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Levered Noise and the Limits of Arbitrage Pricing:

Implications for Dividend Strips and the Term Structure

of Equity Risk Premia

Abstract

Negligible pricing frictions in underlying asset markets can become greatly mag-
nified when using no-arbitrage arguments to price derivative claims. Amplifica-
tion occurs when a replicating portfolio contains partially offsetting positions that
lever up exposures to primary market frictions, and can cause arbitrarily large
biases in synthetic return moments. We show theoretically and empirically how
synthetic dividend strips, which shed light on the pricing of risks at different hori-
zons, are impacted by this phenomenon. Dividend strips are claims to dividends
paid over future time intervals, and can be replicated by highly levered long-short
positions in futures contracts written on the same underlying index, but with dif-
ferent maturities. We show that tiny pricing frictions can help to reproduce a
downward-sloping term structure of equity risk premia, excess volatility, return
predictability, and a market beta substantially below one, consistent with empiri-
cal evidence. Using more robust return measures we find smaller point estimates
of the returns to short-term dividend claims, and little support for a statistical
or economic difference between the returns to short- versus long-term dividend
claims.



I. Introduction

Following Mehra and Prescott (1985), numerous authors have attempted to explain the

high average returns on equity relative to historical aggregate consumption risk. Two

explanations that have received considerable attention are the habit formation model

of Campbell and Cochrane (1999) and the long-run risks model of Bansal and Yaron

(2004). Both imply under standard calibrations that long-horizon equity cash flows are

riskier and receive higher returns than short-horizon equity cash flows. In other words,

these models generate term structures of equity risk premia that are upward-sloping.1

Lettau and Wachter (2007) point out the importance of the term structure of equity

risk premia for empirically evaluating these explanations, and note tension with another

regularity, the value premium.2

Binsbergen, Brandt, and Koijen (“BBK”, 2012) propose to measure the term struc-

ture of equity risk premia by calculating the returns on dividend strips, which are claims

to dividends paid over future time intervals. Until recently, dividend strips have traded

in over-the-counter markets where data are not readily available. BBK provide the in-

sight that dividend strips can be replicated by long-short positions in liquid futures and

spot markets, relying on futures-spot parity, or by appropriate positions in puts and

calls additionally requiring that put-call parity holds. Using this approach, BBK find

higher returns on short-term versus long-term dividend claims, which poses a challenge

to traditional models of the equity premium.3

We show that the return moments of synthetic dividend strips can be significantly

biased because of the impact of small pricing frictions. Our claim may seem surprising.

1Rare disaster models (Gabaix, 2008, Barro, 2006, Rietz, 1988) imply a flat term structure of equity risk
premia. See Binsbergen, Brandt, and Koijen (2012) for a full discussion of the implications of leading asset
pricing models for the term structure of equity risk premia, including prior literature and calibrations.

2Chen (2012) offers a reconciliation of an upward-sloping equity premium with the value premium by
providing alternative measures of cash flow growth and cash flow duration. He finds that value stocks have
duration similar to growth stocks in buy-and-hold portfolios, and greater than growth stocks in rebalanced
portfolios.

3Croce, Lettau, and Ludvigson (2011) develop a consumption-based model with a downward-sloping equity
premium under imperfect information. Wang (2011) shows that imperfect information can help to match a
downward-sloping equity premium as well as other real and financial market moments in a production economy.
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Dividend strips can be replicated with highly liquid futures contracts, and BBK use

careful empirical methods to help alleviate concerns about microstructure frictions. The

central insight we offer is that, even when pricing frictions have tiny impacts on any leg

of a compound trade involving long and short positions, their cumulative effect relative

to the value of the net position can be hundreds of times larger. The amplification of

primary-market pricing frictions in a long-short trade occurs because of the effects of

implicit leverage.

As an example, suppose one buys an index claim and takes a short position in an

offsetting one-year futures contract. The net claim is a synthetic dividend strip that

entitles one to all dividends paid on the index over the next year. Due to leverage, the

net value of the dividend strip is only a small fraction of the gross value of either the

long or the short side of the trade. To see this quantitatively, assume an annualized

price-dividend ratio of 50, roughly consistent with recent experience.4 Normalizing

the long value to $100, the offsetting futures position would have a notional amount

in the neighborhood of $98, and the strip value would be about $2. Suppose that

microstructure frictions have tiny impacts of a few basis points (cents) on either the

long side or the short side of the trade, or on the synchronicity of the two prices. These

few cents of mispricing may be irrelevant compared to the $100 gross value of the long

side, but are nonetheless substantial in comparison with the $2 net value of the dividend

strip. The magnification of small pricing frictions can cause large biases in synthetic

return moments.

One symptom of pricing frictions is the large negative first-order autocorrelation,

about -30% at a monthly frequency, in synthetic dividend strip returns. Our analysis

shows that two distinct channels explain these extreme reversals. First, negative au-

tocorrelations occur under bid-ask bounce or iid measurement error (Niederhoffer and

Osborne, 1966, Blume and Stambaugh, 1983). High implicit leverage in synthetic divi-

4During the 1996-2009 sample period considered by BBK, the U.S. annualized price-dividend ratio av-
eraged approximately 60, ranging from a low of 28 to a high of 90, where the monthly stock mar-
ket price-dividend ratio is calculated following the method of Shiller (2005) with data downloaded from
http://www.econ.yale.edu/ shiller/data.htm.
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dend strips inflates small measurement errors from the primary markets, causing large

negative autocorrelations in the return series.

A second type of microstructure friction, asynchronous price adjustment, also con-

tributes to large negative autocorrelations in dividend strip returns. This result may

be surprising since asynchronous price adjustment is typically associated with positive

autocorrelation in portfolio returns (e.g., Lo and MacKinlay (1990)). Positive auto-

correlation occurs, for example, in a portfolio with positive portfolio weights where all

assets have positive exposure to the same underlying fundamental risk. Since each asset

in the portfolio responds to the same shock at different times, positive autocorrelations

occur. For the long-short portfolios we consider the effects are entirely different. If one

futures contract responds more quickly to fundamental news in a long-short calendar

spread, the initial return does not fully incorporate the hedging effect of the opposing

position, and in a subsequent period the observed return will tend to be reversed. This

argument does not require one side of the trade to always be more informationally ef-

ficient than the other. Large negative autocorrelations are generated simply by having

the long and the short side react to a shock at not precisely the same time.

The negative autocorrelation induced in portfolio returns by microstructure frictions

creates an upward bias in average one-month simple returns, following from Blume and

Stambaugh (1983). Boguth, Carlson, Fisher, and Simutin (“BCFS”, 2012) provide a

formula to approximate the bias in simple returns, based on the effects of Jensen’s

inequality. A substantial portion of the high short-horizon average returns of dividend

strips is explained by their extreme negative autocorrelations, in turn associated with

microstructure frictions.

We provide a theoretical analysis showing that all of the anomalous findings about

dividend strips can be explained by the magnification of small primary-market frictions.

In a calibrated model where the true term structure of equity risk premia is flat, we

generate in synthetic dividend strips a strongly downward-sloping term structure, excess

volatility, large negative return autocorrelations, return predictability from the price-
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dividend ratio, and a market model beta substantially less than one.

We further show that alternative measures of returns that are not as sensitive to

microstructure frictions lead to different conclusions about the difference between short-

and long-term asset returns. In particular, the apparent large returns of dividend strips

are substantially diminished in annual rather than monthly return intervals, and in

average logarithmic returns.

Our paper relates to the literature on limits to arbitrage, which emphasizes that

arbitrageurs may fail to bring prices fully toward their fundamental values for a variety

of reasons.5 An important part of the literature considers constraints on short sales or

the leverage of arbitrageurs, as well as fire-sale externalities, as important limitations.6

The point we make is different, relating to the leverage required to execute an individual

arbitrage trade, as opposed to the leverage or exposure of an individual arbitrageur or

group of arbitrageurs. In particular, taking partially offsetting positions in underlying

markets, as is common in arbitrage strategies, can dramatically lever up small pricing

frictions from the primary markets. Because of this amplification, errors in synthetic

prices and returns can be orders of magnitude larger than in the underlying markets,

creating a significant obstacle for both those who might wish to carry out arbitrage, as

well as empiricists interested in estimation and inference.

Section II provides a general framework within which to understand our general

idea about the magnification of primary-market frictions when using arbitrage pricing

techniques. Section III introduces dividend strips, and provides a back-of-the envelope

estimate of the magnitude of the bias in dividend strip mean returns. Section IV gives a

theoretical analysis of bias in dividend strip moments. Section V develops our calibrated

model, and Section VI provides additional empirical results. Section VII concludes.

5These reasons include uncertainty over how long mispricing can persist and solvency constraints, issues
related to the separation of capital from knowledge of mispricing, and the absence of close substitutes with
which to arbitrage (see, e.g., Shleifer and Summers (1990), De Long, Shleifer, Summers, and Waldmann (1990),
Shleifer and Vishny (1997), Shleifer (1986), Pontiff (2006)).

6See, e.g., Miller (1977), Kyle and Xiong (2001), Gromb and Vayanos (2002), Morris and Shin (2004), Allen
and Gale (2005), Brunnermeier and Pedersen (2009), Stein (2009), Frazzini and Pedersen (2011).
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II. Microstructure Bias in Levered Portfolios

The key idea of our paper is that the leverage implicit in any long-short partially hedged

strategy can significantly amplify the importance of even tiny microstructure frictions

present in any leg of the strategy. We first develop this idea in a general setting.

A. Amplification of Microstructure Frictions

We start by assuming a trading strategy where the fundamental value V of a synthetic

claim can be decomposed into the true values of long (L) and short (S) positions:

V = L− S > 0. (1)

In practice, pricing frictions make the fundamental values of L, S, and hence V imper-

fectly observable. Relevant pricing frictions could be bid-ask spreads, trading costs, or

delays in price discovery or trade execution.

We show that even when such pricing frictions are negligible in the primary markets

where L and S are traded, they can have large impacts on synthetic pricing of V . Let

the observed value of the synthetic claim be given by

V o = Lo − So, (2)

where

Lo = L(1 + εL), (3)

So = S(1 + εS). (4)

We assume that observed prices are unbiased, E[εL] = E[εS] = 0, and for sake of

generality in this section, no further assumptions on εL or εS are imposed.

The elasticities of the synthetic price V o with respect to changes in the microstruc-

ture noises in the primary markets are given by

∂V o/V o

∂εL/(1 + εL)
=

Lo

Lo − So
(5)

∂V o/V o

∂εS/(1 + εS)
= − So

Lo − So
. (6)
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Importantly, the absolute values of these elasticities increase without bound in the

observed leverage as So ↑ Lo. Hence, even when a claim can be replicated using

instruments that are highly liquid and whose prices are observed with negligible pricing

errors, the pricing errors on the synthetic claim itself may be arbitrarily large. In the

rest of this paper we show how these magnified pricing errors impact all return moments

of the synthetic claim, including means, variances, covariances, and autocorrelations.

B. Measurement Error and Bias in Return Moments

The effect of microstructure frictions on moments of observed returns is a fundamental

topic in finance. Blume and Stambaugh (1983) and other authors show how measure-

ment errors create positive bias and negative autocorrelation in the returns of portfolios,

such as equal-weighted portfolios, that are frequently rebalanced to fixed weights.7

In non-rebalanced portfolios such as stock market indices, asynchronous price adjust-

ment of portfolio components causes positive autocorrelations and impacts volatilities.8

Scholes and Williams (1977) and Lo and MacKinlay (1990) show that such microstruc-

ture frictions do not alter the mean returns of buy-and-hold portfolios; however, both

studies consider only logarithmic returns. In more recent work, BCFS show that mi-

crostructure frictions also impact the average simple returns and alphas of buy-and-hold

portfolios. Most empirical studies focus on average simple monthly returns as indicators

of performance, but longer horizon returns are more robust to microstructure noise.

Following from our results in this section, negligible microstructure frictions in pri-

mary markets can generate large mispricing in synthetically-valued claims. From prior

literature, these pricing errors can effect a variety of return moments. We now show

these effects in the context of dividend strips.

7Roll (1983) investigates the effects of daily rebalancing over multiple periods. Recently, Asparouhova,
Bessembinder, and Kalcheva (2012) show that even lower-frequency monthly rebalancing can result in strong
biases in returns, especially for portfolios of illiquid stocks whose average returns can be overstated by more
than 0.4% monthly.

8See for example Niederhoffer and Osborne (1966), Scholes and Williams (1977), Lo and MacKinlay (1990),
Boudoukh, Richardson, and Whitelaw (1994), Ahn, Boudoukh, Richardson, and Whitelaw (2002)

6



III. Dividend Strip Returns

Following BBK, we introduce dividend strips and describe their empirical properties.

We also provide a first approximation of the magnitude of the bias in the mean simple

returns of synthetic dividend strips.

A dividend strip entitles the holder to all dividends paid between dates t + T1 and

t+ T2, where t denotes the current date. The value of a dividend strip at date t is:

Pt,T1,T2 ≡
T2∑

τ=T1+1

Et

(
Mt+τ

Mt

Dt+τ

)
, (7)

where Mt and Dt respectively denote the stochastic discount factor and dividend pay-

ments at date t. When T1 = 0, the dividend strip is the “short-term asset.” Under

absence of arbitrage the short-term asset value is:

Pt,T ≡ Pt,0,T = St − e−rt,TTFt,T , (8)

where St denotes the spot value of the equity claim, Ft,T is the forward price, and rt,T

is the risk-free rate of interest for a bond maturing at date t + T . In the general case

where T1 ≥ 0 the price of a dividend strip is:

Pt,T1,T2 = Pt,T2 − Pt,T1 = e−rt,T1T1Ft,T1 − e−rt,T2T2Ft,T2 . (9)

One can use put-call parity to rewrite (8) and (9), substituting portfolios of puts,

calls, and bonds for futures prices:

Pt,T = St + pt,T − ct,T −Xe−rt,TT , (10)

Pt,T1,T2 = pt,T2 − pt,T1 − ct,T2 + ct,T1 −X(e−rt,T2T2 − e−rt,T1T1), (11)

where pt,T and ct,T are respectively puts and calls maturing at t+T with common strike

X. BBK consider two specific return series. The first dividend strip return equals the

return on a short-term asset:

R1,t =
Pt,T +Dt

Pt−1,T+1

, (12)
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where the maturity T varies between approximately 1.3 and 1.9 years.9 The second

dividend strip return is

R2,t =
Pt,T1,T2

Pt−1,T1+1,T2+1

, (13)

where T1 ≈ T2 − 1 year. The second strategy does not require replicating the index or

collecting dividends, and involves trades only in futures contracts.

A. Properties of the Return Series

Using a February 1996 to October 2009 sample period, BBK report the following key

facts about the return series R1,t and R2,t:

• The one-month average returns of both short-term dividend strips are larger than

the one-month average returns on the S&P 500 (annualized 11.6% and 11.2%

versus 5.6%). The return differences persist after controlling for standard risk

factors.

• The volatilities of the short-term dividend strips are substantially higher than the

S&P 500 index (standard deviations of monthly returns are 7.8% and 9.7% versus

4.7%). The volatilities of the dividend strips are substantially larger than the

volatilities of subsequent dividend realizations.

• The dividend strip returns have estimated betas of about 0.5 in market model

regressions.

• The return series R1,t is highly predictable by lagged values of the price-dividend

ratio of a 1.5 year short-term dividend strip.

Both series show very large negative autocorrelation, about -0.30. If the strips were

tradeable at the observed prices, an average return of 30% per month per dollar invested

would be available by following a return reversal strategy. Hence, measurement error

must be present in the observed prices.
9Specifically, in January of any given year, the maturity T is chosen according to the available contract

expiring in the fall of the following year. This contract will have a maturity of about T = 1.85 at purchase.
This contract is held for six months, during which period T decreases by 1/12 each month. On July 1, this
contract is sold and a new contract with maturity of approximately T = 1.85 years is purchased.
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B. Approximating the Impact on Dividend Strip Average Returns

We use a formula provided in BCFS to estimate the return a buy-and-hold investor can

expect to obtain from trading in the short-term asset. Let rit = ln (Rit) ∼ N (µi, σ
2
i )

denote monthly log returns. We assume that log returns aggregated over n months

have a normal distribution with variance σ2
in. These assumptions are exactly satisfied if

rit is a stationary ARMA(p, q) process with Gaussian innovations, and approximately

hold in more general cases. The buy-and-hold mean is R̄BH
in ≡ E [Ri,t+1 · · ·Ri,t+n] and

the rescaled monthly mean is R̄RS
in ≡ E [Rit]

n. BCFS show that

R̄RS
in

R̄BH
in

= enσ
2
i (1−V Rin)/2, (14)

where V Rin ≡ σ2
in/ (nσ2

i ) is the variance ratio. When the variance ratio is one, for

example if returns are iid, rescaled monthly returns are an unbiased estimate of the

investment return of the buy-and-hold investor. In contrast, a negative autocorrelation

implies high short- relative to long-horizon returns. Although (14) is derived from

an assumption of lognormal distributions, BCFS show that it is empirically extremely

accurate for a wide range of portfolios.

In Table 1, we show the ratio (14) for dividend strip returns and the S&P 500.

Panel A lists the primary moments used in the formula. Panel B presents the average

one-month returns for each series rescaled to an annual horizon, the estimated twelve-

month buy-and-hold return average, and an estimate of the variance ratio for each

investment.10 The average monthly returns of the dividend strip series when rescaled

to an annual horizon appear to suggest annual returns of 14.8% and 14.3% for R1

and R2 respectively. However, both series have variance ratios far below one, and their

estimated annual buy-and-hold returns of 12.8% and 10.1% are substantially lower than

10Since no variance ratios are reported in BBK, we use the 1-lag autocorrelation to approximate the variance
ratio using

V R(q) = 1 + 2

q−1∑
k=1

(1 − k/q) ρk, (15)

as in Campbell, Lo, and MacKinlay (1997, Eq. 2.4.19). For the higher order autocorrelations, we assume
ρk = 0 for k ≥ 2. We can alternatively impose the restrictions implied by an AR process, specifying ρk = ρk1
for k ≥ 2. The estimated horizon effects are affected little by this assumption.
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the average monthly returns would suggest.

These first calculations show that the large negative autocorrelations of dividend

strip returns and high short-horizon monthly returns relative to longer-horizon annual

returns are related symptoms. The root cause of these symptoms can be traced to small

pricing frictions, as we now show.

IV. Microstructure Bias in Synthetic Dividend Strips

We now extend the general idea of Section II to show how microstructure frictions

impact synthetic dividend strip returns. Assume that the observed index level Sot

relates to fundamental value St by

Sot = St + ρ(St−1 − St) + St(e
ηt − 1), (16)

where ρ(St−1 − St), 0 ≤ ρ ≤ 1, accounts for slow index adjustment, and St(e
ηt − 1)

captures iid measurement error. The futures price is for now taken to be unaffected by

microstructure frictions (i.e., F o
t,T = Ft,T ). If one uses the futures-spot parity relation

(8) to impute the short-term asset value, the observed price is

Pot,T ≡ Sot − e−rt,TTF o
t,T (17)

= Pt,T + (Sot − St). (18)

The microstructure friction Sot − St is proportionally much more important relative to

the short-term asset price, since Pt,T is considerably smaller than St.

Using a procedure similar to Campbell and Shiller (1988), we provide log-linear

approximations for the observed prices of the index and short-term asset. Let lower

case letters denote the logarithm of their uppercase counterpart, and define the capital

gain return Rx
t = St/St−1. The observed index level is

Sot = St

[
ρ

(
1

Rx
t

− 1

)
+ eηt

]
. (19)

Let `t,T ≡ ln(St/Pt,T ) be the logarithm of the implicit leverage of the dividend strip.

Also define ¯̀
T = E(`t,T ) and L̄T = exp(¯̀

T ). In the special case where `t,T is a constant,

L̄T is the implicit leverage of the dividend strip with maturity T . We then show
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Proposition 1 Logarithmic index levels and short-term asset prices are:

sot ≈ st − ρrxt + ηt, (20)

pot,T ≈ pt,T + L̄T (−ρrxt + ηt). (21)

The amplification of microstructure frictions is summarized by L̄T , reflecting leverage.

For dividend strips with a one-year maturity, L̄−1
T ≈ 0.02 approximates the dividend

yield of the index, and L̄T ≈ 50 approximates the price-dividend ratio of the index,

implying substantial magnification of primary market frictions.

The closed-form expressions for prices in Proposition 1 allow direct analysis of the

impact on returns. Let ∆t = ln(Dt/St), ∆ = E(∆t), δt = ln(Dt/Pt,T ), and δ = E(δt).

We then show

Proposition 2 Observed logarithmic returns on the index and the short-term asset are

respectively

rot ≡ ln

(
Sot +Dt

Sot−1

)
≈ rt + ρ(rxt−1 − rxt ) + ηt − ηt−1, (22)

ro1t ≡ ln

(
Pot,T +Dt

Pot−1,T+1

)
≈ r1t + L̄T [ρ(rxt−1 − rxt ) + ηt − ηt−1] (23)

where

rt ≡ ln

(
St +Dt

St−1

)
≈ ln(1 + e∆) +

e∆

1 + e∆
(∆t −∆) + st − st−1, (24)

r1t ≡ ln

(
Pt,T +Dt

Pt−1,T+1

)
≈ ln(1 + eδ) +

eδ

1 + eδ
(δt − δ) + pt,T − pt−1,T+1. (25)

First, pricing frictions are magnified in the logarithm of the short-term asset return,

where the size of the amplification effect is driven by the implicit leverage L̄T . Second,

the means of the observed log returns are not biased, since the means of the observed

and true log return series are identical.

While mean log returns are not biased, average simple returns are greatly affected.

Following from the standard Jensen’s inequality approximation:

E(Rit) ≈ eE(rit)+0.5Var(rit), (26)
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any microstructure-induced bias in volatity will impact simple returns.

To see the impact on measured variances, consider the case where dividend yields

on the index and dividend strip are constants, and the true index return rt is iid. The

variance of the short-term asset return is then

Var(ro1t) = Var(rt)

[
1− 2ρL̄T + 2ρ2L̄2

T + 2L̄2
T

Var(ηt)

Var(rt)

]
. (27)

Lead-lag effects inflate variance if ρ > L̄−1
T , and measurement error unambiguously

increases volatility. Both effects are multiplied by factors on the order of 2L̄2
T . If we

again consider L̄T = 50, implicit leverage magnifies microstructure-induced variance

by 5000 times. Even small primary-market pricing frictions cause apparent excess

volatility, which biases the average simple return following (26).

Consistent with standard implications of excess volatility (Shiller, 1981), the ob-

served short-term asset return is predictable with first-order autocovariance

Cov(ro1t, r
o
1t−1) = Var(rt)

[
ρL̄T − ρ2L̄2

T − L̄2
T

Var(ηt)

Var(rt)

]
. (28)

Lead-lag effects can cause positive or negative autocovariance depending on whether

L̄−1
t − ρ is positive or negative, while measurement error unambiguously biases the

measured autocovariance downwards. Leverage again inflates the importance of both

frictions by factors on the order of L̄2
T .

The microstructure frictions also impact measured beta. The covariance of the

short-term asset return with the index return is

Cov(rot , r
o
1t) = Var(rt)

[
1− ρ(1 + L̄T ) + 2ρ2L̄T + 2L̄T

Var(ηt)

Var(rt)

]
. (29)

Lead-lag effects reduce the measured covariance when 1 + L̄−1 > 2ρ > 0. Monthly

S&P 500 returns are positively autocorrelated with ρ ≈ 0.1 < (1 + L̄−1
T )/2, and should

therefore contribute to downward bias in covariance. The last term in (29) shows that

measurement error increases covariance. The magnitude depends on the variance of

the measurement error relative to the variance of index return, again magnified by the

implicit leverage L̄T of the short-term asset. The observed beta

βo1t ≡ Cov(rot , r
o
1t)/Var(rot ) (30)
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is determined by dividing (29) by the measured index variance

Var(rot ) = Var(rt)

[
1− 2ρ+ 2ρ2 + 2

Var(ηt)

Var(rt)

]
. (31)

Since leverage does not affect the index variance, the absolute bias in (31) is expected to

be tiny relative to the absolute bias in the covariance (29). The effect of microstructure

frictions on the observed dividend strip beta (30) should therefore be dominated by

bias in the covariance (29).

Table 2 uses the equations derived in this section to illustrate the impact of implicit

leverage and microstructure frictions on various moments of the short-term asset return.

The selection of parameters is consistent with the ratio P/S varying from 1/10 to

1/90. Variation in this parameter can either reflect different assumptions for the annual

dividend yield on the S&P 500 index or consideration of a variety of dividend strip

strategies with T − t ranging from a few months to over a year. Lead-lag effects in

the index are captured by ρ, roughly equal to the first-order autocorrelation of index

returns. Finally, the parameter σ(η) reflects the magnitude of measurement errors.

The table shows effects of microstructure frictions on the monthly mean return, stan-

dard deviation, autocorrelations, and market beta. Measurement error biases volatility

upwards, in extreme cases more than tripling the unobserved true level of 4%. Average

simple returns are also overstated, in some cases more than doubling their true value.

Even modest measurement error creates substantial negative autocorrelation. Observed

market betas are only modestly inflated. Asynchronous price adjustment also has large

impacts, and combining the effects of measurement error and asynchronous price ad-

justment, key facts associated with dividend strips can be produced.

V. A Structural Model, Calibration, and Implications

We now show that in a simple calibrated model, tiny microstructure effects capture the

primary empirical features of dividend strips. The model we use does not endeavor to be

consistent with consumption moments, and we take an agnostic stance about preferred

models from the literature on consumption-based asset pricing. Rather, we use the
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simplest Gordon growth formula model of a flat term structure of equity returns. It

is straightforward to see how similar microstructure effects could be appended to any

consumption-based asset pricing model that one might advocate, and similar biases in

the observed versus fundamental return moments of dividend strips would occur.

Let dividends Xt be given by

dXt = gXt + σXtdWt, (32)

where dWt is the increment of a Wiener process, g is the mean growth rate, and σ2 the

variance. The fair price of the equity claim is given by the Gordon growth formula:

St =
Xt

µ− g
, (33)

where µ is the constant return on equity.

A. Delayed Price Adjustment in the Index

We first consider the case where only the observed level of the index at time t, denoted

Sot , depends on lagged fundamentals:

Sot = (1− ρ1 − ρ2)St + ρ1St−1 + ρ2St−2. (34)

True and measured returns are given by:

RMt = St/St−1 − 1, (35)

Ro
Mt = Sot /S

o
t−1 − 1. (36)

The true value of a short-term asset with a claim on the first T years of dividends

starting from date t is:

Pt,T = St(1− e−(µ−g)T ). (37)

We initially assume that the observed futures price is equal to fundamental value:

F o
t,T = Ft,T = (St − Pt,T ) erT . (38)
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The observed price of the short-term asset, derived from the observed futures price and

index value, is

Pot,T = Pt,T + ρ1(St−1 − St) + ρ2(St−2 − St). (39)

In the special case where ρ2 = 0, the measured return on the short-term asset is

Pot+1,T−1

Pot,T
=
Pt+1,T−1 − ρ1(St+1 − St)
Pt,T − ρ1(St − St−1)

. (40)

To calibrate the model, we set rf = 0.0029 per month and µ = 0.0056 equal to the

sample averages of the monthly risk-free rate and market return reported by BBK. We

choose σ = 0.047 to approximately match monthly market volatility. We consider two

values for the growth rate g of dividends. First, we set g = 0.0042, which is high from

a historical perspective but necessary to approximately match the price-dividend ratio

of about 60 over the sample period.11 Second, we choose a more conservative value

g = 0.0025 for the growth rate of dividends, which produces a much smaller value for

the aggregate price-dividend ratio of about 27.

Table 3, Panel A, shows each calibration and the effect on moments of observed

dividend strip returns. In column (i) where the average price-dividend ratio equals 60,

return moments are greatly impacted by microstructure frictions. We conservatively set

ρ1 = 0.03 and ρ2 = 0.01, which gives a first-order autocorrelation of the market index of

0.031, less than half of what is observed empirically during this sample. The observed

mean return of the short-term asset is then 1.10% per month, approximately equal to

the average return of the strategy R1 reported by BBK. The first-order autocorrelation

of observed returns is −0.258, also very close to the empirical value of −0.268. The

simulated standard deviation of short-term asset returns is 0.116, substantially larger

than the volatility of the market return, consistent with the empirically observed excess

volatility. The market-model beta is downward-biased relative to its true value of one.

In the calibration this downward bias is very strong, and the market model beta of

−1.44 is substantially less than the empirical value of 0.449.

11Alternative calibrations that use a lower dividend growth rate as well as a lower risk-free rate or market risk
premium to approximately match the observed price-dividend ratio produce results similar to those reported
for this calibration.
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In untabulated results, a regression of the observed short-term asset return on the

short-term asset price-dividend ratio produces significantly negative coefficients. For

example when the return from time t to t+1 is regressed on the period t price-dividend

ratio, the simulation produces a regression coefficient of −0.58 versus −0.17 empirically.

BBK also lag the price-dividend ratio by one quarter, as a check for the effects of mea-

surement error, and find a coefficient of −0.09 when using the lagged price-dividend

ratio. Our simulation produces similar effects, because we have included two lags of

asynchronous price adjustment in the observed index level (34). In predictability re-

gressions using the period t−1 price-dividend ratio we obtain a coefficient of -0.11. The

model thus generates predictability from price-dividend ratios, consistent with empirical

evidence.

Overall, these results show that a simple model of asynchronous price adjustment

in the market index can quantitatively match the mean return and autocorrelation of

market and short-term asset returns, while also qualitatively capturing excess volatility

in the short-term asset, downward bias in the market model beta, and negative pre-

dictability of short-term asset returns from the short-term asset price-dividend ratio.

In column (ii) of Panel A we consider the second calibration with a more modest

growth rate of dividends. To compensate for the smaller price-dividend ratio, we set

ρ1 = 0.075 and ρ2 = 0.015. These values produce a first-order autocorrelation of market

returns of 0.0822, almost exactly matching the empirically observed statistic of 0.0898.

The simulated moments of the dividend strip returns are very similar in this calibration

to those in column (i). The average returns of the short-term asset are slightly higher

(0.0122) and the autocorrelations somewhat more negative (−0.3277). Both calibrations

show the ability to match important quantitative and qualitative aspects of short-term

asset returns.

Replicating the short-term asset return R1 considered in this subsection requires

trading in the spot market to replicate the market index. The costs of such a trading

strategy may not be small. For this reason, BBK suggest that a more appropriate
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strategy to empirically evaluate is the dividend steepener return given in (13), which

we now consider.

B. Measurement Error in Prices and the Dividend Steepener

In principle, the dividend steepener return in (13) can be obtained by trading only in

futures markets, with a long position in maturity T1 and a short position in maturity

T2 > T1. We first consider the impact of small amounts of measurement error in futures

prices:

F o
t,T = Ft,T e

ηt,T . (41)

We assume that the errors ηt,T are independently drawn from a normal distribution

with mean zero and standard deviation ση. Hence, the observed prices are unbiased

estimates of the true prices.

Table 3, Panel B, column (i) corresponds to a calibration where the growth rate

of dividends g = 0.0042 gives a market price-dividend ratio of approximately 60. We

set ση = 0.0009, which reflects a fairly small measurement error. For comparison,

the average bid-ask spread in liquid futures contracts during this period was about 3

basis points. Additionally, the prices used by BBK in most of their analysis are not

actual futures prices, but are imputed from put-call parity using S&P 500 index options

and the put-call parity relations (10) and (11). Consistent with limits to arbitrage,

traded futures prices and those inferred from put-call parity are not exactly identical,

consistent with our assumption of small measurement errors in primary-market prices.

As a consequence of these small frictions, Table 3 shows that the average observed

return of the dividend steepener is 1.17% per month, more than double the true mean of

0.056% per month. Other symptoms of frictions are the large negative autocorrelation

of returns of the measured dividend steepener returns, equal to −0.4165 and substantial

excess volatility.

Similar effects can be seen in column (ii) of Panel B, where g = 0.0025 and the price-

dividend ratio is about 27. In this case, we increase the measurement error standard

deviation to ση = 0.0015. The effect on average returns and variances is smaller than
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column (i), but still economically meaningful, inflating mean returns of the dividend

steepener by about 50% relative to their true value (0.0086 versus 0.0056).

Hence, either small amounts of price asynchronicity (Panel A of Table 3) or iid

measurement error (Panel B) can generate high returns, strong negative autocorrelation,

and excess volatility of short-term dividend strips as observed in the data. The primary

difference in the consequences of these two microstructure frictions can be seen in the

last row of Table 3. The empirical values of the market model regression betas are 0.449

for R1 and 0.486 for R2, in between the model values in Panels A and B. A combination

of price asynchronicity and measurement error should therefore match all of the main

features of dividend strip returns, as we now show.

C. Full Model

Panel C of Table 3 shows two ways of combining price asynchronicity with measurement

error. In the first case, we set

F o
t,T = [(1− ρ1,T )Ft,T + ρ1,TFt−1,T ]eηt,T .

Column (i) shows simulated moments for a calibration with a tiny amount of slow price

adjustment on the long-side of the steepener (ρ1,T1 = 0.009) and no price delays on the

short side. Combined with measurement error, this specification matches the mean

returns, autocorrelations, excess volatility, and market model regression beta of the

empirical data.

Alternatively, it seems unlikely that any one futures contract is always more infor-

mationally efficient than another, in the sense of always incorporating current pricing

information sooner and more fully. We therefore allow that an iid random variable

determines which contract receives a news shock at each date t. Specifically, let

F o
t,T =

 Ft,T e
ηt,T if 1t,T,lagger = 0[

(1− ρ1,lagger)Ft,T + ρ1,TFt−1,T

]
eηt,T if 1t,T,lagger = 1,

where 1t,T,lagger equals zero when the contract with maturity T incorporates information

efficiently at time t, and equals one when the observed price updates slowly. We assume
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that at each date t, one of the contracts T1 and T2 incorporates information efficiently,

and the other is a lagger. We set P ([1t,T1,lagger = 1] = 2/3), so that on average the 18

month contract has more current information. This specification, shown in column (ii)

of Panel C also allows us to match the mean returns, autocorrelations, excess volatility,

and market model regression beta of the empirical data on observed dividend strip

returns.

D. Implicit Leverage and Average Returns

In Figure 1 we vary the maturity T of the dividend strip Pot,T from 6 to 60 months,

and show the implicit leverage of the claim as well as its mean return, volatility, and

autocorrelation. As the maturity of the dividend strip shortens, the implicit leverage in

the long-short position increases dramatically. Assuming an annualized price-dividend

ratio of approximately 60, a six-month dividend strip has implicit leverage exceeding

100. For longer maturities the implicit leverage falls and the importance of the mi-

crostructure effects in the synthetic return series lessens.

In the third panel, the autocorrelation function shows a distinctive pattern of first

being negative, reaching a minimum at a short maturity less than one year, and then

increasing to eventually become positive. The changing autocorrelation reflects a chang-

ing balance between two effects. On the one hand, the value of the short-term asset is a

fraction of the value of the aggregate market, and the observed returns of the aggregate

market have positive persistence. When the dividend strip has a long maturity this ef-

fect dominates. On the other hand, the appearance in the numerator and denominator

of (40) of the current and lagged true price change causes negative autocorrelation in

returns. This effect is more pronounced for more levered dividend strips with shorter

maturities T .

Figure 2 shows similar plots in the case where returns are impacted by iid measure-

ment errors rather than asynchronous price changes. Again, the implicit leverage of

dividend strips magnifies the importance of microstructure effects, and shorter maturi-

ties show higher apparent average returns and excess volatility. The autocorrelations in
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the third panel are always negative consistent with our results in Section 4, and become

closer to zero for longer maturities.

In both figures, synthetically replicating a short-term dividend strip requires high

leverage in nearly offsetting long and short positions. The greater the leverage, the more

the amplification of small pricing errors in the fundamental securities used to create

the replicating portfolio, and the stronger is the impact on observed return moments.

E. Cointegration and Price versus Return Correlations

Figure 3 shows a simulation of 180 months of fundamental values and observed prices

from the model of Table 3, Panel C, column (ii). The correlation between fundamental

and observed prices in this example is 93.67%. For comparison, the final pre-publication

version of BBK showed in their Section 5.2 that the correlations between dividend strip

prices inferred from futures prices versus put-call parity are of a similar magnitude,

94% and 91% for 6-month and 1-year dividend strips respectively. The measurement

errors of dividend strips implied by our model are thus of a magnitude comparable to

those seen in the data.

BBK infer that because futures markets are highly liquid and the short-term asset

prices obtained from futures and options markets are similar, microstructure frictions

are an unlikely explanation for their findings. Our analysis shows that it is important

to distinguish between high correlation of prices and high correlation of returns. In

all of the models we have developed in this paper, the correlation between fair value

and observed short-term asset prices is high. Nonetheless, we find large differences in

average returns. Further, despite the high correlation of the two price series in Figure

3, the correlation of the measured and true monthly returns is only 19.82%.

The large difference in the autocorrelations of prices and returns is possible because

the true and actual return series in the model are cointegrated. Attempts by arbi-

trageurs to take advantage of profit opportunities imply that the difference between

true and measured prices in financial markets must be small and temporary. However,

returns may be different and are predictable in the short-run by differences between

20



true and measured prices. A similar cointegrating relationship holds for futures prices

measured directly or via put-call parity from the options markets. In either case, the

similarity of prices does not imply a high degree of closeness in returns, either realized

or on average. In particular, despite the high price correlation between true and mea-

sured prices of the short-term asset shown in Figure 3, the average monthly measured

return is twice as high as the average monthly true return (1.12% versus 0.56%). The

higher average of the measured return is offset by its strong negative autocorrelation,

which substantially dampens the positive effects of compounding over longer horizons.

In general, high correlation of two price series, or apparent cointegration between two

price series, is not informative about the closeness of their average returns. When one

series is subject to strong microstructure bias, generating significant return autocor-

relations, the short-horizon average must be biased to compensate. These biases are

greatly mitigated in returns measured over longer horizons.

VI. New Estimates of the Dividend Term Premium

In this Section, we reexamine the performance of dividend strip strategies using return

measures that are more robust to microstructure frictions. Following our theoretical ar-

guments, average monthly returns of dividend strips are expected to be biased upwards.

To confirm this, Table 4 compares averages of the return series (R1 and R2) compounded

at different horizons.12 Whereas the average monthly return of the dividend steepener

strategy (R2) reaches 1.12% (14.30% per year), the average annual return scaled to a

monthly frequency amounts to just 0.71% (8.86% per year). By contrast, the average

returns of the S&P 500 index are relatively similar across horizons, equalling 0.56%

and 0.51% respectively for monthly returns and annual returns rescaled to a monthly

horizon. Consequently, using longer-horizon annual returns where the impact of mi-

crostructure frictions are proportionately smaller, the difference in performance between

the dividend steepener strategy and the index reaches only 0.20% monthly.

12We obtain returns from Ralph Koijen’s website, http://faculty.chicagobooth.edu/ralph.koijen/data.html
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Most of the difference in average returns of the short-term asset and the index is

attributable to the first half of the sample. For example, Table 4 shows that the differ-

ence in average returns R1 of the short-term asset and the S&P 500 index amounts to

0.94% monthly in the first half but reaches just 0.27% in the second half. Autocorrela-

tion of the short-term asset returns is more negative and volatility is higher during the

1996-2002 period. Moreover, liquidity of the assets used to compute returns R1 and R2

was likely lower earlier in the sample. It is thus not surprising that the horizon effects

are particularly striking in the first half of the sample. When the annual compounding

horizon is used, the difference in average returns of the short-term asset R1 and the

index amounts to 0.53% monthly in the first half and 0.33% in the second half of the

sample. More striking, for R2 the difference in returns based on an annual compound-

ing horizon is negative in the first half of the sample, measuring −0.04% per month,

remarkably lower than the monthly return mean difference of 0.73%.

Figure 4 graphically confirms these results. An investment in the dividend steepener

strategy in 1996 produced a lower cumulative return than an investment in the S&P

500 index through 2002. A one dollar investment in either strategy grew to the same

amount (around $2) by the end of June 2004. Moreover, during the last four years of

the sample (2006-2009), cumulative returns of the two investments were largely similar.

Thus the difference in average returns of the dividend steepener (1.12%) and the index

(0.56%) are not representative of what a long-term investor would realize. To illustrate

this point further, Figure 4 plots cumulative returns of two hypothetical strategies

that every month earn 1.12% and 0.56%. The differences in these plots are entirely

consistent with the effects of small pricing errors in primary markets, which become

amplified when using no-arbitrage relations to impute fair values of dividend strips.

VII. Conclusion

We show that small pricing frictions in primary markets become greatly magnified in

importance when one uses highly levered long-short positions to replicate and synthet-
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ically price financial claims. Such amplification implies large biases in the moments of

synthetic return series.

We apply these ideas to dividend strips, and show that the magnification of pricing

errors implies upward-biased short-horizon returns, negative autocorrelation, excess

volatility, market beta below one, and predictability of returns from the price-dividend

ratio, consistent with empirical evidence. The gearing up of primary-market pricing

frictions in synthetic dividend strips occurs because of high implicit leverage. These

instruments are created from long-short positions in futures or option markets, and have

a net value only a fraction of the long and short positions used in their construction.

These ideas are generally important for our ability to understand the effectiveness

of arbitrage activity in financial markets. Many standard arbitrage trades, such as

the replication of calls or other options, and a variety of calendar- and other types of

spreads, involve high leverage. Seemingly negligible frictions of a few basis points in

primary markets can imply substantial pricing errors of several percentage points or

more in synthetically priced derivative assets. These arguments are consistent with the

fact that when dividend strips first started trading on exchanges, their bid-ask spreads

were on the order of hundreds of basis points, despite the fact that synthetic replication

could be carried out using highly liquid underlying instruments.

Understanding of microstructure frictions is essential for those interested in evidence

on the returns of short-term dividend strips. In monthly data, autocorrelations of -30%

and R2 in predictive regressions in excess of 10% simply cannot be sensibly interpreted

if one assumes accurately measured prices, and our arguments help to explain these

seemingly anomalous features of dividend strip returns. Expected returns are diffi-

cult to measure accurately because of the short time series of historical data that is

available, but our analysis shows that point estimates of the average monthly return

have substantial upward bias. Our research also suggests that alternative approaches

to measuring the means or other properties of dividend strip returns should explicitly

account for microstructure frictions.
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Appendix

Proof of Proposition 1

Equation (20) follows from a Taylor series expansion of the two variable equation (19)
around rxt = ln(Rx

t ) = 0 and ηt = 0. Equation (21) follows from a Taylor series
expansion of the expression

Pot,T = Pt,T + (Sot − St) (42)

= St(e
−`t,T + ρe−r

x
t − (1 + ρ) + eηt) (43)

around the three points `t,T = ¯̀
T , rxt = 0, and ηt = 0.

Proof of Proposition 2

Equations (24) and (25) are the standard Campbell and Shiller (1988) log-linearizations
of the index and dividend strip returns. Equations (22) and (23) then follow from first-
differencing the relevant expressions for log ex-dividend index and dividend strip prices
in equations (20) and (21). Note that to simplify the expression, the expansion for
Pot−1,T+1 is around ¯̀

T , which represents the average dividend-price ratio for the short-
term asset Pot,T .
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Table 1. Back of the Envelope Calculation

A. Estimates from BBK B.
One-month Returns 12-month Returns

Portfolio R̄ σ ρ1 R̄RS12 V R12 R̄BH12

S&P 0.0056 0.0469 0.0898 0.0693 1.1646 0.0716
R1 0.0116 0.0780 -0.2682 0.1484 0.5083 0.1280
R2 0.0112 0.0965 -0.3668 0.1430 0.3275 0.1008

Difference

R1 − S&P 0.060 -0.3580 0.0791 0.0791 0.0564
R2 − S&P 0.056 -0.4570 0.0737 0.0737 0.0292

Notes: This table reports in Panel A estimated moments for the S&P index and the two
short-term assets from Binsbergen, Brandt, and Koijen (2012). Panel B compares the
rescaled simple monthly return R̄RSin ≡ E [Rit]

n with an estimated buy-and-hold return
R̄BHin ≡ E [Ri,t+1 · · ·Ri,t+n], n = 12 obtained from the approximation

R̄RSin
R̄BHin

= enσ
2
i (1−V Rin)/2,

provided in Boguth, Carlson, Fisher, and Simutin (2012). The key parameter in the approx-
imation, the variance ratio V Rin ≡ σ2

in/
(
nσ2

i

)
is computed under the assumption that all

autocorrelations of order greater than one are zero.
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Table 2. Microstructure Bias in Leveraged Portfolios

ρ = 0 ρ = 0.05 ρ = 0.1
L̄T σ(η) = 0 0.05% 0.1% σ(η) = 0 0.05% 0.1% σ(η) = 0 0.05% 0.1%

A. Return Standard Deviation (%)
10 4.00 4.06 4.24 2.83 2.92 3.16 4.00 4.06 4.24
30 4.00 4.53 5.83 6.32 6.67 7.62 14.42 14.58 15.03
50 4.00 5.34 8.12 11.66 12.19 13.64 25.61 25.86 26.57
70 4.00 6.36 10.68 17.20 17.90 19.85 36.88 37.21 38.18
90 4.00 7.52 13.34 22.80 23.67 26.12 48.17 48.58 49.82

B. Expected Simple Return (%)
10 0.30 0.30 0.31 0.26 0.26 0.27 0.30 0.30 0.31
30 0.30 0.32 0.39 0.42 0.44 0.51 1.27 1.29 1.36
50 0.30 0.36 0.55 0.90 0.97 1.16 3.56 3.63 3.82
70 0.30 0.42 0.79 1.71 1.84 2.21 7.27 7.40 7.80
90 0.30 0.50 1.12 2.86 3.07 3.70 12.55 12.78 13.46

C. Return Autocorrelation
10 0.00 -0.02 -0.06 0.50 0.44 0.30 0.00 -0.02 -0.06
30 0.00 -0.11 -0.26 -0.30 -0.32 -0.36 -0.46 -0.46 -0.46
50 0.00 -0.22 -0.38 -0.44 -0.45 -0.46 -0.49 -0.49 -0.49
70 0.00 -0.30 -0.43 -0.47 -0.48 -0.48 -0.49 -0.49 -0.49
90 0.00 -0.36 -0.46 -0.48 -0.49 -0.49 -0.50 -0.50 -0.50

D. Market Beta
10 1.00 1.00 1.01 0.55 0.56 0.57 0.12 0.13 0.14
30 1.00 1.01 1.04 -0.44 -0.43 -0.40 -1.83 -1.82 -1.78
50 1.00 1.02 1.06 -1.44 -1.42 -1.37 -3.78 -3.76 -3.70
70 1.00 1.02 1.09 -2.43 -2.41 -2.33 -5.73 -5.70 -5.62
90 1.00 1.03 1.11 -3.43 -3.39 -3.30 -7.68 -7.65 -7.53

Notes: This table reports moments of the ex-dividend return of the short-term asset for
varying microstructure parametrization (ρ ∈ {0, 0.05, 0.1}, σ(η) ∈ {0, 0.0005, 0.001}) and for
different price-dividend ratios (L̄T ∈ {10, 30, 50, 70, 90}) following the approximations from
Proposition 2. Panel A shows return standard deviations, Panel B expected simple ex-dividend
returns, Panel C return autocorrelations, and Panel D observed market betas. The log ex-
dividend return has a mean of 0.22% and a standard deviation of 4%, so that simple return
in the absence of microstructure frictions average 0.3%.
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Table 3. Comparison of Model versus Empirical Moments

A. B. C.
Asynchronous Measurement Full

Prices Error Model Empirical Value

Parameter (i) (ii) (i) (ii) (i) (ii) R1 R2

T1 0 0 6 6 6 6 0 6
T2 12 12 18 18 18 18 12 18
gd 0.0042 0.0025 0.0042 0.0025 0.0042 0.0042
ρ1,T1 0.03 0.075 0 0 0.009 0

ρ2,T1 0.01 0.015 0 0 0 0

ση 0 0 0.0009 0.0015 0.0009 0.0003
ρ1,lagger - - - - - 0.0025

P (lagger = T1) - - - - - 2/3

Moment

R̄M 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 - -
ρ1(RM ) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - -
R̄P 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 - -
ρ1(RP) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - -

R̄oM 0.0054 0.0054 - - - - 0.0056 -
R̄oM − r̄f 0.0025 0.0025 - - - - 0.0027 -
ρ1(RoM ) 0.0313 0.0822 - - - - 0.0898 -
std(RoM ) 0.0454 0.0431 - - - - 0.0469 -
PD(RoM ) 60 27 60 27 60 60 60 -

R̄oP 0.0110 0.0122 0.0117 0.0086 0.0110 0.0112 0.0116 0.0112
ρ1(RoP) -0.2582 -0.3277 -0.4165 -0.3703 -0.4088 -0.4080 -0.2682 -0.3668
std(RoP) 0.1161 0.1249 0.1201 0.0947 0.1156 0.1157 0.0780 0.0965
βoP -1.4401 -1.4635 1.0010 1.0030 0.4731 0.4767 0.4488 0.4863

Notes: This table shows moments of observed market and dividend strip returns under cali-
brations of the models described in Section 3. All models set the risk-free rate to rf = 0.0029
per month, the market return drift to µ = 0.0056 , and the volatility of dividends to σ = 0.047
per month. In each column, the model is simulated for 200,000 months to obtain the moments
reported in the table.
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Table 4. Horizon Effects in Short-Term Asset Returns

Rescaled Average Returns p-values
Ri − SP P (Ri ≤ SP ) P (Ri = SP )

Horizon R1 R2 SP R1 R2 R1 R2 R1 R2

A. Full Sample
1 month 1.16 1.12 0.56 0.60 0.57 0.13 0.18 0.27 0.36
3 months 1.04 0.91 0.57 0.46 0.34 0.18 0.23 0.36 0.47
6 months 1.03 0.88 0.56 0.48 0.32 0.19 0.24 0.38 0.47
12 months 0.94 0.71 0.51 0.43 0.20 0.23 0.34 0.46 0.67
165 months 0.85 0.65 0.44 0.41 0.21 - - - -
1 month log 0.85 0.65 0.44 0.41 0.21 0.22 0.37 0.44 0.73

B. First Half
1 month 1.59 1.39 0.65 0.94 0.73 0.17 0.26 0.34 0.51
3 months 1.32 0.87 0.67 0.65 0.20 0.25 0.41 0.49 0.82
6 months 1.29 0.79 0.61 0.67 0.18 0.26 0.42 0.52 0.83
12 months 1.20 0.63 0.67 0.53 -0.04 0.32 0.52 0.63 0.97
1 month log 1.10 0.64 0.52 0.58 0.12 0.27 0.46 0.54 0.91

C. Second Half
1 month 0.72 0.86 0.46 0.27 0.40 0.29 0.22 0.57 0.45
3 months 0.75 0.96 0.47 0.28 0.48 0.22 0.10 0.45 0.20
6 months 0.77 0.96 0.50 0.28 0.46 0.17 0.05 0.33 0.10
12 months 0.67 0.79 0.34 0.33 0.45 0.11 0.04 0.22 0.09
1 month log 0.60 0.66 0.36 0.24 0.29 0.30 0.28 0.61 0.56

Notes: This table reports average returns (in percent) of the two short-term assets (R1 and
R2) and the S&P 500 index (SP), calculated as (E[Ri,t+1 · · ·Ri,t+n])1/n, where Ri,t is the asset
gross return in month t and n is the compounding horizon. Overlapping windows are used.
Also reported are the differences in average returns of the short-term assets and the index
and the associated p-values (based on a one-tailed test) computed using Newey-West (1987)
methodology with n lags. Full sample covers 1996:2-2009:10, first half is 1996:2-2002:12, and
second half is 2003:1-2009:10.
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Figure 1. The Effects of Implicit Leverage on Dividend Strip Returns: Case I,
Asynchronous Price Adjustment. This figure plots the average returns, volatility, and
autocorrelation of the short-term asset return for different maturities T of the short-term
asset. We use the base calibration of Table 3, Panel A, column (i), in which asynchronous
prices cause small persistence in index returns.



0 10 20 30 40 50 60
0

50

100

150
A. Implicit Leverage

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05
B. Average Return

 

 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4
C. Volatility

0 10 20 30 40 50 60
−0.6

−0.4

−0.2

0

0.2
D. Autocorrelation

Maturity (T)

Measured
True

Figure 2. The Effects of Implicit Leverage on Dividend Strip Returns: Case II,
Measurement Error. This figure plots the average returns, volatility, and autocorrelation
of the short-term asset return for different maturities T of the short-term asset. We use the
base calibration of Table 3, Panel B, column (i), in which measurement error impacts futures
prices. We set the maturity T1 of the long position to one month and the maturity T2 of the
short position varies along the horizontal axis of the figure.
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Figure 3. Cointegration between True and Measured Dividend Strip Prices. This
figure plots simulated true and measured dividend strip prices using 180 months of data drawn
from the calibration given in Table 3, Panel C, column (ii). The correlation of the two price
series is high (approximately 94%), but the correlation of returns is much lower (20%). The
unconditional average of the measured return series is approximately twice as high as the
unconditional average of the true return series. (See Table 3.)
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Figure 4. Comparison of Investment Performance. This figure plots the value of a
$1 investment in the dividend steepener strategy (R2), the value-weighted S&P 500 index,
and two hypothetical strategies whose returns each month equal to the average returns of the
dividend steepener strategy (1.12%) and the S&P 500 index (0.56%).


