents function U (t) for t in the region where some types exert high effort (t > ϕ∗). This
perturbation affects all types who get the same contract as (t, t). Therefore, there is a “vertical
effect” on types above (t, t) in the low effort region and a “horizontal effect” on types to the left
of (t, t) in the high effort region.

Let us consider the vertical effect first. There is a marginal effect through the effort frontier
and an inframarginal effect through the informational rents left to all those that keep exerting
low effort but receive a higher rent. For the marginal effect, recall that type (t,ϕ) is indifferent
between exerting high or low effort (for notational simplicity, we will omit the term t from ϕ (t)).
Exerting high effort yields expected payoff

w (ϕ,ϕ) + ϕb (ϕ,ϕ)− c1 = U (ϕ)−∆c.

Exerting low effort yields
w (t, t) + tb (t, t)− c0 = U (t) .

If we increase U (t) while leaving U (ϕ) constant, type (t,ϕ) will strictly prefer to exert low effort
(that is, condition (6) will no longer hold). The type who will now be indifferent between high and
low efforts (t, ϕ̂) will be above the original one: ϕ̂ > ϕ. Therefore, increasing the rent projection
at t increases the effort frontier ϕ, thereby reducing the effort region. Recall that the distortion
associated to the effort frontier is (ϕ− t)∆x − ∆c, for ϕ < 1. The cost of increasing the effort
frontier (and, thereby, increasing the distortion) is captured by the distortion per unit of bonus
paid to the marginal type (t,ϕ):

(ϕ− t)∆x−∆c

U̇ (ϕ)
, for t < ξ∗.

For the intramarginal effect, note that all types in the vertical line above (t,ϕ) are now receiving
a higher rent. The total mass of those types is F0 (t,ϕ). Since the marginal type (t,ϕ) has mass
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f (t,ϕ), the cost of leaving higher rents relative to the marginal type is captured by the hazard
rate:

F0(t,ϕ)

f(t,ϕ)
, for t < ξ∗.

Combining both terms yields the vertical effect S0(t) (with negative signs due to these effects
being costs).

Next, consider the horizontal effect. Again, there is a marginal effect through the effort frontier
and an inframarginal effect through the informational rents left to all those that keep exerting
high effort but receive a higher rent. Recall that type (ϕ−1, t) is indifferent between high and low
efforts. His expected payoff from high effort is

w (t, t) + tb (t, t)− c1 = U (t)−∆c.

His expected payoff from exerting low effort is

w
(
ϕ−1,ϕ−1

)
+ ϕ−1b

(
ϕ−1,ϕ−1

)
− c0 = U

(
ϕ−1

)
.

Raising U (t) while keeping U (ϕ−1) unchanged makes type (ϕ−1, t) strictly prefer to exert high
effort. Thus, the effort frontier shift to the right (the type who will now be indifferent between
both effort levels is (ϕ̂−1, t) with ϕ̂−1 > ϕ−1), so that the region of high effort increases. The
benefit from the higher effort region is captured by the distortion per unit of bonus paid to the
marginal type (ϕ−1, t):

(t− ϕ−1)∆x−∆c

U̇(ϕ−1)
, for t > ϕ∗.

The inframarginal effect arises from the rents left for all types to the left of (ϕ−1, t) (who still
exert high but now obtain higher informational rents). The cost of leaving total these rents is
given by the mass of those types relative to the marginal type:

F1(ϕ−1, t)

f(ϕ−1, t)
, for t > ϕ∗.

Adding the marginal and inframarginal effects yields the horizontal effect S1 (t) .
The inframarginal effect S∗ is the discrete counterpart of S0 at ϕ∗ = ϕ(0). In order to interpret

it, consider an increase in the informational rent left in a small neighborhood of ϕ∗. Recall that
types (t,ϕ∗) with t ≤ t∗ get the same contract as (ϕ∗,ϕ∗) and are indifferent between exerting
high and low efforts. Thus, the expected payoff from high effort is

w (ϕ∗,ϕ∗) + ϕ∗b (ϕ∗,ϕ∗)− c1 = U (ϕ∗)−∆c = 0.

The payoff from low effort is zero (since, by Proposition 3, types (t, t) with t ≤ t∗ get zero rents).
Therefore, an increase in U (ϕ∗) makes all those types strictly prefer to exert high effort so that
the effort frontier moves down: there exists ϕ̂∗ < ϕ∗ that satisfies condition (6). Incorporating
each of these types reduces the distortion (ϕ∗ − t)∆x−∆c. Since there exists a mass F1(t∗,ϕ∗)
of such types, the total gain from incorporating them equals:

ϕ∗ − E [t|t ≤ t∗,ϕ∗]∆x−∆c

U̇(ϕ∗)
F1(t

∗,ϕ∗).

Moreover, because all of these types get zero payoffs, no informational rents have to be left.
Hence, the hazard rate that appears in the expressions of S0 and S1 vanishes from S∗.
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For notational clarity, let S (t,U) ≡ S0 (t,U) f (t,ϕ) + S1 (t,U) f (ϕ−1, t) denote the marginal
virtual surplus weighted by its probability density. The following lemma establishes that any
optimal mechanism must maximize the expected virtual surplus among the class of feasible mech-
anisms.

Lemma 7. Let U be the rent projection associated to an optimal mechanism. Then, for any
feasible rent projection V : [0, 1] → R,

ˆ 1

0

[U (t)− V (t)]S (t,U) dt+ [U(ϕ∗)− V(ϕ∗)]S∗ (U) ≥ 0.

In our characterization result, we will use the following notions:

Definition 1. Let f : [0, 1] → R be a function with a càdlàg derivative ḟ : [0, 1] → R.

• f is strongly convex in an interval [a, b] ⊂ [0, 1] if there exists m > 0 such that ḟ(y)− ḟ(x) ≥
m(y − x) for all x, y ∈ [a, b];

• We say f has a kink at x0 ∈ (0, 1] if lim
x↗x0

ḟ (x) /= ḟ (x0); and

• An interval [a, b] ⊂ [0, 1] is called a maximal interval where f is affine if there exists m ∈ R

such that ḟ (x) = m, for all x ∈ [a, b], and there is no open interval containing [a, b] such
that ḟ (x) = m for all x in that interval.

The following theorem gives the necessary optimality conditions:

Theorem 2 (Optimal Mechanisms under Risk Neutrality). Suppose that U is an optimal
rent projection. Then:

1. (pointwise condition) If U is strongly convex in a non-degenerated interval [a, b] ⊂ [0, 1],
then S (t,U) = 0 for almost all t ∈ [a, b].

2. (bunching conditions) Let [a, b] ⊂ [0, 1] be a maximal interval where U is affine.

• If ϕ∗ /∈ [a, b], then

0 ≥ a

ˆ b

a

S (t,U) dt ≥

ˆ b

a

tS (t,U) dt ≥ b

ˆ b

a

S (t,U) dt.

Moreover, if U has kink at a (at b), then
´ b

a
(t− a)S(t,U)dt = 0 (

´ b

a
(t− b)S(t,U)dt = 0).

• If a = t∗ and b ≥ ϕ∗, then

ˆ b

t∗
S(t,U)dt + S∗ (U)F1(t

∗,ϕ∗) ≤ 0 and
ˆ b

t∗
(t− ϕ∗)S(t,U)dt ≤ 0.

Moreover, if U has kink at b, then
ˆ b

t∗
S(t,U)dt + S∗ (U)F1(t

∗,ϕ∗) = 0 and
ˆ b

t∗
(t− ϕ∗)S(t,U)dt = 0.
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Recall that S (t,U) gives the marginal gain from a small perturbation to the projected rent
function U . Whenever it differs from zero in an interval where U is strongly convex, it is possible
to find a small enough perturbation that respects convexity and yields a gain to the principal.
Therefore, in such interval, the marginal virtual surplus S (t,U) has to equal zero.

Part 2 are the bunching conditions. In one-dimensional models, the optimal bunching condi-
tion is determined by the ironing principle, which can be obtained by studying perturbations to
the region of pooled types. Because our model has two-dimensional types, there are two admis-
sible perturbation directions that retain the convexity of U : translations and rotations. The two
bunching conditions are precisely the necessary conditions that state that perturbing the rent
projection in either of these directions does not increase the principal’s payoff.

Recall that Proposition 3 showed that in any optimal mechanism an interval of types with
low probability of success given both high and low efforts get a fixed payment with utility equal
to their cost of effort. The next proposition shows that there exists an adjacent interval in the
low effort region where all types get a uniform contract featuring a fixed payment w < c0 and a
bonus between the incremental cost of effort ∆c and the incremental output ∆x:

Proposition 5 (Two Contracts at the Bottom). Let (w, b, e) be an optimal nontrivial mech-
anism. There exists ϕ∗ > 0 and t∗ ∈ (0,ϕ∗) such that

• All types p ∈ [0, t∗)× [0,ϕ∗) ∩∆ get the same contract w = c0 and b = 0, and

• All types p ∈ [t∗,ϕ∗]× [0, 1] ∩∆0 get the same contract w < c0 and b ∈ (∆c,∆x].

Moreover, types in both regions exert low effort.

The result from of Proposition 5 is depicted in Figure 6. Types with sufficiently low probability
of success given low and high efforts, p0 ≤ t∗ and p1 < ϕ∗, receive a fixed payment equal to the cost
of low effort c0 and exert low effort. The next set, labeled B, comprises types with intermediate
probabilities of success given low efforts. All types in this set are offered the same contract,
involving a payment with a lower fixed part w < c0 and a bonus greater than the incremental
cost of effort b > ∆c.

The intuition for this result is the following. All types projected into diagonal types t < ϕ∗

exert low effort. Therefore, slightly increasing their informational rents does not affect the effort
region associated with them. However, it generates an incentive for types above them to reduce
their effort (thereby reducing the effort region associated with types projected above ϕ∗) and
requires more rents to be left for types that exert high effort and get the same contracts as them:
(p0, p1) with p1 > ϕ (p0) and p0 ∈ [ϕ∗,ϕ (ϕ∗)]. Because both effects reduce the principal’s payoff,
she will want to leave as little informational rents as possible while preserving the condition that
the effort frontier starts at ϕ∗. This is obtained by paying the zero bonus for all diagonal types
that are not associated with anyone who exerts high effort (region A). For diagonal type t∗, the
principal needs to pay a bonus greater than the incremental cost of effort in order to incentivize
types {(t,ϕ∗) : t ≤ t∗} to exert high effort. The principal then reduces the informational rents
left in this region by paying the same bonus to all those types.

We now examine the effort distortion relative to the first-best benchmark. Recall that, by
equation (9) the first-best allocation recommends high effort from all types that satisfy

p1 ≥ p0 +
∆c

∆x
. (16)
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Figure 6: Two Contracts at the Bottom: Types in Region A receive the same constant payment
(w = c0, b = 0); types in Region B receive the same contract (w < c0, b > ∆c).

This condition can be rewritten as (p1 − p0)∆x ≥ ∆c. That is, a type should exert high effort if
the incremental benefit from effort (i.e., the incremental effect of effort on outcomes p1−p0 times
the incremental output ∆x) exceeds the incremental cost ∆c.

Under risk neutrality, the first-best allocation is implemented by making the agent a residual
claimant (b = ∆x). Our first result establishes that, because the principal will never pay a bonus
greater than the incremental output, the effort region in any optimal mechanism is contained in
the first-best effort region.

Formally, let (w, b, e) be an optimal mechanism and consider a type (p0, p1) in the high effort
region. By incentive compatibility, deviating to a low effort while reporting the same (true) type
must yield a lower payoff:

w(p0, p1) + p1b(p0, p1)− c1 ≥ w(p0, p1) + p0b(p0, p1)− c0.

Subtracting w(p0, p1) from both sides and rearranging, yields

p1 ≥ p0 +
∆c

b(p0, p1)
≥ p0 +

∆c

∆x
,

where the last inequality follows from the fact that bonuses are bounded above by ∆x (Lemma 5).
Therefore, the type must also exert high effort in the first-best benchmark. Recall that all types
(p0, p1) with ϕ (p0) = 1 exert low effort. Thus, we have thus established the following lemma:

Lemma 8. Let (w, b, e) be an optimal mechanism and let ϕ be the effort frontier associated with
it. Then ϕ (t) ≥ t + ∆c

∆x
whenever ϕ (t) < 1.

Lemma 8 does not rule out the possibility of implementing the first-best effort frontier for some
diagonal types t, which would be the case if the optimal mechanism left some types as residual
claimants by offering them a bonus equal to the incremental output (U̇ (t) = ∆x). Offering such
a large bonus eliminates the distortion but leaves large informational rents to the agents.

We say that the a mechanism partially sells the firm if it consists of the following two contracts
to all agent types: (c0, 0) and (w,∆x), for some w ≤ c0. Under this mechanism, agents self-select
into two categories: “employees” who work for the fixed wage contract and get zero rents, and
“capitalists” who buy the firm for the price w and keep the additional informational rents.

Our next result establishes that the optimal mechanism either partially sells the firm, or it
features “strict distortion at all points” in the sense that the low-effort region in the first-best
benchmark is contained in the interior of the low-effort region of any optimal mechanism (see
Figure 7):
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Figure 7: Strict distortion at all points.

Definition 2. Let (w, b, e) be an optimal mechanism and let ϕ be the associated effort frontier.
We say that there is strict distortion at all points if ϕ (t) > t+ ∆c

∆x
for all t such that ϕ (t) < 1.

Proposition 6 (Strict Distortion). Let (w, b, e) be an optimal mechanism. Then, either there
is strict distortion at all points, or the principal partially sells the firm.

The intuition behind Proposition 6 is the following. Because distortions close to the optimum
have second-order costs, it can only be desirable to implement zero-distortion for some type if
there are no other types with positive distortions and rents (otherwise, the principal can improve
by rebalancing the amounts of distortion between these two types). Furthermore, if the optimal
mechanism sells the firm to a certain projected type t̂, it must also sell the firm to all types with
projections above t̂. Then, all types with projections above t̂ are also undistorted.

Proposition 6 contrasts starkly with the usual no-distortion at the top result from one-
dimensional models. In standard one-dimensional models, all agent’s allocations except for the
highest ones are distorted. Here, either the allocations of all projected types (including the high-
est type, t = 1) are distorted, or only projected types who get zero rends (t ≤ t∗) get distorted
allocations. Strict distortion at all points is a consequence of the global incentive constraint at
t = 1, which implies that the principal must leave informational rents even for the highest types.

A natural question is whether partially selling the firm may be optimal. The next result shows
that partially selling the firm is generically not optimal and, therefore, the optimal mechanism
features a strict distortion at all points:

Proposition 7 (Genericity of Strict Distortion). For every ε > 0, there exists a density f̃
such that ||f − f̃ ||∞ < ε and there is strict distortion at all points for f̃ .23

Finite Mechanisms

A central message from models of multidimensional screening in the context of nonlinear pricing is
the generality of bunching (Rochet and Choné, 1998). Obviously, since types are two-dimensional
while instruments are one-dimensional, there has to be some bunching in our model. The inter-
esting issue here is whether a positive mass of types get the same contract.

23|| · ||∞ denotes the supreme norm in the space of continuous functions f : ∆̄ → R.
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In the absence of adverse selection (i.e., when types are observable but effort is not), each
contract is taken by at most two types. If the solution of the principal’s program (P’) consisted of
a strictly convex rent projection U , each contract would be taken by the vertical and horizontal
projections from Figure 3, which also has zero mass. However, Proposition 3 shows that the
convexity constraint has to bind at the optimum mechanism. As a result, regions of type with
positive mass are offered the same contract. The intuition is reminiscent of Rochet and Choné
(1998): type multidimensionality makes it hard to satisfy the local second-order condition from
incentive compatibility (non-decreasing allocations) so that the solution involves bunching.

In this subsection, we show that under certain conditions the optimal mechanism can be im-
plemented with a menu of finitely many contracts. Therefore, the additional incentive-constraints
introduced by the multidimensionality of types imposes such a cost of leaving informational rents
by preventing too many possible deviations that the principal will, in some cases, prefer to offer
a very reduced number of contracts.

Let us define the generalized hazard rate function:

R(p0, p1) ≡
F0(p1, 1) + F1(p0, p1)

f(p0, p1)
.

We say that the generalized hazard rate satisfies the increasing rents condition if

∂R

∂p0
(p0, p1) > 0 and

∂R

∂p0
(p0, p1) +

∂R

∂p1
(p0, p1) ≥ 0.

Increasing rents is weaker than strict monotonicity since R may decrease in p1 as long as it is
sufficiently increasing in p0. The term F0(p1,1)

f(p0,p1)
is the ratio between the mass of types above the

diagonal point (p1, p1) and the mass at (p0, p1). The term F1(p0,p1)
f(p0,p1)

=
´ p0
0 f(x,p1)dx
f(p0,p1)

is the ratio

between the mass of types to the left of (p0, p1) and the mass at (p0, p1). Note that the uniform
distribution satisfies increasing rents.

An implication of the increasing rents condition is that the informational rents associated
with types along the diagonal are non-decreasing. The following lemma establishes that, under
increasing rents, any optimal mechanism (w, b, e) can be implemented by offering at most two
contracts to all types (p0, p1) with ϕ (p0) = 1:24

Lemma 9. Suppose that the distribution of types satisfies increasing rents. Let (w, b, e) be an
optimal mechanism with associated rent projection U . Then, U is a piecewise linear function with
at most two pieces on [ξ∗, 1].

The intuition behind Lemma 9 is the following. When the generalized hazard rate has in-
creasing rents, the marginal virtual surplus is a strictly decreasing function of bonus. Thus, the
marginal virtual surplus will be different from zero in every interval where the bonus is strictly
increasing (except for at most one point). There are three possible cases: the virtual surplus may
be always positive, always negative, or initially positive and then negative. In all of these cases,
it is possible to increase the virtual surplus by replacing the original strictly increasing bonus by
a piecewise linear one that preserves incentive compatibility. For example, if the marginal virtual
surplus is negative in the entire interval [ξ∗, 1], replacing the rent projection by the piecewise
linear function consisting of the maximum of the tangents of original rent projection at ξ∗ and 1
preserves incentive compatibility and strictly increases the virtual surplus.

24Recall that ξ∗ was defined as the type where the effort frontier reaches one, inf {t : ϕ (t) = 1} .
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Recall that all contracts are identified by the contracts offered to types in the 45o line. By
Proposition 5, diagonal types (t, t) with t ≤ ϕ∗ are offered exactly two contracts. Moreover, by
Lemma 9, when the generalized hazard rate has increasing rents, all diagonal types (t, t) with
t ≥ ξ∗ are offered at most two contracts. In general, types with projections t ∈ (ϕ∗, ξ∗) can be
offered any number of contracts. The next proposition establishes that when the incremental
output ∆x is “not too large” relative to the incremental cost ∆c of effort, this region is empty
and, therefore, the optimal mechanism features at most three contracts:

Proposition 8 (Three Contracts). Suppose that the distribution of types satisfies increasing
rents and suppose that ∆x

∆c
≤ 2. Then:

(i) the rent projection U associated with any optimal mechanism is piecewise linear with at most
three pieces; and
(ii) the optimal mechanism can be implemented by at most three pairs of conditional payments:
#B

(
∆̄
)
= #W

(
∆̄
)
= 3.

In particular, when the distribution is uniform the finiteness of contracts under the optimal
mechanism holds for a slightly larger set of parameter values:

Corollary 1 (Uniform Distribution). Suppose that types are uniformly distributed on ∆ and
suppose that ∆x

∆c
≤ 3. Then:

(i) the rent projection U associated with any optimal mechanism is piecewise linear; and
(ii) the optimal mechanism can be implemented by a finite number of payments: B

(
∆̄
)

and
W
(
∆̄
)

are finite.

Finite optimal mechanisms also arise under different supports for the type distribution. For our
next proposition, we depart from the full support assumption and assume that the conditional
probability of a high outcome is bounded away from zero. Formally, for this proposition we
consider following modified type space:

∆̄ (p) = {(p0, p1) : p ≤ p0 ≤ p1} ,

where p > 0. It is straightforward to adapt the characterization results previously derived for the
type space ∆̄ to this case. Then, we obtain the following result:

Proposition 9 (Two Contracts). Suppose the density f(p0, p1) on ∆̄(p) is non-increasing in
p0, and suppose that p ≥ ∆x−∆c

∆x+∆c
. Then,

(i) the rent projection U associated with any optimal mechanism is piecewise linear with at most
two pieces; and
(ii) the optimal mechanism can be implemented by at most two contracts: #b

(
∆̄
)
= #w

(
∆̄
)
= 2.

Note that Propositions 8 and 9 as well as Corollary 1 all required the incremental output ∆x
not to be “too large” relative to the incremental cost ∆c of effort. This highlights the trade-off
between the incentives for effort provision and rent extraction faced by the principal. When the
benefit of effort is not “too high,” the optimal mechanism involves offering a limited number of
contracts, which reduces the informational rents that have to be left to the agent.

5 Risk Aversion

In this section, we generalize the characterization of optimal mechanisms obtained in the risk-
neutral case for weakly concave utility functions. Let U be a feasible information projection
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function and let ϕ be the effort frontier associated with it. The generalizations of the marginal
and inframarginal virtual surpluses when the utility function is weakly concave are:25

S0(t,U) ≡

{
− (ϕ−t)∆x−(G(ϕ)−G)

U̇(ϕ)
− ∂G

∂U
F0(t,ϕ)
f(t,ϕ) if t < ξ∗

−∂G
∂U

F0(t,1)
f(t,1) if t ≥ ξ∗

,

S1(t,U) ≡

{
0 if t ≤ ϕ∗

(t−ϕ−1)∆x−(G−G(ϕ−1))

U̇(ϕ−1)
− ∂G

∂U
F1(ϕ−1,t)
f(ϕ−1,t) if t > ϕ∗ , and

S∗ (U) ≡
(ϕ∗ −E [t|t ≤ t∗,ϕ∗])∆x−G(ϕ∗)

U̇(ϕ∗)
F1(t

∗,ϕ∗)

where we are using the notation G = G(U , ˙U , t), G(ϕ) = G(U(ϕ), U̇(ϕ),ϕ) and G(ϕ−1) =
G(U(ϕ−1), U̇(ϕ−1),ϕ−1). The marginal virtual surpluses S0 and S1 differ from their risk-neutral
counterparts (14) and (15) in that now the hazard rates are multiplied by the partial derivative
∂G/∂U . In the risk neutral case, each unit of utility left to the agent costed one dollar to the
principal. Therefore, the informational rents left to the agent were determined solely by the
hazard rates that specified the mass of types that received rents relative to the type on the effort
frontier. Under risk aversion, each unit of utility left to the agent costs ∂G/∂U to the principal.
Since the principal cares about informational rents in dollars rather than in utility units, the
hazard rate is multiplied by the “conversion rate” ∂G/∂U . Since there are no informational rents
left for the inframarginal types, S∗ remains unchanged relative to the risk neutral case. As in the
risk neutral case, let S (t,U) ≡ S0 (t,U) f (t,ϕ) + S1 (t,U) f (ϕ−1, t) denote the marginal virtual
surplus weighted by its probability density.

When the agent is risk averse, the cost of providing a certain rent U is also a function of
the power of the contract U̇ . Thus, the relative costs of increasing the power of a diagonal type
t equals the cost of providing power ∂G/∂U̇ times the hazard rate of types who get the same
contract on the high-effort region (horizontal effect) and the hazard rate of types who get the
contract on the low-effort region (vertical effect). It is, therefore, useful to define each of these
marginal costs as:

C0(t,U) ≡

{
∂G
∂U̇

F0(t,ϕ)
f(t,ϕ) if t < ξ∗

∂G
∂U̇

F0(t,1)
f(t,1) if t ≥ ξ∗

,

C1(t,U) ≡

{
0 if t ≤ ϕ∗

∂G
∂U̇

F1(ϕ−1,t)
f(ϕ−1,t) if t > ϕ∗ .

As in the risk-neutral case, it is convenient to define the marginal cost of providing power weighted
by its probability density:

C(t,U) ≡ C0(t,U)f (t,ϕ) + C1(t,U)f
(
ϕ−1, t

)
.

The following lemma establishes that any optimal mechanism must maximize the expected virtual
surplus among the class of feasible mechanisms:

Lemma 10. Let U be the rent projection associated with an optimal mechanism. Then, for any
feasible V : [0, 1] → R,
ˆ 1

0

[U (t)− V (t)]S (t,U) dt−

ˆ 1

0

[
U̇(t)− V̇(t)

]
C(t,U)dt + [U (ϕ∗)− V (ϕ∗)]S∗ (U) ≥ 0.

25To simplify the notation, the dependence of the derivatives ∂G/∂U and ∂G/∂U̇ on (U , U̇ , t) is omitted.
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The following theorem gives the necessary optimality conditions:

Theorem 3 (Optimal Mechanisms under Risk Aversion). Let U be an optimal rent projec-
tion. Then:

1. (pointwise condition) If U is strongly convex in a non-degenerated interval [a, b] ⊂ [0, 1] such
that ϕ∗ /∈ [a, b], then

S(t,U) +
d

dt
{C(t,U)} = 0,

for almost all t ∈ [a, b].

2. (bunching condition) Let [a, b] ⊂ [0, 1] be a maximal interval where U is affine.

• If ϕ∗ /∈ [a, b], then

0 ≥ a

ˆ b

a

S (t,U) dt ≥

ˆ b

a

tS (t,U) dt ≥ b

ˆ b

a

S (t,U) dt.

Moreover, if U has kink at a (at b), then
´ b

a
(t− a)S(t,U)dt = 0 (

´ b

a
(t− b)S(t,U)dt = 0).

• If a = t∗ and b ≥ ϕ∗, then
ˆ b

t∗
S(t,U)dt + S∗ (U)F1(t

∗,ϕ∗) ≤ 0, and
ˆ b

t∗
(t− ϕ∗)S(t,U)dt ≤ 0.

Moreover, if U has kink at b, then
ˆ b

t∗
S(t,U)dt + S∗ (U)F1(t

∗,ϕ∗) = 0, and
ˆ b

t∗
(t− ϕ∗)S(t,U)dt = 0.

In the next section, we apply the characterization derived in our basic framework to other settings.

6 Applications

6.1 Insurance

This subsection adapts our basic framework to study the optimal provision of insurance by a
monopolist. The main difference between the model considered in Section 5 and a standard
insurance framework is the presence of type-dependent participation constraints (c.f., Stiglitz,
1977; Chade and Schlee, 2012), since riskier types have a lower opportunity cost of remaining
uninsured.

The model features a monopolistic insurance firm (principal) offering insurance to risk averse
consumers (agents), with a strictly concave utility function u. Consumers have initial wealth
I > 0 and face a potential loss L ∈ (0, I). They exert a preventive effort e ∈ {0, 1}, which
affects the loss probability but is unobservable by the firm. We let ei denote the probability of
not suffering the loss L conditional on effort ei, where i = 0, 1.

Consumers have private information about the loss probabilities conditional on each effort
level. Therefore, their types are identified by a vector (p0, p1) ∈ ∆̄, satisfying MLRP. The
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insurance firm has a continuous prior distribution f over types with full support on ∆̄. A type-
(p0, p1) consumer who does not purchase insurance gets expected utility

V (p0, p1) := max
i∈{L,H}

piu (I) + (1− pi) u (I − L)− ci.

As in Section 2, we assume that consumers have access to a free disposal technology. In the
insurance context, free disposal states that consumers can costlessly generate the loss L. As a
result, the insurer will not offer policies in which the indemnity exceeds the loss L.

Writing mechanisms in terms of the consumer’s utility as in Section 2 (equation 10), we obtain
the following individual-rationality constraint for the insurance model:

U (p0, p1) ≥ V (p0, p1) , for all (p0, p1) ∈ ∆̄. (IR INS)

Thus, a mechanism is feasible if it satisfies incentive-compatibility (IC), individual-rationality
(IR INS), and free disposal (FD). The firm’s problem is to pick a feasible mechanism that maxi-
mizes its expected profits (2).

Note that any mechanism in which some types are excluded is equivalent to a mechanism in
which the principal offers the zero coverage contract : W = I − L, B = L. In this contract, the
agent pays zero in both states. Therefore, we say that a mechanism excludes a certain type if that
type is offered the zero coverage contract. Our first result establishes that it is always optimal to
exclude a non-degenerate region of safer types:

Proposition 10 (Robust Exclusion in Insurance). The optimal exclusion region is
{
(p0, p1) ∈ ∆̄; p0 ≥ p̄0 or p1 ≥ p̄0 +

∆c

u (I)− u (I − L)

}

for some p̄0 < 1.

The optimality of exclusion is a consequence of the interaction between multidimensional types
and type-dependent participation constraints. With pure adverse selection and one-dimensional
types, Chade and Schlee (2012, Proposition 2) showed that no type is excluded if there are enough
low types in the population or if agents are sufficiently risk averse. Moreover, we have shown in
Section 3 that when reservation utilities are not type-dependent, exclusion is not optimal (as long
as there is no exclusion in the first best). Proposition 10 contrasts with both of these results in
establishing that that exclusion is always optimal in this multidimensional model. In insurance,
exclusion happens “at the top” in the sense that the safest types are the ones who do not purchase
any coverage.

The intuition for our “exclusion at the top” result is the following. Starting from a situation
in which all risk types participate, a reduction in informational rents excludes the types with the
highest outside options. When the reduction is small enough, this set only includes the highest
possible types (i.e., those with p0 close enough to 1), who never find it beneficial choose to exert
high effort. Therefore, excluding those types reduces the informational rents left to all other types
and does not affect the region of effort.

Next, we establish that the presence of moral hazard shrinks the effort region among types
who participate relative to a situation in which insurance is not available. In the absence of
insurance, a type (p0, p1) chooses to exert high effort if

p1 ≥ p0 +
∆c

u (I)− u (I − L)
. (17)
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Recall from equation (3) that any optimal mechanism identifies an effort frontier function ϕ, which
partitions the type space into types who exert low and high efforts: p1 ≤ ϕ(p0) and p1 > ϕ(p0),
respectively. Among types who are excluded from the mechanism (and, therefore, do not get any
coverage), the effort frontier has to coincide with the uninsured effort frontier (17). The next
proposition establishes that, in the region of types who participate, the effort frontier lies strictly
above the uninsured effort frontier. Therefore, types who participate exert “less effort” than if
they were uninsured:

Proposition 11 (Strict Distortion Relative to No Insurance). Let ϕ be the effort frontier
associated with an optimal mechanism, and let p̄0 be the first projected type to be excluded as
defined in Proposition 10. Then, ϕ (p0) > p0 +

∆c
u(I)−u(I−L) for all p0 < p̄0.

Remark 1. Because utility is non-transferable, principal and agent generally disagree over the first-
best effort level. As seen above, high effort is efficient from the agent’s perspective if condition (17)
holds. On the other hand, high effort is efficient from the principal’s perspective if p1 ≥ p0 +

∆c
L
.

The later corresponds to the first-best frontier in our model, since we are assuming that the
principal has all bargaining power.

When the agent’s incremental utility from the loss is lower than the loss itself (i.e., the prin-
cipal’s incremental utility from the loss) – i.e., u (I)− u (I − L) ≤ L – the agent picks a (weakly)
lower effort level than the firm would prefer when effort is observable. Combining with Propo-
sition 6, this implies that the second-best effort frontier lies above the first-best effort frontier.
Note, however, that the second-best effort frontier is not above the first-best frontier when the
agent’s incremental utility from the loss exceeds the loss: u (I) − u (I − L) > L. For example,
agents who are excluded from the mechanism will choose effort according to the frontier (17),
which lies below the first-best frontier.

6.2 Regulation

In this section, we adapt our basic framework to a model of procurement and regulation. We
follow the general setup from Laffont and Tirole (1986, 1993), except that we allow the firm’s
cost-reducing effort to affect firm costs stochastically. This modification implies that the model
cannot be reduced to a pure adverse selection model anymore, and generates different results.

A regulated firm produces a single unit of a project at a random monetary cost, which can
be either low CL or high CH , where CH > CL. The firm’s manager exerts a cost-reducing effort
which can be either high (e = 1) or low (e = 0), and is not observed by the regulator. The cost-
reducing effort stochastically affects the firm’s monetary cost: The firm faces a low cost CL with
probability pe, and a high cost CH with probability 1−pe. Exerting effort increases the likelihood
of a low cost realization: p1 ≥ p0. Therefore, conditional probabilities satisfy MLRP: (p0, p1) ∈ ∆̄.
The firm’s manager gets utility ce from exerting effort e, where c1 > c0 and ∆c ≡ c1 − c0.

The project generates a consumer surplus of S > 0. The regulator observes the monetary
cost incurred by the firm (but not the cost-reducing effort). Following a standard accounting
convention in the literature, we assume that the regulator reimburses the firm’s monetary costs
in addition to a payment w in case of high cost, and w+ b in case of low cost. Thus, b denotes the
power of the regulated firm’s contract. The expected utility of the firm’s (risk-neutral) manager
is then

U = w + peb− ce, (18)
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where e = 0, 1. We assume that the firm manager has access to a free disposal technology and,
therefore, can freely inflate costs. As a result, the regulator will not offer contracts with negative
power. Moreover, the manager has an outside option with payoff normalized to zero.

Conditional on effort e, the regulator pays the firm an expected amount w + peb + CH −
pe (CH − CL). As in Laffont and Tirole (1986, 1993), we assume that the government has to revert
to distortionary taxation in order to raise funds and, therefore, the regulator faces a shadow cost
of public funds λ > 0. As a result, the net surplus of consumers/taxpayers is

S − (1 + λ) [w + peb+ CH − pe (CH − CL)] .

A utilitarian regulator maximizes the sum of the consumers’ net surplus and the expected utility
of the firm’s manager (18):

S − (1 + λ) [w + peb+ CH − pe (CH − CL)] + U. (19)

In order to rewrite this model in terms of our basic framework, let us introduce the variables
xH and xL, which denote the taxpayers’ surplus net of the utility left to the firm’s manager:

xH := S − (1 + λ)CL, xL := S − (1 + λ)CH .

Note that a high output xH corresponds to a low cost realization CL and vice versa. Moreover,
we let ∆x := xH − xL > 0 denote the net gain from a low cost relative to a high cost realization.
Rearranging expression (19), we can rewrite the regulator’s objective function as

xL + pe∆x− (1 + λ)ce − λU.

Because the shadow cost public funds λ is positive, the regulator would like to avoid leaving rents
to the firm’s manager.

In the first-best benchmark where both effort and the firm’s type (p0, p1) are observable, the
regulator solves

max
(U,e)

xL + pe∆x− (1 + λ)ce − λU

subject to
U ≥ 0.

There are two differences between this setup and our basic framework from Section 4. First, the
principal’s cost from leaving one unit of informational rent to the agent is λ rather than 1. Because
the regulator’s payoff consists of the sum between the manager’s and the taxpayers’ utility, and
each dollar left to the manager costs 1+λ to taxpayers, the total effect on the regulator’s payoff is
the shadow cost λ. Second, the regulator takes into account the additional effect of compensating
the manager’s disutility of effort through the requirement of raising public funds. Therefore,
instead of subtracting the total surplus by ce as in the standard model, the principal subtracts
(1 + λ) ce.

The solution entails U = 0 and e = 1 ⇐⇒ p1 ≥ p0 + (1 + λ)∆c
∆x

. Therefore, the first-best
mechanism leaves zero rents to the firm’s manager and implements the effort frontier function:

ϕf (p0) := p0 + (1 + λ)
∆c

∆x
.

We now consider the situation where the regulator does not observe either the firm manager’s
cost-reducing effort e or the firm’s effectiveness in reducing costs (p0, p1). The regulator has a prior
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distribution about the firm’s type (p0, p1) with full support on the set of conditional distributions
that satisfy MLRP ∆̄ described by the continuous density f : ∆ → R++.

Following the same steps as in our basic framework, we can establish the existence of an effort
frontier function ϕ. The firm’s rents associated to a feasible mechanism are determined by

U(p) =

{
w(p) + p0b(p)− c0, if p1 ≤ ϕ(p0)
w(p) + p1b(p)− c1, if p1 > ϕ(p0)

.

Let U(t) := w(t, t) + tb(t, t)− c0 denote the projected rent function. By Lemma 4, we have

U(t, s) =

{
U(t), if s ≤ ϕ(t)
U(s)−∆c if s > ϕ(t)

.

Therefore, the regulator’s problem is then

max
ϕ,U

xL −λc0+

ˆ 1

0

ˆ ϕ(t)

t

(t∆x−λU(t)− c0)f(t, s)dsdt+

ˆ 1

0

ˆ 1

ϕ(t)

(s∆x− λU(s)− c1)f(t, s)dsdt,

subject to U increasing and convex, U(0) = 0, and U(ϕ(t)) = U(t) +∆c if ϕ(t) ∈ (ϕ(0), 1).
Adapting the results derived in Section 4, we summarize our main findings in the following

proposition:

Proposition 12 (Optimal Regulation). There exists an optimal mechanism with the following
properties:

• Two contracts at bottom: There exists ϕ∗ > 0 and t∗ ∈ (0,ϕ∗) such that

– All types p ∈ [0, t∗) × [0,ϕ∗) ∩ ∆ get a cost-plus contract (w = c0, b = 0), exert zero
effort, and get zero rents;

– All types p ∈ [t∗,ϕ∗] × [0, 1] ∩ ∆0 get a contract with positive power (w < c0, b ∈
(∆c,∆x]), exert zero effort, and get positive rents.

• The power of the contract does not exceed the cost reduction (b ≤ CH − CL);

• The effort frontier lies above the first-best effort frontier. Either there is a strict distortion
at all points, or the regulator offers only a cost-plus (b = 0) and a fixed-price contract
(b = CH − CL); and

• Exclusion is optimal if and only if exclusion is first-best optimal.

The characterization of the optimal mechanism in terms of the expected virtual surplus (Lemma 7
and Theorem 2) and the results on finite mechanisms can also be easily adapted for the regulation
model.
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6.3 Optimal Taxation

In this subsection, we apply our model to an optimal taxation framework. The model consists of
a Rawlsian tax agency (principal) who wishes to design a tax system for a population of taxpayers
(agents). Taxpayers generate an output that can be either high, xH , or low, xL. They choose
effort e ∈ {0, 1}, which is unobserved by the tax agency and stochastically affects their output.
Taxpayers are also privately informed about the effectiveness their effort. Thus, each taxpayer is
represented by a type vector (p0, p1) representing the probability of a high output given each effort
level. Types have full support on the set of probabilities that satisfy MLRP. We assume that
taxpayers have access to a free disposal technology and, therefore, cannot be charged incremental
taxes that exceed 100%.26

One natural interpretation of our model is in terms of optimal unemployment insurance.
In this interpretation, unemployed workers (taxpayers) can either find or not find a job. The
high output xH corresponds to the income of a worker who finds a job and the low output xL

corresponds to the income of someone who does not find a job (possibly zero).
Our model can also be interpreted more generally as the optimal design of an income tax in

the spirit of Mirrlees (1971), although the assumption that there are only two possible outcomes
may be harder to justify in practice.27 In the Mirrleesian framework, taxpayers also have an
unobservable productivity type and choose an effort level. However, because the mapping from
types and effort to total income is deterministic, the model can be reduced to a standard screening
problem with adverse selection only.28 Here, because effort affects income in a stochastic manner,
the model does not reduce to a pure adverse selection model. Moreover, because taxpayers have
private information about the probabilities of outputs given each effort level, their types are
multi-dimensional.

We follow Piketty (1997) and Saez (2001) in assuming that the tax agency is Rawlsian and,
therefore, maximizes the utility of the least favored individual.29 By Property (a) from Lemma 2,
incentive compatibility implies that taxpayers’ utilities are increasing in their types. As a result,
the least favored individual is the lowest type: (0, 0). As defined in Section 2, a mechanism
(w, b, e) : ∆̄ → R2× {0, 1} specifies the agent’s utility in case of low output w, the power of the
contract b (utility gain from a high output relative to a low output), and an effort recommendation
e. The tax agency’s problem is then to design a mechanism that maximizes the utility of the
lowest type, w (0, 0)−c0, among mechanisms that satisfy incentive compatibility (IC), free disposal
(FD), and the resource constraint

ˆ

∆̄

{
xL − u−1 (w (p)) + pe(p) {∆x− [u−1 (w (p) + b (p))− u−1 (w (p))]}

}
f(p)dp ≥ R,

where the parameter R ∈ R denotes the total resources (possibly negative) that need to be
financed by the tax program.

26There is a large literature on optimal taxation that assumes free disposal, starting with Diamond and Mirrlees
(1971) and Mirrlees (1972).

27Stiglitz (1982) studies optimal taxation in a model with two types. As a result, only two outputs are observed.
Our model features a (two-dimensional) continuum of types. However, because types affect outputs stochastically
(whereas Stiglitz, as well as in most of the optimal taxation literature, assumes a deterministic relationship), we
also obtain only two possible outcomes.

28Mirrlees (1990) studied optimal taxation in a model where incomes are uncertain, although he restricted the
analysis to linear taxes.

29Saez (2001) considers both Rawlsian and utilitarianist tax agencies. Our approach can be extended to the
utilitarianist case, although it requires considering an ex-ante participation constraint in our general framework.
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In the principal-agent framework described in Section 2, the principal wanted to extract the
largest amount of expected resources from agents subject to the lowest possible type obtaining
a utility above a certain reservation utility (normalized to zero). Here, the tax agency wants to
maximize the utility of the lowest possible type subject to expected resources left to agents not
exceeding a certain level. Hence, the tax agency’s problem is the dual of the principal’s problem
from our general framework. It is then straightforward to adapt the analysis from the previous
sections to obtain several new results for optimal taxation in the presence of joint moral hazard
and adverse selection. Theorem 3 derives local optimality conditions.

Adapting Proposition 3, it follows that types in a non-degenerate region at the bottom of the
distribution get a 100% tax rate. Formally, there exists p̄0 > 0 and p̄1 > 0 such that b (p0, p1) = 0
for all (p0, p1) ≤ (p̄0, p̄1).

This conclusion is related to results on optimal tax rates at the bottom of the distribution
from the one-dimensional type model. Under a utilitarianist welfare function, the tax rate at
the bottom of the earnings distribution is zero if and only if earnings are bounded away from
zero (Seade, 1977; Ebert, 1992). Under a Rawlsian welfare function, the optimal tax rate at the
bottom should be strictly lower than 100% if earnings are bounded away from zero and 100%
if they are not.30 Note, however, that the optimality of the 100% tax rate in our model does
not rely on the expected earnings of lowest types. Moreover, the difference between the after-tax
income in case of high and a low earnings, B, is a non-decreasing function of types.

Following Diamond (1998, 2005) and Piketty (1997), suppose that taxpayers have a quasi-
linear utility function: W − ce, where e ∈ {0, 1}.31 We can then adapt the results from Section 4
to obtain additional results. An adaptation of Proposition 5 establishes that only two contracts
are offered to types “at the bottom”. Types in the lowest region, p ∈ [0, t∗) × [0,ϕ∗) ∩ ∆̄, are
all offered the same after-tax income (b = 0) and exert low effort. Therefore, the tax agency
guarantees a constant after-tax income to these workers, regardless of their outputs (100% tax
rate). All types outside of this lower region face tax rates that are strictly lower than 100%.
Types in the intermediate region, p ∈ [t∗,ϕ∗)× [0, 1] ∩ ∆̄, face the same tax rate.

Proposition 6 establishes that either there second-best effort region is contained in the interior
of the first-best effort region (“strict distortion at all points”), or the optimal tax system features
only two tax brackets: one with a 100% tax rate, and another one with a 0% tax rate. Proposition
7 obtains sufficient conditions on the distribution of types to ensure strict distortion at all points
generically. Strict distortion at all points, which contrasts with the famous efficiency-at-the-top
result from models with one-dimensional types, is caused by the global incentive constraints that
are binding. Additionally, Propositions 8 and 9 and Corollary 1 determine conditions under which
optimal tax system can be implemented using a finite number of tax brackets.

7 Conclusion

Contracting situations typically combine elements of both adverse selection and moral hazard.
Most of the literature, however, has focused on models in which only one of them is present. In
this paper, we showed that adverse selection and moral hazard are not separable issues, and the

30Since, in practice, the most disadvantaged individuals have zero earnings, the optimal income taxes at the
bottom are strictly positive under a utilitarian welfare function and 100% under a Rawlsian welfare function (c.f.
Saez, 2001, Piketty and Saez, 2012).

31Quasi-linearity is often justified empirically by the fact that income elasticities of primary earners is close to
zero (although income effects are important for secondary earners). Theoretically, optimal income taxes in the
Mirrleesian framework are much simpler under quasi-linear utilities.
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interaction between them can generate contracts that are fundamentally different from environ-
ments featuring only one of them.

In our model, the principal always extracts all agents’ surpluses when there is either pure
moral hazard or pure adverse selection. Moreover, she implements the first best in the case of
pure adverse selection by offering a payment equal to the agent’s effort cost. Under pure moral
hazard, the principal offers a fixed wage to types who exert low effort, and a positive bonus to
those that exert high effort. Agents do not get positive rents, although the outcome is no longer
efficient if agents are risk averse.

Optimal mechanisms are quite different when both adverse selection and moral hazard are
simultaneously present. The principal has to leave rents to some agents. As a result, she faces
a trade-off between rent extraction and effort distortion (via local incentive-compatibility con-
straints). Moral hazard introduces new features through binding global incentive compatibility
constraints. Some agents who exert low effort get positive bonuses because of their ability to
mimic types who exert high effort. Moreover, because even some types at the boundary have
binding global incentive compatibility constraints, the optimal mechanism typically features dis-
tortion at the boundary. This result contrasts with the “no distortion at the boundary” result
from multidimensional screening when local incentive constraints are sufficient.

Our analysis can be extended in two ways. First, the dual approach used on the optimal
taxation model naturally leads to a Rawlsian planner. In order to work with a utilitarianist
planner, one needs to consider an ex-ante participation constraint, which we leave for further work.
Second, since the principal’s program is not concave and involves a continuum of intermediate
constraints, it is unlikely that a solution will in general be attainable without applying a numerical
method. We believe that developing such a method could provide additional insights into the
properties of optimal mechanisms.

Appendix

A Pure Moral Hazard and Pure Adverse Selection

In this appendix, we study the mechanisms when either effort or conditional probabilities are
observable. We refer to the situation where effort is observable as pure adverse selection, and to
the one where conditional probabilities are observable as pure moral hazard. The main result is
that the first best can be implemented under pure adverse selection but not under pure moral
hazard (unless having all types exert the lowest effort is first-best efficient or agents are risk
neutral). Moreover, the principal’s payoff under joint adverse selection and moral hazard is
strictly lower than under pure moral hazard. Therefore, adverse selection alone does not entail
any payoff loss for the principal, although combining it with moral hazard further reduces the
principal’s payoff.32

32Our results contrast with the ones from Caillaud, Guesnerie, and Rey (1992) and Picard (1987), who study a
model in which risk-neutral agents have (one-dimensional) private information about their cost of effort. In their
setting, the principal can achieve the same utility as in the absence of noise (pure adverse selection). Therefore,
the moral hazard dimension does not entail any additional loss for the principal in their model, whereas pure
adverse selection does.
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A.1 Pure Moral Hazard

There is a continuum of agents in the population with different productivities: p ∈ ∆̄ is distributed
according to the probability distribution function f with full support. Unlike the model from
Section 2, assume that the principal observes the agents’ productivities but still cannot monitor
their efforts.

Assume that if the principal could monitor the agents’ types, it would be optimal to have a
non-empty set of agents exerting high effort:33

∆x > u−1 (c1)− u−1 (c0) . (20)

Following Grossman and Hart (1983), it is straightforward to characterize the optimal mechanism.
In the optimal mechanism, types that exert high effort and have different conditional probability
of success p1 get different contracts (since the principal extracts the full surplus). All types who
exert low effort get the same contract which gives them utility u−1 (c0). The high-effort region
is non-empty under condition (20), since the principal recommends high effort from types in a
neighborhood of p = (0, 1).

Since the optimal mechanism in the case of simultaneous moral hazard and adverse selection is
also feasible under pure moral hazard (but it is not optimal), the principal obtains a strictly higher
profit under pure moral hazard than under simultaneous moral hazard and adverse selection (as
long as the high effort region is non-empty). Moreover, as long as the agent is risk averse, the
principal’s expected payoff is strictly lower in the pure moral hazard model than in the first best
model.

A.2 Pure Adverse Selection

This subsection considers the case of pure adverse selection. We assume that the principal is
able to monitor the agent’s effort but cannot observe his conditional probability of each outcome
given effort. In order to stress that the implementability of the first-best under pure adverse
selection does not rely on the assumptions of two effort levels or two outcomes, we will consider
a framework that generalizes of the model from Section 2.

A risk-neutral principal faces an agent who may be either risk-neutral or risk-averse. The
agent exerts effort e ∈ E, which is observable by the principal. The principal also observes
output x ∈ X. The effort and output spaces E and X are compact and non-empty subsets of the
Euclidean spaces RN and RM . Let c (e) denote the agent’s cost of effort e.

Each agent’s type is a set of conditional distributions of outcomes given efforts {p (.|e) :
X →R|e ∈ E}. This formulation allows for infinite-dimensional types. However, when there are
two outcomes and two effort levels, the framework becomes the two-dimensional model of Section
2. More generally, when E and X are both finite, a type can be represented by a matrix of
conditional probabilities. In this case, types have dimension (m− 1)× n, where m is the number
of outcomes and n is the number of effort levels. Let P denote the space of possible types.
The principal’s beliefs about the agent’s private information are represented by the cumulative
distribution function F on P.34

33If this condition did not hold, the first-best and the second-best solutions would coincide and all agents would
exert low effort. Moreover, if agents are risk averse, the unique solution would involve paying a constant salary in
both states of the world.

34Note that we are not imposing MLRP or full support, although the results are still true under these assump-
tions.
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A direct mechanism {wp(x), e(p) : p ∈ P, x ∈ X} specifies a payment function wp (.) : X → R

and a recommended effort e (p) for each type p. The participation and free disposal constraints
(IR) and (FD) are analogous to the ones from Section 2:

ˆ

X

u (wp (x)) p (dx|e)− c (e (p)) ≥ 0, (IR)

x ≥ x̂ =⇒ wp (x) ≥ wp (x̂) , (FD)

for all p, p̂ ∈ P and x, x̂ ∈ X, where the first inequality in (FD) represents vector inequality.
The incentive-compatibility constraints require each agent type to take his own contract. How-

ever, since effort is observable, the agent cannot exert a different effort than the one recommended
by the principal for the type for which the contract is designed. Thus, the incentive-compatibility
constraints in the pure adverse selection model are:

ˆ

X

u (wp (x)) p (dx|e)− c (e (p)) ≥

ˆ

X

u (wp̂ (x)) p̂ (dx|e)− c (e (p̂)) , (IC AS)

for all p, p̂ ∈ P.
The principal’s expected utility equals expected output minus payments:

ˆ

P

ˆ

X

[x− wp (x)] p (dx|e) dF (p) .

A mechanism satisfying (IC AS), (IR), and (FD) is called a feasible mechanism for the pure
adverse selection model. A mechanism is first-best optimal if it maximizes the principal’s ex-
pected utility subject to (IR). A mechanism is optimal for the pure adverse selection model if it
maximizes the principal’s expected utility within the class of feasible mechanisms for the pure
adverse selection model. The following proposition establishes that the principal is able to obtain
the first-best payoff when effort is observable:

Proposition 13. Any optimal mechanism for the pure adverse selection model is equivalent to a
first-best optimal mechanism.

Proof. In any first-best optimal mechanism, the participation constraint must bind for almost
every type. Therefore, for any first-best optimal mechanism there exists an equivalent mechanism
in which the participation constraint binds for all types. Fix one such mechanism and let e (p)
denote the effort exerted by type p in this mechanism.

Consider the mechanism (w̃, e) where w̃p (x) = c (e (p)) for all p. This mechanism satisfies (IC
AS) and satisfies (IR) with equality. Moreover, since the payments are constant in outcomes, it
also satisfies (FD). Therefore, it implements the first best.

Therefore, we can rank the principal’s and agent’s payoffs in the models of the pure adverse
selection, pure moral hazard and simultaneous moral hazard and adverse selection considered in
the text. The principal attains the first-best payoff under pure adverse selection, which is the
highest attainable profit. She attains a strictly lower payoff in the case of pure moral hazard
as long as the first-best contract does not implement low effort for all types (condition 20) and
agents are risk averse, and an even lower payoff in the case of joint moral hazard and adverse
selection.

The agent obtains the same payoff under both pure adverse selection and moral hazard (his
reservation utility). However, all types with projections above t∗ obtain payoffs strictly above
their reservation utilities in the case of joint adverse selection and moral hazard (see Figure 5).
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B Proofs

For notational simplicity, we will use the following notation throughout the proofs. Given a mech-
anism, let ∆0 and ∆1 denote the set of types for which the low and high efforts are recommended.

Proof of Lemma 1

The proof proceeds by a series of claims. The two first claims establish that the vertical and
horizontal sections of the sets ∆0 and ∆1 are intervals.

Claim 1. Let (w, b, e) be an incentive-compatible mechanism. If (p0, p1) ∈ ∆1 and p̂1 > p1, then
(p0, p̂1) ∈ ∆1.

Proof. Let p = (p0, p1) ∈ ∆1 and suppose that p̂ = (p0, p̂1) ∈ ∆0. Incentive-compatibility implies
that

w(p) + p1b(p)− c1 ≥ w(p̂) + p0b(p̂)− c0, and

w(p̂) + p0b(p̂)− c0 ≥ w(p) + p̂1b(p)− c1.

Combining these inequalities, we obtain (p1 − p̂1) b(p) ≥ 0. Since p ∈ ∆1, we must have b(p) > 0.
Therefore, p1 ≥ p̂1, which contradicts the statement of the claim.

Claim 2. For any feasible mechanism, there exists an equivalent mechanism with the following
property: if (p0, p1) ∈ ∆0 and p̂0 > p0, then (p̂0, p1) ∈ ∆0.

Proof. Let p = (p0, p1) ∈ ∆0 and suppose that p̂ = (p̂0, p1) ∈ ∆1. Incentive-compatibility implies
that

w (p) + p0b (p)− c0 ≥ w(p̂) + p1b(p̂)− c1, and (21)

w(p̂) + p1b(p̂)− c1 ≥ w (p) + p̂0b (p)− c0.

Combining these inequalities, we obtain (p̂0 − p0) b (p) = 0, which, because p̂0 > p0, implies that
b (p) = 0. Substituting back, yields w (p) − c0 = w(p̂) + p1b(p̂) − c1. Therefore, types p and p̂

are both indifferent between each others’ contracts.
Consider the alternative mechanism that coincides with the original one except that we offer

the same contract of type p to type p̂. First, we verify that new mechanism is also feasible.
Limited liability follows immediately from the feasibility of the original mechanism. Moreover,
because all types get exactly the same expected payoff as in both mechanisms, the participation
constraint is also satisfied. To verify incentive-compatibility, note that no type other than p̂ can
profit by deviating since the original mechanism was incentive compatible and no new contract
was added. Moreover, because type p̂ obtains the same payoff under the new mechanism as in
the original one (which was incentive-compatible), she also cannot profit by deviating.

If the set of types for which p = (p0, p1) ∈ ∆0 and p̂ = (p̂0, p1) ∈ ∆1 with p̂0 > p0 has zero
measure, then the principal is indifferent between the original and the new mechanism. Because
all agents are indifferent between them, the mechanisms are equivalent. Suppose, in order to
obtain a contradiction, that the set of such types has a strictly positive measure. That is, for a
set of types with positive measure, we have

w (p0, p1)− c0 = w(p̂0, p1) + p1b(p̂0, p1)− c1
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where p̂0 > p0. Incentive compatibility implies that expression on the left must be constant in
p1, whereas the expression on the right must be strictly increasing in p1 (since b (p) > 0 for all
types who exert high effort). Therefore, this condition cannot hold for a set of types with positive
measure.

It follows directly from Claims 1 and 2 that there exists a non-decreasing function ϕ : [0, 1] →
R+ such that (p0, p1) ∈ ∆1 if and only if p1 ≥ ϕ (p0) . The next claim establishes that this function
is continuous.

Claim 3. For every feasible mechanism, there exists an equivalent mechanism with the following
property: (p0, p1) ∈ ∆1 if and only if p1 ≥ ϕ (p0) for a non-decreasing and continuous function
ϕ : [0, 1] → [0, 1].

Proof. The existence of such a non-decreasing function ϕ follows straight from Claims 1 and 2.
It remains to be shown that ϕ is continuous. Suppose, in order to obtain a contradiction, that ϕ
is discontinuous at a point p0. Since ϕ is bounded and non-decreasing, there exist ϕ+ > ϕ− such
that

ϕ+ = lim
p↘p0

ϕ (p) and ϕ− = lim
p↗p0

ϕ (p) .

From the definition of ϕ, (p0, p1) ∈ ∆1 for all p1 ∈ [ϕ−,ϕ+] . Moreover, for any δ > 0 and
p1 ∈ [ϕ−,ϕ+] , it follows that (p0 + δ, p1) ∈ ∆0.

By the Theorem of the Maximum, U : ∆̄ → R is a continuous function. Therefore,

U (p0, p1) = lim
δ→0

U (p0, p1 + δ) , ∀p1 ∈ [ϕ−,ϕ+] .

Let ϕ̄ = ϕ++ϕ−

2 . Note that types (p0 + δ, ϕ̄) and (p0 + δ, ϕ̄+ ε) both belong to ∆0 for any δ > 0
and ε ∈

[
0, ϕ++ϕ−

2

]
. Then, using the incentive-compatibility constraint of type (p0 + δ, ϕ̄) , we

obtain

U (p0 + δ, ϕ̄) ≥ w (p0 + δ, ϕ̄+ ε) + (p0 + δ) b (p0 + δ, ϕ̄+ ε)− c0
= U (p0 + δ, ϕ̄ + ε) .

Similarly, the incentive-compatibility constraint of type (p0 + δ, ϕ̄+ ε) yields

U (p0 + δ, ϕ̄+ ε) ≥ w (p0 + δ, ϕ̄) + (p0 + δ) b (p0 + δ, ϕ̄)− c0
= U (p0 + δ, ϕ̄) .

Combining both inequalities, we obtain

U (p0 + δ, ϕ̄) = U (p0 + δ, ϕ̄+ ε) , (22)

for any δ > 0 and ε ∈ [0, ϕ̄] .
Moreover, from the incentive-compatibility constraint of type (p0, ϕ̄+ ε) ∈ ∆1, we have

U (p0, ϕ̄+ ε) ≥ w (p0, ϕ̄) + (ϕ̄+ ε) b (p0, ϕ̄)− c1
= U (p0, ϕ̄) + εb (p0, ϕ̄) ,

and because b (p) > 0 for any p ∈ ∆1

U (p0, ϕ̄+ ε) > U (p0, ϕ̄) . (23)
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Equation (22) implies that

lim
δ↘0

U (p0 + δ, ϕ̄) = lim
δ↘0

U (p0 + δ, ϕ̄+ ε) , (24)

and, by the continuity of U,

lim
δ↘0

U (p0 + δ, ϕ̄) = U (p0, ϕ̄) , and (25)

lim
δ↘0

U (p0 + δ, ϕ̄+ ε) = U (p0, ϕ̄+ ε) . (26)

Combining equations (24)-(26), we obtain U (p0, ϕ̄+ ε) = U (p0, ϕ̄) , which contradicts inequality
(23).

Proof of Lemma 2

(a) The informational rent function U can be written as

U (p0, p1) = max
p̂∈∆̄

{
max
ê∈{0,1}

{w (p̂) + pêb (p̂)− cê}

}
,

which is the upper envelope of linear functionals and therefore is a convex function. Convexity
implies that it is a.e. differentiable. From the envelope theorem, it follows that ∇U (p0, p1) ={

(b (p0, p1) , 0), if p1 < ϕ (p0)
(0, b (p0, p1)), if p1 > ϕ (p0)

.

(b) Monotonicity follows from standard manipulations of the incentive-compatibility constraints.
The constancy properties follow from the arguments in the proof of Lemma 1.

(c) Free disposal implies that b (p) ≥ 0 for all p. The participation constraint (IR) implies
U (0, 0) ≥ 0.

Proof of Lemma 3

(d) From the incentive-compatibility constraints of types (p0, p1) and (p1, p1) , we have:

w (p0, p1) + p1b (p0, p1)− c1 ≥ w (p1, p1) + p1b (p1, p1)− c1, and

w (p1, p1) + p1b (p1, p1)− c0 ≥ w (p0, p1) + p1b (p0, p1)− c0.

Combining these conditions yields

w (p1, p1) + p1b (p1, p1) = w (p0, p1) + p1b (p0, p1) .

Therefore,

U (p1, p1) = w (p1, p1) + p1b (p1, p1)− c0
= w (p0, p1) + p1b (p0, p1)− c1 +∆c

= U (p0, p1) +∆c.

(e) Let ξ (p1) ≡ maxp̂1 {w (p̂1, p̂1) + p1b (p̂1, p̂1)− c1}. From the envelope theorem, we have
ξ′ (p1) = b (p1, p1) (a. e.). Since U (p1, p1) = ξ (p1), it follows that U (p0, p1) = ξ (p1)−∆c.
From the envelope theorem, ∂U

∂p1
(p0, p1) = b (p0, p1) (a. e.). Thus,

∂U

∂p1
(p0, p1) = b (p0, p1) = b (p1, p1) ,

for all p0 and almost all p1.
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Proof of Proposition 1

Let (w, b, e) be a mechanism for which there exists a continuous and non-decreasing function ϕ
satisfying condition (3). For such a mechanism, let U : ∆̄ → R+ denote the informational rent
function as defined in equation (2). Proposition 1 is a direct consequence of the following lemma,
which establishes that conditions (a)-(e) are sufficient for the feasibility of the mechanism:

Lemma 11. Let (w, b, e) be a mechanism satisfying condition (3) for a continuous and non-
decreasing function ϕ : [0, 1] → [0, 1]. Let U be as defined in equation (1). Suppose that conditions
(a)-(e) are satisfied. Then, (w, b, e) is a feasible mechanism.

Proof of Lemma 11. We need to establish that a mechanism satisfying conditions (a)-(e) for a
continuous and nondecreasing ϕ satisfies incentive-compatibility (IC), individual-rationality (IR),
and free disposal (FD). Condition (b) implies that b (p) ≥ b (0, 0) for all p. Then, by condition
(c), (FD) holds. Moreover, conditions (a) and (c) imply that U (p) ≥ 0 for all p and, therefore,
(IR) is satisfied. It remains to be shown that the mechanism is incentive-compatible.

We consider deviations by types in regions ∆0 and ∆1 separately. There are 4 possible devia-
tions in each region: taking a contract designed to types in regions ∆0 or ∆1 and exerting efforts
0 or 1. First, let p = (p0, p1) ∈ ∆0 (i.e. p1 ≤ ϕ (p0)).
Case 1: Reporting type q ∈ ∆0 and choosing e = 0.

In this case, the proof follows by standard incentive-compatibility arguments (applying the
one-dimensional single-crossing condition taking effort as fixed).
Case 2: Reporting a type q ∈ ∆0 and choosing e = 1.

We have to verify that the following inequality is satisfied:

U(p) = w (p) + p0b (p)− c0 ≥ w (q) + p1b (q)− c1.

Since type (0,ϕ(p0)) ∈ ∆1 and, from condition (a), U(p) = U(0,ϕ(p0)), the previous inequality
is equivalent to

U(0,ϕ(p0)) = w (0,ϕ (p0)) + ϕ (p0) b (0,ϕ (p0))− c1 ≥ w (q) + p1b (q)− c1 (27)

for all q ∈ ∆0. Note that this is the incentive-compatibility constraint preventing type (0,ϕ (p0)) ∈
∆1 from getting the contract designed for q ∈ ∆0 and choosing effort e = 1. As will be established
in Case 8 below, this inequality is satisfied under the assumptions of the Lemma.
Case 3: Reporting type q ∈ ∆1 and choosing e = 0.

We have to show that

w (p) + p0b (p)− c0 ≥ w (q) + p0b (q)− c0. (28)

Condition (e) implies that, for almost all q ∈ ∆1, b (q) = b (q1, q1) and w (q) = w (q1, q1) . Then,
for all such q, we have

w (q) + p0b (q)− c0 = w (q1, q1) + p0b (q1, q1)− c0.

Because (q1, q1) ∈ ∆0, the result from Case 1 implies that inequality (28) holds for all such q

(which holds a. e.).
It remains to be shown that (28) holds for q such that b (q) /= b (q1, q1). Let (q0, q̂1) be a

type such that b (q0, q̂1) /= b (q̂1, q̂1) and suppose p0 > q̂1 (the other case is analogous). Since
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b (q) = b (q1, q1) for almost all q ∈ ∆1, there exists a decreasing sequence (qn1 ) → q̂1 such that
b (q0, qn1 ) = b (qn1 , q

n
1 ). Then, inequality (28) implies that

w (p) + p0b (p)− c0 ≥ w (q0, q
n
1 ) + p0b (q0, q

n
1 )− c0

= U (q0, q
n
1 ) + (p0 − qn1 ) b (q0, q

n
1 ) .

Because the sequence (qn1 ) is decreasing, it follows that b (q0, qn1 ) ≥ b (q0, q̂1). Hence,

w (p) + p0b (p)− c0 ≥ U (q0, q
n
1 ) + (p0 − qn1 ) b (q0, q̂1) .

Since U is continuous, it follows that the right hand side of the inequality above converges to
U (q0, q̂1) + (p0 − q̂1) b (q0, q̂1). Rearranging, we obtain

w (p) + p0b (p)− c0 ≥ w (q0, q̂1) + q̂1b (q0, q̂1)− c0 + (p0 − q̂1) b (q0, q̂1)

= w (q0, q̂1) + p0b (q0, q̂1)− c0,

which concludes the proof.
Case 4: Reporting type q ∈ ∆1 and choosing e = 1.

From standard single-crossing arguments, we have:

w (0,ϕ (p0)) + ϕ (p0) b (0,ϕ (p0))− c1 ≥ w (q) + ϕ (p0) b (q)− c1. (29)

From condition (a), it follows that

w (0,ϕ (p0)) + p0b (0,ϕ (p0))− c0 = w (p0, p1) + p0b (p0, p1)− c0

for all (p0, p1) ∈ ∆0. Moreover, since U is continuous, we have

w (0,ϕ (p0)) + ϕ (p0) b (0,ϕ (p0))− c1 = w (0,ϕ (p0)) + p0b (0,ϕ (p0))− c0
= w (p0, p1) + p0b (p0, p1)− c0.

Substituting in (29), we obtain

w (p0, p1) + p0b (p0, p1)− c0 ≥ w (q) + ϕ (p0) b (q)− c1
≥ w (q) + p1b (q)− c1,

where the last inequality uses the fact that p1 ≤ ϕ (p0) (since (p0, p1) ∈ ∆0).
This concludes the possible deviations for types in ∆0. Now, let p = (p0, p1) ∈ ∆1 (i.e.,

p1 > ϕ (p0)). Again, the possible deviations can be grouped into 4 possible cases.
Case 5: Reporting type q ∈ ∆1 and choosing e = 1.

This result follows from standard single-crossing arguments taking effort as fixed.
Case 6: Reporting type q ∈ ∆1 and choosing e = 0.

From Case 3, the following condition holds:

w (p0,ϕ (p0)) + p0b (p0,ϕ (p0))− c0 ≥ w (q) + p0b (q)− c0. (30)

Case 5 and condition (a) implies that

w (p) + p1b (p)− c1 ≥ w (0,ϕ (p0)) + ϕ (p0) b (0,ϕ (p0))− c1
= w (p0,ϕ (p0)) + p0b (p0,ϕ (p0))− c0.
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Then, inequality (30) yields

w (p) + p1b (p)− c1 ≥ w (q) + p0b (q)− c0,

which concludes the proof of this case.
Case 7: Reporting type q ∈ ∆0 and choosing e = 0.

Let ϕ−1 (p1) = sup {p0 : ϕ (p0) ≤ p1} . From Case 1, we have

w
(
ϕ−1 (p1) , p1

)
+ ϕ−1 (p1) b

(
ϕ−1 (p1) , p1

)
− c0 ≥ w (q) + ϕ−1 (p1) b (q)− c0. (31)

From the continuity of U, we have

w
(
ϕ−1 (p1) , p1

)
+ ϕ−1 (p1) b

(
ϕ−1 (p1) , p1

)
− c0 = w

(
ϕ−1 (p1) , p1

)
+ p1b

(
ϕ−1 (p1) , p1

)
− c1.

Substituting in inequality (31), yields

w
(
ϕ−1 (p1) , p1

)
+ p1b

(
ϕ−1 (p1) , p1

)
− c1 ≥ w (q) + ϕ−1 (p1) b (q)− c0. (32)

However, condition (a) implies that, for all p0 < ϕ−1 (p1) ,

w
(
ϕ−1 (p1) , p1

)
+ p1b

(
ϕ−1 (p1) , p1

)
− c1 = w (p) + p1b (p)− c1, and

w (q) + ϕ−1 (p1) b (q)− c0 ≥ w (q) + p0b (q)− c0.

Substituting in (32), we obtain:

w (p) + p1b (p)− c1 ≥ w (q) + p0b (q)− c0,

which concludes the proof of this case.
Case 8: Reporting type q = (q0, q1) ∈ ∆0 and choosing e = 1.

Since (p1, p1) ∈ ∆0, standard single-crossing arguments establish that

w (p1, p1) + p1b (p1, p1)− c0 ≥ w (q) + p1b (q)− c0.

Condition (e) yields:

w (0, p1) + p1b (0, p1) = w (p1, p1) + p1b (p1, p1) .

Substituting in the previous inequality and subtracting ∆c, we obtain:

w (0, p1) + p1b (0, p1)− c1 ≥ w (q) + p1b (q)− c1.

However, from condition (d), we have

w (p) + p1b (p)− c1 = w (0, p1) + p1b (0, p1)− c1

for all p0 < ϕ−1 (p1). Thus,

w (p) + p1b (p)− c1 ≥ w (q) + p1b (q)− c1,

which concludes the proof. QED
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Proof of Lemma 4

Property (a) (Lemma 2) implies that U is differentiable a. e. and U̇ (p0) = b (p0, p0) a.e.. Moreover,
property (b) implies that b(p0, p1) = b(p0, p0) = U̇(p0), for almost all (p0, p1) such that p1 ≤ ϕ (p0),
whereas property (e) implies that b (p0, p1) = b (p1, p1) = U̇ (p1) for almost all (p0, p1) such that
p1 > ϕ (p0) . Thus,

b (p0, p1) =

{
U̇(p0), if p1 ≤ ϕ(p0)

U̇(p1), if p1 > ϕ(p0)

for almost all (p0, p1) ∈ ∆̄.
Properties (a) and (d) imply that U (p0, p1) = U (p0, p0) = U (p0) if p1 ≤ ϕ (p0) and U (p0, p1) =
U (p1, p1)−∆c = U (p1)−∆c if p1 > ϕ (p0) . Thus,

U (p0, p1) =

{
U (p0) , if p1 ≤ ϕ(p0)
U (p1)−∆c, if p1 > ϕ(p0)

for almost all (p0, p1) ∈ ∆̄. Using the definition of U, we obtain:

w (p0, p1) =

{
U (p0)− p0U̇ (p0) + c0 if p1 ≤ ϕ (p0)
U (p1)− p1U̇ (p1) + c0 if p1 > ϕ (p0)

a.e.

Property (d) and the continuity of U imply that

U (ϕ (p0)) = U (p0) +∆c (33)

for ϕ(p0) < 1 (a.e.). Because the mechanism is nontrivial, we have ϕ (0) < 1. Let ξ ≡ min {p0 : ϕ (p0) = 1} >
0 (which exists because ϕ is a continuous function). Then, by the continuity of U , we must have

U (ξ,ϕ (ξ)) = U (ϕ (ξ) ,ϕ (ξ))−∆c
= U (1, 1)−∆c
= U (1)−∆c.

Moreover, because U (ξ,ϕ (ξ)) = U (ξ, ξ) = U (ξ) (properties (a) and (d)) and U is increasing
(property (a)), it follows that U (p0) ≥ U (1)−∆c for all p0 ≥ ξ. Combining this inequality with
(33) yields U (ϕ (p0)) = min {U (p0) +∆c;U (1)}.

Proof of Proposition 2

Lemma 4 establishes the mapping between (ϕ,U) and (w, b, e) . Given a nontrivial mechanism
(w, b, e), one can recover the effort frontier ϕ and rent projection function U associated with it
(a.e.). Conversely, given an effort frontier and rent projection functions (ϕ,U), one can recover the
nontrivial mechanism (w, b, e). Using this mapping, it is straightforward to check that conditions
(a)-(e) are satisfied if and only if the pair (ϕ,U) is such that U is nondecreasing and convex,
U (0) ≥ 0, and equation (6) is satisfied.

Proof of Proposition 3

Let U and ϕ denote the rent projection and effort frontier functions associated with a feasible
mechanism. Suppose that U (t) > 0 for all t > 0. For each ε > 0 sufficiently small, consider the
perturbation

Uε(t) = max {U(t)− ε, 0} .
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The mechanism induced by the rent function Uε uniformly reduces the rent of all types by ε and
types in [0, t∗ε ]× [0,ϕ∗

ε ] ∩∆ have zero rent, where t∗ε and ϕ∗
ε are defined as

U(t∗ε ) = ε and U(ϕ∗
ε)− ε = ∆c.

It is immediate that Uε satisfies the constraints of program (P ′) and, therefore, the mechanism it
induces is feasible.

Taking the implicit derivative of the last expression with respect to ε, we get

dϕ∗
ε

dε
=

1

U̇(ϕ∗
ε)

≥ 0.

The principal’s cost from type t on each perturbed mechanism is

Gε(t) =

{
G(U(t)− ε, U̇(t), t), if t > t∗ε
u−1(c0), if t ≤ t∗ε

.

Therefore, the principal’s payoff from each perturbed mechanism is:

Πε :=

ˆ 1

0

(t∆x−Gε(t))F0(t,ϕε)dt+

ˆ 1

ϕ∗
ε

(t∆x−Gε(t))F1(ϕ
−1, t)dt,

where we are using the fact that neither the effort frontier changes for all t ≥ t∗ε nor its inverse
ϕ−1 for all t ≥ ϕ∗

ε .
Take the derivative of Πε with respect to ε and evaluate at 0:

dΠε

dε

∣∣∣∣
ε=0

=

ˆ 1

0

∂G

∂U
F0(t,ϕ)dt+

ˆ t∗0

0

(t∆x−G0) f(t,ϕ)
dϕ∗

ε

dε

∣∣∣∣
ε=0

dt

+

ˆ 1

ϕ∗

0

∂G

∂U
F1(ϕ

−1, t)dt− (ϕ∗
0∆x−G0(ϕ

∗
0))F1(0,ϕ

∗
0)

dϕ∗
ε

dε

∣∣∣∣
ε=0

,

where we are omitting the arguments of G and its derivative. Notice that the first and third terms
are strictly positive, the second is zero because t∗0 = 0 and the fourth is zero since F1(0,ϕ∗

0) = 0.
Therefore, the derivative of Πε is positive at 0 which implies that principal strictly prefers the
mechanism induced by Uε than the one induced by U for sufficiently small ε > 0.

Proof of Lemma 5

Let a feasible mechanism feature B (p0, p1) > ∆x in a set of types with positive measure. Let
t̂ ≡ inf {t ∈ [0, 1); B(t, t) > ∆x}. From Proposition 3, t̂ > 0. Moreover, because B (p0, p1) > ∆x
is true in a set of positive measure, t̂ < 1.

Let U(t) be the rent projection function associated with this mechanism, and let β ≡ lim
t↗t̂

U̇(t)

be the left derivative of U at t̂. Define the following tangent affine continuation of U from t̂ on:

Ũ(t) =

{
U(t), if t < t̂
U(t̂) + β(t− t̂), if t ! t̂

.

From the definition of t̂, β < U̇(1) (since lim
t↗t̂

B(t, t) ≤ ∆x andB(t, t) > ∆x for t > t̂).
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For each α ∈ [0, 1], consider the following family of positive and convex perturbations Uα =
U + α(Ũ − U). Since Uα is positive, increasing, and convex, it is feasible. Let ϕα be the effort
frontier associated with Uα, i.e.,

Uα(ϕα) = Uα(t) +∆c, (34)

for all t ≤ ξα, where ξα = U−1
α (Uα(1)−∆c). Let us compute the calculus of variation of ϕα and

Uα in α. Fix α ∈ (0, 1). First, let us compute the derivative of ϕα(t) with respect to α. We have
the following cases:

(i) if ξα < t̂ or t < ϕα(t) < t̂ ≤ ξα, then ϕα(t) = ϕ(t) which implies that ∂ϕα(t)
∂α

= 0.
(ii) if t̂ < t ≤ ξα, then using the definition of Uα and the functional equation (34)

U(ϕα(t)) + α
[
U(t)− U(ϕα(t)) + β

(
ϕα(t)− t̂

)]
= U(t) + α

[
U(t̂)− U(t) + β(t− t̂)

]
+∆c.

Taking the total derivative with respect to α we get

∂ϕα(t)

∂α
=

−(ϕα(t)− t)β + U(ϕα(t))− U(t)

(1− α)U̇(ϕα(t)) + αβ
≥ 0,

since the convexity of U implies that U(ϕα(t))−U(t)
ϕα(t)−t

≥ U̇(t) ≥ β.

(iii) if t < t̂ ≤ ϕα(t) < ξα, then using the definition of Uα and the functional equation (34) we
get

U(ϕα(t)) + α
[
U(t̂)− U(ϕα(t)) + β(ϕα(t)− t̂)

]
= U(t) +∆c.

Taking the total derivative with respect to α we get

∂ϕα(t)

∂α
=

−(ϕα(t)− t̂)β + U(ϕα(t))− U(t̂)

(1− α)U̇(ϕα(t)) + αβ
≥ 0

by the convexity of U .
(iv) if ξα ≤ ϕα(t), then ϕα(t) = 1 and the derivative ∂ϕα(t)

∂α
= 0 when ξα < ϕα(t). Notice that

if ξα = ϕ(t), we have a kink such that the right hand derivative is non-negative by the previous
case and left hand derivative is zero.

Finally, we compute the derivatives of Uα(t) and U̇α(t) with respect to α:

∂Uα(t)

∂α
=

{
0, if t < t̂
U(t̂)− U(t) + β(t− t̂), if t > t̂

and

∂U̇(t, t)

∂α
=

{
0, if t < t̂
β − U̇(t), if t > t̂

.

Notice that the convexity of U implies that U(t)−U(t̂)
t−t̂

≥ β and, hence, both derivatives above are
non-positive. Let us define the principal’s objective function on the family of perturbations by:

Πα =

ˆ 1

0

ˆ ϕα(t)

t

(t∆x−G(Uα(t), U̇α(t), t))f(t, s)dsdt+

ˆ 1

0

ˆ 1

ϕα(t)

(s∆x−G(Uα(s), U̇α(s), s))f(t, s)dsdt.

Notice that
∂G

∂U
=

t

u′(u−1(U + (1− t)U̇ + c0))
+

1− t

u′(u−1(U − tU̇ + c0))
> 0
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∂G

∂U̇
= t(1− t)

(
1

u′(u−1(U + (1− t)U̇ + c0))
−

1

u′(u−1(U − tU̇ + c0))

)
≥ 0

∂G

∂t
= u−1(U + (1− t)U̇ + c0)− u−1(U − tU̇ + c0)− U̇

∂G

∂U
.

Hence, for almost all points we have

d
dt

(
t∆x−G(U(t), U̇(t), t)

)
= ∆x− ∂G

∂U (U(t),
˙U(t), t)U̇(t)− ∂G

∂U̇
(U(t), U̇(t), t) d

dt
U̇(t)

−∂G
∂t
(U(t), U̇(t), t) = ∆x− B(t, t)− ∂G

∂U̇
(U(t), U̇(t), t) d

dt
U̇(t).

Now let us compute the total derivative of Πα with respect to α:

∂Πα

∂α
=

−
´ 1

0

´ ϕα(t)

t

(
∂G
∂U (Uα(t), U̇α(t), t)

∂Uα(t)
∂α

+ ∂G
∂U̇

(Uα(t), U̇α(t), t)
∂U̇α(t)
∂α

)
f(t, s)dsdt

−
´ 1

0

´ 1

ϕα(t)

(
∂G
∂U (Uα(s), U̇α(s, s), s)

∂Uα(s)
∂α

+ ∂G
∂U̇

(Uα(s), U̇α(s), s)
∂U̇α(s)
∂α

)
f(t, s)dsdt

+
´ 1
0 (t∆x−G(Uα(t), U̇α(t), t))

∂ϕα(t)
∂α

f(t,ϕα(t))dt

−
´ 1
0 (ϕα(t)∆x−G(Uα(ϕα(t)), U̇α(ϕα(t)), t))

∂ϕα(t)
∂α

f(t,ϕα(t))dt.

Notice that, from the signs of the partial derivatives, the first two lines are non-negative. In the
third and fourth lines both integrals for t between 0 and t̂ are zero since ∂ϕα(t)

∂α
= 0 on [0, t̂].

The difference between the integrals of the third and forth in the interval [t̂, 1] is non-negative

since d
dt

(
t∆x−G(U(t), U̇(t), t)

)
< 0 (because of the above expression of this total derivative,

the signs of the partial derivatives and the hypothesis that ∆x < B(t, t), for all t > t̂), ∂ϕα(t)
∂α

≥ 0

and t ≤ ϕα(t). This shows that Πα is increasing in α, i.e., Ũ gives a weakly higher payoff for the
principal than U . We have to show that the dominance is strict to complete the proof. For this,
notice that ∂Uα(t)

∂α
is strictly negative for all t ≥ t̂, since β < U̇(1) and ∂G

∂U > 0. These imply that
the integrand of the double integral in the first line is strictly negative on [t̂, 1], which concludes
the proof.

Proof of Theorem 1

In this proof, we will denote transfers in monetary (W,B) rather than utility (w, p) units. From
Lemma 5, there is no loss of generality in focusing on the space of feasible mechanisms (W,B, e)
satisfying B (p) ≤ ∆x for all p ∈ ∆. For each feasible mechanism in this space, let U and ϕ
denote the rent projection and effort frontier functions associated with it.

Recall the definition of the contract power:

b (t, t) = u (W (t, t) +B(t, t))− u (W (t, t)) . (35)

Because the marginal utility function is bounded, there exists K ∈ R such that u′(x) ≤ K, for
all x ∈ R. Concavity of the utility function then gives

U̇(t) = u (W (t, t) +B(t, t))− u (W (t, t)) ≤ u′ (W (t, t))B(t, t) ≤ K∆x.

Define the space of admissible contract powers:

U̇ ≡
{
U̇ : [0, 1] → [0, K∆x] càdlàg and non-decreasing function

}
,
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which is non-empty and compact with respect to the weak topology (i.e., this is the weakest
topology such that a sequence (U̇n) converges to U̇ if and only if (U̇n(t)) converges to U̇(t) in all
points in which U̇ is continuous). For each U̇ ∈ U̇ , define the increasing and convex function
U(t) ≡

´ t

0 U̇(s)ds. Let (U̇n) be a sequence in U̇ weakly converging to U̇ ∈ U̇ . Since (Un,ϕn)
and (U ,ϕ) are continuous functions defined on the compact interval [0, 1] then, by Lesbegue’s
Dominated Convergence Theorem (see Rudin, 1986, pp. 26), the sequence (Un,ϕn) pointwise (and
therefore uniformly) converges to (U ,ϕ). Hence, again by Lesbegue’s Dominated Convergence
Theorem, the limit of principal’s objective function (8) evaluated at (U̇n) converges to its value
at U̇ .

The principal’s objective function is uniformly bounded on the space of feasible mechanisms
(for example, by the first-best payoff). Consider the supremum of the principal’s payoff on
the space of feasible mechanisms. Let (U̇n) be a sequence in U̇ such that the sequence of the
principal’s payoff evaluated at each U̇n converges to its supremum. Construct the sequence of
bonuses Bn (t, t) according to Lemma 4 and equation (35). By Lemma 5, we can restrict to
sequences for which the associated sequence of bonuses (Bn(t, t)) is uniformly bounded by ∆x.
By Helly’s Selection Theorem (see Billingsley, 1995, pp. 359), there exists a subsequence (U̇nk

)
that converges to U̇ ∈ U̇ . By the previous argument, the principal’s objective function evaluated
at the subsequence converges to the value at U̇ . Therefore, U̇ attains the supremum value.
Moreover, the associated sequence of bonuses (Bnk

(t, t)) weakly converges to the limit bonus
B(t, t) which must be uniformly bounded by ∆x.

Proof of Proposition 4

Suppose xL ≥ u−1(c0) and suppose there exists an optimal mechanism that excludes set of types
with positive measure. Then, the highest payoff these types can obtain by participating in the
mechanism is 0. Consider the alternative mechanism that offers a subset of these types the trivial
contract: w = u−1 (c0) , b = 0. For any other type, the payoff from this contract is 0 under low
effort and −∆c under high effort. Thus, no type can benefit by deviating to this contract. For
each of these types, the principal gets xL + p0∆x − u−1(c0) (instead of zero) by offering this
contract. This is positive for all types (except for types with p0 = 0, which have zero measure)
if xL ≥ u−1(c0). Thus, this new mechanism is also feasible and yields a higher expected payoff,
contradicting the optimality of the original mechanism. Thus, whenever participation is first best
optimal, there is no exclusion in the second best mechanism.

Reciprocally, suppose xL < u−1(c0) and suppose there exists an optimal mechanism with no
exclusion a.e.. By Proposition 3, there exist t∗ > 0 and ϕ∗ > t∗ such that all types (p0, p1) ≤
(t∗,ϕ∗) are offered the trivial contract: w = u−1 (c0) , b = 0. Consider the alternative mechanism
that recommends non-participation to all types a set (p0, p1) ≤ (ε, ε) for

ε ≡ min

{
t∗;

u−1(c0)− xL

∆x

}
> 0. (36)

We claim that this new mechanism is feasible. (FD) and (IR) are immediate. In order to
verify (IC), note that because all types in this set are obtaining zero informational rents under
the old mechanism, this recommendation is incentive-compatible. Moreover, because any other
type that announces a type in this set gets zero utility it is not in their interest to do so. Thus,
the new mechanism is (IC). Furthermore, the principal now gets 0 from all types in this set rather
than

xL + p0∆x− u−1(c0) < xL + ε∆x − u−1(c0) ≤ 0,
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where the last inequality follows from (36). Thus, the principal obtains a strictly higher payoff
under this new mechanism, which contradicts the optimality of the original one.

Proof of Lemma 7

This lemma is an immediate consequence of Lemma 10 for the risk-neutral case, i.e., for G(U , U̇ , t) =
U .

Proof of Theorem 2

This theorem is an immediate consequence of Theorem 3 for the risk-neutral case, i.e., for
G(U , U̇ , t) = U .

Proof of Proposition 5

Let (U ,ϕ) be the rent projection and effort frontier functions associated with a feasible non-trivial
mechanism. Let V be defined as

V(t) =

{
max

{
U(ϕ∗) + U̇(ϕ∗)(t− ϕ∗), 0

}
, if t < ϕ∗

U(t), if t ≥ ϕ∗
.

Note that U(t) = V(t) for all t ≥ ϕ∗ and U(ϕ∗) = ∆c. Since the rent projection function V is
also feasible, Lemma 7 gives

ˆ ϕ∗

0

[
(ϕ (t)− t)∆x−∆c

U̇ (ϕ (t))
f (t,ϕ (t)) + F0(t,ϕ(t))

]
(U(t)− V(t))dt ≤ 0. (37)

ByLemma 8, (ϕ(t)−t)∆x−∆c

U̇(ϕ(t))
f (t,ϕ (t)) ≥ 0, so that the term inside the first bracket is positive.

Moreover, the convexity of U implies that, by construction, U(t) ≥ V(t), for all t ∈ [0,ϕ∗]. Hence,
the continuity of U and V and condition (37) yield that U(t) = V(t), for all t ∈ [0,ϕ∗].

Recall that U (t) = 0 for all t ≤ t∗. Therefore, the power of the contract for all types who get
projected to a diagonal type t < t∗ is b(t, t) = U̇ (t) = 0, and, by (IR), they get w = c0. Types
who get projected to a diagonal type t ∈ (t∗,ϕ∗) get the constant power b(ϕ∗,ϕ∗) = U̇ (ϕ∗). From
equation (6), we have U (ϕ∗) = ∆c. Moreover,

U (ϕ∗) =

ˆ ϕ∗

0

U̇ (ϕ∗) dt = (ϕ∗ − t∗) U̇ (ϕ∗) .

Combining these two conditions yields

U̇ (ϕ∗) =
∆c

ϕ∗ − t∗
≤ ∆c,

where the inequality uses the fact that ϕ∗ − t∗ ≤ 1 (since t∗ and ϕ∗ are both between 0 and 1).
Incentive compatibility then requires that the fixed payment for these types, w, be smaller than
c0 (otherwise types projected to t < t∗ would prefer to deviate to this contract).
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Proof of Proposition 6

The result will be established through a series of lemmata.
Let (w, b, e) be a feasible mechanism and consider a type (p0, p1) in the high effort region:

p1 > ϕ (p0). By incentive compatibility, exerting high effort must yield a higher payoff than
exerting a low effort while reporting the same type:

w(p0, p1) + p1b(p0, p1)− c1 ≥ w(p0, p1) + p0b(p0, p1)− c0.

Subtracting w(p0, p1) from both sides and rearranging yields

p1 ≥ p0 +
∆c

b(p0, p1)
≥ p0 +

∆c

∆x
,

where the last inequality follows from the fact that bonuses are bounded above by ∆x (Lemma
5). In particular, because (t,ϕ (t) + ε) belongs to the high effort region for ε > 0, it follows that,
after taking the limit when ε → 0,

ϕ (t) ≥ t +
∆c

∆x
(38)

for all t ≤ 1 − ∆c
∆x

. This already establishes that the optimal effort region is contained in the
first-best effort region. We will show that it is contained in the interior of the first-best effort
region through the two following lemmata. Since ϕ (t) is strictly increasing in the region where
ϕ (t) < 1 and constant when ϕ (t) = 1, its inverse is always well defined for t < inf

{
t̂ : ϕ

(
t̂
)
= 1
}
.

We adopt the following convention: ϕ−1 (t) ≡ inf
{
t̂ : ϕ

(
t̂
)
≥ t
}
. Thus, ϕ−1 : [ϕ∗, 1] → [0, 1] is a

strictly increasing function.

Lemma 12. Suppose that ϕ−1(t) = t − ∆c
∆x

for some t ∈ [0, 1). Then, ϕ−1(t) = t − ∆c
∆x

and
U̇(t) = ∆x, for all t ≥ t.

Proof. Applying equation (38) to t̂ = ϕ−1 (t), yields

ϕ−1 (t) ≤ t−
∆c

∆x
(39)

for all t. For notational simplicity, denote the first-best separating curve as ϕf (t) ≡ t + ∆c
∆x

for

t ≤ 1− ∆c
∆x

and note that ˙ϕ−1
f (t) = 1 for all such t. Then, the inequality above can be written as

ϕ−1 (t) ≤ ϕ−1
f (t).

Since, by Lemma 6,

˙ϕ−1(t) =
U̇(t)

U̇ (ϕ−1(t))
a.e., (40)

the convexity of U implies that ˙ϕ−1(t) ≥ 1 a.e. Therefore, ϕ−1 (t̄) = ϕ−1
f (t̄) and ˙ϕ−1(t) ≥ ˙ϕ−1

f (t)
a.e. It then follows that

ϕ−1(t) ≥ ϕ−1
f (t) = t−

∆c

∆x
, for all t ≥ t̄.

Combining with inequality (39), yields ϕ−1(t) = t− ∆c
∆x

for all t ≥ t̄.
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From equation (6), U
(
t− ∆c

∆x

)
= U (t) − ∆c for all t ≥ t̄. Moreover, from equation (40), we

must have U̇(t) = U̇(ϕ−1(t)) a.e., which implies that there exist constants constants β > 0 and
α ∈ R such that U(t) = βt+ α for almost all t ≥ t. Combining these two statements, yields

α + β

(
t−

∆c

∆x

)
= α + βt−∆c,

for all t ≥ t, which gives β = ∆x.

Lemma 13. Suppose that there exists t ∈ [0, 1] such that U̇(t) is a constant function for all t ≥ t.
Then, ϕ(t) = min{ϕ(t)− t + t, 1}, for all t ≥ t.

Proof. The result is immediate if ϕ(t) = 1. Let ϕ (t̄) < 1. By Lemma 6, ϕ̇(t) = U̇(t)

U̇(ϕ(t))
for almost

all t such that ϕ (t) < 1. Because U̇ (t) = U̇ (ϕ (t)) for t ≥ t̄, it follows that ϕ̇(t) = 1 for almost all
t ≥ t such that ϕ(t) < 1. By continuity of ϕ (Lemma 1), ϕ(t) = ϕ(t)− t + t whenever ϕ(t) < 1.
For ϕ (t) = 1, the result is immediate.

We are now ready to present the proof of the main result:

Proof of the Proposition. Suppose, by contradiction, that the claim that for is false. Recall
that the domain of ϕ−1 is [ϕ∗, 1] . Then, by (38), there must exist a type t ∈ [ϕ∗, 1) for which
ϕ−1 (t) = t− ∆c

∆x
. Denote the infimum of such types by

t̄ ≡ inf

{
t ∈ [0, 1] : ϕ−1(t) = t−

∆c

∆x

}
∈ [ϕ∗, 1).

By Lemma 12, ϕ−1(t) = t − ∆c
∆x

and U̇(t) = ∆x for all t ≥ t. There are two cases: t̄ = ϕ∗ and
t̄ > ϕ∗.

Let t = ϕ∗. It follows from the arguments in the proof of Proposition (5) that U cannot have
a kink at ϕ∗. Therefore, it must be the case that U̇(t) = ∆x for all t > t∗.

Let t > ϕ∗. We claim that U must have kink at t. Otherwise, let δ > 0 be small enough
such that t − δ > ϕ∗ and S1(t,U)f(ϕ−1, t) = (t−ϕ−1)∆x−∆c

U̇(ϕ−1)
f(ϕ−1, t) − F1(ϕ−1, t) < F0(t,ϕ), for

all t ≥ t − δ. Such δ > 0 exists because ϕ−1 is a continuous function, F0(t,ϕ) + F1(ϕ−1, t) is a
positive function bounded away from zero, U̇(ϕ−1) ≥ ∆c and (t−ϕ−1)∆x−∆c = 0, for all t ≥ t.
In particular, this implies that S(t,U) < 0, for all t ≥ t − δ. Define the following feasible rent
projection function

V(t) =

{
max

{
U(t− δ) + U̇(t− δ)(t− t + δ),U(t̄) +∆x(t− t)

}
, if t ∈ [t− δ, t]

U(t), if otherwise
,

which is the substitution of U by the envelope of tangent lines at points t−δ and t of the function
U on the interval [t− δ, t]. By the definition of t, U̇(t) < ∆x,35 convexity of U and the hypothesis
that U does not have kink at t, V(t) < U(t) for all t ∈ (t− δ, t). Hence,

ˆ t

t−δ

[U(t)− V(t)]S(t,U)dt < 0

which contradicts the optimality condition of Lemma 7. Hence, there is kink at t. On the other
hand, Theorem 2 would imply that

´ 1
t
S(t,U)dt = 0, which is a contradiction because S(t,U) < 0

on [t, 1].

35Notice that if t = 1, then U̇(t) < ∆x = U̇(1) for all t < 1 and, by our convention, lim
t→1

U̇(t) = U̇(1).

49



Proof of Proposition 7

Let r = ∆c
∆x

and D is the set of continuous densities on ∆̄. Fix such density f ∈ D and, since
the polynomial functions are dense in the space continuous functions with respect to supreme
norm, we can assume without loss that f is a polynomial function. Suppose that the second
best frontier is not strictly above the first best frontier. By Proposition 6, partially selling the
firm is optimal. This optimal mechanism is then characterized by the following rent projection
U(t) = max{∆x(t − t∗), 0}, for some t∗ ∈ (0, 1). We have also that ϕ∗ = t∗ + r < 1. From
Theorem 2, the necessary optimality bunching conditions are then given by

´ 1
t∗
F0(t, t + r)dt+

´ 1
t∗+r

F1(t− r, t)dt = t∗F1(t∗, t∗ + r)−
´ t∗

0 tf(t, t∗ + r)dt
´ 1

t∗
(t− t∗)F0(t, t + r)dt+

´ 1

t∗+r
(t− t∗)F1(t− r, t)dt = r

(
t∗F1(t∗, t∗ + r)−

´ t∗

0 tf(t, t∗ + r)dt
)
.

Integrating by parts and reorganizing terms we get that the above equations are equivalent to:

H1(t∗, f) :=
´ 1

t∗
F0(t, t+ r)dt+

´ 1

t∗+r
F1(t− r, t)dt−

´ t∗

0 F1(t, t∗ + r)dt = 0

H2(t∗, f) :=
´ 1

t∗
(t− t∗)F0(t, t+ r)dt+

´ 1

t∗+r
(t− t∗)F1(t− r, t)dt− r

´ t∗

0 F1(t, t∗ + r)dt = 0.

Therefore, defining the functional H = (H1, H2) : [0, 1]× D → R2, if partially selling the firm is
optimal for f , then there might exist t∗ ∈ (0, 1) such that H(t∗, f) = 0, i.e., for density f , t∗ must
be the solution of a pair of equations. In what follows we will show that, generically inf , this is
not possible. The following claims give the result:

Claim 1: The Gateaux differential of the functional H(t∗, ·) : D → R2 exists and is onto.
In fact, notice that H(t∗, ·) is a linear mapping from L∞(∆̄) into R2 and consequently coincides
with its differential. Hence, to show that it is onto, it suffices to show that there exist f1 and f2
in L∞(∆̄) such that the vectors {H(t∗, f1), H(t∗, f2)} ⊂ R2 are linearly independent. Consider
α > 0 sufficiently small and define hα(t, s) = 1[t≤t∗−α](t, s). Then,

F α
0 (t, s) =

ˆ s

t

hα(t, x)dx =

{
s− t, if t ≤ t∗ − α
0, otherwise

, and

F α
1 (t, s) =

ˆ t

0

hα(x, s)dx =

{
t, if t ≤ t∗ − α
t∗ − α, otherwise

.

Now we can compute:

H1(t∗, hα) =
´ 1
t∗+r

(t∗ − α)dt−
´ t∗−α

0 tdt−
´ t∗

t∗−α
(t∗ − α)dt

H2(t∗, hα) =
´ 1
t∗+r

t(t∗ − α)dt− (t∗ + r)
(
´ t∗−α

0 tdt+
´ t∗

t∗−α
(t∗ − α)dt

) .

H(t∗, hα) as a function of parameter α defines a path in R2. Taking the derivative, we obtain its
tangent field:

d

dα
H(t∗, hα) =

(
t∗ + r + α− 1
(t∗ + r)(r + 2α)− 1

)
= −

(
1
1

)
+ (t∗ + r)

((
1
r

)
+ α

(
(t∗ + r)−1

2

))
,

and the second derivative gives its curvature:

d2

dα2
H(t∗, hα) =

(
1
2(t∗ + r)

)
.
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Since H(t∗, h0) /= 0 and
{

d
dα
H(t∗, hα),

d2

dα2H(t∗, hα)
}

are linearly independent vectors, we have

that {H(t∗, h0), H(t∗, hα)} are also linearly independent independent, for α > 0 sufficiently small.
Considering a C∞ function such that

hα(t, s) =

{
1, if t ≤ t∗ − α
0, if t ≥ t∗,

we that the same properties are true when α > 0 is sufficiently small. Therefore, let us consider
this smooth function instead.

Claim 2: For every ε > 0 there exists f̃ ∈ D such that ||f − f̃ ||∞ < ε and the system of
equations H(·, f̃) = (0, 0) has no solution. In other words, for every neighborhood of f there
might exist a density in the neighborhood for which partially selling the firm is not optimal.

Sincef is a polinomial function, there is only a finite number of solutions of the equation
H(t∗, f) = (0, 0). Suppose first that there exists only one solution for this equation. From
claim 1, let h1, h2 smooth functions such that the function A(t, x, y) = H(t, f + x1h1 + x2h2) has
Jacobean with respect to variables (x1, x2) at the point (t∗, 0, 0) given by

[
H(t∗, h1) H(t∗, h2)

]
=
[
e′1 e′2

]
,

where {e1, e2} is the canonical basis of R2. In particular, it has determinant different from zero.
Applying the implicit function theorem, there are small δ > 0 and ε > 0 such that A(t, f +x1h1+
x2h2) = (a1, a2) if and only if xi = ϕi(t, a1, a2) where ϕi : [t∗−δ, t∗+δ]× [−ε, ε]2 → R2 are smooth
functions.

Notice that H(t, f) /= (0, 0), for all t ∈ K := [0, 1]− (t∗−δ, t∗+δ). By continuity of H and the
compactness of K, we can find (x1, x2) /∈ {(ϕ1(t, 0, 0),ϕ2(t, 0, 0)); t ∈ [t∗ − δ, t∗ + δ]} with norm
sufficiently small such that H(t, f + x1h1 + x2h2) /= (0, 0), for all t ∈ [0, 1].

Define f̃ = f + h, where h = x1h1 + x2h2. Notice that, since h is a bounded function we can
choose |ε| > 0 sufficiently small such that f + εh is strictly positive function. Finally, normalizing
f̃ we have a density and get the result.

If the number of solutions of the equation H(t∗, f) = (0, 0) is greater than one, we can argue
in the same fashion as before at every solution. However, the functionA will now be defined on
2n+ 1 variables, where n is the number of solutions.

Claim 3: The subset of D for which partially selling the firm is optimal is (relatively) closed.
Therefore, the subset of D for which the second best effort frontier is strictly above the first
best effort frontier is open. Indeed, taking a sequence of densities (fn) converging to f such that
partially selling the firm is the optimal mechanism for fn. The selling mechanism is completely
characterized by a cutoff t∗n ∈ (0, 1). Take a subsequence such that (t∗nk

) converges to t∗ ∈ [0, 1]. It
is easy to see that Π(Unk

, fnk
) converges to Π(U , f), where Un(t) = max{∆x(t−t∗n), 0} and U(t) =

max{∆x(t− t∗), 0}, and we are extending the notation of Π to make explicit the dependence on
f . Therefore, U is the optimal rent projection for f .

Proof of Lemma 9

First note that for t ≥ ξ∗,

S(t,U) =
(t− ϕ−1)∆x−∆c

U̇(ϕ−1)
− R(ϕ−1, t).
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By the signs of the partial derivative of R, the convexity of U , the fact that the effort distortion
is non-negative, and ˙ϕ−1 ≥ 1 (a.s.), we have

d

dt
S(t,U) =

d

dt

(
(t− ϕ−1)∆x−∆c

U̇(ϕ−1)
−R(ϕ−1, t)

)

= −

(
˙ϕ−1 − 1

)
∆x

U̇(ϕ−1)
−

[
(t− ϕ−1)∆x−∆c

U̇(ϕ−1)

]
Ü(ϕ−1)

U̇(ϕ−1)
˙ϕ−1 − R1(ϕ

−1, t) ˙ϕ−1 − R2(ϕ
−1, t) < 0

for almost all t ≥ ξ∗ (where R1 (t, s) ≡
∂R
∂t

(t, s) and R2 (t, s) ≡
∂R
∂s

(t, s)). Therefore, S(t,U) is a
strictly increasing function of t.

Since S(t,U) is strictly decreasing, there are three possible cases: (i) S(t,U) < 0 for all
t ∈ [ξ∗, 1]; (ii) S(t,U) > 0 for all t ∈ [ξ∗, 1]; and (iii) there exists t̄ ∈ [ξ∗, 1] such that S(t,U) ≶ 0 if
and only if t ≷ t. Let us first suppose that ϕ∗ ≤ ξ∗. Consequently, we have the following possible
cases:

(i) S(t,U) < 0 for all t ∈ [ξ∗, 1].
Consider the following convex and piecewise linear function:

V(t) =

{
U(t), if t ≤ ξ∗

max
{
U(ξ∗) + U̇(ξ∗)(t− ξ∗),U(1) + U̇(1)(t− 1)

}
, if t > ξ∗

which is feasible. Notice that U (t) = V (t) for t ≤ ξ∗. Since U is optimal, by Lemma 7,

ˆ 1

ξ∗
[U (t)− V (t)]S(t,U)dt ≥ 0.

Because S(.,U), U , and V are continuous functions and U(t) ≥ V(t) for all t ∈ [ξ∗, 1], we must
have that U(t) = V(t), for all t ∈ [ϕ∗, 1].

(ii) S(t,U) > 0 for all t ∈ [ξ∗, 1].
Consider the following convex and piecewise linear function:

V(t) =

{
U(t), if t ≤ ξ∗

max
{
U(ϕ∗) + U̇(ϕ∗)(t− ϕ∗); U(1) + U(1)−U(ϕ∗)

1−ϕ∗ (t− 1)
}
, if t > ξ∗

,

which is feasible. As in case (i), V coincides with U for t ≤ ξ∗. Using Lemma 7, we obtain

ˆ 1

ξ∗
[U (t)− V (t)]S(t,U)dt ≥ 0.

Again, because S(.,U), U , and V are continuous functions and U(t) ≤ V(t) for all t ∈ [ξ∗, 1], we
must have that U(t) = V(t), for all t ∈ [ξ∗, 1].

(iii) there exists t̄ ∈ [ξ∗, 1] such that S(t,U) ≶ 0 if and only if t ≷ t.
Consider the following convex and piecewise linear function:

V(t) =

{
U(t), if t ≤ ξ∗

max
{
U(ξ∗) + U(t)−U(ξ∗)

t−ξ∗
(t− ξ∗); U(1) + U̇(1)(t− 1)

}
, if t > ξ∗

,
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which is feasible. Since U(t) = V(t) on t ≤ ξ∗, Lemma 7 implies
ˆ 1

ξ∗
[U (t)− V (t)]S(t,U)dt ≥ 0.

Because U(t) ≤ V(t) on [ξ∗, t] and U(t) ≥ V(t) on [t, 1], and S(t,U), U and V are continuous
functions, it follows that U(t) = V(t), for all t ∈ [ξ∗, 1]. We conclude that U must have at most
two pieces on the interval [ξ∗, 1].

Now suppose that ϕ∗ > ξ∗. By Proposition 5, U is an affine function on the interval [ξ∗,ϕ∗]
and U does not have a kink at ϕ∗. Proceeding as in the case where ϕ∗ ≤ ξ∗, but only substituting
ξ∗ for ϕ∗ in the expression above, we also conclude that U must be piecewise linear with at most
two pieces on the interval [ξ∗, 1].

Proof of Proposition 8

(i) We claim that ∆x
∆c

≤ 2 implies that ϕ∗ ≥ ξ∗. Because U is increasing, it is enough to show that
U(ϕ∗) ≥ U(ξ∗). By condition (6), U(ϕ∗) = ∆c and U(ξ∗) = U(1)−∆c, so that

U(ϕ∗) ≥ U(ξ∗) ⇐⇒ U(1) ≤ 2∆c.

Because in any optimal mechanism we have U (0) = 0 and, by Lemma 5, U̇(t) ∈ [0,∆x] for
all t, we have

U (1) ≤ ∆x ≤ 2∆c,

where the last inequality follows from the assumption that ∆x ≤ 2∆c. Part (ii) is an immediate
consequence of (i) and equation (4).

Proof of Corollary 1

By Proposition 5, U is piecewise linear in [0,ϕ∗]. Since the uniform distribution satisfies increasing
rents, it is also piecewise linear in [ξ∗, 1] (Lemma 9). It remains to be shown that U is piecewise
linear on (ϕ∗, ξ∗).

We claim that ϕ (ϕ∗) ≥ ξ∗. Because U is increasing, it suffices to show that U (ξ∗) ≤ U (ϕ (ϕ∗)).
By equation (6),

U (ϕ(ϕ∗)) = U (ϕ∗) +∆c = 2∆c.

Since U (ξ∗) = U (1)−∆c, we need to show that U (1) ≤ 3∆c. Because U(0) = 0, U̇(t) ∈ [0,∆x],
we have U (1) ≤ ∆x. Then, the result follows from ∆x ≤ 3∆c.

Since U is piecewise linear on [0,ϕ∗] ∪ [ξ∗, 1] and the image of [ϕ∗, ξ∗] by ϕ−1 and by ϕ
are contained in [0,ϕ∗] and [ξ∗, 1], respectively, we can define a partition of the interval [ϕ∗, ξ∗]
such that the functions U̇(ϕ−1) and U̇(ϕ) are constant in each interval of the partition. Let
[a, b] ⊂ [ϕ∗, ξ∗] be an element of the partition and let U̇(ϕ−1(t)) = β0 and U̇(ϕ(t)) = β1 for all
t ∈ [a, b]. Then,

S(t,U) = −
(ϕ− t)∆x−∆c

β1
+

(t− ϕ−1)∆x−∆c

β0
− ϕ+ t− ϕ−1,

where we have substituted the expressions for F0 and F1 under the uniform distribution. Differ-
entiating with respect to t, yields:

−
(ϕ̇− 1)∆x

β1
+

(1− ˙ϕ−1)∆x

β0
− ϕ̇+ 1− ˙ϕ−1.
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Substituting ˙ϕ−1(t) = U̇(t)
β0

and ϕ̇(t) = U̇(t)
β1

, yields

−

(
U̇(t)− β1

β2
1

+
U̇(t)− β0

β0

)

∆x−
U̇(t)

β1
+ 1−

U̇(t)

β0
.

Since U̇ is a non-decreasing function, this expression is a non-increasing function on [a, b]. Thus,
S(t,U) is an increasing function of t on [a, b]. Then, by the same procedure as in the proof of
Lemma 9, it follows that U is piecewise linear on [a, b]. Since the partition is finite, we have that
U is piecewise linear on [0, 1].

Proof of Proposition 9

We have that

F1(t, s) =

´ t

0 f(x, s)dx

f(t, s)
≥ t

since, by hypothesis, f(x, s) ≥ f(t, s), for all x ∈ [0, t]. We already know that the vertical effect
is always non-positive, i.e., S0(t,U) ≤ 0. Let us investigate the horizontal effect. For any t > ϕ∗,
we have

S1(t,U) =
(t− ϕ−1)−∆c

U̇(ϕ−1)
−

F1(ϕ−1, t)

f(ϕ−1, t)
≤ (t− ϕ−1)

∆x

∆c
− 1− ϕ−1

since U̇(ϕ−1) ≥ ∆c. The right hand side is less than or equal to zero if and only if

∆x

∆c
t− 1 ≤

(
1 +

∆x

∆c

)
ϕ−1.

This condition is implied by the following inequality

∆x

∆c
− 1 ≤

(
1 +

∆x

∆c

)
p,

which is equivalent to the condition in the statement of the proposition. Therefore, given the
optimal rent projection function U , let V(t) = max{0, U̇(ϕ∗)(t− ϕ∗) +∆c}, where U(ϕ∗) = ∆c.
By Lemma 7, we must have that

ˆ 1

0

[U(t)− V(t)]S(t,U)dt ≥ 0.

Since V(t) ≤ U(t), we must have that U(t) = V(t), for all t ∈ [0, 1]. Then, the result immediately
follows.

Proof of Lemma 10

Let h(t) ≡ V(t)− U(t) and consider the perturbation Uε ≡ U + εh. For each ε ∈ (0, 1), we have
that

U (t) + εh (t) = (1− ε)U (t) + εV (t)

is also feasible. Let Π denote the principal’s payoff from the rent projection function U :

Π(U) =

ˆ 1

0

(t∆x−G(U , U̇ , t))F0(t,ϕ)dt+

ˆ 1

ϕ∗

(t∆x−G(U , U̇ , t))F1(ϕ
−1, t)dt,
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where ϕ is obtained from equation (6). Because U is optimal and U + εh is feasible, we must have

Π (U + εh) ≤ Π (U)

for all ε ∈ (0, 1). Dividing by ε and taking the limit, we obtain the one-sided Gâteaux derivative
of Π in the direction h:

lim
ε↘0

Π (U + εh)−Π (U)

ε
≤ 0.

By equation (6), the effort frontier associated with U + εh, ϕε, is defined as the solution to
the following functional equation:

U (ϕε(t)) + εh(ϕε(t)) = U (t) + εh (t) +∆c

for all t ∈ [0, ξ∗ε ], where ξ∗ε solves U(ξ∗ε ) + εh(ξ∗ε ) = U(1) + εh(1)−∆c. Taking the total derivative
of this expression with respect to ε and evaluating at 0, we obtain

∂ϕε

∂ε

∣∣∣∣
ε=0

=
h (t)− h(ϕ)

U̇ (ϕ)
,

for all t ≤ ξ∗.
Analogously, its inverse, ϕ−1

ε , satisfies an analogous functional equation:

U
(
ϕ−1
ε (t)

)
+ εh(ϕ−1

ε (t)) = U (t) + εh (t)−∆c,

for all t ∈ [ϕ∗
ε , 1], where U(ϕ∗

ε)+εh(ϕ∗
ε ) = ∆c. Again, taking the total derivative of this expression

with respect to ε and evaluating at 0, we get:

∂ϕ−1
ε

∂ε

∣∣∣∣
ε=0

=
h (t)− h(ϕ−1)

U̇ (ϕ−1)
,

for all t ≥ ϕ∗. Applying the same procedure with respect to ϕ∗
ε yields

∂ϕ∗
ε

∂ε

∣∣∣∣
ε=0

= −
h(ϕ∗)

U̇(ϕ∗)
.

Then,

∂ϕε

∂ε

∣∣∣∣
ε=0

=
h (t)− h(ϕ)

U̇ (ϕ)
,
∂ϕ−1

ε

∂ε

∣∣∣∣
ε=0

=
h (t)− h(ϕ−1)

U̇ (ϕ−1)
,

∂ϕ∗
ε

∂ε

∣∣∣∣
ε=0

= −
h(ϕ∗)

U̇(ϕ∗)
, and (41)

U̇ε = U̇ (t) + εḣ (t) . (42)

With some abuse of notation, we let Πε ≡ Π(U + εh) denote the principal’s profit under Uε.
Therefore,

dΠε

dε

∣∣∣∣
ε=0

= lim
ε↘0

Π(U + εh)− Π(U)

ε
.

Using conditions (41), we obtain

dΠε

dε

∣∣
ε=0

= −
´ 1

0

{
∂G
∂U h(t) +

∂G
∂U̇

ḣ(t)
}
F0(t,ϕ)dt

−
´ 1
ϕ∗

{
∂G
∂U h(t) +

∂G
∂U̇

ḣ(t)
}
F1(ϕ−1, t)dt

+
´ ξ∗

0 (t∆x−G)h(t)−h(ϕ)

U̇(ϕ)
f(t,ϕ)dt

+
´ 1

ϕ∗
(t∆x−G)h(t)−h(ϕ−1)

U̇(ϕ−1)
f(ϕ−1, t)dt

+(ϕ∗∆x−G(ϕ∗) h(ϕ
∗)

U̇(ϕ∗)
F1(t∗,ϕ∗).
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Performing a change of variables on the integrals on lines two and three, we obtain:

´ ξ∗

0 (t∆x−G) h(ϕ)
U̇(ϕ)

f(t,ϕ)dt =
´ t∗

0 t∆x h(ϕ∗)

U̇(ϕ∗)
f(t,ϕ∗)dt+

´ 1

ϕ∗
(ϕ−1∆x−G (ϕ−1)) h(t)

U̇(t)
f(ϕ−1, t) ˙ϕ−1(t)dt

´ 1

ϕ∗
(t∆x−G) h(ϕ

−1)

U̇(ϕ−1)
f(ϕ−1, t)dt =

´ ξ∗

0 (ϕ∆x−G (ϕ)) h(t)

U̇(t)
f(t,ϕ)ϕ̇(t)dt.

Using condition (42) yields:

d
dε
Πε

∣∣
ε=0

= −
´ 1
0

(
∂G
∂U F0(t,ϕ)h(t) +

∂G
∂U̇

F0(t,ϕ)ḣ(t)
)
dt

−
´ 1
ϕ∗

(
∂G
∂U F1(ϕ−1, t)h(t) + ∂G

∂U̇
F1(ϕ−1, t)ḣ(t)

)
dt

−
´ ξ∗

0
(ϕ−t)∆x−(G(ϕ)−G)

U̇(ϕ)
f(t,ϕ)h(t)dt

+
´ 1

ϕ∗

(t−ϕ−1)∆x−(G−G(ϕ−1))

U̇(ϕ−1)
f(ϕ−1, t)h(t)dt

+
(
−
´ t∗

0 t∆xf(t,ϕ∗)dt+ (ϕ∗∆x−G(ϕ∗))F1(t∗,ϕ∗)
)

h(ϕ∗)

U̇(ϕ∗)
.

Hence, we have the result.
Notice that, in the case of Lemma 7, substituting U − U(ϕ−1) = ∆c and U(ϕ)− U = ∆c into

the equation above, gives the result claimed in the statement of the lemma.

Proof of Theorem 3

(1) Notice that S(t,U) is an integrable function on [a, b] (in the Lesbegue sense). Let h : [0, 1] → R

be any function twice continuously differentiable function such that h(t) = 0 for all t /∈ (a, b).
Since U is strongly convex on [a, b], U + εh is a strongly convex function if |ε| is sufficiently small.
Performing the variational calculus (given by the previous theorem) for such feasible direction,
we get

ˆ b

a

S(t,U)h(t)dt−

ˆ b

a

C(t,U)ḣ(t)dt = 0.

Notice that we are implicitly taking positive and negative value of ε to conclude that this integral
is both positive and negative. Integrating by parts, we get

ˆ b

a

[
ˆ t

0

S(x,U)dx + C(t,U)

]
ḣ(t)dt = 0.

Since the function inside the brackets of the above integral is càdlàg, ḣ is a generic continuous
function. The auxiliary lemma below implies that

ˆ t

0

S(x,U)dx+ C(t,U)

is constant on [a, b]. Since this function is a.e. differentiable (since U̇ is a.e. differentiable), we
have that

S(t,U) +
d

dt
{C(t,U)} = 0,

a.e. on [a, b].
(2) We have two possible feasible perturbations that we can do with the rent projection

function on the interval [a, b]: translations and rotations. Let us start with the translations and
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consider the case ϕ∗ /∈ [a, b]. We have that there exist β > 0 and α ∈ R such that U(t) = βt+ α,
for all t ∈ [a, b]. Given δ > 0 sufficiently small, define the following rent projection function:

Vδ(t) = max{U(t), βt + α + δ}

which is obviously feasible. Applying Theorem 10, we get

ˆ bδ

aδ

S(t,U)hδ(t)dt−

ˆ bδ

aδ

C(t,U)ḣδ(t)dt ≥ 0,

where hδ = U − Vδ, aδ and bδ are the only two solutions of the equation Vδ(t)− U(t) = 0 (which
follows from the convexity of U and the maximality property of [a, b] for sufficiently small δ > 0).
Let a′δ ≥ aδ and b′δ ≤ bδ be the only two solutions of the equation Vδ(t) − U(t) = δ (again from
convexity of U and the maximality of [a, b] for sufficiently small δ > 0). It is easy to check that
lim
δ→0

aδ = lim
δ→0

a′δ = a and lim
δ→0

bδ = lim
δ→0

b′δ = b. Therefore, since hδ(t) = −δ for all t ∈ [aδ, bδ],

1
δ

´ a′δ
aδ

S(t,U)hδ(t)dt−
1
δ

´ a′δ
aδ

C(t,U)U̇(t)dt+
1
δ

´ bδ
b′δ

S(t,U)hδ(t)dt−
1
δ

´ bδ
b′δ

C(t,U)U̇(t)dt+
´ b′δ
a′δ

S(t,U)dt ≥ 0.

Notice that
∣∣∣∣∣
1

δ

ˆ a′δ

aδ

S(t,U)hδ(t)dt

∣∣∣∣∣
≤

a′δ − aδ
δ

sup {|S(t,U)hδ(t)| ; t ∈ [aδ, a
′
δ]} ≤ (a′δ − aδ) sup {|S(t,U)| ; t ∈ [aδ, a

′
δ]}

since |hδ(t)| ≤ δ, for all t. Hence, when δ → 0, the value on left hand side of the above inequality
goes to 0. An analogous proof shows that the third term in the above expression goes to 0 when
δ → 0.

Hence, we have that

ˆ b

a

S(t,U)dt = lim
δ→0

ˆ b′δ

a′δ

S(t,U)dt ≥ lim inf
δ→0

1

δ

(
ˆ a′δ

aδ

C(t,U)U̇(t)dt+

ˆ bδ

b′δ

C(t,U)U̇(t)dt

)

≥ 0.

Therefore, the first result holds.
Suppose that U has kink at a and at b. Given δ > 0 sufficiently small, define the following

rent projection function:

Vδ(t) =

{
max{(β − δ)(t− U(a)) + U(a), βt+ α− δ, (β + δ)(t− U(b)) + U(b), if t ∈ [a, b]
U(t), if otherwise

which is obviously feasible for δ sufficiently small. Define aδ and bδ the solutions of (β − δ)(t −
U(a)) + U(a) = βt+ α− δ and βt+ α− δ = (β + δ)(t− U(b)) + U(b), respectively. It is easy to
see that lim

δ→0
aδ = a and lim

δ→0
bδ = b. Therefore, since hδ(t) = δ for all t ∈ [aδ, bδ],

1
δ

´ aδ
a

S(t,U)hδ(t)dt−
´ aδ
a

C(t,U)dt+
1
δ

´ b

bδ
S(t,U)hδ(t)dt+

´ b

bδ
C(t,U)dt−

´ bδ
aδ

S(t,U)dt ≥ 0.

Arguing in the same we did above, we can show that the first and the third integrals converge
to zero. The second and fourth integrals have bounded integrands and their integration limits
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converge to the same point. Hence, we have that
´ b

a
S(t,U)dt ≤ 0. Putting the two inequalities

together we get our result.
Next, consider rotations and ϕ∗ /∈ [a, b]. Given δ > 0 sufficiently small, define the following

rent projection function:

Vδ(t) = max {U(t), (β + δ)(t− a) + U(a)} ,

which represents a small anti-clockwise rotation of the affine function U on [a, b] at point (a,U(a))
in the plane type versus informational rent. This perturbation is feasible. Applying Lemma 10,
we obtain

ˆ bδ

a

S(t,U)h(t)dt ≥ 0,

where hδ = U − Vδ and bδ is the only solution of the equation Vδ(t) − U(t) = 0. Proceeding in
the same way as above, we conclude that

ˆ b

a

S(t,U)(t− a)dt ≥ 0.

Analogously, we can make a small clockwise rotation of U on [a, b] at point (b,U(b)) and
conclude that

ˆ b

a

S(t,U)(t − b)dt ≤ 0.

If U has kink at a (at b), then we can do also a small anti-clockwise (clockwise) rotation at b (at

a) and get the equality. If U has kink at both at a and b, using that
´ b

a
S(t,U)dt = 0, we conclude

the last equality for this case.
The case where a = t∗ and b ≥ ϕ∗ is analogous. The only difference is that we have to consider

the rotation at the point (ϕ∗,∆c) to eliminate the point effect from ϕ∗ in the condition of Lemma
10.

Lemma 14. Let f ∈ L∞[a, b] satisfying
´ b

a
f(t)g(t)dt = 0, for all g ∈ C[a, b] such that

´ b

a
g(t)dt =

0. Then, f is a constant function a.e.

Proof. By Theorem 3.14 of Rudin (1986, pp. 69), we know that the space of real continuous func-
tions C([a, b]) is dense in the space of integral functions L1([a, b]) and, by the Stone-Weierstrass
Theorem, every function in C([a, b]) is the uniform limit of a sequence of polynomial functions.

Therefore, the hypothesis of the lemma implies that
´ b

a
f(t)g(t)dt = 0, for all g ∈ L1[a, b] such

that
´ b

a
g(t)dt = 0.

Notice that L2[a, b] ⊂ L1[a, b]. Consider the closed subspace H =
{
g ∈ L2[a, b];

´ b

a
g(t)dt = 0

}

of L2[a, b]. Notice that the orthogonal subspace of H in L2[a, b], H⊥, is the space of constant
functions.36 Indeed, the constant functions are obviously contained in H⊥ and, for each g ∈
L2[a, b], we have that

g =

(
g −

1

b− a

ˆ b

a

g(t)dt

)
+

1

b− a

ˆ b

a

g(t)dt,

where g − 1
b−a

´ b

a
g(t)dt ∈ H , which implies that H⊥ is generated by the constant functions.

Therefore, f ∈ H⊥.

36As usual for Lp[a, b] space, a function g is constant when g(t) = k a.e., for some k ∈ R.
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Proof of Proposition 10

Let ϕU (t) := t+ ∆c
u(I)−u(I−L) denote the separating curve of uninsured types. Then, an uninsured

type (p0, p1) picks high effort if p1 > ϕU (p0). Proceeding as in Subsection 2.3, we can express the
reservation utility of all types in terms of the separating curve ϕU and the reservation utility of
diagonal types:

V (t) := tu (I) + (1− t) u (I − L)− c0. (43)

Namely,

max
i∈{0,1}

piu (I) + (1− pi)u (I − L)− ci =

{
V
(
ϕ−1
U (p1)

)

V (p0)
.

As in Subsection 2.3, let U denote the rent projection associated with an optimal mechanism.
Using these diagonal projections, the participation constraint of diagonal types becomes:

U (t) ≥ V (t) . (44)

The following lemmata will be useful in the proof of the proposition:

Lemma 15. Suppose diagonal type t = 1 is not excluded: U (1) ≥ V (1). Then, b (1, 1) ≤
u (I)− u (I − L) .

Proof. Substituting the expressions for U and V at t = 1 yields

u (W +B)− c0 ≥ u (I)− c0 ∴ W +B ≥ I.

From Lemma 5 (and the fact that the net output ∆x corresponds to the loss L in this version of
the model), B ≤ L. Hence,

W ≥ I − L.

Because B ≤ L, W +B ≥ I, and W ≥ I − L, concavity of u gives

u (W +B)− u (W )

B
≤

u (I)− u (I − L)

L
.

Substituting B ≤ L, we obtain

u (W +B)− u (W )

B
≤

u (I)− u (I − L)

B
∴ u (W +B)− u (W )︸ ︷︷ ︸

b(1,1)

≤ u (I)− u (I − L) ,

concluding the proof.

Lemma 16. In any optimal mechanism, the set of diagonal types that do not participate is an
interval of the form (t̄, 1] for some t̄ ∈ [0, 1].

Proof. First, we note that U is convex while V is affine – it has slope V̇ (t) = u (I) − u (I − L).
Moreover, as established in Subsection 2.3, U̇ (t) = b (t, t) which, by convexity, is a non-decreasing
function of t. There are two possible cases:
i. Suppose that type t = 1 is not excluded: U (1) ≥ V (1). Then, the previous lemma implies
that

b (t, t) ≤ u (I)− u (I − L) ,

for all t. As a result, U (t) ≥ V (t) for all t. Thus, all types participate if diagonal type t = 1
participates.
ii. Now suppose that t = 1 is excluded: U (1) < V (1). Because U is convex and V is affine, there
must exist t̄ ∈ [0, 1) such that U (t) ≥ V (t) if and only if t ≤ t̄.
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Expressing the utility of off-the-diagonal types using the projection into the diagonal, Lemma
16 implies that types will prefer not to participate if p0 ≥ t̄, or p1 ≥ ϕU (t̄).

Lemma 17. Suppose the optimal mechanism is such that all types participate: U (t) ≥ V (t) for
all t. Then, the participation constraint binds at the top: U (1) = V (1).

Proof. The participation constraint cannot be slack for all types. If this were the case, the
principal could strictly improve by reducing U uniformly. Therefore, there must exist t such
that U (t) = V (t). As argued in Lemma 16, V̇ (t) = u (I) − u (I − L), and U̇ (t) = b (t, t) is a
non-decreasing function of t. Moreover, by Lemma 15, U̇ (t) ≤ V̇ (t). Because there must exist
some t for which U (t) = V (t), it follows that U (1) = V (1) .

We are now ready to establish the main result. Suppose there exists an optimal mechanism
with associated projected rent function U . By Lemma 15 b (t, t) ≤ u (I) − u (I − L) for all t.
Because b is non-decreasing, there are two possible cases:

• There exists ε > 0 such that b (t, t) = u (I)− u (I − L) for all t > 1− ε, and

• b (t, t) < u (I)− u (I − L) for all t < 1.

First, suppose that b (t, t) = u (I) − u (I − L) for all t > 1 − ε, where ε > 0. By Lemma 17, we
must have

w (1, 1) + u (I)− u (I − L)︸ ︷︷ ︸
b(1,1)

−c0 = u (I)− c0 ∴ w (1, 1) = u (I − L) .

Moreover, since all those types t get the same power b, they must also get the same w as well
(otherwise, the mechanism would not be incentive compatible). Thus, all types associated with
diagonal types t > 1− ε are uninsured:

W (t, t) = I − L, and B (t, t) = L.

Now, suppose that b (t, t) < u (I)− u (I − L) for all t < 1. In order to obtain a contradiction,
suppose the solution is such that all types participate. To keep the notation consistent with the
rest of the paper, we write xH := I, xL := I − L, and ∆x := L. The principal’s expected utility
is then

Π(U) =

ˆ t̄

0

(
t∆x−G(U , U̇ , t)

)
F0(t,ϕ)dt+

ˆ min

{

1;t̄+ ∆c

u(xH )−u(xL)

}

ϕ∗

(
t∆x−G(U , U̇ , t)

)
F1(ϕ

−1, t)dt,

where t̄ is the last type who wants to participate.
Consider a perturbation that uniformly reduces the rents of all types by ε > 0:

Uε (t) ≡ U (t)− ε.

Note that the perturbation preserves U̇ and ϕ. Let t̄ε denote the highest diagonal type who
chooses to participate:

U (t̄ε)− ε = V (t̄ε) .

(Note that, by Lemma 17, t̄0 = 1). Substituting the expression for V, yields

U (t̄ε)− ε = u (xL) + t̄ε [u (xH)− u (xL)]− c0.
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Total differentiation gives:

∂t̄ε
∂ε

= −
1

u (xH)− u (xL)− U̇ (t̄ε)
=

1

b (t̄ε, t̄ε)− [u (I)− u (I − L)]
< 0.

Therefore, this perturbation excludes a positive mass of types. We will show that, for small ε,
this perturbation raises the principal’s profit, which contradicts our assumption that the original
mechanism was optimal.

The principal’s expected utility under the perturbation is

Πε =

ˆ t̄ε

0

(
t∆x−G(U − ε, U̇ , t)

)
F0(t,ϕ)dt+

ˆ min

{

1;t̄ε+ ∆c

u(xH )−u(xL)

}

ϕ∗

(t∆x−G(U−ε, U̇ , t))F1(ϕ
−1, t)dt.

Since t̄0 = 1, it follows that 1 < t̄ε +
∆c

u(xH)−u(xL)
for ε small enough. Differentiating with respect

to ε, yields
∂Πε

∂ε
=
(
t∆x−G(U − ε, U̇ , t)

)
F0(t,ϕ)

∣∣∣
t=t̄ε

∂t̄ε
∂ε

+

ˆ t̄ε

0

∂G

∂U
(U − ε, U̇ , t)F0(t,ϕ)dt+

ˆ 1

ϕ∗

∂G

∂U
(U − ε, U̇ , t))F1(ϕ

−1, t)dt.

Note that ∂G
∂U = t

u′(u−1(U+(1−t)U+c0))
+ 1−t

u′(u−1(U−tU+c0))
> 0. Therefore, the terms on the second line

are both strictly positive.
Moreover, limε↘0 t̄ε = 1 and

t∆x−G(U − ε, U̇ , t)
∣∣∣
t=1

= ∆x− u−1 (U (1) + c0) .

By Lemma 17, U (1) = u (xH)− c0. Therefore,

u−1 (u (xH)) = xH > xH − xL = ∆x.

As a result,
(
t∆x−G(U − ε, U̇ , t)

)
F0(t,ϕ)

∣∣∣
t=t̄ε

< 0 for small ε. Since ∂ t̄ε
∂ε

< 0, it follows that the

first line is also strictly positive for ε close to zero. Hence, ∂Πε

∂ε
> 0 for ε small enough, establishing

contradicting the optimality of U .

Proof of Proposition 11

The following lemma will be useful in the proof of the main result:

Lemma 18. Let t̄ be the first diagonal type to be excluded: U (t) > V (t) for t < t̄ and U (t̄) = V (t̄).
Then, b (t, t) < u (I)− u (I − L) for all t < t̄.

Proof. As argued in Lemma 16, U is convex with slope U̇ (t) = b (t, t) and V is affine with
slope V̇ (t) = u (I) − u (I − L). In order to obtain a contradiction, suppose the solution entails
b
(
t̃, t̃
)
≥ u (I) − u (I − L) for some t̃ < t̄. Then, because b is non-decreasing, it follows that

U̇ (t) = b (t, t) ≥ V̇ (t) for all t ∈ [t̃, t̄]. However, because t̃ < t̄, we must have U
(
t̃
)
> V

(
t̃
)
. Then,

U̇ (t) ≥ V̇ (t) for all t ∈ [t̃, t̄] implies that U (t̄) > V (t̄) , contradicting U (t̄) = V (t̄) .

61



Let (w, b, e) be an optimal mechanism with an associated effort frontier ϕ, and consider a type
(p0, p1) in the high effort region: ϕ−1 (p1) > p0. By incentive compatibility, exerting high effort
must yield a higher payoff than exerting a low effort while reporting the same type:

w(p0, p1) + p1b(p0, p1)− c1 ≥ w(p0, p1) + p0b(p0, p1)− c0.

Subtracting w(p0, p1) from both sides and rearranging yields

p1 ≥ p0 +
∆c

b(p0, p1)
= p0 +

∆c

b(p1, p1)
,

where we used the fact that b (p0, p1) = b (p1, p1). Taking the limit as p0 converges to ϕ−1 (p1)
yields

p1 ≥ ϕ−1 (p1) +
∆c

b(p1, p1)
> ϕ−1 (p1) +

∆c

u (I)− u (I − L)
,

where the last inequality used the fact that b(p1, p1) < u (I)− u (I − L). Letting p̂0 := ϕ−1 (p1),
we obtain

ϕ (p̂0) > p̂0 +
∆c

u (I)− u (I − L)
.

Since this holds for any arbitrary p̂0, we have established the result.

Proof of Proposition 12

(i) The proof that there are two contracts at bottom is analogous to Proposition 5.
(ii) Suppose that (w(p), b(p))

p∈∆ is an optimal mechanism such that (1 + λ)b(p̂) > ∆x, for

some p̂ = (p̂0, p̂1) ∈ ∆ with p̂0 < 1. Define t̂ = inf {t ∈ [0, 1); (1 + λ)b(t, t) > ∆x}. Suppose that
this mechanism is optimal. Since the optimal mechanism has a region with zero bonus, t̂ ∈ (0, 1).
Proceeding the same steps of the proof of Lemma 5 and define the principal’s objective function
on the family of perturbations by:

Πα = xL−λc0+

ˆ 1

0

ˆ ϕα(t)

t

(t∆x−λUα(t)−c0)f(t, s)dsdt+

ˆ 1

0

ˆ 1

ϕα(t)

(s∆x−λUα(s)−c1)f(t, s)dsdt.

Now let us compute the total derivative of Πα with respect to α:

∂Πα

∂α
= −λ

´ 1
0

(
´ ϕα(t)
t

∂Uα(t)
∂α

f(t, s)ds+
´ 1
ϕα(t)

∂Uα(s)
∂α

f(t, s)ds
)
dt

+
´ 1
0 (t∆x− λUα(t)− c0)

∂ϕα(t)
∂α

f(t,ϕα(t))dt

−
´ 1

0 (ϕα(t)∆x− λUα(ϕα(t))− c1)
∂ϕα(t)
∂α

f(t,ϕα(t))dt.

Notice that, since ∂Uα(t)
∂α

≤ 0 , the first line is obviously non-negative. We can rewrite the second
and third lines as

−

ˆ 1

0

[(ϕα(t)− t)∆x− (1 + λ)∆c]
∂ϕα(t)

∂α
f(t,ϕα(t))dt

where we are using that U(ϕα(t)) = U(t)+∆c. Suppose that (ϕ(t)− t)∆x > (1+λ)∆c, for some
t ∈ [t̂, 1]. Then, by the definition of t̂, we have that (ϕ(t)− t)(1+λ)b(t, t) > (1+λ)∆c. However,
incentive compatibility implies that

w(t, t) + tb(t, t)− c0 ≥ w(t, t) + ϕ(t)b(t, t)− c1,
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which leads to a contradiction. Therefore, we have that

∂Πα

∂α

∣∣∣∣
α=0

≥ 0.

We have to show that the inequality is strict to complete the proof. For this, notice that ∂Uα(t)
∂α

is strictly negative for all t ≥ t̂, since β < U̇(1). These imply that the integrand of the double
integral in the first line is strictly negative on [t̂, 1]. Since ∆x = (1 + λ)(CH − CL), we showed
that the optimal second-best power is lower that the cost reduction.

The proof of existence of an optimal mechanism is analogous to the proof of Theorem 1.
(iii) Using item (ii), the proof is analogous to the proof of Lemma 8 and Proposition 6.
(iv) The proof is analogous to the proof of Proposition 4.
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