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1 Introduction

The availability of measures of daily variances of financial returns, and covariances between

these, allows researchers to model time series of covariance matrices. One interest of these

models is that they can be used for forecasting future values, which is typically of use

in financial applications such as hedging, option pricing, risk management, and portfolio

allocation. Another potential interest of models for realized covariance matrices is that they

allow researchers to study the macroeconomic and financial determinants of the changes in

multivariate volatility. GARCH models can be used for the same purposes - see for example

Engle and Rangel (2008) - but since they rely on daily observed returns, in principle they

provide less precise estimates and forecasts of variances and covariances than measures

based on intraday data.

Models have firstly been proposed for realized variances alone, such as ARFIMA models,

see e.g. Andersen, Bollerslev, Diebold, and Labys (2003), and the HAR model of Corsi

(2009). Empirical studies show that probability distributions of the log of realized variances

are very close to being Gaussian, and from a time series perspective, the data exhibit a long

memory feature, see Andersen, Bollerslev, Diebold, and Ebens (2001). The development

of multivariate models has come afterwards. Modeling a covariance matrix is challenging

since the dimension of the object to be modeled is proportional to the square of the number

of assets, and thus the number of parameters is likely to be large even for a handful

of assets. Another challenge is that the model should be congruent with the property

that covariance matrices are positive definite. Thus vectorizing the covariance matrix and

assuming a vector autoregressive moving average model (VARMA) for its non-redundant

elements is not a solution. Chiriac and Voev (2010) model the elements of the Cholesky

decomposition of the realized covariance matrix by a VARFIMA process or by a VAR

version of the univariate HAR model of Corsi. Using the Cholesky decomposition ensures

that forecasts of the covariance matrix are positive definite and avoids imposing complex

parameter restrictions to ensure positivity. It also allows to include exogenous variables

easily. A drawback of this approach is that the model specification is not invariant with
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respect to a permutation of the rows and columns of the covariance matrices from which

the Cholesky decompositions are computed. Another drawback is that a VARFIMA model

is heavily parameterized, but this problem can be attenuated by imposing restrictions

on the parameter space. In the their empirical application, Chiriac and Voev work with

covariance matrices of order six, implying a VARFIMA model for six variances and fifteeen

covariances. Another transformation of a covariance matrix that ensures positivity is the

matrix-log function. This transformation is used by Bauer and Vorkink (2006) for realized

covariance matrices. If Ct denotes a realized covariance matrix and QtΛtQt its spectral

decomposition, then Qt log(Λt)Qt is the matrix-log transformation of Ct, where the log

function is applied to each eigenvalue. Then the vectorized matrix-log can be modeled

directly as a VARFIMA process, and by taking the matrix exponential transformation

of the forecast implied by the model, one obtains a positive-definite symmetric (PDS)

forecast. Their application is to matrices of order five.

Several dynamic models for realized covariance matrices use the Wishart distribution.

This is a natural choice since the Wishart has been initially derived as the sampling dis-

tribution of the sample covariance matrix of a Gaussian process. Several authors use the

Wishart assumption. Gouriéroux, Jasiak, and Sufana (2009) were probably the first to use

the idea of a Wishart process for realized covariance matrices, with the WAR(p) (Wishart

autoregressive) process, where p is a lag order parameter. It is too heavily parameterized

for a large number of assets since it uses a number of parameters equal to 3n2/2 + n/2 + 1

(for the one lag case), where n is the order of Ct (i.e. the number of assets), and it does not

fit the long memory feature of the data. Bonato, Caporin, and Ranaldo (2009) propose a

block structure of the WAR model, which reduces the number of parameters but keeps it

of the order of n2. Jin and Maheu (2010), and Noureldin, Shephard, and Sheppard (2011)

propose a joint dynamic model for a return vector and its realized covariance matrix. In

both papers, the realized covariance part of the model specifies the conditional distribu-

tion of Ct as a Wishart distribution, whose expected value is proportional to the scale

matrix of the Wishart. In Jin and Maheu’s paper, that scale matrix is a function of a

few lags of itself, in the spirit of stochastic volatility models. In Noureldin, Shephard, and
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Sheppard (2011), it is specified as a BEKK process taken from the multivariate GARCH

literature. Golosnoy, Gribisch, and Liesenfeld (2010) also use the idea of a time-varying

Wishart distribution and a scale matrix specified as a BEKK process. In these papers, the

number of parameters of the dynamic equation of the scale matrix is thus proportional to

n2, excepting the case of a scalar BEKK process also considered by Noureldin, Shephard,

and Sheppard (2011).

Our contribution is to replace the BEKK specification by DCC-type specifications in-

spired by Tse and Tsui (2002) and by Engle (2002a) as modified by Aielli (2008). This has

four important advantages: i) The model can be specified in steps, one for each realized

variance, and one for the realized correlation matrix, without departing from the Wishart

assumption; ii) Correspondingly, maximum likelihood (ML) estimation can be split in two

steps, one for the parameters of each realized variance dynamic process and one for those

of the realized correlation process; iii) The estimators at each step have a quasi-ML inter-

pretation; iv) Due to the properties of the Wishart distribution and of one of the DCC

specifications (the scalar model) we propose, the estimation of the second step can be done

by a composite likelihood (CL) approach, which makes it possible to estimate the model

for a relatively large order of the realized covariance matrices (up to one hundred in this

paper). This is in contrast to the models mentioned above: Gouriéroux, Jasiak, and Su-

fana (2009) work on three assets, Bonato, Caporin, and Ranaldo (2009) four, Golosnoy,

Gribisch, and Liesenfeld (2010) six, Jin and Maheu (2010) five, and Noureldin, Shephard,

and Sheppard (2011) ten. Some of our specifications allow us to use correlation target-

ing of the matrix constant term of the dynamic equation for the correlation matrix, i.e.

preliminary estimation of this matrix by a method of moment estimator. The number

of remaining parameters in the dynamic correlation equation is then either fixed (in our

scalar model) or linear in the number of assets (in our diagonal model).

The paper is structured as follows. Realized dynamic conditional correlation (RDCC)

models are presented in Section 2. In Section 3 we present the ML estimation procedure

and in Section 4 we discuss the QML interpretation and present the asymptotic properties

of the estimators. Correlation targeting is discussed in Section 5, and estimation by the
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composite maximum likelihood (CML) method in Section 6. In Section 7 we report the

results of a simulation study comparing the ML and CML estimators. In Section 8, we

apply the methods to real data sets, and we offer some conclusions in the last section.

2 Model specifications

Let Ct be a sequence of PDS realized covariance matrices of order n, for t = 1, . . . , T . We

assume that conditional on past information It−1 consisting of Cτ for τ ≤ t− 1, and for all

t, Ct follows a n-dimensional central Wishart distribution and denote this assumption by

Ct|It−1 ∼Wn(ν, St/ν), (1)

where ν (> n− 1) is the degrees of freedom parameter and St/ν is a PDS scale matrix of

order n. Equation (1) defines a generic conditional autoregressive Wishart (CAW) model,

as proposed by Golosnoy, Gribisch, and Liesenfeld (2010). From the properties of the

Wishart distribution - see e.g. Anderson (1984)- it follows that

E(Ct|It−1) := Et−1(Ct) = St, (2)

so that the i, j-th element of St is defined as the conditional covariance between returns

on assets i and j, cov(ri,t, rj,t|It−1), for i, j = 1, . . . , n, ri,t denoting the logarithmic return

on asset i between the ends of periods t− 1 and t.

Several choices are available for specifying the dynamics of St. Golosnoy, Gribisch,

and Liesenfeld (2010) use the BEKK formulation of the multivariate GARCH literature.

Assuming only one lag, this corresponds to

St = GG′ + ACt−1A
′ +BSt−1B

′ (3)

where A and B are square matrices of order n, and G is a lower triangular matrix such that

GG′ is PDS. This choice ensures that St is PDS for all t if S0 is itself PDS. For large n, this

choice renders the estimation infeasible due to the high number of parameters. Golosnoy,

Gribisch, and Liesenfeld (2010) are able to estimate the model in (3) for five assets and two
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lags, for a total of one hundred and sixteen parameters. This is a remarkable performance

that is probably difficult to be improved on unless imposing strong parameter restrictions,

as for instance, common dynamics for all the elements of St. However, they do not consider

covariance targeting. This is easy to implement, since the unconditional expectation of Ct

and of St is known analytically, see Corollary 1 in their paper. Nevertheless the number of

parameters in (3) remains of order n2. This holds even with covariance targeting, unless

the matrices A and B are restricted to be diagonal, to have their rank equal to one, or are

replaced by scalars.

The scalar RBEKK (R for realized) version implies that the conditional variances and

covariances all follow the same dynamic pattern, which may be too restrictive. To avoid this

restriction, and to enrich the class of possible models, we use the following decomposition of

the covariance matrix in terms of the corresponding diagonal matrix of standard deviations

and correlation matrix. Thus, we express St in equation (1) as

St = DtRtDt, (4)

where Rt is the conditional correlation matrix of the return vector rt = (r1,t, . . . , rn,t)
′

and Dt = {diag(St)}1/2 is the diagonal matrix whose i-th diagonal entry is given by the

conditional standard deviation
√

Sii,t of asset i. For any matrix At, the notation Aij,t

indicates the (i, j)-th element of At.

This decomposition, introduced in a similar context by Engle (2002a) and Tse and

Tsui (2002), enables us to specify separately the dynamic equation of each conditional

variance and of the conditional correlation matrix Rt. For the conditional variances, we

can choose among available univariate specifications, such as a GARCH-type equation, the

HAR equation of Corsi (2009), an ARFIMA model as in Andersen, Bollerslev, Diebold,

and Labys (2003), or any other suitable model. Each univariate model for Cii,t depends on

lags of Cii,t and in some cases of Sii,t, but cannot depend on lags of other realized variances

or conditional realized variances (spillover effects) to allow for the two-step estimation

developed in Section 3. More details are provided in Section 8 in the context of empirical

illustrations.
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In the following subsections we propose and discuss several suitable specifications for

Rt, starting with the most parsimonious one.

2.1 Common correlation dynamics: scalar models

The most parsimonious specification that we propose imposes a scalar dynamic equation on

the conditional correlation matrix. A possible dynamic updating equation for Rt, inspired

by that of Tse and Tsui (2002) for multivariate GARCH models, is given by

Rt = (1 − α− β)R̄ + αPt−1 + βRt−1, (5)

where

Pt = {diag(Ct)}−1/2Ct{diag(Ct)}−1/2 (6)

is the realized correlation matrix at time t. The parameters α and β, and their sum, are

constrained to lie between zero and one. The matrix R̄ is a parameter that must satisfy

the constraints of a correlation matrix, i.e. positive definite symmetric with unit diagonal

elements. Since Pt has unit diagonal elements, Rt is a well defined correlation matrix for all t

if the initial matrix R0 is a correlation matrix. The matrix R̄ can be parameterized by using

the representation R̄ = {diag(CC ′)}−1/2CC ′{diag(CC ′)}−1/2 where C is a lower triangular

matrix of parameters. Notice that, although C is uniquely identifiable only if its diagonal

elements are constrained to be positive (i.e. if is a Cholesky type decomposition) and

CC ′ is identifiable only up to a multiplicative constant, R̄ remains uniquely identifiable.

A drawback of this specification is that it does not imply that R̄ is the unconditional

expectation of Pt and of Rt, which has some consequences discussed in Section 5 We label

this model ‘scalar RDCC’.

A different specification is in spirit close to the cDCC model of Aielli (2008), which is

itself a modification of Engle (2002a). Thus, the representation in (4) is complemented by

the following dynamic equation:

Rt = {diag(Qt)}−1/2Qt{diag(Qt)}−1/2. (7)
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The correlation driving process Qt is then defined by

Qt = (1 − α− β)Q̄+ αP ∗

t−1 + βQt−1, (8)

where

P ∗

t = {diag(Qt)}1/2D−1
t CtD

−1
t {diag(Qt)}1/2. (9)

We label this model ‘scalar cRDCC’ (c for consistent).

By taking expectations on both sides of (8), one obtains, assuming α + β < 1, that

E(Qt) = Q̄ if E(P ∗

t ) = E(Qt). The latter results holds using (2), (4) and (7) since

E
(

P ∗

t ) = E
[

{diag(Qt)}1/2D−1
t Et−1

(

Ct

)

D−1
t {diag(Qt)}1/2

]

= E
[

{diag(Qt)}1/2D−1
t DtRtDtD

−1
t {diag(Qt)}1/2

]

= E
[

{diag(Qt)}1/2Rt{diag(Qt)}1/2
]

= E(Qt). (10)

In the above scalar models, the number of parameters is O(n2) due to the matrix R̄

or Q̄. We discuss targeting, i.e. estimation of these matrices before ML estimation of the

remaining parameters, in Section 5. Targeting thus enables us to use the models for large

dimensions. In Section 5 we show that an advantage of (5) is that the targeting does not

depend on unknown parameters and thus is robust to specification errors in the variance

equations.

2.2 Idiosyncratic correlation dynamics: diagonal models

The assumption of common dynamics, while crucial for applications to very large dimen-

sional systems, may be relaxed for models of medium size. In such cases we can afford a

more flexible specification allowing for idiosyncratic dynamics for each conditional correla-

tion. By extension of (5) and (8), the recursions of Rt and Qt can be specified respectively

as the diagonal RDCC:

Rt = (R̄ −AdR̄Ad −BdR̄Bd) + AdPt−1Ad +BdRt−1Bd, (11)

and the diagonal cRDCC:

Qt = (Q̄− AdQ̄Ad −BdQ̄Bd) + AdP
∗

t−1Ad +BdQt−1Bd, (12)
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where Ad andBd are diagonal parameter matrices. LetAd = diag(a′) where a′ = (α1, α2, . . . ,

αn) and Bd = diag(b′), where b′ = (β1, β2, . . . , βn). Notice that the elements of Ad and Bd

are identifiable only for n > 2. In the case of n = 2, the models boils down to the scalar

versions.

The condition in the scalar models, that α, β, and their sum be smaller than unity is

replaced by αiαj, βiβj, and their sum to be smaller than unity for all i and j. If we impose

moreover that αi and βi are positive for all i, these restrictions ensure that Rt in (11) is a

correlation matrix provided that R0 is a correlation matrix and R̄ − AdR̄Ad − BdR̄Bd is

positive semidefinite (PSD). Notice that R̄−AdR̄Ad−BdR̄Bd is equal to (Un−aa′−bb′)⊙R̄,

where Un is has all its elements equal to one. Hence the constant matrix of (11) is PSD if

Un − aa′ − bb′ is itself PSD (given that R̄ is a positive definite correlation matrix) which is

a restriction that may not be easily imposed. For Qt we need not impose that αi and βi

be positive for all i.

Without targeting, the number of parameters of these diagonal models is O(n2), though

with targeting it is O(n).

REMARK: (12) can also be written

Qt = (Un − aa′ − bb′) ⊙ Q̄+ aa′ ⊙ P ∗

t−1 + bb′ ⊙Qt−1 (13)

and can be made more flexible by replacing aa′ and bb′ by full rank square matrices

A = (aij) and B = (bij), respectively. The expressions for Qt,ij , the (i, j)-element of

Qt, corresponding to (12) and (16) are

Qt,ij = (1 − αiαj − βiβj)Q̄ij + αiαjP
∗

t−1,ij + βiβjQt−1,ij (14)

Qt,ij = (1 − αij − βij)Q̄ij + αijP
∗

t−1,ij + βijQt−1,ij . (15)

In matrix format, the more general specification is written

Qt = (Un − A− B) ⊙ Q̄+ A⊙ P ∗

t−1 +B ⊙Qt−1. (16)

Restrictions ensuring that Qt in (16) is positive definite (PD) are that A is PD while B,

Q0 and Un −A−B are PSD, or that B and Q0 are PD while A and Un −A−B are PSD,

or that Un − A−B is PD while A, B and Q0 are PSD.
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2.3 Correlation spillovers: the full model

The models in (11) and (12), although more flexible than the corresponding scalar versions,

still neglect the effect known as correlation spillovers, which is relevant in some empirical

applications. In order to include this feature we need to abandon dynamic equations for Rt,

since, although Pt has unit diagonal elements, simply allowing the matrices of parameters

in (11) to have all non-zero elements (which would generate the correlation spillovers)

does not ensure Rt to have unit diagonal elements. Thus, the specification in (12) can be

replaced by the BEKK-type model

Qt = CC
′

+ AP ∗

t−1A
′

+BQt−1B
′

, (17)

where A and B are parameter square matrices of order n, C is lower triangular such that

CC ′ is PDS (but not necessarily with unit diagonal elements). In this model, each element

of Qt and Rt is a function of all the elements of P ∗

t−1 and of Qt−1. Similarly to the RBEKK

model in (3), these models are practicable only in small dimensional problems (n ≤ 5)

since the number of parameters is of order n2. Further investigations on the full version of

the model are left for the future.

2.4 Summary

In Table 1, we summarize the main models presented in this section, assuming they are

”(1,1)” models, i.e. they have only one lag of the observed covariance or correlation matrix,

and one lag of the corresponding conditionally expected matrix. In the table we have

added a diagonal BEKK model, which is defined by equation (3) where A and B are

diagonal, rather than full, matrices. The numbers in the first column of the table are

purely indicative.

3 Likelihood function and estimation

In this section we focus on the estimation by the ML method of all the parameters of

the RDCC models defined in the previous section. We do not consider in this section the
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Table 1: Summary of (1,1) models

Dimension Name (eq. numbers) Targeting Number of parameters(a)

n ≤ 5 full RBEKK (3) yes 2n2

full rank RDCC (4)-(17) no 0.5n(n+ 1) + 2n2 + pU

n ≤ 25 diagonal RBEKK(b) (3) yes 2n

diagonal RDCC (4)-(11) yes, (34) 2n+ pU

diagonal cRDCC (4)-(12) no 0.5n(n+ 1) + 2n+ pU

n ≤ 100 scalar RBEKK(c) (3) yes 2

scalar RDCC (4)-(5) yes, (34) 2 + pU

scalar cRDCC (4)-(8) no 0.5n(n+ 1) + 2 + pU

pU is the number of parameters of the univariate models for the n realized variances.
(a) not including the degrees of freedom parameter ν.
(b) model as in equation (3) where A and B are diagonal matrices.
(c) model as in equation (3) where A and B are scalars times the identity matrix of order n.

targeting of the constant matrix term (such as R̄). We show that, based on the Wishart

distribution assumption of equation (1), the estimation can be split in two steps, one

for the parameters of the univariate realized variance equations if they do not include

spillover terms, and one for the parameters of the realized correlation equation and the

degrees of freedom parameter. We also show that the estimators of the variance and

correlation equations have in each step a quasi-ML (QML) interpretation and can be

obtained without estimating the degrees of freedom. This result is interesting especially

for the estimation of the realized variance parameters, since it has been found empirically

that the distribution of realized variances is often very close to being lognormal, see e.g.

Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and

Labys (2001). The Wishart assumption implies that the distribution of a realized variance is

marginally Gamma, but since the estimation method we propose has a QML interpretation,

the estimator is consistent even if the true distribution is lognormal and the conditional

mean is correctly specified.

Our estimation method is different from that of Golosnoy, Gribisch, and Liesenfeld

(2010), who deal with the BEKK formulation and extensions of it. They use ML esti-

mation, but do not give a QML interpretation to it. They cannot separate estimation in
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two steps, due to the structure of the BEKK model, and hence they cannot apply their

model to more than a few assets. Our results differ also partly from those of Noureldin,

Shephard, and Sheppard (2011), who deal with a model that has a realized covariance ma-

trix equation in addition to a modified multivariate GARCH equation. They do provide a

QML interpretation to ML estimators based on the Wishart assumption in the context of

BEKK formulations, but the latter also prevent two step estimation.

The vector of unknown parameters to be estimated,, denoted by θ, can be partitioned

into three components:

θ = (ν, θ
′

c, θ
′

v)
′ (18)

where θv and θv are the vectors containing the conditional variance and correlation pa-

rameters, respectively. Since no targeting is considered, θc includes the parameters of the

matrix R̄ of (5) or (11), and Q̄ of (8) or (12). We also partition θv as

θv = (θ(1)′

v , θ(2)′

v , . . . , θ(n)′

v )′, (19)

where θ
(i)
v is the vector containing all the parameters of the conditional realized variance

equation specific to asset i.

Using the expression of a Wishart density function, and of St in (4), we obtain the log-

likelihood contribution ℓ(Ct; θ|It−1) of observation t, denoted by ℓt(θ):

ℓt(θ) =
νn

2
log

(ν

2

)

+
ν − n− 1

2
log |Ct| −

n
∑

i=1

log Γ[(ν + 1 − i)/2]

−ν
2

log |DtRtDt| −
ν

2
tr{(DtRtDt)

−1Ct}. (20)

Proposition 1. The likelihood contribution ℓt(θ) in (20) can be written as

ℓt(θ) = ℓ1t(ν, θv) + ℓ2t(ν, θc, θv), (21)

where

ℓ1t(ν, θv) = −ν log(Dt) −
ν

2
tr{D−1

t CtD
−1
t } (22)
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and

ℓ2t(ν, θc, θv) = −ν
2

log |Rt| +
νn

2
log

ν

2
+
ν − n− 1

2
log |Ct|

−
n

∑

i=1

log[Γ((ν + 1 − i)/2] − ν

2
tr{(R−1

t − In)D−1
t CtD

−1
t }. (23)

Moreover, assuming that the univariate equations for the conditional realized variances do

not include spillover terms and that their parameters are variation-free, ℓ1t can be written

as the sum of n univariate functions:

ℓ1t(ν, θv) =
ν

2

[

−
n

∑

i=1

log Sii,t −
n

∑

i=1

S−1
ii,tCii,t

]

=
ν

2

n
∑

i=1

ℓ
(i)
1t ∝

n
∑

i=1

ℓ
(i)
1t (ν, θ(i)

v ). (24)

Proof. The proof relies on the following results:

(i) log |DtRtDt| = 2 log |Dt| + log |Rt|.
(ii) tr{(DtRtDt)

−1Ct} = tr{R−1
t D−1

t CtD
−1
t } = tr{(R−1

t − In)D−1
t CtD

−1
t }+tr{D−1

t CtD
−1
t }.

(iii) 2 log |Dt| =
∑n

i=1 log Sii,t.

(iv) tr{D−1
t CtD

−1
t } =

∑n
i=1 S

−1
ii,tCii,t.

At this stage there are three important considerations to make:

1. The ℓ1t part of the log-likelihood is proportional to the shape parameter ν. This

implies that it can be maximized with respect to the elements of θv independently of

the value of ν which is not affecting the first order conditions for θv.

2. Each function ℓ
(i)
1t , defined as the terms between square brackets in (24), only depends

on the parameters θ
(i)
v specific to the conditional variance dynamics of asset i. It

follows that maximization of ℓ1t can be achieved through n separate optimizations

(under the assumptions stated in the proposition). Notice that ℓ
(i)
1t corresponds to

the log-likelihood of an exponential distribution.

3. The second part ℓ2t of the log-likelihood depends on the whole set of parameters

θ. It depends on the parameters θv and θc through the first and last terms of (23),

which are linear in ν. This implies that it can be maximized with respect to these

parameters independently of the value of ν.
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The main interest of these results is that we can adopt a two-step procedure to estimate

the model parameters:

1. In step 1, the conditional realized variance parameters are estimated by maximizing

ℓ
(i)
1t with respect to θ

(i)
v for i = 1, . . . , n.

2. In step 2, the degrees of freedom and the correlation equation parameters are esti-

mated by maximizing the full likelihood ℓt with respect to (ν, θc), after fixing θv to

the estimate provided by step 1. The reason for maximizing ℓt and not ℓt2 is the

presence of the degrees of freedom parameters in ℓ1t.

4 Consistency and asymptotic normality

We show the consistency and asymptotic normality of the two step estimator of the previous

section, and we show that it has a QML interpretation. The consistency of the first step

estimator of θv is easily proven. By equation (24), we can just consider the estimation of

the parameter θ
(i)
v for a given i. The first step score vector for observation t is given by

m1t(θ
(i)
v ) = ∂ℓ

(i)
1t /∂θ

(i)
v = (−1 + Cii,t/Sii,t)(1/Sii,t)∂Sii,t/∂θ

(i)
v . (25)

Using the law of iterated expectation it is easy to show that at the true parameter value

θ
(i)
v,0, the expected first step score is equal to 0:

E[m1t(θ
(i)
v )] = E

{

Et−1

[

(−1 + Cii,t/Sii,t)(1/Sii,t)∂Sii,t/∂θ
(i)
v

]}

= 0 (26)

since Et−1(Cii,t) = Sii,t, see equation (2). This implies that (24) is a quasi-likelihood

function and its maximizer θ̂v is a QML estimator (QMLE). Hence, by the results in

Bollerslev and Wooldridge (1992), under the stated regularity conditions, consistency and

asymptotic normality hold. The result in (26), and the implied interpretation of θ̂v as a

QMLE, makes our approach robust to misspecification of the distribution of univariate

realized volatilities. Even if the Gamma assumption (implied by the Wishart) is not

satisfied, we are still able to obtain consistent estimates of the elements of θv. In the

13



literature, a similar estimation problem has been considered by Engle and Russell (1998),

Engle (2002b), and Engle and Gallo (2006) in the estimation of ACD and multiplicative

error models with a Gamma conditional distribution.

Consistency of the first step estimator θ̂v implies consistency of the second step esti-

mators of ν an θc obtained as

(ν̂, θ̂
′

c)
′ = argmax

(ν,θ′c)

T
∑

t=1

ℓt(ν, θc, θ̂v).

This result directly follows from the application of Theorem 3.10 in White (1994), under

the general regularity conditions that are stated there. Furthermore, consistency of the

estimator of the second step parameters still holds if the first step parameters in θv are

consistently estimated by optimizing an objective function different from
∑T

t=1 ℓ1t. So, in

principle, different estimation methods could be used without invalidating the properties

of second step estimators. For example, following the mainstream literature on univariate

modeling of realized variances, we could adopt a maximum likelihood estimator based on

the maximization of a lognormal likelihood.

In some applications of multivariate volatility modeling, such as optimal portfolio choice

and hedging, to mention some notable examples, the interest of the modeler is in the

estimation of the conditional covariance matrix rather than in its distributional properties.

As a consequence, the parameters of interest would be the vectors θv and θc rather than

the shape parameter ν.

In this respect, it is worth noting that, similarly to what we already observed for the first

step estimation of θv, the first order conditions for the maximization of the full likelihood

ℓt with respect to θc are proportional to ν, since the score for observation t is given by

∂ℓt
∂θc

=
∂ℓ2t

∂θc
= −ν

2

{

∂ log(|Rt|)
∂θc

+
∂tr(R−1

t D−1
t CtD

−1
t )

∂θc

}

. (27)

This implies that the value of ν is not affecting the estimation of θc which can be consistently

estimated independently of the value of ν. Furthermore, by standard ML theory results,

the gradient in (27), which is the component of the overall score vector related to θc, has

expected value equal to 0 when θc = θc,0, where θc,0 is the value of θc in the data generating

14



process. Namely, by applying standard results on the differentiation of matrix functions,

we have

∂ℓt(θ)/∂θc =
ν

2

{

tr

(

R−1
t

∂Rt

∂θc

)

+ tr

(

D−1
t CtD

−1
t

∂R−1
t

∂θc

)}

=
ν

2

{

tr

(

R−1
t

∂Rt

∂θc

)

− tr

(

D−1
t CtD

−1
t R−2

t

∂Rt

∂θc

)}

. (28)

Taking expectations conditional on past information It−1, we obtain

Et−1 (∂ℓt(θ)/∂θc) =
ν

2

{

tr

(

R−1
t

∂Rt

∂θc

)

− tr

(

D−1
t Et−1(Ct)D

−1
t R−2

t

∂Rt

∂θc

)}

. (29)

At the true parameter value θc = θc,0, Et−1(Ct) = DtRtDt by equation (2). By substituting

this expression in (29) we obtain

Et−1 (∂ℓt(θ)/∂θc)θc=θc,0
=

ν

2

{

tr

(

R−1
t

∂Rt

∂θc

)

− tr

(

R−1
t

∂Rt

∂θc

)}

= 0. (30)

Equation (30) has great practical relevance since it implies that, under the usual regu-

larity conditions - see e.g. Newey and McFadden (1994), Wooldridge (1994) - any GMM

estimator based on the moment conditions in (28) is a consistent estimator of θc. In other

words, even if the ’true’ distribution of Ct is not Wishart, we can still consider θ̂c, which

is the maximizer of
∑T

t=1 ℓ2t with respect to θc, as a QMLE.

Next we focus on the derivation of the asymptotic distribution of the second step

estimator γ̂ = (ν̂, θ̂
′

c)
′

of γ = (ν, θ
′

c)
′

. Similarly to Engle (2002a), we can represent the

overall estimation problem as a two step GMM estimator where the first and second step

moment conditions are given by the first and second step score, respectively:

M1T (θv) =
1

T

2

ν

T
∑

t=1

∂ℓ1t(ν, θv)

∂θv

=
1

T

T
∑

t=1

m1t(θv) (31)

where m1t(θv) =
(

m1t(θ
(1)
v )′, m1t(θ

(2)
v )′, . . . , m1t(θ

(n)
v )′

)

′

, and

M2T (γ, θ̂v) =
1

T

T
∑

t=1

∂ℓt(γ, θ̂v)

∂γ
=

1

T

T
∑

t=1

mt(γ, θ̂v). (32)

We can then apply Theorem 6.1 in Newey and McFadden (1994) to derive the asymptotic

distribution of γ̂. In particular, it follows from these results that

√
T (γ̂ − γc,0) −→

d
N(0, V ), (33)
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where γ0 = (ν0, θ
′

c,0)
′

is the ‘true’ value, and

V = G−1
γ E

{

[

mt(γ0, θv,0) +Gvψt(θv,0)
][

mt(γ0, θv,0) +Gvψt(θv,0)
]′

}

(G
′

γ)
−1

with

Gγ = E{∇γmt(γ0, θv,0)}

Gv = E{∇θv
mt(γ0, θv,0)}

ψt(θv,0) = −F−1
v m1t(θv,0)

Fv = E{∇θv
m1t(θv,0)}.

5 Correlation targeting

In the scalar and diagonal RDCC models presented in Section 2, the dynamic equations

depend on constant matrices R̄ or Q̄, see (5), (8), (11), and (12). To avoid having a large

number of parameters (of order n2) in the numerical maximization of the quasi-likelihood

function of the second step of the estimation of the models, which renders the computations

impossible in practice for large values of n, we can use ‘targeting’. This means a preliminary

estimation of these constant matrices by a method of moment estimator. If this estimator

is substituted for the corresponding parameter matrix in the quasi-likelihood function (of

the second step), the numerical burden is much reduced since the number of parameters

is either independent of n (in the scalar models) or linear in n (in the diagonal models).

It is desirable that the targeting estimator of a parameter is consistent, even if inefficient.

Indeed, since the QML estimators of the remaining parameters depend on the targeting

estimator, they cannot be consistent if the targeting estimator is not consistent.

5.1 RDCC

For the RDCC models, we have mentioned in Section 2.1 that their specification does not

imply that R̄ is the unconditional expectation of Pt and of Rt. Indeed, although Et−1(Ct) =

St, by assumption, see (2), and thus E(Ct) = E(St), this does not imply that E(Pt) is equal
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to the unconditional correlation matrix {diag[E(St)]}−1/2E(St){diag[E(St)]}−1/2 deduced

from the unconditional covariance E(St), due to the non-linearity of the transformation

from covariances to correlations. Thus a consistent estimator of the unconditional correla-

tion matrix, given by

P̄T =
T

∑

t=1

Pt/T (34)

is not consistent for R̄ (because R̄ is not the unconditional correlation matrix), and target-

ing R̄ by P̄T is inconsistent. However the finite sample bias of doing that may not be impor-

tant if Ct is constructed consistently from a large enough number (H) of high-frequency

independent returns rt,h assumed to be independently distributed and Nn(0, St/H) for

h = 1, 2, . . . , H . Indeed this assumption implies that Ct := Ct,H =
∑H

h=1 rt,hr
′

t,h ∼
Wn(H,St/H). Then Ct,H

p→St as H → ∞, and

Pt,H = {diag(Ct,H)}−1/2Ct,H{diag(Ct,H)}−1/2 p→Rt = {diag(St)}−1/2St{diag(St)}−1/2.

Thus for large H , Et−1(Pt,H) should be close to Rt, hence E(Pt,H) should be close to E(Rt).

Then P̄T is estimating E(Rt) consistently. If E(Pt) were equal to E(Rt), then R̄ would

be equal to E(Rt). Since this holds approximately for large enough H , we expect that

targeting R̄ by P̄T should not lead to a strong bias if the observed matrices are obtained

form high frequency data and free from contamination by microstructure noise.

5.2 cRDCC

For the cRDCC models, we have shown in Section 2.1 that Q̄ = E(Qt) = E(P ∗

t ). Hence,

P̄ ∗

T =
T

∑

t=1

P ∗

t /T
p→ Q̄. (35)

In practice, this estimator is not feasible since it depends on the unknown parameters

of the conditional variance equations through Dt. We have explained in Section 3 that

the parameters of the variance equations can be estimated consistently in the first step of

estimation. If Dt is thus replaced by a consistent estimator D̂t and P̂ ∗

t stands for (9) with
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D̂t replacingf Dt, then

ˆ̄P
∗

T =
T

∑

t=1

P̂ ∗

t /T
p→ Q̄. (36)

Nevertheless ˆ̄P
∗

T cannot be used for targeting Q̄ since it depends also on the parameters

α and β of (8) through the diagonal elements of Qt itself. We can obviously estimate the

cDCC model by maximizing a quasi-likelihood function with respect to Q̄ in addition to

α and β. This approach limits the use of the model to small dimensions since the number

of parameters is then O(n2).

To circumvent this problem, we can substitute ˆ̄P
∗

T (α, β) (making the dependence of ˆ̄P
∗

T

on α and β explicit) for Q̄ in (8) in evaluating the quasi-likelihood function for any value

of α and β. If α̂ and β̂ are the values that maximize the quasi-likelihood function, we

finally estimate consistently Q̄ by ˆ̄P
∗

T (α̂, β̂). This procedure makes it possible to estimate

the scalar cRDCC model for a large number of assets.

6 Composite likelihood estimation

The second step of the estimation method presented in Section 3 may not be practicable

for very large dimensions. This is due to the need to invert the matrix Rt appearing in

the log-likelihood function for each observation. This operation is time consuming for the

sample sizes of typical empirical applications. The same issue arises in the estimation of

the DCC version of a multivariate GARCH model and has motivated Engle, Shephard, and

Sheppard (2008) to use the composite likelihood (CL) method based on the conditional

normal distribution for the return vector. It turns out that for the scalar RDCC and

RBEKK models, the Wishart assumption also enables us to use the CL method explained

below. We present the CL estimator that applies to the second step of the estimation

procedure of Section 3 for the scalar RDCC specification (5) using targeting of R̄ by P̄T

defined in (34).

The method is based on three results for which we need the following notations. For

any square matrix Mt of order n, we denote by MAA,t a square matrix of order nA extracted
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from Mt, which has its main diagonal elements on the main diagonal of Mt. Namely, if A

stands for a subset of nA different indices of {1, 2, . . . , n}, MAA,t is the matrix that consists

of the intersection of the rows and columns of Mt corresponding to the selection of indices

denoted by A. The three results are:

R1: If Ct ∼Wn(ν, St/ν), CAA,t ∼WnA
(ν, SAA,t/ν) for any selection of nA indices.

R2: If St = DtRtDt, SAA,t = DAA,tRAA,tDAA,t.

R3: If Rt = (1−α−β)R̄+αPt−1+βRt−1, RAA,t = (1−α−β)R̄AA+αPAA,t−1+βRAA,t−1.

Result 1 is a property of the Wishart distribution already mentioned at the end of

Section 3. Notice that applied with nA = 1, it corresponds to the result that the margin of

a diagonal element of a Wishart matrix is a Gamma distribution, a result that is used in

Section 3 to form the log-likelihood for the first step of the estimation procedure. Results

2, given that Dt is diagonal, and 3 are obvious algebraic results.

A CL second step estimator of the parameters α and β is then defined as the maxi-

mizer of the sum of a number of Wishart marginal log-likelihoods for sub-matrices PAA,t

corresponding to different choices of indices A. The most obvious choice is to select all

the log-likelihoods corresponding to sub-matrices of order 2, i.e. to all the n(n − 1)/2

correlation coefficients or pairs of assets. In each bivariate Wishart term, the parameters

of the conditional variances are fixed at the estimates of the first step, and the matrix R̄AA

is set to the corresponding matrix extracted from P̄T . Notice that with these bivariate

Wishart log-likelihoods, only matrices of order 2 must be inverted, which can be efficiently

programmed. Such a CL is denoted CL2t for the contribution of observation t. Formally,

CL2t(ν, α, β,
ˆ̄R, θ̂v) =

n
∑

h=2

∑

k<h

ℓhk,t(ν, α, β, P̄
(hk)
T , θ̂(h)

v , θ̂(k)
v ) (37)

with

ℓhk,t(.) = ν log
(ν

2

)

+
ν − 3

2
log |C(hk)

t | −
2

∑

i=1

log Γ[(ν + 1 − i)/2]

−ν
2

log |D(hk)
t R

(hk)
t D

(hk)
t | − ν

2
tr{(D(hk)

t R
(hk)
t D

(hk)
t )−1C

(hk)
t }, (38)

where for any matrix Mt, M
(hk)
t is the matrix of order 2 extracted at the intersection of

rows h and k of Mt. One can use less terms (e.g. consecutive pairs) than the n(n − 1)/2
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terms in (37) especially if the number of terms is very large. One can also use marginal

log-likelihoods of sub-matrices of higher dimension, e.g. all or a subset of triplets of indices

of {1, 2, . . . , n}, to form a CL of order three, denoted CL3.

We conjecture that the CL estimators can be shown to be consistent and asymptotically

normal if a consistent estimator of R̄ is used, but we leave the proof for further work. As

anyway we do not have a consistent estimator of R̄, this issue is not much relevant and we

rely on a simulation study to get insights on the finite sample bias of some CL estimators,

and their efficiency with respect to the ML estimator. The simulation study will also give

information on the finite sample properties of the estimators for the cRDCC model.

7 Simulation study

This section presents the results of a Monte Carlo simulation study aimed at comparing

the finite sample properties of the maximum likelihood (L) and composite maximum like-

lihood estimators of the parameters of the conditional correlation process. For CL, we use

estimators based on pairs (CL2) and on triplets (CL3). We are interested in the bias of the

estimators, especially for the RDCC model with targeting since we know that the targeting

we use is not consistent, and in their relative efficiencies.

7.1 Simulation design

We consider as data generating process (DGP) a scalar RDCC model and a scalar cRDCC

model, where α = α0 and β = β0, α0 and β0 being positive scalars such that α0 + β0 < 1.

Both R̄ and Q̄ are equicorrelated matrices, i.e. matrices having diagonal elements equal

to one and off-diagonal elements equal to ρ. The value of ρ is fixed to 0.6 because this

is in the range of plausible values for stock markets. Non reported results for different

values of ρ show that the specific value of ρ does not change the conclusions drawn from

the simulations.

In the simulations for each of the two DGP considered, we have generated 1000 time

20



series of length T = 1000 and T = 2500 with three different choices of α0 and β0 and

six different values of the cross sectional dimension n (5, 15, 25, 50, 75, 100). In all the

cases, the value of the degrees of freedom parameter (ν) has been set equal to 3n. The

DGP for the realized variances associated to the RDCC and cRDCC correlation models

are GARCH-type recursions defined by

Sii,t = (1 − γi − δi) + γiCii,t−1 + δiSii,t−1 i = 1, . . . , n. (39)

In order to allow for some variation in the volatility dynamics, for each i = 1, . . . , n, we

draw γi and δi from dependent uniform distributions defined as

γi ∼ U(γ0 − 0.02, γ0 + 0.02), δi|γi ∼ U(2δ0 + γi − 1 + ǫ, 1 − γi − ǫ),

with γ0=0.05 and δ0=0.90. This ensures that E(γi) = γ0 (set to 0.05), E(δi) = δ0 (set to

0.90) and γi + δi < 1 − ǫ (= 0.99).

In both cases (RDCC and cRDCC), the estimated model corresponds to the model class

to which the DGP belongs, so that the estimated model is correctly specified. Estimation is

performed in two steps (by each method – L, CL2, and CL3) with correlation targeting for

RDCC, and without it for cRDCC. For the latter we use the approach described in Section

2.1 for the estimation of Q̄. The first step of the estimation of the likelihood and composite

likelihood methods being identical, we do not report the corresponding simulation results.

For CL2, we use all pairs of assets, and for CL3 we use all of them for n ≤ 25, while

we use 5000 randomly selected triplets for n > 25 since the number of triplets is then so

large that the Monte Carlo study would require too much time.

In order to assess the statistical properties of the estimates we have computed from the

simulated values the percentage relative bias (RB) and root mean squared error (RMSE):

RB(θ) = 100 × 1

1000

1000
∑

i=1

(θ̂i − θ)

θ
,

RMSE(θ) = 100 ×

√

√

√

√

1

1000

1000
∑

i=1

(θ̂i − θ)2,
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where θ̂i is either α̂i (when θ is α0) or β̂i (when θ is β0), with (α̂i, β̂i) denoting the estimated

parameter values for the i-th simulated series.

7.2 Bias results

The simulation results for the scalar RDCC and cRDCC processes are reported in Tables

2 and 3, respectively. A few conclusions arise from these results:

1) The biases for β0 are negative and in most cases very small, being smaller than one per

cent in absolute value, except for the cRDCC model, n = 5, when β0 is equal to 0.90 and

0.85, where the largest bias is 1.22 per cent.

2) For α0, the biases are positive (except for α0 = 0.03 by CL2 and CL3). The largest

biases occur for n = 5 and the RDCC model, with the maximum being 6.35 per cent (4.61

for the cRDCC). They decrease as n increases, being smaller than one per cent for n ≥ 50

for both models. This decrease is due to the increase of information brought by a larger

cross-sectional dimension, given the scalar nature of the models. This effect (bias decrease)

is not visible for β0 (except comparing n = 5 and 15) since the biases are very small.

3) The biases are smaller in the cRDCC model than in the RDCC, but the differences

are far from impressive. Thus, in the RDCC case, the targeting of the constant matrix of

the correlation process by a (presumably hardly) inconsistent estimator does not seem to

create a bias problem in the estimation of the dynamic parameters.

4) The biases tend to decrease when T increases from 1000 to 2500; exceptions happen

only for α, and the increases are minor.

7.3 Efficiency results

The simulation results for the scalar RDCC and cRDCC processes are reported in Tables

4 and 5, respectively. What is reported in the tables is the ratio of the RMSE of each CL

estimator and the L estimator, and of CL2 with respect to CL3.

Several conclusions emerge from these results:

1) As expected, the efficiency of the CL2 and CL3 estimators is smaller than that of the L
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Table 2: Relative biases of estimators of α and β, scalar RDCC model
n L CL2 CL3 L CL2 CL3 L CL2 CL3

T = 1000 α0=0.03 α0=0.05 α0=0.10
5 5.39 4.65 4.75 6.35 6.30 6.27 5.99 5.98 5.97

15 2.66 1.50 3.65 2.43 2.72 3.66 2.42 2.61 3.17
25 1.06 -0.74 -0.28 1.12 1.13 1.10 1.36 1.53 1.48
50 0.52 -0.99 -0.66 0.45 0.57 0.63 0.72 0.98 0.98
75 0.31 -0.92 -0.75 0.17 0.53 0.43 0.46 0.80 0.76

100 0.26 -0.86 -0.59 0.09 0.54 0.35 0.38 0.79 0.67
T = 2500 α0=0.03 α0=0.05 α0=0.10

5 6.32 5.85 6.08 6.47 6.19 6.28 5.92 5.74 5.81
15 2.07 1.43 1.59 2.14 2.42 2.31 2.22 2.28 2.58
25 1.35 0.72 0.87 1.30 1.35 1.31 1.32 1.39 1.36
50 0.70 -0.11 0.10 0.58 0.54 0.56 0.66 0.71 0.72
75 0.48 -0.23 -0.11 0.37 0.45 0.50 0.44 0.57 0.49

100 0.42 -0.09 -0.15 0.28 0.50 0.26 0.35 0.56 0.41
T = 1000 β0=0.95 β0=0.90 β0=0.85

5 -0.49 -0.52 -0.49 -0.74 -0.91 -0.81 -0.54 -0.65 -0.59
15 -0.52 -0.50 -0.52 -0.64 -0.84 -0.72 -0.46 -0.63 -0.56
25 -0.52 -0.41 -0.43 -0.67 -0.81 -0.76 -0.47 -0.63 -0.58
50 -0.53 -0.41 -0.43 -0.66 -0.78 -0.75 -0.46 -0.61 -0.59
75 -0.54 -0.42 -0.43 -0.65 -0.78 -0.73 -0.45 -0.60 -0.57

100 -0.54 -0.42 -0.43 -0.65 -0.76 -0.71 -0.46 -0.59 -0.55
T = 2500 β0=0.95 β0=0.90 β0=0.85

5 -0.20 -0.18 -0.19 -0.29 -0.29 -0.28 -0.22 -0.21 -0.21
15 -0.18 -0.13 -0.14 -0.26 -0.33 -0.30 -0.19 -0.25 -0.25
25 -0.20 -0.15 -0.16 -0.26 -0.31 -0.29 -0.19 -0.24 -0.22
50 -0.20 -0.14 -0.15 -0.25 -0.29 -0.28 -0.18 -0.23 -0.22
75 -0.20 -0.15 -0.14 -0.25 -0.31 -0.28 -0.18 -0.24 -0.20

100 -0.20 -0.15 -0.15 -0.25 -0.31 -0.27 -0.18 -0.25 -0.22
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Table 3: Relative biases of estimators of α and β, scalar cRDCC model
n L CL2 CL3 L CL2 CL3 L CL2 CL3

T = 1000 α0=0.03 α0=0.05 α0=0.10
5 2.97 2.46 2.50 3.52 3.59 3.57 4.51 4.59 4.61

15 1.32 0.83 1.00 1.16 1.91 1.74 1.68 2.17 2.09
25 0.58 -1.19 -0.71 0.52 0.64 0.61 0.99 1.25 1.22
50 0.23 -1.33 -0.93 0.06 0.15 0.20 0.46 0.76 0.74
75 0.23 -1.33 -0.93 -0.10 0.53 0.41 0.28 0.81 0.74

100 0.08 -1.35 -1.01 -0.13 0.18 0.07 0.22 0.60 0.53
T=2500 α0 = 0.03 α0 = 0.05 α0 = 0.10

5 4.16 3.69 3.91 3.79 3.57 3.68 4.54 4.39 4.50
15 1.53 1.36 1.42 1.27 1.62 1.53 1.62 1.84 1.80
25 0.93 0.31 0.48 0.76 0.86 0.83 1.01 1.12 1.11
50 0.47 -0.53 -0.25 0.29 0.07 0.16 0.48 0.46 0.50
75 0.33 -0.42 -0.25 0.15 0.17 0.18

100 0.29 -0.34 -0.20
T=1000 β0 = 0.95 β0 = 0.90 β0 = 0.85

5 -0.67 -0.71 -0.66 -1.03 -1.20 -1.10 -1.09 -1.22 -1.16
15 -0.59 -0.56 -0.56 -0.76 -0.94 -0.88 -0.66 -0.83 -0.78
25 -0.56 -0.44 -0.46 -0.72 -0.87 -0.81 -0.58 -0.75 -0.70
50 -0.55 -0.42 -0.45 -0.68 -0.79 -0.76 -0.51 -0.65 -0.62
75 -0.55 -0.42 -0.45 -0.66 -0.82 -0.77 -0.48 -0.65 -0.62

100 -0.55 -0.42 -0.44 -0.66 -0.79 -0.73 -0.48 -0.63 -0.59
T=2500 β0 = 0.95 β0 = 0.90 β0 = 0.85

5 -0.35 -0.33 -0.33 -0.52 -0.53 -0.52 -0.74 -0.75 -0.75
15 -0.25 -0.24 -0.24 -0.34 -0.41 -0.38 -0.36 -0.43 -0.41
25 -0.23 -0.18 -0.19 -0.31 -0.36 -0.34 -0.30 -0.35 -0.34
50 -0.21 -0.13 -0.15 -0.27 -0.28 -0.28 -0.23 -0.26 -0.26
75 -0.21 -0.15 -0.16 -0.26 -0.30 -0.29

100 -0.21 -0.15 -0.16
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Table 4: Ratios of RMSE of estimators of α and β, scalar RDCC model
n T = 1000 α0=0.03 β0=0.95 α0=0.05 β0=0.90 α0=0.10 β0=0.85
5 CL2/L 1.17 1.22 1.23 1.33 1.15 1.29
5 CL3/L 1.08 1.09 1.08 1.12 1.05 1.11
5 CL3/CL2 0.93 0.89 0.87 0.84 0.91 0.86

15 CL2/L 2.02 1.34 2.04 1.73 1.65 1.80
15 CL3/L 1.54 1.13 1.59 1.28 1.44 1.37
15 CL3/CL2 0.76 0.85 0.78 0.74 0.87 0.76
25 CL2/L 3.15 1.20 3.05 1.75 2.30 1.89
25 CL3/L 2.32 1.04 2.24 1.42 1.77 1.53
25 CL3/CL2 0.73 0.87 0.74 0.81 0.77 0.81
50 CL2/L 6.34 1.14 6.08 1.69 3.97 1.90
50 CL3/L 4.35 0.99 4.31 1.42 2.94 1.59
50 CL3/CL2 0.69 0.87 0.71 0.84 0.74 0.84
75 CL2/L 8.80 1.13 9.18 1.75 5.70 1.97
75 CL3/L 6.15 0.96 6.26 1.40 3.97 1.56
75 CL3/CL2 0.70 0.85 0.68 0.80 0.70 0.80

100 CL2/L 10.77 1.08 11.36 1.67 6.71 1.88
100 CL3/L 7.88 0.95 7.95 1.36 4.77 1.53
100 CL3/CL2 0.73 0.89 0.70 0.81 0.71 0.82
n T = 2500 α0=0.03 β0=0.95 α0=0.05 β0=0.90 α0=0.10 β0=0.85
5 CL2/L 1.19 1.27 1.12 1.27 1.05 1.26
5 CL3/L 1.04 1.08 1.03 1.10 1.01 1.09
5 CL3/CL2 0.88 0.85 0.92 0.86 0.96 0.87

15 CL2/L 1.93 1.63 1.85 1.90 1.42 1.97
15 CL3/L 1.50 1.31 1.48 1.51 1.28 1.51
15 CL3/CL2 0.78 0.80 0.80 0.79 0.90 0.77
25 CL2/L 2.66 1.57 2.58 2.13 1.88 2.28
25 CL3/L 1.99 1.27 1.96 1.66 1.50 1.77
25 CL3/CL2 0.75 0.81 0.76 0.78 0.80 0.78
50 CL2/L 4.55 1.48 4.82 2.30 3.08 2.59
50 CL3/L 3.22 1.19 3.37 1.74 2.25 1.96
50 CL3/CL2 0.71 0.80 0.70 0.76 0.73 0.76
75 CL2/L 6.87 1.53 7.18 2.36 4.58 2.74
75 CL3/L 4.62 1.17 5.06 1.78 3.16 2.02
75 CL3/CL2 0.67 0.77 0.70 0.75 0.69 0.74

100 CL2/L 7.78 1.45 8.86 2.27 5.32 2.64
100 CL3/L 5.46 1.12 6.05 1.68 3.66 1.93
100 CL3/CL2 0.70 0.77 0.68 0.74 0.69 0.73
A value larger (smaller) than 1 indicates that the estimator in the numerator is less (more)
efficient than the estimator in the denominator.
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Table 5: Ratios of RMSE of estimators of α and β, scalar cRDCC model
n T = 1000 α0=0.03 β0=0.95 α0=0.05 β0=0.90 α0=0.10 β0=0.85

5 CL2/L 1.16 1.18 1.29 1.29 1.20 1.22
5 CL3/L 1.08 1.07 1.11 1.11 1.08 1.09
5 CL3/CL2 0.93 0.91 0.86 0.86 0.90 0.89

15 CL2/L 2.33 1.28 2.35 1.60 1.92 1.56
15 CL3/L 1.76 1.13 1.81 1.34 1.56 1.34
15 CL3/CL2 0.76 0.88 0.77 0.84 0.81 0.86
25 CL2/L 3.35 1.16 3.33 1.70 2.62 1.72
25 CL3/L 2.46 1.02 2.44 1.39 1.99 1.44
25 CL3/CL2 0.74 0.88 0.73 0.82 0.76 0.84
50 CL2/L 6.23 1.10 6.08 1.65 4.59 1.79
50 CL3/L 4.42 0.98 4.34 1.38 3.34 1.50
50 CL3/CL2 0.71 0.89 0.71 0.84 0.73 0.84
75 CL2/L 6.23 1.10 9.36 1.75 7.26 1.92
75 CL3/L 4.42 0.98 6.48 1.43 5.12 1.58
75 CL3/CL2 0.71 0.89 0.69 0.82 0.71 0.82

100 CL2/L 11.26 1.07 10.75 1.67 8.15 1.85
100 CL3/L 7.79 0.95 7.42 1.37 5.69 1.52
100 CL3/CL2 0.69 0.89 0.69 0.82 0.70 0.82
n T = 2500 α0=0.03 β0=0.95 α0=0.05 β0=0.90 α0=0.10 β0=0.85
5 CL2/L 1.20 1.17 1.20 1.23 1.09 1.15
5 CL3/L 1.06 1.06 1.07 1.09 1.03 1.06
5 CL3/CL2 0.89 0.90 0.89 0.88 0.95 0.92

15 CL2/L 2.11 1.46 2.16 1.76 1.64 1.60
15 CL3/L 1.63 1.23 1.68 1.43 1.37 1.35
15 CL3/CL2 0.77 0.85 0.78 0.81 0.84 0.84
25 CL2/L 3.05 1.45 3.12 1.96 2.18 1.82
25 CL3/L 2.27 1.20 2.33 1.56 1.72 1.49
25 CL3/CL2 0.74 0.83 0.75 0.80 0.79 0.82
50 CL2/L 5.50 1.38 5.80 2.15 3.73 2.19
50 CL3/L 3.89 1.12 4.13 1.67 2.73 1.72
50 CL3/CL2 0.71 0.81 0.71 0.77 0.73 0.79
75 CL2/L 7.77 1.42 8.49 2.19
75 CL3/L 5.45 1.14 5.94 1.68
75 CL3/CL2 0.70 0.80 0.70 0.77

100 CL2/L 9.39 1.42
100 CL3/L 6.59 1.14
100 CL3/CL2 0.70 0.80
A value larger (smaller) than 1 indicates that the estimator in the numerator is less (more)
efficient than the estimator in the denominator.
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estimator. The efficiency loss is very large especially for α0 and large n. Remember that

for n = 50 or more, not all triplets are used, implying that the inefficiency ratios are not

really comparable to those for n ≤ 25. Actually for n = 100, 5000 pairs only correspond

to 3 per cent of all pairs.

2) The efficiency of CL2 is smaller than that of CL3, but the gap is not so high as with

respect to L (at most 33 per cent, and in most cases much less).

3) The efficiency gap in favor of the L estimator increases with n.

4) Inefficiency ratios tend to be lower for T = 2500 than for T = 1000, especially when

they are high.

5) The efficiency ratios for the two types of models are generally very close to each other.

7.4 Computing time, models and estimators

The computing time for estimating the RDCC model is smaller than for the cRDCC model.

For n = 5, the ratio of the former to the latter is FILL, for n = 50, FILL, and for n = 100,

FILL. This pleads in favor of using the scalar RDCC model in empirical work, given the

comparable bias and efficiency properties of the two models.

The computing time for estimating the scalar RDCC model (with 2500 observations) is

about six times smaller by CL2 than by L for n = 50 (2.5 for the cRDCC). As a function

of n, this ratio has an inverse U-shape.

8 Empirical illustration

We consider stock returns from 50 assets traded in the NYSE and NASDAQ, their tickers

being shown in Table 6. The sample period spans January 05, 1999 to May 22, 2007, which

amounts to 2084 trading days. The dataset has been cleaned from weekends, holidays and

early closing days. Days with many consecutive missing values or constant prices have

also been removed. Rare missing values have been linearly interpolated. The realized

conditional covariances are based on intraday returns computed from 6-minute intervals

last mid-quotes. Since the daily trading period of the NYSE and NASDAQ is 6.5 hours,
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this amounts to 65 intraday observations per day. Relying on the same arguments of

Andersen, Bollerslev, Frederiksen, and Nielsen (2010), we estimate the scalar DCC model

using daily open-to-close realized covariances.

Table 6: Tickers
AAPL BMY CSCO EXC HD JNJ MMM SLB ORCL WFC
ABT BP CVX F HNZ JPM MOT T PEP WMT
AXP C DELL FDX HON KO MRK TWX PFE WYE
BA CAT DIS GE IBM LLY MS UN PG XOM

BAC CL EK GM INTC MCD MSFT VZ QCOM XRX

The model is defined by (1), (4) and (5) where the elements on the diagonal of St in

(4) are specified as Sii,t = ωi + γiCii,t−1 + δiSii,t−1, i = 1, ..., n. Table 7 reports parameter

estimates and standard deviations for a portfolio made of AAPL, ABT, AXP. The param-

eters driving the correlation dynamics have been estimated using the QML and the CL

approach respectively (we call the former QML because we do not assume that the Wishart

assumption is correct, but actually it is the same estimator as what we call L in Section 7).

All estimates are significant at standard confidence levels and we do not observe sensible

differences between the QMLE and the CLE. Figure 1 shows that the model can fit well

the data and suggests that the RDCC can adequately smooth the noisiness and track fairly

well the dynamics of realized variances and correlations.

Table 7: AAPL, ABT and APX

Variances Correlation

γi δi ωi α β

AAPL 0.1453 0.6891 0.4901 QML 0.0564 0.8988
(0.0274) (0.0588) (0.1333) (0.0238) (0.0475)

ABT 0.1095 0.7720 0.1076 CL 0.0591 0.8831
(0.0208) (0.0427) (0.0472) (0.0169) (0.0333)

AXP 0.1625 0.6764 0.0585
(0.0265) (0.0509) (0.0277)

Note: robust standard errors in parentheses.
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Figure 1: Fitted variances and correlations (solid) vs. realizations (dashed)

Engle and Sheppard (2001) suggest that for GARCH-DCC models estimated on daily

returns, QML estimates of the dynamic parameters seem biased when the cross-sectional

dimension n becomes large. The QML and CL2 (based on all possible pairs) estimates of

the correlation dynamics for the 50 assets are reported in Table 8. The QML estimator

shows clear signs of bias as the cross-sectional dimension increases. When modeling the

covariance of the portfolio of 50 assets, the evidence of bias is striking. In this case, the

QML estimator produces correlations that are close to be constant. A random sample of

correlation paths generated under the QML and the CL estimators are shown in Figure 2.
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Table 8: Scalar RDCC: QML vs. CL estimates

QML CL
n α β α β

5 0.0412 0.9308 0.0625 0.8952
(0.0123) (0.0231) (0.0089) (0.0162)

15 0.0201 0.9664 0.0574 0.9052
(0.0027) (0.0051) (0.0027) (0.0048)

30 0.0139 0.9743 0.0591 0.9024
(0.0012) (0.0024) (0.0013) (0.0023)

50 0.0105 0.9794 0.0575 0.9058
(0.0006) (0.0015) (0.0008) (0.0014)

Note: robust standard errors in parentheses. The

CL estimator is based on CL2, defined in (37).

Unlike the QML estimator, the CL estimator does not seem to suffer from the usual

downward bias in the innovation parameter α and upward bias in the smoothing parameter

β, even when the cross-sectional dimension becomes large. Both parameters seem to be

insensitive to the cross-sectional dimension. This result is in line with Engle, Shephard,

and Sheppard (2008).

To better illustrate this point we generalize the results reported in Table 8 by contrasting

the behaviour of the QML and Cl estimators obtained for a large number of random

portfolios of various dimensions (n =2, 3, 5, 10 and 20 respectively1) selected from the

pool of 50 assets considered in this Section. The aim is to validate the evidence reported

in Table 8, i.e., whether the discrepancies reported between the QML and the Cl estimates

appear systematically as the cross sectional dimension increases and independently of the

composition of the portfolio, and to assess to what extent these estimators are affected

by parameter heterogeneity under (possible) model misspecification, i.e., when imposing

common dynamics for the conditional correlations2. To this end, in Figures 3, 4 and 5 we

1The number of random portfolios considered is 1,225 for n = 2, 19,600 for n = 3, 150,212 for n = 5,

60,505 for n = 10 and 30,653 for n = 20.
2Notice that when n = 2, parameter heterogeneity is captured to the highest extent since we model

individually each correlation. Also, in this case QML and CL coincide.
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report distributions, box-plot and rank order representations of the parameters estimates

for each set of portfolios. Results are compared with the parameter estimates obtained

using the entire set of available assets (n = 50).

Consistently with the results reported in Table 8, Figure 4 shows that, as the cross sec-

tional dimension increases, the CL estimator clearly tends to average correlation dynamics.

Indeed, average dynamics, measured by means (medians) of the correlation parameters esti-

mated for different portfolio compositions of fixed size, are consistent across cross sectional

dimensions and in line with the estimates obtained for a portfolio of n = 50 assets (Figure

5(c)-(d)).

Contrary, when n is sufficiently large, the QML estimator seems to be unable to capture

correlation dynamics. The discrepancy between the QML and CL estimators becomes

striking. The QML estimator appears unable to absorb the heterogeneity in the correlation

dynamics. In particular, the innovation parameter shows clear signs of downward bias and,

as n increases, it drifts well below the smallest value spanned by α when estimated over

portfolios of two assets (see Figure 5(a)). The smoothing parameter, β, shows a spectacular

behaviour Figure 5(b)).

9 Conclusions

We have proposed a new dynamic model for realized covariance matrices. The model can

be specified and estimated in two steps, the first one for the variances, and the second

for the correlation matrix. The first step can also be split into individual steps. This

enables to apply the model to matrices of large dimension, where large in this context

means of the order of fifty. This is a significant progress relative to existing models. The

possibility to split the estimation in steps comes from the use of a scalar DCC model, and

from the use of the Wishart distribution. The latter assumption also allows us to use a

composite likelihood approach which might be especially relevant for very large dimensions

(since the usual ML may then be infeasible computationally). The Wishart assumption

should not be viewed as a big drawback given that the estimation has a quasi-likelihood

31



interpretation. Simulations show that there is, as expected, an efficiency loss to using a

composite likelihood estimation rather than a full likelihood. Several extensions are on our

research agenda.
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Figure 2: Fitted variances and correlations (solid) vs. realizations (dashed). Parameters

estimated using QML (left) and CL (right).
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Figure 3: Distribution of the QML (top) and CL (bottom) correlation parameters estimates

for a large number of random portfolios of different sizes n. The vertical dashed line

represents the parameter estimates for the portfolio made of all the available assets (n =

50).
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Figure 4: Box-plot representation of the QML (top) and CL (bottom) correlation param-

eters estimates for a large number of random portfolios of different sizes n. The bounds of

the box represent the 1% and 99% quantiles respectively. The +s represent the 25% and

75% quantiles, while the dot and the dash represent the median and mean respectively.

The horizontal dashed line represents the parameter estimates for the portfolio made of all

the available assets (n = 50).
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Figure 5: Rank representation of the QML (top) and CL (bottom) correlation parameters

estimates for a large number of random portfolios of different sizes n. The horizontal

dashed line represents the parameter estimates for the portfolio made of all the available

assets (n = 50).
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