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Abstract

We design and implement a dynamic program (DP) for valuing
corporate securities, seen as derivatives on a �rm�s assets, and com-
puting the term structure of yield spreads and default probabilities.
Our setting accommodates arbitrary corporate debts, multiple senior-
ity classes, payouts, tax bene�ts, bankruptcy costs, and a reorgani-
zation process. This �exibility comes at the expense of a minor loss
of e¢ ciency; the analytical approach proposed in the literature is ex-
changed here for a quasi-analytical approach based on dynamic pro-
gramming coupled with �nite elements. We provide several theoretical
properties of the debt- and equity-value functions. Finally, to assess
our construction, we carry out a numerical investigation along with a
complete sensitivity analysis. DP shows �exibility and e¢ ciency.

Key words: Option theory, no-arbitrage pricing, structural models,
corporate securities, corporate bonds, dynamic programming, �nite
elements.
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1 Introduction

The aim of this paper is to design and implement a dynamic programming
framework for valuing arbitrary corporate-bond portfolios and computing the
term structure of their yield spreads and default probabilities. This program,
based on the structural model, is �exible and e¢ cient. Moving beyond an
academic exercise, we endeavor o¤er a realistic setting for analyzing corporate
credit risk. A corporate bankruptcy results in a loss of value for the �rm�s
claimholders and a loss of positions for the �rm�s workers. Corporate credit-
risk models are thus useful for market participants in that they help preclude
�nancial distress and its adverse events.
The option-based approach for valuing corporate bonds goes back to Mer-

ton (1974). He considers a model for a �rm with a simple capital structure
with a pure bond and a common stock (equity). The author then interprets
the stock as a European call option on the �rm�s assets, whose value follows
a geometric Brownian motion (GBM), as set by Black and Scholes (1973).
The option�s expiry date and strike price are the bond�s maturity date and
principal amount, respectively. Holding the pure bond is equivalent to hold-
ing the entire �rm and to selling a European call option to shareholders in
order to buy the �rm at the bond�s maturity for the bond�s principal amount.
Merton�s (1974) pioneering paper has given rise to an extensive literature,

known as the structural model, where the values of a �rm�s debt and equity
are expressed as functions of time and the �rm�s asset value. The default
event at a given payment date occurs when the state variable falls under
a certain default barrier. The key attractive point of the structural model
is that the (unobserved) asset value is inferred from the (observed) equity
value and the nominal debt structure. The extensions to Merton�s paper in
the literature are twofold.
The �rst research stream solves the model in closed form. The barri-

ers considered are exogenous (Black and Cox 1976, Longsta¤ and Schwartz
1995, Ericsson and Reneby 1998, Collin-Dufresne and Goldstein 2001, Abin-
zano et al. 2009, and Hsu, Saà-Requejo, and Santa-Clara 2010) or endoge-
neous (Black and Cox 1976, Geske 1977, Leland 1994, Anderson, Sundaresan,
and Tychon 1996, Leland and Toft 1996, Mella-Barral and Perraudin 1997,
François and Morellec 2004, Nivorozhkin 2005a and 2005b, Chen and Kou
2009, Fan and Sundaresan 2000, Bruche and Naqvi 2010, and Shibata and
Tian 2012). The latter sub-family of papers assumes simple debt structures
with a very limited number of endogenous barriers (one to two in all cases).
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The second research stream refers to numerical methods: numerical in-
tegration (Moraux 2004), �nite di¤erences (Brennan and Schwartz 1978 and
Anderson, Sundaresan, and Tychon 1996), binomial trees (Anderson and
Sundaresan 1996, Broadie, Chernov, and Sundaresan 2007, and Broadie and
Kaya 2007), dynamic programming (Annabi, Breton, and François 2012a
and 2012b), and Monte Carlo simulation (Zhou 2001 and Galai, Raviv, and
Wiener 2007). Some of these papers accommodate general debt structures
(Anderson and Sundaresan 1996, Anderson, Sundaresan and Tychon 1996,
Broadie, Chernov, and Sundaresan 2007, and Brodie and Kaya 2007). The
others develop under the particular settings of Black and Cox (1976) or Le-
land (1994).
On the one hand, closed-form solutions, where available, are obviously

preferred to approximations. They are extremely e¢ cient; they assure the
highest accuracy at a very low computing time. Closed-form solutions ex-
plicitly link the unknown parameters to their input parameters and, thus,
allow for a direct sensitivity analysis. However, they rely on very simpli�ed
assumptions. On the other hand, more realistic models are solved by means
of numerical procedures. Our dynamic program is an acceptable compromise
in terms of �exibility and e¢ ciency.
Among other objectives, the structural model attempts to explain the

observed yield spreads and default frequencies. Despite its parsimony, the
simplest structural model (Merton 1974) compares extremely well to the
classic statistical approach for bankruptcy prediction (Hillegeist et al. 2004),
and, to a lesser extent, to the neural-network approach (Aziz and Dar 2006).
A hybrid approach can be developed, where some of the statistical risk factors
are inferred from the structural model, e.g. the distance to default (Benos
and Papanastasopoulos 2007). More complex structural models have further
explained the observed yield spreads and default frequencies (Collin-Dufresne
and Goldstein 2001, Delianedis and Geske 2001 and 2003, Huang and Huang
2012, Leland 2004, and Suo and Wang 2006). According to Delianedis and
Geske (2001), the most important components of credit risk are default,
recovery, tax bene�ts, jumps, liquidity, and market factors.
Black and Cox (1976) extend Merton�s model to a corporate-bond port-

folio made of a pure senior bond and a pure junior bond. Geske (1977) uses
the theory of compound options, and further extends Merton�s model to ar-
bitrary corporate-bond portfolios. However, his analytical approach remains
questionable when the number of coupon dates is high. Leland (1994) consid-
ers an annuity, which results in a constant default barrier over time. Then,
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by maximizing the present value of equity, he solves for the so-called en-
dogenous default barrier. He considers tax bene�ts under the survival event
and bankruptcy costs under the default event. These frictions allow Leland
(1994) to discuss the notions of maximum debt capacity and optimal capital
structure. The latter is a break-down of the Modigliani-Miller conjecture,
which states that, in pure and perfect capital markets, the �rm�s asset value
is independent of its capital structure.
We propose a dynamic-programming framework for valuing arbitrary cor-

porate debts, seen as derivatives on a �rm�s assets, and computing the term
structure of yield spreads and default probabilities. Our setting extends the
models of Merton (1974), Black and Cox (1976), Geske (1977) and Leland
(1994), for it accommodates arbitrary corporate debts, multiple seniority
classes, payouts, tax bene�ts, bankruptcy costs, and a reorganization process.
The default barriers inferred at payment dates are completely endogenous,
and follow from an optimal decision process. These extensions come at the
expense of a minor loss of e¢ ciency. The analytical approach of these au-
thors is exchanged here for a quasi-analytical approach based on dynamic
programming coupled with �nite elements.
This paper is organized as follows. Section 2 presents the model and

provides several properties of the debt- and equity-value functions, and Sec-
tion 3 solves the dynamic program. Section 4 proposes a reorganization
process. Section 5 is a numerical investigation, which replicates reported
results from the literature and carries out a complete sensitivity analysis.
Section 6 concludes.

2 Model and notation

Consider a public company with the following capital structure: a portfolio
of senior and junior bonds and a residual claim, that is, a common stock
(equity). Let P = ft1; : : : ; tn; : : : ; tN = Tg be a set of payment dates, and
t0 = 0 be the origin. At time tn 2 P, the �rm is committed to paying dsn +
djn = dn > 0 to its creditors (bondholders), where d

s
n and d

j
n are the out�ows

generated at tn by the senior and junior bonds, respectively. The total out�ow
dn includes interest as well as principal payments. The interest payments are
indicated by dintn . The amounts d

s
n, d

j
n, and d

int
n , for n = 1; : : : ; N , are known

to all investors from the very beginning. The last payment dates of the
senior and junior debts, both in P, are indicated by T s and T j, respectively.
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Several authors consider a senior coupon bond and a junior coupon bond
with a longer maturity, that is, 0 � T s < T j = T . Senior bondholders are
therefore assured payment before junior bondholders. This realistic case is
embedded in our setting.
For t 2 [0; T ], the (present) value of the �rm�s assets, tax bene�ts, bank-

ruptcy costs, senior debt, junior debt, and equity are indicated by At = a,
TBt (a), BCt (a), Ds

t (a), D
j
t (a), and St (a), respectively. The total debt

value is indicated by Dt (a) = Ds
t (a) + D

j
t (a). These quantities are inter-

preted herein as �nancial derivatives on the �rm�s assets. Tax bene�t, as a
claim, is characterized by a cash-�ow stream of tbn = rcnd

int
n , under survival

at tn. The rate rcn 2 [0; 1] is the periodic corporate tax rate over [tn; tn+1], for
n = 0; : : : ; N � 1; it is considered as a known constant. Bankruptcy cost, as
a claim, is characterized by a cash �ow of wA� under default, where � is the
hitting time at which the �rm defaults. The proportion w can be interpreted
as a write-down or a loss-severity ratio, and 1 � w as a recovery rate; it is
considered a known constant.
The state process fAg, the �rm�s asset value, is an exogenous, strictly

positive, and Markov process, for which the following transition parameters
are supposed to be known in closed form:

T 0abc� = E� [I (b < Au � c) j At = a] (1)

= P � (Au 2 (b; c] j At = a) ,

and
T 1abc� = E

� [AuI (b < Au � c) j At = a] , (2)

where 0 � t � u � T , � = u� t, and a, b, and c 2 R�+. Here, E� [: j At = a]
represents the conditional expectation symbol under the risk-neutral proba-
bility measure P � (:), and I (:) the indicator function. For time-heterogenous
Markov processes, the transition parameters also depend on t. These trun-
cated moments can be seen as the minimum information required for the
Markov process fAg to play the role of a state process.
The conditions (1)�(2) accommodate a large family of pure-di¤usion,

jump-di¤usion, and more general Markov processes. Examples include the
GBM, the GBM coupled with Poisson jumps, and the GARCH processes.
See Ben-Ameur, Breton, and L�Écuyer (2002) and Ben-Ameur, Breton, and
François (2006) for valuing American-style Asian and installment options
under the GBM assumption, respectively. Other Markov processes can be
used along the same lines with some modi�cations. See Ben-Ameur, Chérif,
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and Remillard (2012) for valuing options under a jump-di¤usion process,
and Ben-Ameur, Breton, and Martinez (2009) under the family of Gaussian
GARCH processes. Ben-Ameur et al. (2007) use a stochastic interest-rate
model for valuing call and put options embedded in bonds. For simplicity,
we focus herein on the GBM assumption, for which fAg is characterized by

Au = Ate
(r����2=2)(u�t)+�

p
u�tZ , for 0 � t � u � T ,

where r is the risk-free rate, � the �rm�s payout ratio, � the volatility of the
�rm�s asset value, and Z a standard normal random variable independent
of the past of fAg till time t. These parameters are considered as known
positive constants.
The model builds on the following economic balance-sheet equality:

a+ TBt (a)� BCt (a) = Dt (a) + St (a) , for t 2 [0; T ] , (3)

where a = At. Consistently with Leland (1994), the quantity at the left-hand
side of eq. (3) is called the total value of the �rm. Brennan and Schwartz
(1978) consider a balance-sheet equality where the present values of divi-
dends, tax bene�ts, and bankruptcy costs are exchanged for their associated
current payo¤s at payment dates. They solve the model numerically for
a coupon bond and an exogenous default barrier. Nivorozhkin (2005a and
2005b) considers a senior and a junior discount bonds and bankruptcy costs
in a one-period model à la Merton (1974) and à la Black and Cox (1976).
Then, he solves for eq. (3) in closed form. Leland (1994) considers a perpe-
tuity, and solves for eq. (3) and for its endogenous unique default barrier in
closed form. Geske (1977) considers a coupon bond, and shows how com-
pound options can be used to solve for eq. (3) in closed form, while this
theory is useless for large N . These models are nested in our construction.
We consider arbitrary senior and junior debts, and solve for eq. (3) and for
its endogenous (many) default barriers in quasi-closed form.
We herein enforce the strict priority rule under default; however, other

sharing rules between claimholders can be easily introduced.

Proposition 1 All value functions and decisions at time t 2 [0; T ] depend
on (t; a), where a = At, and verify the balance-sheet equality in eq. (3). The
default event at time tn 2 P is in the form fa � b�ng, where a = Atn. The
default barriers b�n, for n = 1; : : : ; N , are inferred from an optimal decision
process, and maximize the equity value. They are rightly named the endoge-
nous default barriers.
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Proof. We propose a proof by induction. First, we show that the property
holds at tN . Then, we assume that the same property holds at a certain
future date tn+1, and show that it holds at t 2 (tn; tn+1), then at tn.
Consider the following cases at tN that result from eq. (3):
Case 1: The �rm survives at time tN = T , that is,

StN > 0 or a > dN � tbN = b�N , (4)

where a = AtN . One has

TBtN (a) = tbN , BCtN (a) = 0,

Ds
tN
(a) = dsN , Dj

tN
(a) = djN ,

StN (a) = a+ tbN �DtN (a)

= a+ tbN � dN > 0.

Senior and junior bondholders are fully paid; whatever remains belongs to
equityholders.
Case 2: The �rm defaults at time tN = T , that is,

a � b�N , (5)

where a = AtN . One has

TBtN (a) = 0, BCtN (a) = wa,

Ds
tN
(a) = min (a (1� w) ; dsN) ,

Dj
tN
(a) = max

�
0; a (1� w)�Ds

tN
(a)
�

StN (a) = 0.

Senior bondholders are partially paid and junior bondholders are not when
Ds
tN
(a) = a (1� w), that is, a (1� w) < dsN . The former are fully paid and

the latter are partially paid when Ds
tN
(a) = dsN , that is, a (1� w) � dsN .

Clearly, all value functions at maturity are functions of AtN = a, and the
balance-sheet equality in eq. (3) holds in all cases. Combining both cases,
we can interpret the stock as a call option on the �rm�s assets as in Merton
(1974), that is, StN (a) = max (0; a� (dN � tbN)), for all a > 0.
Suppose now that TBtn+1 (:), BCtn+1 (:), D

s
tn+1

(:), Dj
tn+1 (:), and Stn+1 (:)

are functions of Atn+1 at a certain future date tn+1, and that the balance-
sheet equality in eq. (3) holds. For t 2 (tn; tn+1), and, consequently, just
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after the payment date tn, no-arbitrage pricing gives

TBt+n (a
0) = E�

�
�TBtn+1

�
Atn+1

�
j At+n = a

0� (6)

BCt+n (a
0) = E�

�
�BCtn+1

�
Atn+1

�
j At+n = a

0�
Ds
t+n
(a0) = E�

�
�Ds

tn+1

�
Atn+1

�
j At+n = a

0�
Dj

t+n
(a0) = E�

�
�Dj

tn+1

�
Atn+1

�
j At+n = a

0�
St+n (a

0) = E�
�
�Stn+1

�
Atn+1

�
j At+n = a

0� ,
where � = e�r(tn+1�tn) is the discount factor over (tn; tn+1). Eq. (6) implicitly
assumes that the �rm survives for all t 2 (tn; tn+1) and a = At > 0, given
survival until time tn, which is obviously true since

P �
�
Stn+1

�
Atn+1

�
> 0 j At = a

�
> 0.

Given the properties of the conditional expectation operator, all value func-
tions at t+n depend on a

0 = At+n . The martingale property of the discounted
state process fe�rtAtg reduces to the balance-sheet equality in eq. (3) at time
t 2 (tn; tn+1), and, consequently, at t+n :

E�
�
�
�
Atn+1 + TBtn+1

�
Atn+1

�
� BCtn+1

�
Atn+1

��
j At+n = a

0�
= E�

�
�
�
Dtn+1

�
Atn+1

�
+ Stn+1

�
Atn+1

��
j At+n = a

0� ,
which is equivalent to

a0 + TBt+n (a
0)� BCt+n (a

0) = Dt+n
(a0) + St+n (a

0) . (7)

Under survival at tn, eq. (7) becomes

a+ TBtn (a)� BCtn (a) (8)

=
�
dn +Dt+n

(a0)
�
+
�
St+n (a

0)� dn
�

= Dtn (a) + Stn (a) ,

where a = Atn, a
0 = At+n = a+ tbn, and St+n (a

0)� dn > 0. De�ne equity as
the residual claim Stn (a) = St+n (a

0)� dn > 0 under survival, and Stn (a) = 0
under default at tn. Eq. (8) shows that the balance-sheet equality in eq. (3)
holds at tn under survival, and that all value functions depend on a = Atn.
As stated by Black and Cox (1976), debt cannot be �nanced by selling part
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of the �rm�s assets; rather, it is �nanced by issuing new shares of stock. This
covenant applies here since St+n (a

0) = Stn (a) + dn under survival.
Consider now the following cases.
Case 1: The �rm survives at time tn, that is,

St+n (a
0) > dn or a > b�n, (9)

where b�n is the (endogenous) default barrier at time tn. One has

TBtn (a) = tbn + TBt+n (a
0) , BCtn (a) = BCt+n (a

0)

Ds
tn (a) = dsn +D

s
t+n
(a0) , Dj

tn (a) = d
j
n +D

j

t+n
(a0)

Stn (a) = St+n (a
0)� dn > 0.

Senior and junior bondholders are fully paid; whatever remains belongs to
equityholders.
Case 2: The �rm defaults at time tn, that is,

a � b�n. (10)

One has

TBtn (a) = 0, BCtn (a) = wa

Ds
tn (a) = min

�
a (1� w) ; dsn +Ds

t+n
(a)
�

Dj
tn (a) = max

�
0; a (1� w)�Ds

tn (a)
�

Stn (a) = 0.

Under default, tax bene�ts have no current nor future potentialities, and
bankruptcy costs have current but no future potentialities. Senior bondhold-
ers are partially paid and junior bondholders are not when

a (1� w) < dsn +Ds
t+n
(a) ,

that is, a < c�n and a < b
�
n or a < b

��
n = min (c

�
n; b

�
n). For b

��
n � a � b�n, senior

bondholders are fully paid and junior bondholders are partially paid. Again,
the balance-sheet equality in eq. (3) holds and all value functions depend on
(tn; a), where a = Atn, under default.
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Table 1a: Value functions at tn 2 P without a reorganization process
Balance-sheet Default: a � b�n Survival: a > b�n
components (0; b��n ] [b��n ; b

�
n]

a = Atn a a a
TBtn (a) 0 0 TBt+n (a

0) + tbn
�BCtn (a) �wa �wa �BCt+n (a

0)
= = = =

Ds
tn (a) a (1� w) Ds

t+n
(a) + dsn Ds

t+n
(a0) + dsn

Dj
tn (a) 0 a (1� w)�Ds

tn (a) Dj

t+n
(a0) + djn

Stn (a) 0 0 St+n (a
0)� dn

In all cases, Dtn (a) = a (1� w) under default. The third (second) column
of Table 1 reports the balance-sheet equality under default, when junior
bondholders are partially paid (not paid at all). The third column collapses
when b��n = b�n. The intuition is that, under high bankruptcy costs, it may
happen that junior bondholders are never partially paid under default.
Table 1 presents a divergence from Leland (1994), who assumes that, un-

der default, Dtn (a) = b� (1� w) rather than a (1� w), for a < b�, where
Dtn (a) is his present value of a perpetuity at (tn; a), where a = Atn. Clearly,
our setting is more realistic since the di¤usion process fAg can cross the �xed
barrier b� before tn. This author implicitly assumes that P � (Atn < b

�) = 0,
which results in several incoherences. For example, a high enough coupon
results in b� > A0 and a negative value for his D0 (A0). Our �ndings di-
verge from Leland�s results as the perpetuity�s regular coupon increases, and
converge to them as it decreases. Furthermore, our setting is more �exible
since it considers arbitrary corporate-bond portfolios and multiple seniority
classes.

Proposition 2 For t 2 P (respectively t =2 P), the debt and equity value
functions Dt (:) and St (:) are non-negative (strictly positive), non-decreasing
(strictly increasing), and continuous functions of a = At > 0.

Proof. For simplicity, we provide a proof by induction that Dt (a) is a
continuous function of a = At, for a given t 2 [0; T ]. First, by eq. (4)�(5),
the property holds at maturity. Now suppose that the property holds at a
certain future date tn+1. For t 2 (tn; tn+1) and a = At > 0, the set of value
functions

Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tz

�
,

10



seen as functions of z 2 R, is bounded by
NX

m=n+1

dm.

By eq. (6) and Lebesgue�s dominated theorem (Cramér 1946), the value
function Dt (:) is continuous:

lim
a!a0

Dt (a)

= lim
a!a0

Z
R
Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tz

�
e�r(tn+1�t)' (z) dz

=

Z
R
lim
a!a0

Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tz

�
e�r(tn+1�t)' (z) dz

=

Z
R
Dtn+1

�
lim
a!a0

ae(r��
2=2)(tn+1�t)+�

p
tn+1�tz

�
e�r(tn+1�t)' (z) dz

=

Z
R
Dtn+1

�
a0e
(r��2=2)(tn+1�t)+�

p
tn+1�tz

�
e�r(tn+1�t)' (z) dz

= Dt (a0) ,

where the �rst two steps are due to Lebesgue�s dominated theorem, and the
three last steps are due to the continuity of the value function Dtn+1 (:).

Proposition 3 For t 2 [0; T ], the debt value function Dt (:) veri�es the
additional properties

lim
a!0

Dt (a) = 0 and lim
a!1

Dt (a) =Mt =
X
tn�t

dne
�(tn�t)r.

For a large enough a = At, the company is seen as risk free. Thus, the debt
value is bounded, since Dt (a) 2 (0;Mt), for t 2 [0; T ] and a = At 2 R�+. The
required yield on the debt, y 2 (r;1), assumes survival till maturity, and
sets at zero the net present value of the debt:

D0 =

NX
n=1

e�ytndn,

which, in turn, de�nes the yield spread as y � r � 0. The required yield can
be seen as an internal rate of return. Along the same lines, the required yield
and the yield spread can be de�ned either for an individual bond or a class of
bonds.
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Proof. Again, we propose a proof by induction. First, we show that the
property holds at maturity tN = T . Next, we assume that the property holds
at a certain future date tn+1, and we show that it holds at t 2 (tn; tn+1), then
at tn. Obviously, the property holds at tN = T ; see eq. (4)�(5). Suppose now
that the property holds at tn+1. By eq. (6), one has

Dt (a)

= E�
�
e�r(tn+1�t)Dtn+1

�
Atn+1

�
j At = a

�
= E�

h
e�r(tn+1�t)Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tZ

�i
,

for t 2 (tn; tn+1) ,

where Z follows the standard normal distribution. Again, by Lebesgue�s
dominated theorem and the continuity of Dtn+1 (:), one has

lim
a!0

Dt (a) = E�
h
e�r(tn+1�t) lim

a!0
Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tZ

�i
= 0,

and

lim
a!1

Dt (a) = E�
h
e�r(tn+1�t) lim

a!1
Dtn+1

�
ae(r��

2=2)(tn+1�t)+�
p
tn+1�tZ

�i
= E�

�
e�r(tn+1�t)Mtn+1

�
= e�r(tn+1�t)Mtn+1 ,

where the last two steps come from the induction hypothesis at time tn+1.
Clearly, the same result holds when t ! tn and t > tn. Finally, by eq. (10),
one has

lim
a!0

Dtn (a) = 0,

and by eq. (9), one has

lim
a!1

Dtn (a) = e�r(tn+1�tn)Mtn+1 + dn

= Mtn.

The literature reports two de�nitions for the notion of default probability,
one is unconditional and the other is conditional on late survival. The �rst,
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known as the total default probability up to time tn, is

TDPn = P � (Default at t1 or . . . or Default at tn)

= P � ([ni=1 fAti � b�i g)
= 1� P �

�
[ni=1 fAti � b�i g

�
= 1� P � (\ni=1 fAti > b�i g) ,
= 1� P � (At1 > b�1; : : : ; Atn > b�n) ,

and the second, known as the conditional default probability up to time tn
given late survival till tn�1, is

CDPn = P � (Default at tn j Survival till tn�1)

=
P �
�
At1 > b

�
1; : : : ; Atn�1 > b

�
n�1; Atn � b�n

�
P �
�
At1 > b

�
1; : : : ; Atn�1 > b

�
n�1
�

= 1� P � (At1 > b
�
1; : : : ; Atn > b

�
n)

P �
�
At1 > b

�
1; : : : ; Atn�1 > b

�
n�1
� , for n = 1; : : : ; N .

TDPn and CDPn, for n = 1; : : : ; N , de�ne the term structure of default
probabilities, total and conditional respectively.
These default proportions can be computed under the risk-neutral or the

physical probability measure. Delianedis and Geske (2003) claim that the
di¤erences over time in the risk-neutral default probabilities are powerful
predictors of corporate bankruptcy. They ignore the drift parameter of the
GBM state process fAg under the physical probability measure, known to
carry a high estimation sampling error. Although less rigorous, the (total)
default probabilities are generally preferred to the conditional default prob-
abilities. The reason lies in the fact that conditional default probabilities,
given late survival, are informative only for the very near future. Later on,
given survival at time tn, the �rm will likely survive at time tn+1.
As well, we can de�ne the senior term structure of loss probabilities by

STDPn = 1� P � (At1 > b��1 ; : : : ; Atn > b��n ) ,

and

SCDPn = 1�
P � (At1 > b

��
1 ; : : : ; Atn > b

��
n )

P �
�
At1 > b

��
1 ; : : : ; Atn�1 > b

��
n�1
� , for n = 1; : : : ; N .
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Proposition 4 Let fXg be a geometric Brownian motion with an initial
position x0, a drift �, a volatility �, and c1; : : : ; cn 2 R. One has

P (Xt1 > c1; : : : ; Xtn > cn) = � (c
0
1; : : : ; c

0
n) ,

where

c0m =
log (x0=cm) + (�� �2=2) tm

�
, for m = 1; : : : ; n,

and � (:) is the cumulative distribution function of the multivariate normal
law N

�
0;� = CCT

�
with

C =

266664
p
t1 � t0 0 0 0 0p
t1 � t0

p
t2 � t1 0 0 0

� � � � � � � � � 0 0p
t1 � t0

p
t2 � t1 � � � p

tn�1 � tn�2 0p
t1 � t0

p
t2 � t1 � � � p

tn�1 � tn�2
p
tn � tn�1

377775 .
Proof. The proof is based on the fact that

Xtm

= x0e
(���2=2)tm��Wtm

= x0e
(���2=2)tm��(

p
t1�t0Z1+���+

p
tm�tm�1Zm),

where fWg is a standard Brownian motion, and (Z1; : : : ; Zn)T 2 Rn fol-
lows the standard normal law N (0; In), where In is the identity variance-
covariance matrix of size n. For m = 1; : : : ; n, the event

fXtm > cmg

is equivalent to np
t1 � t0Z1 + � � �+

p
tm � tm�1Zm � c0m

o
,

that is, �
The mth row of CZ � c0m

	
.

14



3 A reorganization process

To date, we have assumed that a default is immediately followed by a liq-
uidation. This contrasts with most of corporate bankruptcy laws; a reor-
ganization process often takes place before liquidation. The rational for a
reorganization process is to partially discharge a �rm under default in an
attempt to extend its business life, save its job positions, and reinforce its
future reimbursements and potentialities. Discharging the �rm is usually re-
ported in terms of grace periods and grace payments, which increases the
present value of equity.
In the absence of frictions, that is, rc = ! = 0, a reorganization process

cannot result in a surplus. The balance-sheet equality is

a = D0 (a) + S0 (a) ,

so that, an increase in S0 results in a decrease in D0, while a = A0 remains
constant. In this context, Moraux (2004), Galai, Raviv, and Wiener (2007),
and Abinzano et al. (2009) propose alternative reorganization processes,
under Black and Cox�(1976) setting.
In the presence of frictions, the balance-sheet equality is

a+ TBt (a)� RCt (a)� BCt (a) = Dt (a) + St (a) ,

where RCt (a) is the present value of reorganization costs at time t when At =
a. Similarly to bankruptcy costs, we assume a proportional reorganization
cost, indicated by wr < w. A discharge at default leads to a longer life for
the �rm; it usually results in a cumulative surplus from an increase in tax
bene�ts and a decrease in bankruptcy costs. Thus, the total value of the �rm

A0 = a+ TB0 (a)� RC0 (a)� BC0 (a)

usually increases, while its exogenous component a = A0 remains constant.
In this context, Anderson and Sundaresan (1996), Anderson, Sundaresan,
and Tychon (1996), Ericsson and Reneby (1998), Mella-Barra and Perraudin
(1997), Fan and Sundaresan (2000), François and Morellec (2004), Broadie,
Chernov, and Sundaresan (2007), Broadie and Kaya (2007), Bruche and
Naqvi (2010), Annabi, Breton, and François (2012a and 2012b), and Shi-
bata et Tian (2012) propose alternative reorganization processes. Some of
these papers accommodate general debt structures (Anderson and Sundare-
san 1996, Anderson, Sundaresan, and Tychon 1996, Broadie, Chernov, and
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Sundaresan 2007, and Brodie and Kaya 2007). The others develop under
particular settings of Black and Cox (1976) or Leland (1994).
We propose a reorganization process, and assume debtors-in-possession

under reorganization and the strict priority rule under liquidation. Our reor-
ganization design depends on two parameters, that is, the maximum number
of grace periods a �rm can call for, indicated by g 2 f0; 1; : : : ; Ng, and the
part of the due payment forgiven by obligors over a grace period, � 2 [0; 1].
The cases g = 0 and/or � = 0 refer to the dynamic program without reor-
ganization. All value functions have to be reworked to depend not only on
time and the current level of the �rm�s asset value, but also on the number
of grace periods called for by the �rm before the current date. The generic
value function vt (a) in eq. (3) is exchanged for v

g;�
t (a; g), where g = gt � g

is the number of grace periods called for by the �rm before time t. These
value functions are expressed in Table 1b under survival, reorganization, and
liquidation at time tn 2 P.

Table 1b: Value functions at tn 2 P with a reorganization process
Balance-sheet Liquidation: a � bln Reorganization Survival
components (0; b��n ]

�
b��n ; b

l
n

�
bln � a � brn a > brn

and g � g and g � g and g < g and g � g
a = Atn a a a a
TBtn (a; g) 0 0 TBt+n (a

00; g + 1)+ TBt+n (a
0; g)+

(1� �)tbn tbn
�BCtn (a; g) �wa �wa �BCt+n (a

00; g + 1) �BCt+n (a
0; g)

�RCtn (a; g) 0 0 �wra� �RCt+n (a
0; g)

RCt+n (a
00; g + 1)

= = = = =
Ds
tn (a) a (1� w) Ds

t+n
(a; g)+ Ds

t+n
(a00; g + 1)+ Ds

t+n
(a0; g)+

dsn (1� �) dsn dsn
Dj
tn (a) 0 a (1� w)� Dj

t+n
(a00; g + 1)+ Dj

t+n
(a0; g)+

Ds
tn (a; g) (1� �) djn djn

Stn (a) 0 0 St+n (a
00; g + 1)� St+n (a

0; g)�
(1� �) dn dn

For ease of notation, the barriers brn (g), b
l
n (g), and b

��
n (g) are indicated by

brn, b
l
n, and b

��
n . The highest barrier b

r is called the reorganization barrier and
the lowest barrier bl the liquidation barrier. The event

�
b��n � a = Atn < bln

	
means that senior bondholders are fully paid and junior bondholders are
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partially paid under liquidation at time tn. The barriers brn, b
l
n, and b

��
n verify

respectively

St+n (a
0; g)� dn = 0,

St+n (a
00; g + 1)� (1� �) dn = 0,

a (1� w)�
�
dsn +D

s
t+n
(a; g)

�
= 0,

where the variables a0 and a00 are obtained from the state variable a = Atn
as follows:

a0 = a+ tbn and a00 = (1� wr) a+ (1� �) tbn.

In the absence of a reorganization process, that is, g = 0, � = 0, and wr = 0,
set br = bl = b�, Table 1a and Table 1b coincide.
The optimal reorganization process can be de�ned as the solution of

max
(g;�)

S0 (a; g) , (11)

or
max
(g;�)

A0, (12)

or

max
(g;�)

S0 (a; g) (13)

u.c. D0 (a; g) � D0 (a) ,

where v0 (a; g) stands for v
g;�
0 (a; g) and g = g0 for the number of grace periods

called for by the �rm before the origin.

4 Solving the dynamic program

Let G = fa1; : : : ; apg be a mesh of grid points for the �rm�s asset value,
a0 = 0, and ap+1 =1. It is better for the grid points to be more concentrated
where the �rm�s assets value is the most likely to happen and the functions
to be approximated the most likely to vary. The optimal choice of G is
not addressed here; however, the our dynamic program reaches any desired
level of accuracy as long as a1 and ap are extreme enough and ai+1 � ai, for
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i = 1; : : : ; p� 1, are small enough. We use the quantiles of the state process
fAg at time T = tN for grid construction.
To start with, we set g = 0, then we discuss the case g � 1. Suppose

now that convergent approximations of all value functions are available on
G at a certain future date tn+1. They are indicated by fTBtn+1 (:), fBCtn+1 (:),eDs
tn+1

(:), eDj
tn+1 (:), and eStn+1 (:). This is not really a strong assumption since

these value functions are known in closed form at maturity tN = T . The
dynamic program works as follows:

1. Start the program at tn+1. Use piecewise linear polynomials, and in-
terpolate the value functions fTBtn+1 (:), fBCtn+1 (:), eDs

tn+1
(:), eDj

tn+1 (:),

and eStn+1 (:) from G to the overall state space R�+. The interpolations
are indicated by cTBtn+1 (:), cBCtn+1 (:), bDs

tn+1
(:), bDj

tn+1 (:), and bStn+1 (:).
2. Use eq. (1)�(2), and compute the transition parameters at time tn in
closed form, that is, T 0kin = T 0akaiai+1�n and T

1
kin = T 1akaiai+1�n, where

�n = tn+1 � tn.

3. Use eq. (6) and compute the value functions fTBt+n (:), fBCt+n (:), eDs
t+n
(:),eDj

t+n
(:), and eSt+n (:), de�ned on G, from cTBt+n (:), cBCt+n (:), bDs

t+n
(:), bDj

t+n
(:),

and bSt+n (:), de�ned on the overall state space R�+.
4. For ak 2 G, search for k0 such that a0k = ak+ tbn 2 [ak0 ; ak0+1).

5. Approximate the default barriers b�n and then b
��
n at tn as follows:

eb�n = min
n
ak 2 G and ak such that eSt+n (ak0)� dn > 0oeb��n = min
n
ak 2 G such that (1� w) ak > eDs

t+n
(ak) + d

s
n

o
^eb�n;

6. Use eq. (6) and Table 1a, and compute fTBtn (:), fBCtn (:), eDs
tn (:),eDj

tn (:), and eStn (:), de�ned on G;
7. If tn = 0, then stop the program; else go to step 1 and repeat the
procedure from time tn to time tn�1.
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We make explicit Step 1 and Step 3 for a generic value function vt (:).
Step 1 can be written as follows:

bvtn+1 (a) = pX
i=0

�
�n+1i + �n+1i a

�
I (ai � a < ai+1) ,

where the internal local coe¢ cients �n+1i and �n+1i , for i = 1; : : : ; p� 1, are

�n+1i =
evtn+1 (ai+1)� evtn+1 (ai)

ai+1 � ai

�n+1i =
ai+1evtn+1 (ai)� aievtn+1 (ai+1)

ai+1 � ai
,

and the external local coe¢ cients are set to the values of their adjacent
intervals, that is, �

�n+10 ; �n+10

�
=
�
�n+11 ; �n+11

�
,

and �
�n+1p ; �n+1p

�
=
�
�n+1p�1 ; �

n+1
p�1
�
.

Step 3 can be written as

evt+n (ak) = E�
�
e�r(tn+1�tn)bvtn+1 �Atn+1� j Atn = ak�

= e�r(tn+1�tn)
pX
i=0

�
�n+1i T 0kin + �

n+1
i T 1kin

�
,

for k = 1; : : : ; p ,

whether the function vt (:) represents TBt (:), BCt (:), Ds
t (:), D

j
t (:), or St (:).

The transition tables T 0 and T 1 are known in closed form when the state
process moves according to a GBM (Ben-Ameur, Breton, and L�Écuyer 2002).
These tables represent a �xed cost for the dynamic program as long as the
state process is time homogenous and �n = tn+1�tn = � is a �xed constant.
All value functions, just after a payment date, can be written as a sum of

local future values multiplied by their associated transition parameters given
the current position of the state process. This sum of small pieces is then
discounted back at the risk-free rate. This dynamic program does respect
the true dynamics of the state process fAg through the transition tables in
eq. (1)�(2).
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This procedure can be improved further by using the transition tables T 2

or T 2 and T 3, that is, mixing between the dynamic program and piecewise
quadratic or cubic polynomials, but the gain in accuracy will mostly be o¤set
by the loss in computing time.
For g � 1, solving the problems (11)�(13) can be done via a modi�cation

of our dynamic program, that is, an augmentation of the state variable from
(t; a) to (t; a; g), where a = At and g = gt � g is the number of grace periods
called for by the �rm before time t. The generic value function vt (a) in
eq. (3) is exchanged for vg;�t (a; g). The modi�ed dynamic program handles
g + 1 (times) as many value functions through the backward recursion.
The code is written in the C language, compiled with the GCC compiler,

and run under Windows 7. The GSL library (Galassi et al. 2009) is used
to achieve speci�c computing tasks, and the CUBATURE software package
(Hahn 2005) to compute default probabilities.

5 A numerical investigation

We �rst compare DP values to selected closed-form solutions in the literature,
and show that DP is a viable alternative to the analytical approach. DP is
�exible and e¢ cient. Next, we perform a sensitivity analysis of main value
functions with respect to their input parameters. The results are interpreted
according to the corporate �nance theory.

5.1 DP versus selected closed-form solutions

Table 2 is based on information from Nivorozhkin (2005b), and compares
DP values to Black and Cox (1976). Set T = 1 (year), N = 1 (period),
A0 = $100, ds1 = $70, d

j
1 = $30, and r = 10% (per year). This is a portfolio

made of a senior pure bond and a junior pure bond, both maturing in one
year. B&C stands for Black and Cox and DP refers to dynamic programming.
Table 2 shows a clear convergence of DP values to their analytical (B&C)

counterparts, as the DP grid size increases. The DP procedure shows accu-
racy at the sixth digit, while only four digits are reported. Default probabil-
ities are mostly supported by junior bondholders. For example, for � = 0:1
and � = 0:1, junior bondholders support a probability of 17:11% of loosing
value, while senior bondholders are almost safe.
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Table 3 is based on information from Anson et al. (2004), and compares
DP values to Geske (1977). Set T = 2 (years), N = 2 (periods), A0 = $200,
d1 = $100, d2 = $100, and r = 5% (per year). This is a portfolio of two
(senior) pure bonds, one maturing in one year and the other in two years.
Again, Table 3 shows a clear convergence of DP values to their analytical

(Geske) counterparts, as the DP grid size increases. The DP procedure is
still accurate at the sixth digit. While default probabilities for the �rst year
are signi�cant, they collapse for the second year, given survival the �rst year.
This fact characterizes the structural model.

Table 2: DP versus Black and Cox (1976)

� = :05 � = :10
� = :1 � = :2 � = :3 � = :1 � = :2 � = :3

S0 DP�500 10:3082 13:2698 16:7342
DP�1000 10:3082 13:2697 16:7342
DP�2000 10:3082 13:2697 16:7342
DP�4000 10:3082 13:2697 16:7342
B&C 10:3082 13:2697 16:7342

Dj
0 DP�500 26:3532 23:4525 20:5868

DP�1000 26:3532 23:4526 20:5868
DP�2000 26:3532 23:4526 20:5868
DP�4000 26:3532 23:4526 20:5868
B&C 26:3532 23:4526 20:5868

Ds
0 DP�0500 63:3386 63:2777 62:6790

DP�1000 63:3386 63:2777 62:6790
DP�2000 63:3386 63:2777 62:6790
DP�4000 63:3386 63:2777 62:6790
B&C 63:3386 63:2777 62:6790

CDP1 DP�2000 0:3264 0:4404 0:4934 0:1711 0:3446 0:4273
B&C 0:3264 0:4404 0:4934 0:1711 0:3446 0:4273

SCDP1 DP�2000 0:0000 0:0266 0:1140 0:0000 0:0145 0:0850
B&C 0:0000 0:0266 0:1140 0:0000 0:0145 0:0850

According to Delianedis and Geske (2003), what explains default frequen-
cies is more the di¤erences over time in the risk-neutral default probabilities
than the default probabilities themselves. Thus, such an analysis should be
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done on a regular basis to keep track of the default probability movements
over time.
Table 4 compares DP values to Geske (1977). Set T = 2 (years), N = 2

(two periods of one year each), A0 = $100, ds1 = $70, d
j
2 = $30, and r = 10%

(per year). This is a portfolio made of a senior pure bond maturing in one
year and a junior pure bond maturing in two years.
DP competes well against the analytical approach of Geske. The accuracy

of the DP procedure is still at the sixth digit. Even though the nominal debt
structure is mostly senior, default risk is almost entirely supported by junior
bondholders. Given survival at year one, default probabilities drastically
decrease.

Table 3: DP versus Geske (1977)

� = 0:05 � = 0:10
� = :1 � = :2 � = :3 � = :1 � = :2 � = :3

S0 DP�500 16:9325 23:6097 30:9027
DP�1000 16:9324 23:6092 30:9019
DP�2000 16:9323 23:6091 30:9017
DP�4000 16:9323 23:6091 30:9017
Geske 16:9323 23:6091 30:9017

D0 DP�500 183:0675 176:3903 169:0973
DP�1000 183:0676 176:3908 169:0981
DP�2000 183:0677 176:3909 169:0983
DP�4000 183:0677 176:3909 169:0983
Geske 183:0677 176:3909 169:0983

CDP1 DP�2000 0:2429 0:3922 0:4598 0:1157 0:3003 0:3945
Geske 0:2429 0:3922 0:4598 0:1157 0:3003 0:3945

CDP2 DP�2000 0:0000 0:0000 0:0030 0:0000 0:0000 0:0017
Geske 0:0000 0:0000 0:0030 0:0000 0:0000 0:0017

Table 5 compares DP values to Leland (1994). Set A0 = $100, r = 6%
(per year), rc = 35% (per year), and w = 0:5. The debt is a perpetuity that
promizes an annual coupon C (in dollars) forever. For the DP procedure to
run, we �x the debt maturity at 150 years.
Here, DP values show a slower convergence to their theoretical counter-

parts, as the grid size increases. This is explained by the very long-term
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horizon of this program, that is, 150 years. In addition, as explained ear-
lier, DP diverges from Leland�s analytical approach, which assumes that
P (Atn < b

�) = 0, where b� is the (unique) endogenous default barrier of
the perpetuity. Since Leland�s endogenous default barrier b� is an increasing
function of the perpetuity regular coupon C, we expect that DP values di-
verge from Leland�s values as the coupon increases. Table 5 highlights this
fact.

Table 4: DP versus Geske (1977)

� = :05 � = :10
� = :1 � = :2 � = :3 � = :1 � = :2 � = :3

S0 DP�0500 12:5355 15:0301 18:2623
DP�1000 12:5354 15:0299 18:2621
DP�2000 12:5354 15:0299 18:2620
DP�4000 12:5354 15:0299 18:2620
Geske 12:5354 15:0299 18:2620

Dj
0 DP�0500 24:1259 21:6922 19:0588

DP�1000 24:1260 21:6924 19:0589
DP�2000 24:1260 21:6924 19:0590
DP�4000 24:1260 21:6924 19:0590
Geske 24:1260 21:6924 19:0590

Ds
0 DP�0500 63:3386 63:2777 62:6789

DP�1000 63:3386 63:2777 62:6790
DP�2000 63:3386 63:2777 62:6790
DP�4000 63:3386 63:2777 62:6790
Geske 63:3386 63:2777 62:6790

CDP1 DP�2000 0:2298 0:3841 0:4549 0:1076 0:2929 0:3898
Geske 0:2298 0:3841 0:4549 0:1076 0:2929 0:3898

CDP2 DP�2000 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000
Geske 0:0000 0:0000 0:0000 0:0000 0:0000 0:0000

SCDP1 DP�2000 0:0000 0:0266 0:1140 0:0000 0:0145 0:0850
Geske 0:0000 0:0266 0:1140 0:0000 0:0145 0:0850

Overall, DP is a viable alternative to the analytical approach not only
because it shows convergence, robustness, and e¢ ciency, but also for it shows
great �exibility. DP allows one to perform realistic numerical and empirical
investigations in a quasi-closed form.
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Table 5: DP versus Leland (1994)
� = :1 � = :2 � = :3

C = 3 C = 9 C = 3 C = 9 C = 3 C = 9
S0 DP�2000 68:4648 7:4663 68:5155 13:6453 69:5185 22:3734

DP�4000 68:4648 7:4619 68:5153 13:6395 69:5176 22:3689
DP�6000 68:4648 7:4611 68:5153 13:6387 69:5175 22:3683
DP�8000 68:4648 7:4608 68:5153 13:6384 69:5174 22:3680
Leland 67:5000 4:6182 67:6177 12:0311 68:9758 21:6565

D0 DP�2000 48:5153 112:1499 48:2133 98:6652 44:9001 87:7548
DP�4000 48:5153 112:8964 48:2171 98:2764 44:9108 88:1467
DP�6000 48:5153 113:9280 48:2128 98:3798 44:9205 87:9861
DP�8000 48:5153 113:5883 48:2139 98:6955 44:9227 87:9962
Leland 50:0000 120:3449 49:4524 105:6438 45:6861 94:0040

TB0 DP�2000 16:9801 34:1615 16:8367 28:7714 15:3788 25:3771
DP�4000 16:9801 34:5474 16:8386 28:5683 15:3841 25:5791
DP�6000 16:9801 35:0821 16:8364 28:6217 15:3891 25:4956
DP�8000 16:9801 34:9059 16:8369 28:7853 15:3903 25:5008
Leland 17:5000 37:6724 17:2466 31:9715 15:6458 28:4315

BC0 DP�2000 0:0000 14:5453 0:1079 16:4609 0:9602 15:2489
DP�4000 0:0000 14:1891 0:1062 16:6524 0:9557 15:0635
DP�6000 0:0000 13:6930 0:1083 16:6032 0:9511 15:1412
DP�8000 0:0000 13:8568 0:1077 16:4514 0:9502 15:1366
Leland 0:0000 12:7093 0:1765 14:2966 0:9839 12:7710

5.2 Sensitivity analysis

To start with, we consider a coupon bond and, next, a corporate debt made
up of a senior coupon bond and a junior coupon bond with a longer maturity.
We conduct a sensitivity analysis with respect to the (junior) bond�s coupon
rate c (in % per year) and, then, to the �rm�s asset value a = A0 (in dollars).
In all cases, when c increases or, equivalently, a decreases, ceteris paribus,
the �rm moves from a healthy to a distressed situation.
We report the value functions of corporate securities for several values

of the �rm�s asset volatility � 2 f15%; 30%; 45%g (per year), the risk-free
rate r 2 f4%; 6%; 8%g (per year), and the bankruptcy-cost parameter ! 2
f0; 0:25; 0:5g. The payout rate � and the reorganization parameters g, g0,
and � are set at zero, except for Figures 41�42.
Figures 1�8 represent the 1- equity value, 2- bond value, 3- yield spread,
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and 4- total value of the �rm at the origin, as functions of the bond�s coupon,
when rc = 0 and w = 0. The results show that, in the absence of frictions,
the higher the coupon, the lower the equity and the higher the bond value,
while the total value of the �rm remains �at. The last result indicates that
the total value of the �rm, which reduces to its exogenous component, is
independent of the �rm�s capital structure. Thus, in the absence of frictions,
the Modigliani-Miller conjecture holds.
The bond value is subject to two con�icting mechanics when the coupon

increases. First, a higher coupon increases the bond�s future cash �ows, and
has a positive impact on the bond value. Second, a higher coupon increases
the default probability, and has a negative impact on the bond value. In the
absence of frictions, the overall impact of these two con�icting mechanics is
positive; the �rst is dominant.
The bond�s required rate y (in % per year) is unbounded, as a function of

the bond�s coupon rate c (in % per year), since it sets at zero the bond�s net
present value, assuming that its promised cash �ows occur with certainty:

D0 =

"
NX
n=1

c� e�y�n + e�y�N
#
� P (in dollars),

where P and c are the bond�s principal amount and coupon rate. This is
explained by the fact that D0 is bounded.
Next, when the �rm�s asset volatility � rises, the equity value increases

and the bond value decreases, while the total value of the �rm remains con-
stant. A substitution e¤ect is possible in all cases, that is, shareholders bene�t
from any increase in the risk of the �rm�s operations at the expense of bond-
holders. Thus, in the absence of frictions, bondholders must be protected by
special covenants against a potential substitution e¤ect.
Furthermore, the results suggest the following:

lim
c"
S0 = 0 and lim

c"
D0 = A0.

Finally, the �rm�s default probability is an increasing function of the
�rm�s asset volatility � for a healthy company, e.g., c = 4% per year, and a
decreasing function for a distressed company, e.g., c = 12% per year. The
last case is not reported in our analysis. This relationship is not monotone
for intermediate coupon rates, e.g., c = 10% per year.
Figures 9�16 follow the same pattern as Figures 1�8, and represent a more

realistic situation. We set rc = 35% (per year) and w = 0:25. The equity
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value is still a decreasing function of the bond�s coupon. Conversely, in the
presence of frictions, the bond value �rst increases, and then decreases. The
optimum can be seen as the maximum debt capacity of the �rm. Clearly,
a position right of the optimum is suboptimal; the company agrees to pay
a high coupon for a given debt, while a much lower coupon would su¢ ce.
Similarly, the total value of the �rm �rst increases, and then decreases. The
maximum represents the optimal capital structure. This result indicates that
the total value of the �rm depends on the �rm�s capital structure. Thus,
frictions break down the Modigliani-Miller conjecture.
This analysis triggers the following question: how far is a given public

company from its maximum debt capacity and optimal capital structure?
This question is not easy to answer in real life since the company is repre-
sented by a single point but not a complete curve. Combining the structural
model and the statistical approach is probably the right way to address this
important issue.
The bond value is still subject to two con�icting mechanics. An increase

in the coupon rate results in an increase in the bond�s future cash �ows as well
as the default probability. Their overall impact is positive for low coupons,
and negative for high coupons. The substitution e¤ect is still feasible only
for investment-grade bonds. For high-yield bonds, though, an increase in
the risk of the �rm�s operations, measured by �, bene�ts both shareholders
and bondholders. Protective covenants against the substitution e¤ect are
no longer valuable for bondholders under �nancial distress. The same two
con�icting mechanics explain the shape of the tax-bene�t and bankruptcy-
cost curves.
The results suggest the following:

lim
c"
S0 = 0, lim

c"
D0 = lim

c"
A00 = (1� w)A0

lim
c"
TB0 = 0, lim

c"
BC0 = wA0.

Main value functions, as functions of the �rm�s leverage L = D0=A
0
0,

show a similar pattern, as if they were reported as functions of the bond�s
coupon. This investigation is motivated by the fact that the �rm�s leverage
is an increasing function of the bond�s coupon. The �gures are not reported
here.
The frictions introduced here, that is, rc = 35% (per year) and w = 0:25,

makes the �rm healthier with respect to the �rst scenario, which assumes
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rc = 0 (per year) and w = 0. For a coupon rate c = 10% (per year),
the default probability becomes an increasing function of the �rm�s asset
volatility �.
Figures 17�24 follow the same pattern as the previous scenario, except

that we let the risk-free interest rate r 2 f4%; 6%; 8%g vary instead of the
�rm�s asset volatility �. A relevant result is that, unlike riskless bonds, the
value of a risky bond may be positively related to the risk-free interest rate.
This is the case with high-yield bonds. Rather, investment-grade bonds be-
have as riskless bonds. This result is consistent with Longsta¤ and Schwartz
(1995), but the explanation di¤ers; the result arises more from frictions in a
one-factor model than from market factor interactions in a two-factor model.
Figures 25�36 consider a bond portfolio made up of a senior coupon bond

and a junior coupon bond with a longer maturity. We report the values
of corporate securities as functions of the junior coupon rate cj (in % per
year), and, for each value function, we vary the bankruptcy-cost parameter
! 2 f0; 0:25; 0:5g.
Firstly, equity, tax bene�ts, junior default barriers, and default probabil-

ities do not depend on the bankruptcy-cost parameter !. This is a direct
consequence of the strict priority rule, which sets the equity value and tax
bene�ts at zero whenever the �rm defaults. The parameter ! plays the role
of a sharing parameter under default. This result is consistent with Leland
(1994).
Secondly, senior bondholders are almost always protected by junior bond-

holders, except for high levels of w. Thus, for low and moderate levels of !,
costly junior debts do not alter senior bondholders�position. Alternatively,
when ! rises, senior default barriers and default probabilities converge to
their junior counterparts, since, for high levels of w, junior bondholders are
never partially paid under default (see Table 1a).
The results suggest the following:

lim
cj"
S0 = 0, lim

cj"
D0 = lim

cj"
A00 = (1� w)A0

lim
cj"
TB0 = 0, lim

cj"
BC0 = wA0.

Figures 37�40 follow the same pattern as the previous scenario, but report
the value functions of corporate securities as functions of the �rm�s asset
value. The equity and bond value are both increasing. Leland (1994) claims
that, in the presence of frictions, the equity value can switch to a concave
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function. We have searched for such a pattern without success. Unlike the
equity value, the bonds� values are bounded and convergent, as shown in
Proposition 2,

lim
a!1

Ds
0 =

"
5X
n=1

7%� e�6%�n + e�6%�5
#
� 70

= 72:3951 (in dollars),

and

lim
a!1

Dj
0 =

"
10X
n=1

10%� e�6%�n + e�6%�10
#
� 30

= 38:3538 (in dollars).

Bondholders take advantage of an increase in the �rm�s asset value up to
a certain limit. Tax bene�ts and bankruptcy costs behave similarly as in
Figures 9�16, where a low (high) coupon rate corresponds to a high (low)
�rm�s asset value. This suggests the following properties:

lim
a!1

TB0 =
5X
n=1

7%� 70� 35%� e�6%�n +

10X
n=1

10%� 30� 35%� e�6%�n

= 14:8495 (in dollars),

and
lim
a!1

BC0 = 0 (in dollars).

Figures 41�42 show that equity value is an increasing function of g and �.
Thus, the solution of pb. (11) is always (g; �) = (N; 100%). All in all, if the
main objective is to increase equity value, forgive all the time at the maximum
rate. This solution is feasible at the theoretical level since bondholders can
adjust their prices consequently, but it is not at the practical level since it
obviously results in severe con�icting situations. Although the solution is
case sensitive, a general property arises from our sensitivity analysis. For
a �xed grace rate � 2 [0; 1], the �rst call period has the most important
impact on equity value. Then, the latter quickly saturates. The solution of
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pb. (13) is usually obtained at g = 1. This result supports the shortening
of the average time under the U.S. bankruptcy law from three years to one
year (Sheppard 1995). Alternatively, the solution of pb. (12) or pb. (13) is
not always a corner solution. The optimal reorganization process of pb. (13)
is attractive, but it comes up against the unobserved value function D0 (A0).
For each case, we set in bold the solutions to pb. (11)�(13).

6 Conclusion

We propose a general and �exible dynamic program that extends the struc-
tural models of Merton (1974), Black and Cox (1976), Geske (1977), and
Leland (1994). Our setting accommodates arbitrary corporate debts, multi-
ple seniority classes, payouts, tax bene�ts, bankruptcy costs, and a reorga-
nization process. These extensions come at the expense of a minor loss of
e¢ ciency. The analytical approach proposed in the literature is exchanged
here for a quasi-analytical approach based on dynamic programming coupled
with �nite elements.
Our theoretical investigation provides several properties of the debt- and

equity-value functions, and our numerical investigation shows complete con-
sistency with the corporate �nance literature. Examples discuss the substi-
tution e¤ect, maximum debt capacity, optimal capital structure, risk sharing
between senior and junior bondholders, several limit properties, and optimal
reorganization processes. DP shows �exibility and e¢ ciency.
Acknowledgements: This research was supported by Brock Univer-

sity�s advancement fund for the �rst author, and NSERC (Canada) and
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g              
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 Figure 41: Equity, debt, and firm's asset value. The debt is a 4% coupon bond with a maturity of 10 years 

and a principal amount of $100. Set A0 = $120, σ = 30% (per year), r = 6% (per year), r
c
 = 35% (per year), 

w
r
 = 0.02, and w = 0.25. 
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10 (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.3,105.9) (4.6,101.3,105.9) (4.7,101.3,106.0) (4.7,101.3,106.0) (4.7,101.5,106.2) (4.8,101.4,106.2) (5.2,99.9,105.0) (9.7,68.5,78.2)  
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2 (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.3,105.9) (4.6,101.3,105.9) (4.7,101.3,106.0) (4.7,101.3,106.0) (4.7,101.5,106.2) (4.8,101.4,106.2) (5.1,100.4,105.5) (5.9,92.6,98.5)  
             

1 (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.3,105.9) (4.6,101.3,105.9) (4.7,101.3,106.0) (4.7,101.3,106.0) (4.7,101.5,106.2) (4.7,101.5,106.2) (4.7,101.7,106.4) (4.8,101.8,106.6)  
             

0 (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8) (4.6,101.2,105.8)  
             

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ɳ 

 

Figure 42: Equity, debt, and firm's asset value. The debt is a 24% coupon bond with a maturity of 10 years 

and a principal amount of $100. Set A0 = $120, σ = 30% (per year), r = 6% (per year), r
c
 = 35% (per year), 

w
r
 = 0.20, and w = 0.25. 

 


