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1. Introduction

To date, the consumption based asset pricing literature has mostly focused on matching unconditional

features of asset returns: the equity premium, the low risk free rate, and the variability of equity returns and

dividend yields. In terms of conditional dynamics, a great deal of attention has been paid to time variation

in the expected excess return on equities. A number of models have emerged that can claim some empirical

success along these dimensions. Campbell and Cochrane (1999, CC henceforth) develop an external habit

framework where time-varying risk aversion is the essential driver of asset return dynamics. CC keep the

exogenous technology for consumption growth deliberately simple and linear. Bansal and Yaron (2004, BY

henceforth), while working with different preferences due to Epstein and Zin (1989), generate realistic asset

pricing dynamics by introducing “long-run risk” and time-varying uncertainty in the consumption growth

process. Another recent strand of the literature that also focuses on the technology rather than preferences

has rekindled the old Rietz (1990) idea that fear of a large catastrophic event may induce a large equity

premium (see Barro (2006)). It is important to realize that in such a framework, there is no time variation

in risk premiums unless the probability of the “crash” is assumed to vary through time (see Gourio (2010),

and Wachter (2009)).

At the same time, a voluminous literature has focused on explaining the volatility dynamics of stock

returns and the joint distribution of stock returns and option prices [see Chernov, Gallant, Ghysels and

Tauchen (2003)]. This literature is largely reduced-form in nature, assuming stochastic processes for stock

return dynamics and then testing how well such dynamics fit the data on both stock returns and option

prices. Seminal articles in this vein include Chernov and Ghysels (2000) and Pan (2002). The current state-

of-the art models are very complex, featuring stochastic volatility and jumps in both prices and volatility

(see, for instance, Broadie, Chernov and Johannes (2007)).

From one perspective, the distinct development of these two literatures in dynamic asset pricing is

surprising. Successfully modeling volatility and option price dynamics from a more structural perspective

would appear not only economically important, but also statistically very informative. The empirical

evidence on volatility dynamics is very strong, and many features of the data are without controversy,

which is very different from the large uncertainty surrounding the evidence on return predictability (see e.g.

Ang and Bekaert (2007), Goyal and Welch (2008) and Campbell and Thompson (2008)). From another

perspective, however, this dichotomy is not surprising at all: every single consumption-based model described

above would surely fail to generate anything like the volatility and option price dynamics observed in the

data. A particularly powerful empirical feature of the data is the so-called variance premium, which is the

difference between the “risk neutral” expected conditional variance of the stock market index and the actual
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expected variance under the physical probability measure. The CBOE’s VIX index essentially provides

direct readings on the risk-neutral variance; see Bollerslev, Gibson and Zhou (2008) and Carr and Wu (2008)

for more details. Not only does the VIX show considerable time variation, Bollerslev, Tauchen and Zhou

(2009) show that the variance premium is a good predictor of stock returns. Other stylized facts about the

risk neutral conditional distribution of returns include time-varying (but generally negative) skewness, and

time-varying fat tails (see, for instance, Figlewski (2009)).

To generate these features of the risk-neutral distribution, structural models must endogenously generate

time-varying non-Gaussianity in returns. However, most existing models would fail to do so, as the technol-

ogy for fundamentals is too close to normality, and the models therefore generate near-Gaussian asset return

dynamics.

We set out to integrate the two literatures by proposing a simple, tractable consumption based asset

pricing model, where preferences are as in Campbell and Cochrane (1999), but the consumption technology

is non-linear, following what we call a “Bad Environment — Good Environment” framework, “BEGE” for

short. We essentially assume that the consumption growth process receives two types of shocks, both drawn

from potentially fat-tailed, skewed distributions. While one shock has positive skewness, the other shock

has negative skewness. Because the relative importance of these shocks varies through time, there are “good

times” where the good distribution dominates, and “bad times” where the bad distribution dominates. An

implication of the framework is that even during bad times, large good shocks can occur persistently, and

vice versa. Such behavior has been very apparent in stock return dynamics during the 2007-2009 crisis.

Economically, the BEGE model creates a riskier consumption growth environment, which, in equilibrium,

leads to a large equity premium and substantial precautionary savings demands, keeping risk free rates

low. Because the riskiness varies through time, the model generates intricate return dynamics, and realistic

variance risk premiums. Crucially, we demonstrate that fundamentals indeed exhibit the kind of non-

linearities that are generated by the BEGE framework.

The BEGE framework is reminiscent of regime —switching models, where a Markov variable generates

switches between two normally distributed regimes. In principle, such mixture models can also generate

time-varying skewness and kurtosis. The impact of such models in consumption based asset pricing was

explored by Whitelaw (2000), Kandel and Stambaugh (1990), Bonomo and Garcia (1994), Epstein and Zin

(2001) and Cecchetti, Lam and Mark (1990). Regime switching models have much of the same economic

appeal as the model we propose, but unfortunately, they are fairly intractable in an equilibrium pricing

context. In contrast, we use the gamma distribution for our shocks resulting in an affine term structure and

quasi-closed form expressions for equity prices and the variance premium. This greatly increases the appeal

of the framework as we can obtain useful intuition on what drives asset prices, and can easily estimate the
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structural parameters. We formally test the performance of a simple version of our modeling framework

with respect to a large number of empirical features of asset returns and fundamentals.

The remainder of the article is organized as follows. Section 2 introduces the model. We present simple

solutions for the risk free rate, price dividend ratios and the variance premium. Section 3 introduces the data

and documents that there are indeed time-varying non-linearities in the consumption growth process. We

also set out the estimation strategy. Section 4 discusses our parameter estimates and the fit of the model.

Apart from most salient asset price features, the model also fits the variance premium and other stylized

facts about option prices. In addition, we show that the BEGE framework fits the consumption data better

than the present versions of some alternative models that also introduce nonlinearities in fundamentals to

fit asset pricing puzzles. These models include the volatility-in-volatility model of Bollerslev, Tauchen and

Zhou (2009), the jumps and long-run risk model of Drechsler and Yaron (2009) and the time-varying disaster

models of Nakamura, Steinsson, Barro and Ursua (2009), and Gabaix (2010). The final section offers some

concluding remarks.

2. The Bad Environment-Good Environment (BEGE) Model

In this section, we formally introduce the representative agent model. We begin with a discussion of the

assumed data generating process for fundamentals, and then describe preferences.

2.1. Fundamentals

Our model for consumption is given by the following equation:

∆+1 =  +  + +1 − +1 (1)

where ∆ = ln ()− ln (−1) is the logarithmic change in consumption.  is the unconditional mean rate

of consumption growth,  is the deviation of the conditional growth rate from  so that the conditional

mean of consumption growth is  [∆+1] =  + . The final two terms reflect non-Gaussian innovations.

The parameters  and  are both positive. The shocks, +1 and +1, are zero-mean innovations

with the following distributions,

+1 = +1 − 

+1 = +1 −  (2)

Above, +1 represents the “good environment” variable and +1 represents the “bad environment” vari-

able. Both follow gamma distributions. Specifically, +1 ∼ Γ ( 1) where Γ ( 1) represents a gamma
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distribution with shape parameter, , and size parameter equal to 1. Analogously, +1 ∼ Γ ( 1). The
shape parameters,  and  vary through time according to a stochastic process to be introduced shortly.

These processes thus govern the conditional higher-order moments of ∆. Specifically,  governs the width

of the positive tail, and  governs the width of the negative tail. Because the mean of the gamma distri-

bution is equal to its shape parameter (when the size parameter is 1), the terms, − and − in Equation
(2) ensure that the shocks each have conditional mean 0.

Similar to Bansal and Yaron (2004), we assume an AR(1) process for :

 = −1 +  + 

where  is the autocorrelation of , and  and  determine the exposure of  to the consumption

shocks.

To understand what this model implies for the conditional moments of ∆+1, we next calculate the

conditional moment generating function (MGF) of ∆+1. For a scalar, ,

 (∆+1) ≡  [exp (∆+1)]

= exp

⎛⎜⎜⎜⎜⎝
 ( + )

− ( + ln (1−))

− (− + ln (1 +))

⎞⎟⎟⎟⎟⎠ (3)

This follows directly from the MGF of the gamma distribution and the fact that +1 and +1 are inde-

pendent.1 Next, we solve for the first few conditional centered moments of ∆+1 by evaluating subsequent

derivatives of the MGF at = 0, which provides uncentered moments, and then translating to their centered

counterparts in the usual way. This yields:



h
(∆+1 − ( + ))

2
i
= 2 + 2 ≡ 



h
(∆+1 − ( + ))

3
i
= 23 − 23 ≡  (4)



h
(∆+1 − ( + ))

4
i
− 32 = 64 + 6

4
 ≡ 

The top line of Equation (4) shows that both  and  contribute positively to the conditional variance

of consumption, defined as . They differ, however, in their implications for the conditional skewness

of consumption. As can be seen in the expression for the centered third moment, , skewness, which is

defined as 
32
 , is positive when  is relatively large, and negative when  is large. This is the essence

1To see this, note that for  ∼ Γ ( 1),  [exp ()] = exp (− ln (1−)), and for independent random variables, 1 and

2,  [exp ( (1 − 2))] =  [exp (1)] [exp (−2)].
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of the BEGE model: the bad environment refers to an environment in which the  shocks dominate; in

the good environment the  shocks dominate. Of course, in both environments shocks are zero on average,

but there is a higher probability of large positive shocks in a “good environment” and vice versa. Whether

good or bad shocks dominate depends on the relative values of  and , and the sensitivity of consumption

growth to both shocks. Finally, the third line of the equation is the excess centered fourth moment, .

The conditional excess kurtosis of consumption growth is given by 
2
 . Both  and  contribute

positively to this moment, though in different proportions than they do for . Note that there is a linear

dependence among higher moments of ∆, all of which are linear in  and .
2

Figure 1 plots four examples of BEGE densities under various combinations for ,  , and . For

ease of comparison of the higher moments, the mean and variance of all the distributions are the same and

 = . The black line plots the density under large, equal values for  and . This distribution very

closely approximates the Gaussian distribution. The red line plots a BEGE density with smaller, but still

equal values for  and . This density is more peaked and has fatter tails than the Gaussian distribution.

The blue line plots a BEGE density with large  but small  and is duly right-skewed. Finally, the green

line plots a density with large  and small , and is left-skewed. This demonstrates the flexibility of the

BEGE distribution and makes tangible the role of  as the “good environment” variable and  as “the bad

environment” variable.

We now turn to the assumed dynamics for  and . We model the  factor as following a simple,

autoregressive process with “square-root-like” volatility dynamics,

 = +  (−1 − ) +  (5)

where  is the unconditional mean of ,  is its autocorrelation coefficient, and  governs the conditional

volatility of the process. Specifically, the conditional volatility of +1 is 
√
 since the variance of +1

is . With fine enough time increments, this ensures that 0 is a reflecting boundary for the process. We

model  symmetrically,

 = +  (−1 − ) +  (6)

Note that the conditional covariances between ∆+1 and +1 and +1 are, respectively,

 [∆+1 +1] = 

 [∆+1 +1] = − (7)

2While we have represented the BEGE distribution as a combination of two independent shocks for illustrative purposes, it

can, of course, also be represented as a univariate distribution with a density function that depends on four parameters, , ,

, and . A closed-form (albeit messy) analytic solution for the BEGE density function is also available.
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so that we have hard-wired a positive conditional correlation between ∆+1 and +1, and a negative

conditional covariance between ∆+1 and +1. This assumes that positive shocks to consumption tend

to increase the variability of “good” shocks while negative consumption shocks are associated with a greater

negative tail. Despite this assumption, the conditional covariance of ∆+1 and its own conditional variance,

, is:

 [∆+1 +1] = 3 − 3 (8)

which can take on either sign and, indeed, generally varies through time.

2.2. Preferences

Consider a complete markets economy as in Lucas (1978), but modify the preferences of the representative

agent to have the form:

0

" ∞X
=0


( −)

1− − 1
1− 

#
 (9)

where  is aggregate consumption and  is an exogenous “external habit stock” with   .

One motivation for an external habit stock is the “keeping up with the Joneses” framework of Abel (1990,

1999). There, individual investors evaluate their own consumption relative to a benchmark representing past

or current aggregate consumption, . In Campbell and Cochrane (1999),  is an exogenously modelled

subsistence or habit level. Hence, the local coefficient of relative risk aversion equals  
−

, where
³
−



´
is defined as the surplus ratio3. As the surplus ratio goes to zero, the consumer’s risk aversion goes to infinity.

In our model, we define the inverse of the surplus ratio, , so that.  ·  (  1) represents stochastic

risk aversion. As  changes over time, the representative investor’s risk tolerance changes.

The marginal rate of substitution in this model determines the real pricing kernel, which we denote by

. Taking the ratio of marginal utilities at time + 1 and , we obtain:

+1 = 
(+1)

−

(+1)
− (10)

=  exp [−∆+1 +  (+1 − )] 

where  = ln().

This model may better explain the return predictability evidence than the standard model with power

utility because it can generate counter-cyclical expected returns and prices of risk. We specify the process

3Of course, this is not actual risk aversion defined over wealth, which depends on the value function. The Appendix to

Campbell and Cochrane (1995) examines the relation between “local” curvature and actual risk aversion, which depends on the

sensitivity of consumption to wealth. In their model, actual risk aversion is simply a scalar multiple of local curvature. In the

present article, we only refer to the local curvature concept, and slightly abuse terminology in calling it “risk aversion.”
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for  ≡ ln () directly as follows:

+1 =  +  + +1 + +1 (11)

where ,  and  and  are scalar parameters. As in CC, the risk aversion process is persistent,

governed by the parameter , and heteroskedastic, governed by time-variation in  and . We also follow

CC in having the innovation in  entirely spanned by the consumption shocks, but there are two such shocks

in our framework and these shocks are heteroskedastic.4 The conditional covariance between risk aversion

and consumption is given by:

 [∆+1 +1] = ()  − () (12)

The external habit interpretation of the model requires this covariance to be negative: positive consumption

shocks decrease risk aversion. In CC, this correlation is a non-linear process increasing in . Our modeling

here is different and more flexible. We would expect  to be negative and  to be positive. When

that occurs, shocks that increase the relative importance of “good environment” shocks () decrease risk

aversion, and shocks that increase the relative importance of “bad environment” shocks” () increase

risk aversion. Moreover, the conditional covariance between consumption growth and risk aversion is then

always negative. We will not, however, impose this restriction in the estimation stage.

2.3. Asset prices

In this subsection, we present solutions for asset prices in the BEGE framework.

2.3.1. The risk free short rate

To solve for the real risk free short rate, , we use the usual no-arbitrage condition,

exp () =  [exp (+1)] 
−1 (13)

To simplify this expectation, it will be convenient to define the quantities,

 =  ( − )

 =  ( + ) (14)

These quantities measure the impact of the two sources of uncertainty on the pricing kernel, as can be seen

in the equation,

+1 − [+1] = +1 + +1 (15)

4 In this sense, our modeling differs from Bekaert, Engstrom and Grenadier (2005) and Bekaert, Engstrom and Xing (2009)

who let  depend on a shock not spanned by fundamental shocks.
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For ease of interpretation, we focus on the case where   0 and   0. This corresponds to a situation

where positive +1 shocks decrease marginal utility (good news) while positive +1 shocks increase

marginal utility (bad news). Using Lemma 1 in the appendix, the real short rate can be expressed as,

 =

⎛⎜⎝ − ln +  ( + ) + 
¡
1− 

¢
( − )

+  ()  +  ()

⎞⎟⎠ (16)

where the function,  (), is defined by

 () = + ln (1− ) (17)

The first line in the solution for  has the usual consumption and utility smoothing effects: to the extent

that marginal utility is expected to be lower in the future (that is, when ( + )  0 and/or,   ),

investors desire to borrow to smooth marginal utility, and so risk free rates must rise. The bottom line

captures precautionary savings effects, that is, the desire of investors to save more in uncertain times. Notice

that because the function  () is always negative5, the precautionary savings effects are also always negative.

A third-order Taylor expansion of the log function helps with the interpretation of :

 ≈

⎛⎜⎜⎜⎜⎝
− ln +  ( + ) + 

¡
1− 

¢
( − )

+
¡−1

2
2 − 1

3
3
¢


+
¡−1

2
2 − 1

3
3
¢


⎞⎟⎟⎟⎟⎠ (18)

The first precautionary savings terms,−1
2
2 and −122 capture the usual precautionary savings effects:

higher volatility generally leads to increased savings demand, depressing interest rates. The cubic terms

represent a novel feature of the BEGE model. Consider again the case where   0 and   0. Under

this assumption the term, −1
3
3  0, mitigates the precautionary savings effect to the extent that the

good-environment variable, , is large. This makes perfect economic sense. When good environment

shocks dominate, the probability of large positive shocks is relatively large, and the probability of large

negative shocks is small, decreasing precautionary demand. Conversely, the −1
3
3  0 term indicates

that precautionary savings demands are exacerbated with  is large. That is, when consumption growth

is likely to be impacted by large, negative shocks, risk free rates are depressed over and above the usual

precautionary savings effects. Through this mechanism, our model may generate the kind of extremely low

but also very volatile risk free rates witnessed in the 2007-2009 crisis period.

2.3.2. Equity valuation

Following Campbell and Cochrane (1999), we assume that dividends equal consumption and solve for

equity prices as a claim to the consumption stream. In any present value model, under a no-bubble

5We also require   1, a weak technical condition that is always met in our estimations.
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transversality condition, the equity price-dividend ratio (the inverse of the dividend yield) is represented by

the conditional expectation,





= 

⎡⎣ ∞X
=1

exp

⎛⎝ X
=1

(+ +∆+)

⎞⎠⎤⎦ (19)

where 

is the equity price-dividend ratio and∆ represents logarithmic dividend growth. This conditional

expectation can also be solved in our framework as an exponential-affine function of the state vector, as is

summarized in the following proposition, which is proved in the appendix.

Proposition1

For the economy described by Equations (1) through (11), the price-dividend ratio of equity is given by





=

∞X
=1

exp
³ e + e + e + e + e

´
(20)

where the initial values of the parameter sequences are given by

e1 = ln + (1− )  + 
¡
1− 

¢
e1 = − ( + )e1 = − ( − )e1 = −

¡
1− 

¢
e1 = 1− 

where the functions providing the coefficients for  ≥ 2 are represented by
e = e1 + e−1 + e−1 + e−1 + e−1e ≡ e−1 − 

³
 +  + e−1 + e−1 + e−1

´
e ≡ e−1 − 

³
 −  + e−1 + e−1 + e−1

´
f ≡ e−1 − 

¡
1− 

¢
f ≡ e−1 − 

First, note that e1 and e1 are always positive because the function − () is always positive. Moreover,
one can easily check that e and e are positive for all  as well. In other words, positive shocks to 

and  drive up the price-dividend ratio. This is because  and  increase the volatility of the pricing

kernel, inducing precautionary savings demands, which increases the current price of future cash flows, all

else equal. As we will see below, however, increases in  and  also raise the equity premium, which serves

to depress equity prices relative to safe assets.6

6There is a large literature examining the effects of uncertainty on equity prices. The folklore wisdom is that increased

economic uncertainty ought to depress stock prices because it raises the equity premium (see Poterba and Summers (1986)

and Wu (2001)). However, such a conclusion is by no means general. Pastor and Veronesi (2006) stress that uncertainty

about cash flows should increase stock values (as it makes the distribution of future cash flows positively skewed), whereas Abel

(1988) ‘s Lucas —tree model can generate either effect, depending on the coefficient of relative risk aversion. In Barsky (1989)

and Bekaert, Engstrom, and Xing (2009), similar to this paper, the term structure effects of increased uncertainty cause equity

prices to (potentially) rise.
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Next, e term captures the effect of the risk aversion variable, , which affects equity price-dividend

ratios through utility smoothing channels; increases in  tend to depress equity prices as investors’ desire to

save diminishes Note that there is no marginal pricing difference in the effect of  on a riskless versus risky

coupon stream. This is true by construction in this model because the preference variable, , affects neither

the conditional mean nor volatility of cash flow growth, nor the conditional covariance between the cash

flow stream and the pricing kernel at any horizon. We purposefully excluded such relationships because,

economically, it does not seem reasonable for investor preferences to affect productivity.

Finally, the effect of  on equity is represented by f Assuming   1, f is negative for all , so that

increases in  lower equity prices. While an increase in  raises expected dividend growth one-for-one,

suggesting higher equity prices, this effect is more than offset because higher  simultaneously increases the

expected growth in marginal utility (and thus interest rates), and by a larger factor, .

2.3.3. Approximations to the exact equity solution

While the above solution for the equity price-dividend ratio is exact, it is a non-linear function of the

state vector. To simplify our subsequent calculations, it is useful to calculate a log-linear approximation

to the price-dividend ratio. It is shown in the appendix that the logarithmic dividend-price ratio,  is

approximately,

 ≈ 0 + 01 (21)

where  = [ ∆  ]
0
is the state vector and the coefficients 0, 1, etc. are functions of the deep

model parameters with explicit formulae provided in the appendix. In light of the discussion above, we

expect the following signs for dependence of  on  (for   1):



1 1 ∆1 


1 1

(−) (−) (0) (+) (+)

For a more tractable linear expression for logarithmic returns, , we first note that  can be expressed

as

+1 =  +∆+1 + ln

µ
1 +

+1

+1

¶


Using a second linearization of the final term, we can approximate equity returns as

+1 ≈ 0 + 01+1 + 02 (22)
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Because the dependencies of ln
³
1 +

+1
+1

´
on the state vector have the same sign as those of +1+1, it

follows that returns load onto the contemporaneous shocks to elements of +1 with the following signs:



1 1 ∆1 


1 1

(+) (+) (+) (−) (−)

2.3.4. The distribution of equity returns

We now examine the implications of the BEGE model for the conditional distribution of equity returns.

We examine the physical and risk-neutral distributions separately.

The equity risk premium. As is well-known, the standard no-arbitrage condition,

1 =  [exp (+1 + +1)], leads to the following expression for the (gross) equity risk premium,

 [exp (+1)]

exp ()
= 1−  [exp (+1)  exp (+1)]

Under the BEGE model, using the linear approximation for  and Lemmas 1 and 2 in the appendix, this

expression simplifies to

 [exp (+1)]

exp ()
= exp ( + ) 

The equity premium only depends on the two factors that affect the moments of the pricing kernel and its

covariance with returns. Whether the premium increases or decreases in  and  depends on the signs of

 and  respectively, which, in turn depend on the deep model parameters. To gain some intuition, let’s

first look at . Define

 = 

1 + 1 + 


1 + 1

which measures the exposure of returns to  shocks. Then,

 =



1− − 1
 − 1

Under our maintained assumption that   0 (that is, that positive shocks to  lower marginal utility), we

can derive two useful facts. First,   0 only if 1    1− . Because  is a relatively small number

this is unlikely to happen. Second,  is strictly increasing in . Hence, any term that increases  increases

the dependence of the equity premium on  and its unconditional value. Given the expected signs of the 1

coefficients derived above and the fact that we expect  to be positive and  to be negative, the equity

premium is increasing in the equity return’s exposures to shocks in  (variance risk), consumption growth,
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and  (risk aversion). However, because positive shocks to  contribute to negative returns (

1  0, a term

structure effect), a positive loading of  onto  shocks would decrease the equity premium. This makes

sense, as the  shocks have an opposite effect on marginal utility as do  shocks. In sum, it seems likely

for  to be positive and for the equity premium to be increasing in .

A similar expression is available for . Define,

 = 1 − 1 + 

1 + 1

Then,

 =



1− − 1
 − 1

Maintaining our assumption that   0 (positive  shocks raise marginal utility), we can now derive that

  0 only when 1−     1, again a condition unlikely to be satisfied. Now, however, the expression

for  is decreasing in . Therefore any term that decreases  increases the equity premium. For example,

the positive exposure of returns to consumption growth (1  0) contributes positively to the equity risk

premium through the  channel as well as   0. In contrast, because  shocks raise marginal utility, the

positive dependence of returns on  shocks (

1  0) provides a hedge, and lowers the equity risk premium,

all else equal. The expected negative exposure of returns to risk aversion (

1  0), together with the

presumed positive exposure of risk aversion to  (  0) implies a positive contribution to the equity risk

premium.

Higher-order physical moments. The appendix shows how to calculate the (physical) moment gen-

erating function for any affine function of the state vector. Armed with that, it is possible to calculate

any moment of interest. These calculations are straightforward and similar to those for computing the

conditional moments of consumption growth, as shown in Section 2.1. We begin by calculating the physical

measure of conditional equity return volatility, . For more compact notation in this subsection, we will

continue to use use  and , which featured in the above discussion of the equity risk premium. Using

the approximation in Equation (22) and Lemma 1 yields:

 = (
)
2
 + (

)
2
 (23)

Not surprisingly, both  and  contribute to return variance in a positive, linear fashion. Similar calcula-

tions show that the conditional (centered) third moment and excess fourth moment, denoted  and 

13



respectively, can be expressed as:

 = 2 ()
3
 − 2 ()3 

 = 6 ()
4
 + 6 (

)
4
 (24)

The BEGE model is therefore clearly able to generate time-varying skewness which can change sign over

time as well as time-varying kurtosis. It is worth highlighting that because there are only two state variables

driving these (and all higher) moments, there is a linear dependence among the moments’ dynamics, which

may be counterfactual.

Higher-order risk-neutral moments. Many stylized facts about the risk-neutral distributions of returns

have emerged in the literature, see Figlewski (2009) for a good survey. We focus our analysis of the BEGE

system on the following empirical regularities:

1. The risk-neutral conditional variance of returns usually exceeds the physical variance of returns; the

difference is called the variance premium.7

2. The variance premium covaries positively with the equity risk premium. (See Bollerslev, Gibson and

Zhou (2009), for instance.)

3. The risk-neutral distribution of equity returns is negatively skewed and fat tailed.8 .

To facilitate the calculation of the risk-neutral distribution of returns in the BEGE framework, let us

first define the risk-neutral expectation of any variable, 

 [exp (+1)] as



 [exp (+1)] =  [exp (+1 + +1)] ( [exp (+1)])

−1
(25)

Based on this definition, Lemma 2 of the appendix shows how to calculate the risk-neutral moment generating

function for the BEGE system, which renders the calculation of any risk-neutral moment straightforward, if

tedious. For instance, the risk-neutral variance measure, , simplifies to:

 =

µ


1− 

¶2
 +

µ


1− 

¶2
 (26)

This expression is intuitive when compared with the solution for , adding a simple denominator

term to the parameters multiplying  and  in Equation (23). Consider first the denominator term

7 In the options literature, researchers often reserve the term “variance premium” for the negative of what we call the variance

premium, which is also the expected payoff to long position in a variance swap (see e.g. Carr and Wu (2008)), and may term

our variable, a volatility spread (see e.g. Bakshi and Madan, 2006).
8This is consistent with the older options pricing literature that focused on implied volatility “smirks” and “smiles,” using

the Black-Scholes option pricing model to back out implied volatilities at various strike prices. See, for instance, Bakshi,

Kapadia and Madan (2003).
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multiplying . Maintaining our assumption that   0 the denominator is strictly greater than 1. This

implies that , the good environment variable, serves to reduce risk neutral variance relative to its physical

measure counterpart. On the other hand, as long as   09 (which is consistent with positive  shocks

raising marginal utility),  will generally increases the risk-neutral variance relative to its physical measure

counterpart. This is intuitive and suggests that the BEGE system is potentially capable of matching stylized

fact 1: the so-called variance premium, − (henceforth denoted ) is positive. The Appendix

shows that the presence of the non-linear BEGE shocks are essential to generate a positive variance premium;

with only Gaussian shocks, the variance premium is zero. This is reminiscent of a result in the jump model

of Drechsler and Yaron (2009). Moreover, if, as expected, increases in  raise the equity risk premium,

then the variance premium may covary positively with the equity risk premium, consistent with stylized

fact 2. Finally, if the variance premium is indeed increasing in , then the BEGE framework may exhibit

the property that the variance premium is higher when the physical return distribution is more leptokutotic

and/or more left-skewed, a feature emphasized by Bakshi and Madan (2006) as being consistent with a broad

range of preference specifications and also having strong empirical support.

We now turn to higher risk-neutral moments. Simple calculations using Lemma 2 show that the risk

neutral conditional (centered) third moment and excess fourth moment,  and  respectively, can be

expressed as:

 = 2

µ


1− 

¶3
 − 2

µ


1− 

¶3
 (27)

 = 6

µ


1− 

¶4
 + 6

µ


1− 

¶4


Clearly,  will be negative when  is large and  will be high to the extent that  or  are large.

These effects make the BEGE system potentially consistent with stylized fact 3.

3. Empirical Implementation

In this section, we introduce the data used in the study and present reduced-form evidence for the kind

of variation in consumption growth implied by our model in Section 1. We then outline the estimation

strategy for the asset pricing model.

3.1. Asset Price Data

The asset pricing data sample is by necessity relatively short, spanning from January 1990 through

December 2009, since it uses option prices. We estimate the real short rate, , as the 30-day nominal T-

9We also need   2, a technical condition which is always met in our estimations.
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bill yield provided by the Federal Reserve less expected quarter-ahead inflation (at a monthly rate) measured

from the Blue Chip survey. In doing so, we implicitly assume that the inflation risk premium is zero at the

monthly horizon and that the term structure of expected inflation is flat at horizons less than one quarter.

For equity prices, we use the logarithmic dividend yield, , for the S&P 500, calculated as trailing 12-

month dividends (divided by 12) divided by the month-end price. The real return to equity, , is the

logarithmic change in the month-end level of the S&P 500 plus the monthly dividend yield defined above

minus PCE inflation over the month. We calculate the risk-neutral conditional second, third and fourth

moments of equity returns, , , and  respectively, using the method of Bakshi, Kapadia and

Madan (2003). This involves calculating the prices of portfolios of options designed to have payoffs that

are determined by particular higher order moments of returns. We obtained a panel of option prices across

the moneyness spectrum for the S&P 500 index from 1996-2009 from OptionMetrics, and from 1990-1995

from DeltaNeutral. We used the option contracts that have maturity closest to one month, and filtered

out illiquid options according to the rules described in Figlewski (2009). Finally, we calculate the physical

probability measure of equity return conditional variance, , in two steps. We begin with the monthly

realized variance, , calculated as squared 5-minute capital appreciation returns over the month. Then

we project  onto one-month lags of the variables:  and .
10 The fitted values from this

regression are used to measure . This procedure is quite close to that used by Drechsler and Yaron

(2009) and others.

Table 1 reports simple univariate sample statistics for these data. The standard errors reported in

parentheses below the statistics are the standard deviations of 10,000 replications of a VAR bootstrap.

Specifically, we estimate a first-order VAR on the data, from which we block-bootstrap the residuals using

12 months per block. We then use the VAR parameters to generate bootstrapped asset price data of the

same length as our sample, for which we calculate the univariate sample statistics.

The annualized average risk free real short rate in our sample is 00009 × 12 or about 1.1 percent. Its

volatility, at an annual rate, is 00012 ×√12 or about 1.4 percent. Log dividend yields are quite variable

and highly persistent. The equity premium is 00069 − 00009 = 00060 or about 7 percent at an annual

rate. The volatility of returns is about 15 percent annualized. All these statistics are similar to what other

researchers have documented for this sample period.

The conditional variance of equity returns under the physical measure, , has an unconditional mean

of 00022, or an annualized volatility of about 16 percent. The gap between the risk-neutral and physical

variance, the variance “premium,” , has an unconditional mean of 00014, implying a risk-neutral

10This regression suggests that  loads heavily (and roughly equally) onto both lagged  and . We very strongly

reject the hypothesis that there is no dependence on .
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annualized volatility of about 21 percent. Figure 2 plots the physical and risk-neutral conditional volatilities

for our sample. As expected, the estimated risk neutral volatility is always higher than the physical volatility.

Returning to Table 1, the risk neutral centered third moment , has a negative mean, consistent with

conditional skewness of the risk neutral distribution being negative on average, and the excess centered

fourth moment of the risk-neutral distribution, , is greater than 0, suggesting positive excess kurtosis

on average. These features of the risk-neutral distribution of return are consistent with those documented

in other papers such as Bakshi and Madan (2006) and Figlewski (2009).

3.2. Consumption Moments and Dynamics

Our asset price data sample covers a relatively mild period for consumption growth. Monthly consump-

tion growth volatility for the decade ending in 2009, even though it includes the financial crisis, was lower

than for any other decade since the start of the data series the 1950’s. Meanwhile, the upheaval in stock

prices in 2008 and 2009 is more reminiscent of stock returns during the Great Depression. Of course, as

emphasized by Barro (2006), it is certainly possible that market participants thought that Great Depression

consumption dynamics were likely to return as well. Thus, to understand asset price dynamics in the recent

period, it is likely necessary to take a longer-term view of possible consumption outcomes.

Unfortunately, monthly data on real consumption expenditures on nondurables and services do not

extend back to the Depression era, but annual data is available back to 1929. Because we are trying to

match features of the tails of the conditional consumption growth distribution we focus on long-term annual

consumption data.

The first two columns of Table 2 report the features of consumption data we attempt to match. The first

column reports sample statistics and the second reports block-bootstrapped standard errors, where the block

length used was 5 years. Note that these standard errors are generally considerably larger than standard

asymptotic standard errors. The top panel reports simple univariate statistics. For this sample, the mean

rate of real consumption growth is about 3 percent per year and the sample standard deviation is about

2 percent. Contrary to the assumption of i.i.d. Gaussian dynamics that characterizes much of the asset

pricing literature, the conditional distribution of annual consumption data for the U.S. exhibits quite rich

dynamics. First, the autocorrelation coefficient is about 0.5. Second, the sample unconditional skewness

and excess kurtosis of consumption growth are −18 and 64, respectively. While the kurtosis statistic is

less than two standard deviations away from its value under Gaussianity, a standard Kolmogorov-Smirnov

test of Gaussianity for the consumption sample (not reported) rejects at any conventional significance level.

Finally, the probability of 2 and 4 standard deviation declines (or “crashes”) are about 5.0 and 1.3 percent

respectively, whereas the probabilities of crashes of these magnitudes under Gaussianity are 2.28 and 0.0031
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percent respectively. Note that a 4 standard deviation decline occurred once in our 80 year sample.

In the middle panel, we report statistics describing the shift in the distribution of consumption growth

following a “bad” realization in the prior year. Specifically, we report the change in the one-year ahead 10th,

25th, 50th, 75th and 90th percentiles for consumption growth, in units of unconditional standard deviation.

The threshold for the “bad” outcome in the prior year is defined as a realization that is at or below the

15th percentile of the unconditional distribution. For example, a number of −200 for a particular quantile
would mean that this quantile is 2 standard deviations below that quantile value for the unconditional

distribution. The pattern is striking. Following a negative realization, the left tail of the distribution blows

out. Specifically, the 10th and 25th percentiles of the conditional distribution are more than 2 standard

deviations lower following a negative realization. On the other hand, the remaining conditional quantiles

are not significantly different from their unconditional counterparts. The result is a conditional distribution

that is much more sharply negatively skewed. This persistence in probabilities of extreme outcomes is

exactly the kind of dynamics the BEGE model is designed to capture.

The bottom panel reports the conditional distribution following a one standard deviation positive shock.

In contrast to the response to a negative shock, no clear shift in the skewness of the distribution is evident,

although the distribution does shift up a bit.

These effects are plotted in Figure 3. The blue squares represent the unconditional distribution. The

red down-triangles represent the distribution in the years following a “bad” consumption growth realization

in the prior year. The green up-triangles represent the distribution following a “good” consumption growth

realization in the prior year, defined as a realization exceeding the 85th percentile of the unconditional

distribution.

Figure 4 presents a similar analysis for the shift in the subjective distribution of the growth rate of

fundamentals, as measured using data from the Survey of Professional Forecasters (SPF). Participants in

the survey are asked to complete histograms for the distribution of annual GDP growth outcomes for the

current and next calendar year. The appendix describes how we use the histogram responses to construct

the aggregate subjective distribution of one year-ahead GDP growth for each quarterly survey. The survey

sample is from 1981Q3 through 2009Q4. The blue squares plot the unconditional average percentiles of the

subjective distribution. The red down-triangles present the average subjective distribution conditional on

the most recently published GDP growth rate having been "bad" (defined as reported four quarter GDP

growth being less than the 15th percentile of the distribution of actual GDP growth outcomes over the survey

sample). The green up-triangles represent the subjective distribution conditional on the most recent GDP

release having been “good” (exceeding the 85th percentile of the unconditional distribution of actual four-

quarter GDP growth). To ascertain that the most recent reading of four-quarter GDP growth was available
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to survey respondents in real time, we use the Philadelphia Fed’s real-time vintage data set. The figure

shows that, even though the survey has been conducted during a period of mostly benign growth outcomes,

a similar skewed downward shift is apparent following relatively adverse outcomes.

3.3. Structural Model Estimation

We use classical minimum distance (CMD) for estimation of the BEGE model, which relies on the

matching of sample statistics.11 All the sample statistics we attempt to fit using the BEGE model are

collected into a vector, b, with estimated covariance matrix b . For b, we use all the sample statistics reported
in Tables 1 and 2. Specifically, we ask the model to match all the long-term features of consumption growth

reported in Table 2. To that set of 17 statistics, we add 9 unconditional sample statistics of asset prices:

the means, volatilities and autocorrelations of the real short rate, , the dividend yield, , real equity

returns, . Finally, we seek to match 8 additional statistics about the higher-order return moments.

These include the mean and volatility of: the conditional variance of returns under the physical measure,

, the variance premium, , and the conditional risk-neutral third and fourth moments of returns,

 and . In all, we ask the model to match 34 reduced-form statistics. By any measure, this represents

an extremely challenging set of moments for a relatively parsimonious structural model. In fact, the model

has only two stochastic shocks!

To estimate b , we assume a block diagonal structure. Let the consumption statistics, denoted b, be
ordered as the first block in b with the asset price statistics, b, second. For the upper left block of b ,b, we estimate the full covariance matrix for the BEGE consumption parameter estimates in Table 1 using
the bootstrap method described above. We also estimate the full covariance matrix of the asset price

statistics, b, using the bootstrap procedure described earlier. We assume that the sampling errors for the
consumption statistics, which use data back to 1929, are orthogonal to those of all the asset price statistics,

which are available only from 1990 forward. That is, b = 0.
We denote the true structural parameters by the vector, 0. The 18 parameters to be estimated are,

 =
£
                ln ()  

¤0
(28)

Under the null hypothesis that our model is true,

0 =  (0) (29)

where  () is a vector-valued function that maps the structural parameters into the reduced-form statistics.

For the consumption statistics, we use a simulation of 10000 observations of the model, but the asset price

11See Wooldridge (2002), pg. 445-446 for a good textbook exposition on CMD.
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statistics are all available in closed form12. To estimate the structural parameters, b, we minimize an
objective function of the form,

min
∈Θ

{b−  ()}0c {b−  ()} (30)

where c is a symmetric, positive semi-definite, data-based weighting matrix. Efficient CMD suggests b −1
for the weighting matrix, which we do employ for the block of consumption statistics. That is, c = b −1 .

However, we use a diagonal weighting matrix for the asset price statistics, c = 
³b −1

´
 We do

this because some of the asset price statistics are nearly linearly dependent, rendering b nearly singular.
Standard asymptotic arguments (relegated to the appendix) lead to a Gaussian limiting distribution of b,
even under our nonstandard weighting matrix.

4. Results

In this section, we report on the estimation of the structural model parameters and then explore the

model’s implications for consumption dynamics and a variety of asset pricing phenomena.

4.1. Model estimation results

We fix two of the 18 parameters ex-ante. First, because the scale of the latent factor  is not well

identified using our set of reduced-form statistics to be matched, we fix  = 1. Note that this does

not restrict the level of risk aversion in the economy because  is freely estimated. Second, we also fix

ln () = −00003 to aid in identification. This parameter is also only weakly identified using our estimation
strategy, and fixing it does not seem to materially impact our ability to fit the moments of interest. Table

3 reports the remaining parameter estimates.

We first examine the dynamics of the conditional distribution of consumption growth. The mean of 

is estimated at around 121, rendering shocks to  fairly close to being normally distributed when  is at

its unconditional mean. In contrast,  has a very low mean of about 06, suggesting a strongly nonlinear

distribution of  shocks on average.
13 The distribution of consumption growth that emerges is one that is

close to Gaussian over much of the range of ∆, but with a longer negative tail, suggesting occasional sharp

declines in consumption. To illustrate this, Figure 5 shows the density of demeaned consumption growth

under various configurations for  and . To facilitate the visibility of the tails of the distribution, the

base-10 logarithms of the densities are plotted. The top left panel shows that when  and  are at their

12The linear mappings between asset prices and the state vector are given in equations (16), (21), (22), (23), (26), and (27).

Unconditional asset price statistics are then simple transformations of the unconditional moments of the state vector.
13For a Γ (12 1) random variable, skewness is 2

√
12 = 6 and excess kurtosis is 612 = 05. For a Γ (060 1) random variable,

skewness is 2.6 and excess kurtosis is 10.
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median values, the distribution of consumption growth does indeed have fatter tails than a corresponding

Gaussian density with the same variance. Moreover, the left tail of the distribution is much fatter than

the right tail relative to normality. The top right panel shows the density of consumption growth when 

is at its 95th percentile value. At this configuration, even though the variance of consumption growth is

high, its distribution is actually closer to the normal distribution. This is because the gamma distribution

approaches the normal distribution for large values of the shape parameter. Nevertheless, it is clear that

elevating  raises the right tail much more than the left tail, so that  is indeed a “good environment”

state variable. The bottom left panel shows that when  is at its 95th percentile value, the distribution of

consumption growth is still highly non-Gaussian, and the left tail is notably thicker compared to the upper

right panel, justifying  ’s role as a "bad environment" state variable. Finally, when both  and  take on

their 95th percentile values (which happens very infrequently since they are independent), the distribution

of consumption growth is again closer to normality due to the very high level of  and its large contribution

to the overall variance of consumption growth. Note that  and  are both very persistent processes.

Both consumption and expected consumption growth () are more sensitive to  than to , but of course

 has higher variance.

The estimated parameters relating to the properties of risk preferences are reported at the bottom. First,

, is found to be highly persistent, and significantly exposed to the  shock, with a coefficient of 00479 and

a standard error of 00045. This implies that a positive shock to , while lowering consumption growth,

also raises risk aversion. This is quite consistent with the notion of habit persistence-based risk aversion

like that in Campbell and Cochrane (1999). However, we do not find any significant exposure of  to 

shocks. Finally, we find that  is estimated to be 307. While this appears a reasonable number, recall that

(local) risk aversion equals  exp (). Risk aversion is generally fairly mild, but with a long positive tail.

The mean, median, and standard deviation of its distribution are 8.8, 7.8, and 2.8 respectively.

The final row of Table 1 reports over-identification tests for (1) the full set of statistics being fit, (2)

the block of consumption statistics, and (3) the block of asset price statistics. The test for the full set of

moments marginally fails to reject at the 5 percent level. Among the two subsets of moments, the asset

price test statistic clearly rejects, while the test for the consumption moments does not. Overall, the model

fit with respect to most of the salient features of consumption and asset price behavior is quite impressive,

as we demonstrate next.

4.2. Fit with asset prices

In Table 1, we report the model-implied values for the fitted asset price statistics in square brackets for

comparison to the previously discussed sample statistics. For the real short rate, the dividend yield and
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equity returns, the means, volatilities and autocorrelations are all comfortably within two standard errors of

the sample counterparts. Hence, the model fits the standard moments that are the focus of articles such as

Bansal and Yaron (2004) and Campbell and Cochrane (1999).

Next, we report the means and volatilities of the conditional physical variance of equity returns, the

variance premium, and the conditional risk-neutral third and fourth moments of returns. Although the

mean of the variance premium is too low by about 40 percent (with the miss representing just over two

standard errors of the sample statistic), the conditional third and fourth risk neutral moments are hit near-

perfectly14 . In addition, the model generates substantial volatility of the third and fourth moments, but

still somewhat lower than is observed in the data.

In summary, the fit of the model with respect to a very wide class of asset pricing statistics is quite

good. Drechsler and Yaron (2009), who introduce jumps in expected consumption growth and the volatility

of consumption growth in the context of a long-run risk model, also fit asset price data very well, with

the exception of the variability of the price-dividend ratio, which they under-estimate. They also slightly

underestimate the mean of the variance premium (but less than we do) and over-estimate its variance.

4.3. The conditional distribution of consumption growth

The key property of the BEGE model relative to Campbell and Cochrane (1999) is that it permits

substantial non-linearities in the consumption growth process. With sufficient non-linearities, it may be not

surprising that the model can also fit option price dynamics in addition to standard asset pricing dynamics.

It is therefore important to verify that the model’s (conditional) consumption growth distribution fits the

data well. We report the properties of annual consumption growth under BEGE in Table 2. In terms of

the unconditional statistics, the implied moments are all comfortably within the two standard error band

of the data moments, and often within one standard error. This is also true for the crash probabilities. If

anything, the BEGE consumption model is slightly less non-normal than the data. In terms of the conditional

distribution, the BEGE model is within two standard errors of the 10 empirical quantiles. In particular, the

BEGE model captures the asymmetric increase in variance and skewness after a negative shock.

We also investigate how competing models fare with respect to the properties of consumption growth.

We looked at four articles introducing non-linear features into the data generating process of consumption

growth. Obviously, because these researchers do not estimate their models to be consistent with the statistics

we introduce, we anticipate a less than perfect fit. Bollerslev, Tauchen and Zhou (2009) introduce stochastic

volatility into the stochastic volatility process of consumption growth. However, they do not use consumption

14The level of our variance premium may be slightly over-estimated as we have used cash returns to measure the physical

variance. Drechsler and Yaron (2009) claim this induces a slight upward bias in physical variance computations, due to serial

correlation in the data and therefore use futures returns to measure realized variances.
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data to calibrate the model, taking many parameters from the extant literature such as Bansal and Yaron’s

(2004) work, so that the consumption growth implications are, not surprisingly, not realistic. For example,

because the stochastic volatility process is not constrained to be positive, at their parameter values, the

conditional volatility of consumption growth is negative in more than half of all draws. Drechsler and Yaron

(2009) do calibrate their model to fit properties of annual consumption growth. We take their parameter

values and report the statistics implied by their model in Table 2. While they match the autocorrelation

and standard deviation of consumption growth, the unconditional properties of consumption growth are too

Gaussian relative to the data. In terms of the conditional distribution, the data moments are estimated too

imprecisely to reject their model, but it clearly completely misses the pattern observed in the data. The

model generates a variance preserving drop in conditional mean with no additional negative skewness after

a bad consumption shock, and a symmetric increase in the conditional mean after a positive shock. This

is perhaps not surprising as the DY model has jumps in the conditional growth rates (and in conditional

variances), while consumption growth itself is conditionally Gaussian. To fit the pattern in the consumption

data, the DY model could be amended to have jumps in the consumption growth process itself, but this may

have weaker pricing implications than the jumps they include now.

Another important class of models considers the possibility of low-probability consumption crashes or

“disasters.” Barro’s (2006) original work focused on matching the equity premium, and did not consider the

pricing of options. His model in fact would not endogenously generate time-variation in risk premiums, let

alone a variance premium. A recent article by Gabaix (2010) suggests that a Barro-type model can fit a

large number of asset pricing puzzles, including features of option prices. However, the main mechanism

to generate time-variation in risk premiums in Gabaix’s work is a stochastic “recovery rate” process; con-

sumption growth simply is a two-state process, which cannot match any of the consumption dynamics shown

in Table 2. Nakamura, Steinsson, Barro, Ursua, (NSBU 2010) does not focus on options prices at all but

presents a very intricate consumption growth process in this class. When a disaster hits, it potentially causes

a permanent loss in output, at the same time as a temporary disaster. The model can generate disasters

that unfold over time, and may also involve a rapid recovery after a disaster hits. The model features three

shocks and two “disaster shocks,” one being normally distributed, one featuring a skewed distribution (in

one specification actually a gamma distribution). Ex-ante, this model may generate “BEGE-like” dynam-

ics. NSBU estimate the model using a panel of countries assuming the disaster parameters to be the same

across countries, but allowing other parameters to differ across countries. We take the estimated parameters

for the US and reproduce the implied consumption dynamics in Table 2. The NSBU model fits the data

considerably better than the DY model. The NSBU model generates consumption growth that is more

volatile and leptokurtic than the data, but is realistic with respect to skewness and crash probabilities. The
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additional volatility and leptokurtosis is likely an artifact of the use of disasters happening in other countries

that were more severe than those occurring in the US. The model also fails to fit the conditional patterns

we unearthed in the data. Essentially, the NSBU model generates a large increase in variance after a bad

consumption shock, without generating additional skewness, and produces a similar albeit somewhat smaller

increase in variance after a positive shock. It therefore also entirely misses the asymmetric pattern observed

in the data. Nevertheless, it is possible that when the model is asked to fit these patterns, it may well

succeed.15

One remaining potential problem is that our model may fit the annual consumption data well, but imply

grossly unrealistic monthly consumption growth data, perhaps because non-normalities may weaken after

temporal aggregation. To verify this, we filtered the state variables from the asset price data and monthly

consumption data for the 1990-2009 sample period (see the appendix for a full description of the procedure).

It is indeed the case that the relative importance of  increases dramatically during the recent crisis period.

Figure 6 graphs the resulting first four conditional moments of monthly logarithmic consumption growth.

The conditional mean of consumption growth shows very little time-variation indicating that  indeed plays

a rather minor role in our model. Consumption growth volatility was very low in the mid-nineties, rising

to between 2 and 2.5% for the early 2000s and then drops to below 1.5%. In 2008, consumption volatility

rises to a peak of over 3%. Its skewness is always negative, varying between about 0 and -2. While the

skewness is lowest in 2008, it was also quite low during the mid-90s. Excess kurtosis varies between about

9 and slightly less than 2. Remarkably, kurtosis was not highest during the recent crisis, but rather in the

mid 90s. Overall, these conditional moments are plausible and by no means extreme.

It turns out that this reality check has bite. We also estimated a model imposing the Campbell -Cochrane

(1999) assumption that shocks between consumption growth and  are perfectly correlated. In particular,

we specify the  shock as:

 − [+1] =  (∆+1 −∆+1) 

We estimate  to be -3.13 with a standard error of 0.71. While the model is now rejected at the 5% level,

the fit with most asset price data and the annual consumption data is not much worse than that of the more

flexible model. However, the filtered monthly consumption growth statistics are much more extreme than

what we just reported for the more flexible model and do not represent a plausible representation of monthly

consumption growth distributions.

15 Julliard and Ghosh (2010) formulate a variety of criticisms on the original Barro (2006) specification, one being that the

disasters needed to explain the equity premium puzzle are simply not empirically plausible. Backus, Chernov and Martin

(2009) show that index option data imply a more modest distribution of economic disasters than what is typically used in rare

disaster models. We avoid both critiques by jointly fitting consumption and asset price data.
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4.4. The dynamics of asset prices

Recall that there are only two fundamental shocks that drive all the state variables in the BEGE system,

 and . Under our points estimates,  and  contribute significantly and roughly equally to

consumption growth variation. For all the asset prices however, the story is much different. The impact

of , a positive  shock on asset prices, is very small due to concavity of preferences over consumption

and also because  is not very sensitive to . In contrast, the representative investor in this economy

experiences substantial increases in marginal utility after positive  shocks through lower consumption

and higher risk aversion. Consequently, most of the variation in asset prices is accounted for by  shocks.

Figure 7 shows impulse responses from the two shocks to , , and selected asset prices. Positive 

shocks have a sharp negative impact on short rates, but increase the dividend yield. That the short rate

and the dividend yield respond differently to  shocks is reminiscent of a flight-to-safety event in which

interest rates decrease sharply and at the same time equity prices decrease. The mechanism is on display

in Figure 7. When  increases,  decreases, but  and  increase. For the short rate, the  and 

effects dominate and sharply decrease it. While this effect by itself drives up equity prices, the simultaneous

increase in  dominates for equity prices, so that equity prices fall and the dividend yield moves up. Figure

7 shows that virtually all variation in higher-order asset price moments is also due to the  shocks.

These dynamic effects also imply that the model endogenously generates asymmetric volatility (see Wu

(2001)): the conditional covariance between returns and the conditional variance of returns is state dependent

but mostly negative. The main mechanism is the positive dependence of both the conditional variance and

the dividend yield (the inverse of the price dividend ratio) on  that was just illustrated, and the fact

that this shock dominates the variance of both variables.

4.5. Endogenous equity return predictability

Much of the asset pricing literature focuses on equity return predictability. Nevertheless, the return

predictability evidence is rather weak. In Table 4, we present some univariate statistics for regressions of

excess equity returns on the short rate, the dividend yield and the variance premium. None of the variables

significantly predict future stock returns. The dividend yield is in fact the strongest predictor and the only

one with a t-ratio larger than 1. Bollerslev, Tauchen and Zhou (2009) report that the variance premium is a

highly significant predictor of equity returns. However, their main measure of the variance premium simply

uses  as the measure of conditional variance, . In contrast, we use a projection of  onto

lagged variables to identify . The last column of Table 4 shows that the variance premium measured

as in Bollerslev, Tauchen and Zhou (2009) indeed significantly predicts equity returns for our sample.

25



Our structural model also generates a modest amount of return predictability. The maximum available

r-squared statistic for the BEGE model (not reported in the table) is about 1 percent. We report the

model-implied projection coefficients in brackets above the sample coefficients. For the dividend yield and

variance premium, the model generates positive coefficients with magnitudes somewhat larger than their

counterparts in the data, while the model generates a negative coefficient on the short rate. Economically,

the equity premium depends predominantly and positively on  (
 is much larger than ). Therefore,

these results are easy to understand given the dynamic patterns we illustrated in the previous sub-section,

with  positively related to the dividend yield and the variance premium and negatively to short interest

rates. The lack of a significant negative relationship between the short rate and future returns in the data

appears to be a bit anomalous in this sample, as other researchers have generally found a significant negative

relationship (see, for instance, Ang and Bekaert 2007). This could be due to our use of the real short rate

which strips out inflation compensation.

The conditional Sharpe ratio for equity, the ratio of the conditional expected excess return to the condi-

tional volatility, does vary substantially through time under the BEGE model. Figure 8 plots the Sharpe

ratio as a function of  and . The Sharpe ratio takes on a typical value of around 30 percent at an annual

rate), and is not very sensitive to . However, the conditional Sharpe ratio is very sensitive to shocks to

 and can become as high as 50% when  exceeds its mean by about 3 standard deviations. Because

this happens infrequently and in relatively bad times, the BEGE model’s implications for the Sharpe ratio

are potentially consistent with recent evidence on the counter-cyclical nature and rare occurrence of return

predictability (see Henkel, Martin and Nardari (2009)).

In the context of our model, it is also of interest to examine the cyclical properties of the variance

premium. In Table 5, we report the data correlation of the physical conditional variance and the variance

premium with a business cycle indicator, namely expected four quarter consumption growth taken from

the Survey of Professional Forecasters. We use this measure as we have a natural counterpart of expected

consumption growth in our model, namely .
16 The growth forecast has a -0.63 negative correlation with

a dummy variable that takes a value of one for NBER-defined recessions. Both the conditional variance and

the variance premium are, perhaps not surprisingly, strongly countercyclical, featuring a correlation of about

-0.30 with expected consumption growth. Our model also generates countercyclical variances and variance

premiums, with the correlation between  and the physical variance and variance premium being -0.79.

16The exact concept corresponding to the measure in the data would actually depend on other state variables because it

represents the expectation of annual exponentiated consumption growth.
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5. Conclusion

We have presented a new framework to model economic shocks. In our BEGE framework, there are

two types of shocks: good environment shocks, which are positively skewed, and bad environment shocks,

which are negatively skewed. Using this simple device and the convenience of gamma distributions, we can

generate non-linear dynamics in a very tractable fashion. Most of the related work such as Drechsler and

Yaron (2009), Bollerslev, Tauchen and Zhou (2009), and Bollerslev, Sizova and Tauchen (2009), uses Epstein-

Zin preferences and other forms of nonlinearities in fundamentals. Instead, we append the BEGE technology

to the well-known Campbell—Cochrane (1999) consumption-based asset pricing model. We demonstrate that

the model fits the data very well, and fits features of the data that the Campbell-Cochrane model cannot

fit, such as the conditional variance dynamics of equity returns, the variance premium, and other features of

the risk-neutral distribution of returns which have received much recent attention. In addition, our model

seems to fit consumption data better than the competing models.

Of course, many realistic features are missing from the particular model explored in this paper. The

recent crisis reinforces the potential importance of Knightian uncertainty (see Drechsler (2009) and Epstein

and Schneider (2007) for recent efforts) parameter uncertainty (Weitzman, 2007), and learning (see Veronesi

(1999) and Shaliastovich, 2009) for understanding the joint dynamics of asset returns and fundamentals.

Nevertheless, we feel that the technology introduced here can be very helpful to make headway in formulating

models that break the curse of Gaussianity in a tractable fashion.

Two simple extensions may be worth exploring. First, the time-varying mean in consumption growth

could be more directly linked to expectations about the future state of the economy. The current crisis again

shows that anticipation of future bad economic conditions has marked implications on asset prices, yet, in

our Campbell-Cochrane specification, the conditional mean of consumption growth plays a minor role and

the fundamental drivers to the recovery are shocks to consumption growth.17 Second, to keep the model as

simple as possible, we priced a claim to consumption, not dividends. However, Longstaff and Piazzesi (2007)

argue that corporate earnings are much more volatile than consumption growth and also more sensitive to

economic conditions. They introduce jumps in the dividend process not present in the consumption growth

process to generate more intricate stock return dynamics. Introducing more intricate cash flow dynamics

into our model can be easily accomplished in a tractable fashion. This will also reduce the relatively high

correlation between equity returns and consumption growth that our model currently implies.

17That said, recent work by Beeler and Campbell (2008) shows that a Campbell-Cochrane specification may be more consistent

with the joint dynamics of stock prices and consumption growth than a "long-run risk" model.
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6. Appendix

6.1. The General Model

We can write our model in general terms as follows

+1 = + +Σ+1 +Σ+1 (31)

Where  ( × 1) is the state vector,  ( × 1) is the associated mean parameter vector,  ( × ) is a

transition parameter matrix, Σ (× ) is the conditional volatility matrix for normally-distributed shocks,

+1(×1), and Σ (×) is the conditional volatility matrix for the gamma-distributed shocks, +1 (×1).
The specific distributional assumptions for the shocks are

+1 ∼  (0 1) ,  = 1  

+1 ∼ Γ
¡
 1

¢− ,  = Φ,  = 1   (32)

and all the shocks are independent. The additive term in the +1 definition, −, sets the mean of the
shock to zero. The parameter matrix Φ(×) is comprised of only zeros and ones and selects which elements
of  determine the "shape" parameter of each +1 shock.

18 For our main model,  = [ ∆  ]
0
,

and the system matrices are:

 =
£¡
1− 

¢
 (1− ) 

¡
1− 

¢
 0
¤0

 = 
¡£
  0  

¤¢
Σ = 0

Σ =

⎡⎢⎢⎢⎢⎣
 0

0 
 −
 
 

⎤⎥⎥⎥⎥⎦ Φ =
∙
1 0 0 0 0

0 1 0 0 0

¸
(33)

The moment generating function of +1 is given by Lemma 1.

Lemma 1 For the random variable  in Equation (31) the conditional expectation of an exponential-affine

function of the state vector,  [exp (
0+1)],where  is a vector of constants (that is, the moment generating

function under the physical probability measure), is given by

 [exp (
0+1)] = exp (0+ 0) [exp (

0Σ+1)] [exp (
0Σ+1)]

= exp

µ
0+ 0 +

1

2
0ΣΣ0 − (0Σ + ln (1− 0Σ ))Φ

¶
where 1 is a (1× ) vector of ones. The physical measures of the expectation and variance of 0+1 are
defined, respectively, as




[ [exp (

0+1)]]=0

2

2
[ [exp (

0+1)]]=0 (34)

They are given by:

 [
0+1] = 0+ 0

 [
0+1] = 0ΣΣ0 + (

0Σ )
•2
Φ

18 For a Γ ( 1) distribution, the mean equals , the variance equals , the skewness is 2
√
, and the kurtosis is 6. The

moment generating function is:  =  [exp (Γ ( 1))] = exp (− ln (1−)). The MGF is undefined for   1.
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where •2 denotes the element-by-element exponentiation. For the third and fourth centered moments,

straightforward calculations yield,



h
(0+1)

3 −  [(
0+1)]

3
i
= 2 (0Σ )

•3
Φ



h
(0+1)

4 − [(
0+1)]

4
i
− 3 [0+1]2 = 6 (0Σ )

•4
Φ

Lemma 2 For the random variable  in Equation (31), and a real pricing kernel, , that is affine in

current and lagged values of :

 = 0 +0
1 +0

2−1 (35)

the conditional risk-neutral expectation of an exponential-affine function of the state vector is defined as



 [exp (

0+1)] ≡  [exp (+1)]
−1

 [exp (+1 + 0+1)] (36)

and is given, using Lemma 1, by



 [exp (

0+1)]

= exp

Ã
0+ 0 + 1

2
0ΣΣ0 +0

1ΣΣ
0


−
³
0Σ + ln

³
1− • 0Σ

1−0
1Σ

´´
Φ

!
(37)

where •

denotes element-by-element division. Moreover, 


 [exp (

0+1)] is the risk-neutral moment gen-
erating function for 0+1. The risk neutral first and second moments of 0+1 can be found, respectively,
by evaluating





h


 [exp (

0+1)]
i
=0

2

2

h


 [exp (

0+1)]
i
=0

(38)

Upon evaluation, these reduce to:



 [

0+1] = 0+ 0 +0
1ΣΣ

0
 +

µ
−0Σ + • 0Σ

1−0
1Σ

¶
Φ



 [0+1] = 0ΣΣ0 +

µ
• 0Σ
1−0

1Σ

¶•2
Φ

Comparing the expressions for  [
0+1] and 


 [0+1], it is apparent that any variable that is an

affine function of +1 (such as returns) will have a zero variance risk premium (that is, its risk-neutral and

physical conditional volatilities are equal) if the innovations to +1 are limited to Gaussian shocks (that is,

if Σ = 0). For the third and fourth centered moments, straightforward calculations yield,





h
(0+1)

3 −

 [(

0+1)]
3
i
= 2

µ
• 0Σ
1−0

1Σ

¶•3
Φ





h
(0+1)

4 −

 [(

0+1)]
4
i
− 3 

 [0+1]
2
= 6

µ
• 0Σ
1−0

1Σ

¶•4
Φ

The risk-neutral moment generating function is thus very useful as direct computations of the risk neutral

moments are quite involved. For example, even with Gaussian shocks, the first-order risk neutral expectation

requires the use of Stein’s lemma.
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6.2. Risk Free Rate

It is well known that the gross real risk free rate is given by the inverse of the conditional expectation of

the real pricing kernel. Then,

exp () = ( [exp (+1)])
−1

(39)

Applying Lemma 1, it is immediate that



 = −01 − 01 (40)

where 0 and 01 are given by Lemma 1 and shown explicitly in Section 2.

6.3. Equity Valuation

Let  be the selection vector such that ∆ = 0. Maintaining our assumption that consumption

equals dividends, the price dividend ratio is given by





= 

∞X
=1

exp

⎛⎝ X
=1

+ +∆+

⎞⎠ ≡ ∞X
=1

0 (41)

where 0 ≡  exp
³P

=1+ + 0+
´
are scalars. We will prove that 0 = exp

¡
0 + 0

¢
where

0 (scalar) and 0 (k-vectors) are defined below. The proof is accomplished by induction. Consider 
0
1:

01 =  (exp (+ + 0+)) (42)

Using Lemma 1,

01 = exp
¡
01 + 01

¢
(43)

where the exact expressions for 01 and 01 are given in Lemma 1. Next, suppose that
0−1 = exp

¡
0−1 + 0−1

¢
. Then rearrange 0 as follows.

0 =  exp

⎛⎝ X
=1

+ + 0+

⎞⎠
= +1

⎧⎨⎩exp (+1 + 0+1) exp

⎛⎝−1X
=1

++1 + 0++1

⎞⎠⎫⎬⎭
= 

⎧⎨⎩exp ¡
+1 + 0+1

¢
+1 exp

⎛⎝−1X
=1

++1 + 0++1

⎞⎠⎫⎬⎭
= 

©
exp (+1 + 0+1) 

0
−1+1

ª
= 

©
exp (+1 + 0+1) exp

¡
0−1 + 0−1+1

¢ª
= 

©
exp

¡
0−1 ++1 + ( + −1)

0
+1

¢ª
= exp

¡
0 + 0

¢
(44)

where 0 and 0 are easily calculated using Lemma 1. Upon substitution, the recursions are those given in
Section 2.

6.4. Log Linear Approximation of Equity Prices

In the estimation, we use a linear approximation to the logarithm of the price-dividend ratio. From the

previous subsection, we see that the price dividend ratio is given by





=

∞X
=1

exp
¡
0 + 0

¢
(45)
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where  = [ ∆  ]  
0
 =

e and  =
h e e e 0 e

i
with the coefficient sequences given in the

text. We seek to approximate the log price-dividend ratio, , using a first order Taylor approximation of

 about  , the unconditional mean of . Let

0 = exp
¡
0 + 0

¢
(46)

and note that





Ã ∞X
=1

0

!
=

∞X
=1




0 =

∞X
=1

0 · 0 (47)

Approximating,

 ' ln
Ã ∞X
=1

0

!
+

1P∞
=1 

0


Ã ∞X
=1

0 · 0
!¡

 − 
¢

= 0 + 01 (48)

where 0 and 1 are implicitly defined. Similarly,

 ≡ ln
µ
1 +





¶
' ln

Ã
1 +

∞X
=1

0

!
+

1

1 +
P∞

=1 
0


Ã ∞X
=1

0 · 0
!¡

 − 
¢

= 0 + 01 (49)

where 0 and 0 are implicitly defined. Using  and  we can span log equity returns. Using the

definition of equity returns,

+1 = − +∆+1 + +1

∼ (0 − 0) + (
0
 + 01)+1 − 01

= 0 + 01+1 + 02 (50)

where 0, 1 and 2 are implicitly defined

6.5. CMD Estimation Asymptotics

First note that the first order condition for our CMD optimization, described in Equation (30), is

b 0c nb− 
³b´o = 0. (51)

where b = ∇
³b´ is the Jacobian of  () estimated at b. Second, using a standard mean value expansion,


³b´ =  (0) +0

³b − 0

´
. (52)

where 0 = ∇ (0) is the gradient of  () at the true parameter values. Combining Equations (51) and

(52), we have,

b 0c0

³b − 0

´
= b 0c (b−  (0)) (53)

so that under the usual arguments, the limiting distribution of the structural parameters is,³b − 0

´
∼ 

³
0c´ (54)

wherec = ³c−1 b 0c bc bc−1´, c = b 0c b, and b is the variance-covariance matrix of the statistics,b.
31



6.5.1. Overidentification Test

Under efficient CMD, a simple overidentification test is available,nb− 
³b´o b −1 nb− 

³b´o ∼ 2− (55)

where  and  are the size of b and b respectively. Under an alternative weighting matrix such as ours,
a similar test statistic is available, but its distribution is different. To establish the distribution ofnb− 

³b´oc nb− 
³b´o =  (56)

for c 6= b −1, we follow Jagannathan and Wang (1996, JW henceforth). From the previous subsection, we

obtain:nb− 
³b´o = b− ³ (0) +0

³b − 0

´´
(57)

=

µ
 −0

³
 0
0
c0

´−1
 0
0
c¶ (b−  (0)) (58)

Substitution into the objective function and rearrangement yields,

 = (b−  (0))
0
µc −c0

³
 0
0
c0

´−1
 0
0
c¶

(b−  (0)) (59)

= 0
µc −c0

³
 0
0
c0

´−1
 0
0
c¶

 (60)

where  is an  dimensional random vector which is asymptotically normally distributed with zero mean

and covariance matrix b . Defining  = b 12 where b 12 is the lower triangular Cholesky decomposition

of b and  ∼  (0 ), we obtain,

 = 0 (61)

where  = b 120c 12

µ
 −c 12 b ³ b 0c b´−1 b 0c 12

¶c 12 b 12. JW show that  has (− ) pos-

itive eigenvalues. Moreover, the quadratic form, 0, is easily simulated to derive critical values for .
Similar methods are used to calculate the critical values for the tests of fit for subsets of the matched

statistics, reported in Table 3.

6.5.2. Filtering

To filter the state variables from observable endogenous variables conditional on the estimated model

parameters reported in Table 3, we employ quasi-maximum likelihood and the Kalman filter. To do so, we

replace the BEGE data generating process for∆, , ,  and  described in Section 2 with a conditionally

Gaussian alternative model that preserves the dynamics of the conditional mean and covariance of the state

variables, but ignores higher-order moments.

∆ =  +  +  − 

 = +  (−1 − ) + 

 = +  (−1 − ) + 

 =  +  + +1 + +1

 = −1 +  +  (62)

where the shocks to the system are now Gaussian:

 ∼  (0 −1) (63)

 ∼  (0 −1)
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As emphasized in the text, such a model would not be able to generate a positive variance premium or a

non-Gaussian equity return risk neutral distribution. However, we are not using the above equations to

estimate the BEGE model parameters or the dependence of the endogenous variables on the state variables.

Rather, we simply preserve the estimated linear relationships between the endogenous variables and the state

variables from the full BEGE model

 = b + bΘ +  (64)

where  = [∆      ]
0
and  = [ ∆  ]

0
and b and bΘ are the loadings

of  on  at the parameter estimates reported in Table 3. Because of the stochastic singularity of the

system, we append Gaussian measurement error, , to the measurement equations, (64),

 ∼  (0 )

where  is a diagonal matrix. To estimate  and produce filtered values of , we maximize the likelihood

of the entire system embodied by equations (62) and (64) using the standard Kalman filter. Because the

Gaussian data generating process differs from the nonlinear BEGE process, the resulting filtered values of 
and the estimates of  are only approximate. However, it should be emphasized that when provided with

correctly specified processes for the conditional means and covariances of the state and endogenous variables,

the Kalman filter is the optimal linear filter in terms of root mean squared error.

Data for this estimation are described in the text with the exception of the monthly consumption growth

variable, ∆. For this variable, we use real monthly consumption expenditures on nondurables and services

as reported by the BEA over our sample period, January 1990 through December 2009.

6.6. Survey data

To create a measure of the subjective distribution of year-ahead real GDP growth, we utilize survey data

available from the Survey of Professional Forecasters (SPF). Since 1981Q3, the SPF has asked respondents to

fill in probabilities for histograms over real GDP growth outcomes for the coming year.19 More specifically,

respondents are asked to fill in the probability that real GDP growth will within specific ranges (e.g. 0 to

1 percent). Generally, several “bins” are presented in the surveys, but the bin boundaries have not been

constant over time. To summarize the subjective distribution in a consistent manner across surveys, we

use a procedure similar to that proposed by Giordani and Soderlind (2002). Specifically, for each survey

date, we begin with the mean (across respondents) probabilities assigned to each bin, the “subjective bin

probabilities” denoted  where the subscript  indexes the  bins and  denotes the date of the

survey. We then fit a distribution,  (·) to the subjective bin probabilities. For this purpose, we choose
a flexible distribution, a Gaussian mixture:

 () =  (1 1) + (1− ) (2 2)

where  ( ) is the Gaussian distribution with mean, , and standard deviation  and , 1, 1, 1,

and 1 are parameters to be estimated. Denote the probability assigned to each bin by  () as .

To estimate the parameters, we minimize the Pearson 2 test statistic measuring the distance between the

subjective bin probabilities and the probabilities implied by  () :

{b b1 b1 b2 b2} = argmin"X
=1

( − )
2



#

This identifies all the parameters of the mixture distribution for each time period, and the quantiles of the

conditional distribution are then easily computed (simulated). In Figure 4, the squares plot the unconditional

mean (over time) of several quantiles of the distribution, and the triangles plot the mean values of the

19Actually, the SPF asks for separate histograms for the current and following calendar years. To avoid seasonality and

to roughly maintain a 1-year-ahead forecast horizon, we use a weighted average of the probabilities in the current and next

calendar year. For first quarter surveys, we assign the full weight to the current year forecast. For second quarter surveys, we

assign three-quarters weight to the current calendar year and one-quarter to the next calendar year, and so on.
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quantiles conditional on the most recently published four-quarter GDP growth estimate from the BEA (see

Figure 4 notes).
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Table 1: Asset Price Sample Statistics and Model Fit

   (1)

 [000038] [00013] [09674]

000092 00012 09745

(000052) (000023) (00258)

 [−62379] [02825] [09874]

−63845 03369 09901

(01642) (00579) (00149)

 [00050] [00486] [−00051]
00069 00435 00859

(00019) (00036) (01027)

 [00023] [00028]

00022 00030

(000047) (00010)

 [00010] [000117]

00014 000099

(000014) (000017)

 [−000049] [000057]

−000041 000085

(000013) (000031)

 [0000106] [000012]

0000097 000033

(0000044) (000013)

This table reports on the ability of the structural model and parameter estimates shown in Table 3 to match the

reduced-form statistics used in the CMD estimation. The model-implied statistics are shown in square brackets.

The sample statistics are reported below with bootstrapped standard errors in parentheses. Data are monthly from

January 1990 through December 2009. All variables are expressed at a monthly rate. The variables include the real

short rate, , the logarithmic dividend yield, , equity returns, , the conditional variance of returns under

the physical measure,  the variance premium,  − , and the risk-neutral conditional third and fourth

moments of month-ahead returns,  and , respectively.
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Table 2: Consumption growth statistics and model fit

    

Unconditional moments

 00320 (00024) 00348 00209 00200

 00226 (00037) 00174 00257 00504

 (1) 04773 (01553) 03285 05068 −00758
 −18280 (08002) −09028 −00594 −15381
 64287 (34952) 39967 07257 156917

Unconditional crash probabilities

2 00500 (00159) 00313 00250 00287

4 00125 (00098) 00048 00005 00112

Distribution shift after negative realization

∆10 −23333 (10266) −16387 −07381 −08014
∆25 −17948∗ (09366) −06438 −07433 02575

∆50 −06684 (06345) −02943 −07860 03422

∆75 −02846 (04592) −02851 −08342 03877

∆90 −01887 (04517) −02031 −08796 06021

Distribution shift after positive realization

∆10 03221 (05714) 00707 08957 −03774
∆25 02029 (04115) 01924 08301 −03197
∆50 04127 (03371) 04522 07616 −02919
∆75 04111 (03191) 05237 06944 −01932
∆90 02656 (04256) 03849 06790 02810

For all rows, the first column reports unconditional univariate statistics for annual real consumption expenditures

on nondurables and services from the US NIPA accounts between 1929 and 2009. The units are log growth of annual

aggregate consumption. The second column reports bootstrapped standard errors for the US data. To construct

these, the consumption growth series is sampled (with replacement and in 2 year blocks) to create bootstrapped

samples. The standard deviation over 10,000 bootstrapped samples is reported. Estimates in the column “BEGE”

reports simulated unconditional statistics implied by the BEGE model under the point estimates in Table 3. Because

the BEGE model is specified at the monthly frequency in units of log growth, the simulated monthly data are time

aggregated, in levels, over non-overlapping 12 month periods. The column labeled “DY” performs the same exercise

for the model of Drechsler and Yaron (2010), which is also simulated at the monthly frequency and aggregated

annually. The column labeled “NSBU” reports simulated statistics from the model estimated by Nakamura et

al (2010) for the US. That model is specified and simulated at the annual frequency, so no time-aggregation is

performed.
The top panel reports moments of the unconditional distribution of annual consumption growth. The two rows in

the second panel report the unconditional probability of 2 and 4 standard deviation crashes under each model, where

the standard deviation is that reported for each model in the top panel. The third panel reports the distribution of

consumption growth for year (+ 1) conditional on a “bad” realization of consumption growth in year (), with a

“bad realization” defined as a reading of ∆ that is less than the 15th percentile of the unconditional distribution.

The fourth panel repeats the analysis of the third panel, but conditioning on the occurrence of a positive shock,

defined as a ∆ reading greater than the 85th percentile of the unconditional distribution.

∗ Although its implied t-ratio is slightly below the standard 5 percent critical value, this statistic is significantly
different from zero in that the bootstrapped 95 percent confidence interval is comprised of only negative values.
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Table 3: BEGE Model Parameter Estimates and Overidentification Tests

Technology parameters

  121244  09728  04832

(03220) (00002) (04034)

  06342  09810  01818

(00656) (00028) (00008)

∆  00031  00012  00052

(00003) (00004) (00015)

  09467 ×10
3

 −00016 ×10
3

 −00140
(02684) (00303) (00735)

Preference parameters

  10000  09841  00005  00479

() (00023) (00029) (00045)

 ln () −00003  30690

() (03969)

Overidentification test p-values

Overall Consumption Asset Prices

(00557) (08463) (00122)

The model being estimated is summarized by the equations

∆+1 =  +  + +1 − +1

 = +  ( − ) + 

 = +  ( − ) + 

 =  +  (−1 − ) + +1 + +1

 = −1 +  + 

+1 = ln − ∆+1 + ∆+1

where all these equations are described in detail in Section 2. The model is estimated by CMD in which parameters

are chosen to match the consumption statistics in Table 2 and the set of reduced-form asset price statistics in Table

1. Asymptotic standard errors are reported in parentheses. In the bottom panel, overidentification test p-values

are presented for the full set of moments, the subset of moments based on consumption (the Table 2 statistics) and

the subset of moments based on asset prices (those reported in Table 1). The overidentification test distributions

and p-values are determined by Monte Carlo methods as described in the appendix.
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Table 4: Equity Return Predictability

   −   − 
 −   [−19704] [00160] [39572] —

  18455 00121 15878 34982

  (22409) (00082) (27954) (12821)

 2 00028 00090 00013 00296

This table presents the univariate predictability of one month ahead excess equity returns with respect to instru-

ments listed in columns. All regressions are of the form

+1 −  = +  ·  + +1

where  refers to the instrument listed at the top of each column. The sample is monthly from January 1990

through December 2009. The coefficients implied by the model and parameter estimates presented in Table 3 are

listed first in square brackets. The corresponding coefficient in the data sample, along with its OLS standard error

(in parentheses) and the associated 2 statistic are listed below.
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Table 5: Cyclicality of the Variance Premium

sample model-implied

 

 −03587 [−07868]
(00570)

 −  −02873 [−07868]
(00599)

This table reports the correlation of the conditional variance of equity returns, , and the variance premium,

 −  with a measure of the state of the business cycle, expected four-quarter real U.S. NIPA consumption

growth taken from the Survey of Professional Forecasters (“”). Quarterly survey data is interpolated to the

monthly frequency. The standard errors, reported in parentheses, are based on an asymptotic normal distribution

of 05 ∗ ln((1 + )(1− )), where  is the correlation, with a variance equal to 1( − 3), where  is the number

of observations. The final column reports the correlations of , and  −  with , the state variable

governing conditional consumption growth under the BEGE model at the point estimates in Table 3..
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Figure 1: Examples of the BEGE distribution
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This figure plots BEGE densities under various configurations for , ,  and . All the distributions have

zero mean and standard deviation 00029. The parameter configurations for the lines are as follows.

   
 40 40 00003 00003

 2 2 00014 00014

 4 3 00016 00016

 3 4 00016 00016
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Figure 2: Physical and Risk-Neutral Conditional Equity Return Volatility

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

10

20

30

40

50

60

70
Physical and Risk−Neutral Conditional Return Volatility

pe
rc

en
t, 

an
nu

al
 r

at
e

 

 
physical
risk−neutral

The Figure presents the time series of the conditional volatility of equity returns under the physical and risk-

neutral measures. We calculate the risk-neutral conditional second moments of equity returns , , using the

method of Bakshi, Kapadia and Madan (2003). This involves calculating the prices of portfolios of options designed

to have payoffs that are determined by particular higher order moments of returns. We obtained a panel of option

prices across the moneyness spectrum for the S&P 500 index from 1996-2009 from OptionMetrics, and from 1990-1995

from Delta Neutral. We used the option contracts that have maturity closest to one month, and filtered out illiquid

options according to the rules described in Figlewski (2009). We calculated the physical probability measure of equity

return conditional variance, , in two steps. We begin with the monthly realized variance, , calculated as

squared 5-minute capital appreciation returns over the month. Then we project  onto one-month lags of the

variables:  and  The fitted values from this regression are used to measure .
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Figure 3: Historical Distribution of Annual Consumption Growth
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unconditional after negative realization after positive realization

The figure presents the percentiles of the distribution of the log growth rate in annual real consumption expendi-

tures on nondurables and services reported in the U.S. NIPA accounts. The blue squares represent the unconditional

distribution. The red down-triangles represent the distribution in the years following a “bad” consumption growth

realization in the prior year. A bad realization is defined as a consumption growth reading of less than the 15th

percentile of the unconditional distribution (about 2 percent). The green up-triangles represent the distribution fol-

lowing a “good” consumption growth realization in the prior year, defined as a reading exceeding the 85th percentile

of the unconditional distribution (about 4 percent).
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Figure 4: Survey-Based Distribution of Annual GDP Growth
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This figure presents the percentiles of the subjective conditional distribution of annual real GDP growth measured

using survey data from the Survey of Professional Forecasters. Participants in the survey are asked to complete

histograms for the distribution of annual GDP growth outcomes for the current and next calendar year. The appendix

describes how we use the histogram responses to construct the aggregate subjective distribution of year-ahead GDP

growth for each quarterly survey. The survey sample is from 1981Q3 through 2009Q4. The blue squares plot the

unconditional average percentiles of the subjective distribution. The red down-triangles present the average subjective

distribution conditional on the most recently released GDP growth figures from the BEA’s quarterly release of having

been “bad” (defined as reported four quarter GDP growth being less than the 15th percentile of the distribution of

actual GDP growth outcomes). The green up-triangles represent the subjective distribution conditional on the most

recent GDP release having been “good” (exceeding the 85th percentile of the unconditional distribution of actual

four-quarter GDP growth). To ascertain that the most recent reading of four-quarter GDP growth was available to

survey respondents in real time, we use the Philadelphia Fed’s real-time vintage data set.
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Figure 5: Log Density of ∆
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This figure plots the log (base 10) density of (demeaned) monthly consumption growth under the BEGE model

estimates presented in Table 3. Each panel presents the log density at a different configuration of  and  with

each either at its model-implied median value, or its 95th percentile value. The quantiles of  and  are determined

by simulation. Also plotted are Gaussian log densities with the same mean and variance as the BEGE density for

each configuration of  and .
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Figure 6: Filtered Conditional Consumption Moments
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This figure reports filtered monthly time series for the conditional mean, volatility, skewness and kurtosis of

month-ahead consumption growth. using the model and point estimates reported in Table 3. The blue lines show

the smoothed (conditional on the full sample) estimates of the moments, which are functions of the filtered estimates

of and shown in Figure 9:

 [∆+1] =  + 

 [∆+1] = 1
¡
2 + 2

¢12
 [∆+1] = 2

¡
3 − 3

¢


32
 [∆+1]

 [∆+1] = 6
¡
4 + 4

¢


42
 [∆+1]

A standard linear Gaussian Kalman filter is used in conjunction with an approximate Gaussian version of the structural

model. The filtering procedure is described in detail in the appendix.
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Figure 7: Impulse Responses of Asset Prices to Shocks
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This figure shows the impulse response of the state variables  , and the endogenous variables,

, , , and  to the shocks,  and . For all variables, the units on the vertical axis are

unconditional standard deviations. In all panels, the shocks occur at month 1 and the horizontal axis runs from 0

months (prior to the shock) through 36 months. Impulse responses to 90th percentile values of  and  are

reported. The response of each endogenous variable in  periods, + , is given by

+ = 

⎡⎢⎢⎣
 0 0 0

0  0 0

0 0  0

0 0 0 

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

 0

0 
 
 

⎤⎥⎥⎦∙ +1
+1

¸

where  is the loading of the variable on  = [  ,] 
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Figure 8: State Dependence of the Equity Conditional Sharpe Ratio
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This figure reports the monthly Sharpe ratio for one-month ahead equity returns under the structural model and

point estimates in Table 3 calculated as:

  =
 [+1 − ]

  [+1]
12
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